

Developing Data-Intensive Cloud

Applications with Iterative Quality

Enhancements

DICE Testing tools – Final version

Deliverable 5.5

Ref. Ares(2017)3789528 - 27/07/2017

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 2

Deliverable: D5.5

Title: DICE Testing Tools – Final version

Editor(s): Giuliano Casale (IMP)

Contributor(s): Tatiana Ustinova (IMP), Gabriel Iuhasz (IEAT), Andrew Phee

(FLEXI)

Reviewers: Matej Artač (XLAB), Ioan Dragon (IEAT)

Type (R/DEM/DEC): Demonstrator

Version: 1.0

Date: 27-July-2017

Status: Final version

Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright © 2017, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre

FLEXI: Flexiant Limited

IEAT: Institutul E Austria Timisoara

IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA

PMI: Politecnico di Milano

PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.

ZAR: Universidad De Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreement No. 644869

http://www.dice-h2020.eu/deliverables/

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 3

Executive summary
In this deliverable we present the final releases of the DICE Quality Testing (QT) tool and the DICE

Fault Injection (FIT) tool. In its final version, QT allows to load test streaming processing

applications developed using either Storm or Kafka, and consequently also other frameworks such

as Spark Streaming that can acquire stream data from a Kafka data pipeline. QT allows to reproduce

empirical data from a log trace of streaming messages and generate statistically similar traces.

Moreover, it offers the ability to scale the arrival rates and volumes of data sent to the application

in order to analyze its response under increasing data volumes and velocity. We also present the

DMON-gen utility allows the developer to test how the DIA will behave when using different

platform (i.e. Yarn, Spark, etc.) settings and use the resulting monitoring data to create training and

validation sets that are later used by the anomaly detection tool. Lastly, we discuss the final version

of the FIT tool, which allows to simulate faults in the infrastructure used by the DIA to assess its

resiliency.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 4

Glossary
DIA Data-Intensive Application

DICE Data-Intensive Cloud Applications with iterative quality enhancements

DMON DICE Monitoring Platform

MMAP Marked Markovian Arrival Process

QoS Quality of Service

QT Quality Testing

QT-GEN QT workload generator

QT-LIB QT library

UML Unified Modelling Language

YARN Apache Yet Another Resource Negotiator

API Application Programming Interface

FIT Fault Injection Tool

JSON JavaScript Object Notation

VM Virtual machine

CPU Central processing unit

UI User interface

GUI Graphical user interface

ADT Anomaly detection tool

DMON-GEN DMON anomaly generator

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 5

Table of contents
Executive summary ... 3

Glossary ... 4

Table of contents ... 5

1 Introduction ... 7

1.1 Research and Technical Achievements in Year 3 ... 7

Achievement 1: QT-LIB support for Apache Kafka ... 7

Achievement 2: QT-LIB integration with DMON monitoring platform .. 7

Achievement 3: workload testing for anomaly detection .. 7

Achievement 4: fault-injection tool front-end ... 7

1.2 Requirements .. 7

1.3 ‘Must have’ requirements ... 8

1.4 ‘Should have’ requirements .. 9

1.5 QT, FIT and DICE Architecture ... 10

1.6 Deliverable organisation ... 10

2 Quality Testing (QT) ... 11

2.1 QT-LIB extension: an overview of Apache Kafka ... 11

2.2 QT-LIB for Apache Kafka .. 11

2.2.1 Baseline: kafka-perf-tool ... 11

2.2.2 Customization and extension ... 11

2.2.3 Final QT-LIB internal architecture .. 12

2.2.4 Using QT-LIB for Kafka ... 13

2.2.5 Kafka support validation ... 14

2.3 Extended integration with Storm and DMON .. 15

2.3.1 DMON integration ... 15

2.3.2 Storm integration ... 16

3 Fault Injection Tool (FIT) .. 18

3.1 Overview ... 18

3.2 Motivation ... 18

3.3 Design ... 18

3.4 Operation ... 19

3.5 Graphical User Interface ... 19

3.1 Integration ... 21

3.2 Validation .. 22

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 6

3.3 Installation ... 23

4 DMON-Gen Utility .. 24

4.1 General Overview ... 24

4.2 Architecture ... 24

4.3 Monitoring data generation ... 25

4.4 Use-cases and configuration ... 26

4.5 Validation .. 27

5 Conclusion ... 30

5.1 Summary of achievements .. 30

References ... 31

6 Annex ... 32

6.1 Parameter settings for DMON-gen ... 32

6.1.1 Parameters for HDFS ... 32

6.2 Parameters for Yarn service .. 36

6.3 Parameters for Spark service .. 42

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 7

1 Introduction

In this final version of the Quality Testing (QT) tools, we discuss the year 3 achievements in relation

