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Closed queueing networks
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Closed queueing networks

Or

K nodes
R classes
N jobs, N, in class r

Product-form (o, = 0):
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See paper for case o, > 0.
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Motivating example

» Problem: service demand inference
» Q;;: empirical mean queue-length

» Maximum-likelihood estimation (MLE)

+log 6, —log G
réneaé(z Qir ogUjr og
ir

where 8 = (6;,) and G = G(0).
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Related work

Computing the normalizing constant G:

» CA: Convolution algorithm

v

RECAL: Recursion by chain exact methods
MoM: Method of moments

RAY: Ray method
» MCI: Monte Carlo integration

v

v

» TE: Taylor expansion

| S
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Motivating example
» 60s run, 3 nodes, 3 classes, 120 jobs
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This prompts us to revisit G's computational theory.

mean abs. perc. error
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Interpolation theory

» Consider f(x) and data points x = 6;,..., 0k
» Newton's interpolation polynomial

K
N(x)=TJCx=0:) - 01, ... 01 F(x)+ -
i=1 dividedmference

» Explicit form for divided differences

[91’ - HK] f(X Z H ;ék(ek )_ )
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Single-class models

» Explicit form for single-class models (R = 1)

N+K-1
ek

G:ZHW :;Hi#(ek—@i)

n k=1

» Matching the definitions

G =[01,....0kx" !
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A new integral form

» Hermite-Genocchi formula for divided differences
(N+K—-1)!

6= NI

/ (91U1 + ...+ QKUK)NdU
Ay

on the simplex Ay = {|u| = 1,u > 0}.

» Laplace transform on volume of Ay yields the
McKenna-Mitra integral form for G over Rﬁf.
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Example
K = 2 queues
ui+u =1
191 >92

GO(/ ((91U1-|—92U2)Ndu
Ay
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Multiclass analysis

» We generalize the result to multiclass models

N K—l'
G—( i) / T[(Cutnt- -+ o

Ak 21

» Proof uses multinomial theorem and

P(n) o m! - ng! HuZ"du
AK =1
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Computational methods

From the integral form, we derive:
» Explicit solutions
» Asymptotic expansion

» Cubature rule
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Explicit solutions

> Integral form for single class models (R = 1)

N+ K —1)!

6= NI

/ (Orun + ...+ GKUK)Ndu
Ay

» Integral form for multiclass models (R > 1)

R
~ (N+K-1)! N,
G = N Nal H(@lrul—l—. . -+9KrUK) du

K r=1
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From products to sum

» Can we relate the two cases?

R N
1 M ... 9Nk
N
X, = t X,
[~ o (Z )

where N =>"_N,.

» Multiclass integrand reduced to single class!

@;:. service demand, N: jobs, R: classes, K: queues
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O(N*) Explicit form

» Replace derivatives with finite differences.
» Applying to the integrands

t:.0<t, <N, r=1

Vv TV
finite difference single-class solution

where 6, = Z t 0.
» Same time complexity as CA, but O(1) space

6@;:. service demand, N: jobs, R: classes, K: queues
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O(NX+1) Explicit form

» Applying the idea to products in P(n)

VR N K -1 D [ N
G = Z /\51!")-/VR!< ;—h )H(thekr>

h>0:h<N r=1 \ k=1

» Same time as RECAL, but O(1) space
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Computational methods

From the integral form, we derive:
» Explicit solutions
» Asymptotic expansion

» Cubature rule
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Logistic transformation
; N=5
€
A 0.1} .
1
27 1¥e 5.102) |
du| €
ox| (1+e) 0 | |
-5 0 5

» Approximate mapping to a Gaussian over R¥~1
» Close to Gaussian also for small N
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Properties

» What are the parameters of the Gaussian?

» Mean (1 obtained iteratively

B Z NZk riuk

» Asympotically identical to mean-value analysis

» Explicit form found for the covariance matrix A
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Heavy-load asymptotics

» We force eN self-looping jobs at each node

» For small ¢, we get in heavy load (N — o0)
N,

R r K
(N+K—1)I [@2r)K1 .
O TN N\ det(A H Ze’“uk H”"

» We refer to this result as logistic expansion (LE).
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21/32



Imperial College
London

Example: MLE revisited

» 60s run, 3 nodes, 3 classes, 120 jobs

118
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mean abs. perc. error
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Computational methods

From the integral form, we derive:
» Explicit solutions
» Importance sampling
» Asymptotic expansion

» Cubature rule
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Cubature rules

us
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Grundmann-Moller cubature

» O(S*) samples symmetric to simplex barycenter

o _ [+ 1) (26 +1)
S \(2S+K—25)""" (25 + K — 25)

¥s=0,...,Sand b¥ > 0st. |bY|=5—5s
» For G, the rule is exact when S = [(N — 1)/2]

» Lower degree rules give approximations of G
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Grundmann-Moller cubature

degree S =1
u3 4 points

error=92.9%

/\Uz

uy
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Grundm

us

ann-Moller cubature

degree S =2
18 points

error=61.0%

ui
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Grundmann-Moller cubature

us

ui

degree S =4
35 points

error=6.0%

uz
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Grundmann-Moller cubature

degree S =6
u3 84 points

error=0.0%

uz
ui
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Validation: Light-load
+ KR €[2,32], N/R = 2, 1125 MLE problems
5\8 | | | |
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% models where method is best
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Cubature rule best in light load. s
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Validation: Heavy-load
- K.R €[2,32], N/R = 40, 1125 MLE problems
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Logistic expansion best in heavy load. -
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Main findings:

» Novel integral form for G on the unit simplex

» Explicit solutions

» Asymptotic expansions and cubature rule
Additional results in the paper:

» Importance sampling method

» Hybrid LE-Approximate MVA

» Models with delay nodes (o, > 0)

» Validation on random models
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