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See paper for case σr > 0.
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Motivating example

I Problem: service demand inference

I Qir : empirical mean queue-length

I Maximum-likelihood estimation (MLE)

max
θ∈Ω

∑
i ,r

Qir log θir − logG

where θ ≡ (θir) and G ≡ G (θ).
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Related work

Computing the normalizing constant G :

I CA: Convolution algorithm

I RECAL: Recursion by chain

 exact methods
I MoM: Method of moments

I RAY: Ray method

I MCI: Monte Carlo integration

I TE: Taylor expansion

I . . .
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Motivating example
I 60s run, 3 nodes, 3 classes, 120 jobs

CA MCI MoM RAY REC TE NoG
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This prompts us to revisit G ’s computational theory.
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Interpolation theory

I Consider f (x) and data points x = θ1, . . . , θK
I Newton’s interpolation polynomial

N(x) =
K∏
i=1

(x − θi) · [θ1, . . . , θK ]f (x)︸ ︷︷ ︸
divided difference

+ · · ·

I Explicit form for divided differences

[θ1, . . . , θK ]f (x) =
K∑

k=1

f (θk)∏
i 6=k(θk − θi)
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Single-class models

I Explicit form for single-class models (R = 1)

G =
∑
n

K∏
k=1

θnkk =
K∑

k=1

θN+K−1
k∏

i 6=k(θk − θi)

I Matching the definitions

G = [θ1, . . . , θK ]xN+K−1
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A new integral form

I Hermite-Genocchi formula for divided differences

G =
(N + K − 1)!

N!

∫
∆K

(θ1u1 + . . . + θKuK )Ndu

on the simplex ∆K = {|u| = 1,u ≥ 0}.

I Laplace transform on volume of ∆K yields the
McKenna-Mitra integral form for G over RK

+.
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Example

K = 2 queues
u1 + u2 = 1
θ1 > θ2

G ∝
∫

∆K

(θ1u1+θ2u2)Ndu

u10 1

N = 1

N = 5

N = 50
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Multiclass analysis

I We generalize the result to multiclass models

G =
(N + K − 1)!

N1! · · ·NR!

∫
∆K

R∏
r=1

(θ1ru1+. . .+θKruK )Nrdu

I Proof uses multinomial theorem and

P(n) ∝ n1! · · · nK ! ∝
∫

∆K

K∏
k=1

unkk du
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Computational methods

From the integral form, we derive:

I Explicit solutions

I Asymptotic expansion

I Cubature rule
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Explicit solutions

I Integral form for single class models (R = 1)

G =
(N + K − 1)!

N!

∫
∆K

(θ1u1 + . . . + θKuK )Ndu

I Integral form for multiclass models (R > 1)

G =
(N + K − 1)!

N1! · · ·NR!

∫
∆K

R∏
r=1

(θ1ru1+. . .+θKruK )Nrdu
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From products to sum

I Can we relate the two cases?

R∏
r=1

xNr
r =

1

N!

∂N1 · · · ∂NR

∂tN1

1 · · · ∂t
NR

R

(∑
r

trxr

)N

where N =
∑

r Nr .

I Multiclass integrand reduced to single class!
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O(NR) Explicit form

I Replace derivatives with finite differences.

I Applying to the integrands

G =
∑

t:0≤tr≤Nr

R∏
r=1

(−1)Nr−tr

Nr !

(
Nr

tr

)
︸ ︷︷ ︸

finite difference

K∑
k=1

θN+M−1
k∏

i 6=k(θi − θk)︸ ︷︷ ︸
single-class solution

where θk =
∑

r trθkr .

I Same time complexity as CA, but O(1) space
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O(NK+1) Explicit form

I Applying the idea to products in P(n)

G =
∑

h≥0:h≤N

(−1)N−h

N1! · · ·NR!

(
N + K − 1

N − h

) R∏
r=1

(
K∑

k=1

hkθkr

)Nr

I Same time as RECAL, but O(1) space
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Computational methods

From the integral form, we derive:

I Explicit solutions

I Asymptotic expansion

I Cubature rule
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Logistic transformation

u1 →
ex

1 + ex

u2 →
1

1 + ex∣∣∣∣∂u∂x
∣∣∣∣ =

ex

(1 + ex)2

N = 5

−5 0 5
0

5 · 10−2

0.1

I Approximate mapping to a Gaussian over RK−1

I Close to Gaussian also for small N
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Properties

I What are the parameters of the Gaussian?

I Mean û obtained iteratively

ûi =
R∑
r=1

Nr

N
∑

k θkr ûk

I Asympotically identical to mean-value analysis

I Explicit form found for the covariance matrix A
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Heavy-load asymptotics

I We force εN self-looping jobs at each node

I For small ε, we get in heavy load (N →∞)

G ∼ (N + K − 1)!

N1! · · ·NR!

√
(2π)K−1

det(A)

R∏
r=1

(
K∑

k=1

θkr ûk

)Nr K∏
i=1

ûi

I We refer to this result as logistic expansion (LE).
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Example: MLE revisited
I 60s run, 3 nodes, 3 classes, 120 jobs

CA MCI MoM RAY REC TE NoG LE

40

118

71
59

77
95 96

1

m
ea

n
ab

s.
p

er
c.

er
ro

r

22/32



Computational methods

From the integral form, we derive:

I Explicit solutions

I Importance sampling

I Asymptotic expansion

I Cubature rule
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Cubature rules

u1

u2

u3 ∫
∆K

f (u)du

≈
∑

j wj f (u(j))
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Grundmann-Möller cubature

I O(SK ) samples symmetric to simplex barycenter

u(j) =

(
(2b

(j)
1 + 1)

(2S + K − 2s)
, . . . ,

(2b
(j)
K + 1)

(2S + K − 2s)

)

∀s = 0, . . . , S and b(j) ≥ 0 s.t. |b(j)| = S − s.

I For G , the rule is exact when S = d(N − 1)/2e
I Lower degree rules give approximations of G
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Grundmann-Möller cubature

degree S = 1
4 points

u1

u2

u3

error=92.9%
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Grundmann-Möller cubature

degree S = 2
18 points

u1

u2

u3

error=61.0%
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Grundmann-Möller cubature

degree S = 4
35 points

u1

u2

u3

error=6.0%
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Grundmann-Möller cubature

degree S = 6
84 points

u1

u2

u3

error=0.0%
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Validation: Light-load
I K ,R ∈ [2, 32], N/R = 2, 1125 MLE problems

CUB LE MCI NoG RAY
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Cubature rule best in light load.
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Validation: Heavy-load
I K ,R ∈ [2, 32], N/R = 40, 1125 MLE problems

CUB LE MCI NoG RAY
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Logistic expansion best in heavy load.
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Conclusion

Main findings:

I Novel integral form for G on the unit simplex

I Explicit solutions

I Asymptotic expansions and cubature rule

Additional results in the paper:

I Importance sampling method

I Hybrid LE-Approximate MVA

I Models with delay nodes (σr > 0)

I Validation on random models
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