to testing of data intensive application (DIA). Compared to the initial version of this deliverable

(D5.4, released at M24), D5.5 covers the final versions of the load testing tools (QT-GEN, QT-LIB)

and the fault injection tool (FIT).

1.1 Research and Technical Achievements in Year 3

In D5.4, we described two tools, QT-GEN and QT-LIB, for load testing Storm-based applications.

The decision of focussing on this technology platform was motivated by the observation that other

DICE technologies such as Apache Hadoop or Cassandra can be stress tested with mature open

source tools like Apache JMeter. At the end of D5.4 we set a goal of extending the capability of QT

to other DICE technologies like Apache Spark streaming. Moreover, in D5.6 we presented an initial

release of FIT, which we now complete with this deliverable adding in particular a GUI.

Achievement 1: QT-LIB support for Apache Kafka

After reviewing the literature, we concluded that if QT could be extended to support Apache Kafka,

then the tool would be in condition to load test a variety of stream processing platforms, including

Apache Spark streaming, which can natively consume from Apache Kafka itself.

Achievement 2: QT-LIB integration with DMON monitoring platform

The quality testing API exposed by QT-LIB has been extended to support direct calls to DMON

monitoring. In the case of Storm technology, QT-LIB can also directly retrieve performance data

from Storm's internal monitoring system. In year 3 we have also defined a template for the end-user

to automate the control of load testing experiments using monitoring data. This has been applied

against the NewsAsset case study developed by ATC.

Achievement 3: workload testing for anomaly detection

In year 3 we have also developed testing tools that support DICE engineers in training the anomaly

detection algorithms offered with the DMON monitoring platform. The tool, called DMON-gen,

allows to repeatedly run the application using multiple configurations and workloads.

Achievement 4: fault-injection tool front-end

Lastly, we present the final version of the fault injection tool (FIT), which now supplies a graphical

user interface that simplifies its use from within the DICE IDE environment.

1.2 Requirements

Deliverable D1.2 - Requirement specification [1] presents the requirement analysis for the whole

project, including the QT tool. This section provides an updated list of requirements for QT and FIT

at month 30. The actors are as follows:

• QTESTING_TOOLS: the DICE Quality Testing tool

• CI_TOOLS: the DICE Continuous Integration tools

• QA_TESTER: the developer or operator interested in validating the application quality.

The main changes concerning the earlier version of the requirements is that we have revisited them

to be consistent with the technology platforms that are supported by QT, namely stream-processing

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 8

systems. In particular the earlier requirements R15.5.x related to safety and anomaly detection are

now under the remit of the anomaly detection and trace checking tools and obsolete for QT.

1.3 ‘Must have’ requirements

ID R5.6

Title Test workload generation

Priority Must have

Description: The QTESTING_TOOLS MUST be able to generate the workload with pre-

specified characteristics for the APPLICATION.

ID R5.8.2

Title Starting the quality testing

Priority Must have

Description: The QTESTING_TOOLS MAY be invoked by the CI TOOLS or by

the QA_TESTER

ID R5.8.3

Title Test run independence

Priority Must have

Description: The QTESTING_TOOLS MUST ensure that no side effects from past or ongoing

tests leak into the runtime of any other test.

ID R5.8.5

Title Test outcome

Priority Must have

Description: The QTESTING_TOOLS MUST provide the test outcome to CI_TOOLS:

success or failure

ID R5.13

Title Test the application for efficiency

Priority Must have

Description: The QTESTING_TOOLS MUST be capable of running tests with any

configuration provided to it.

ID R5.14.1

Title Test the behaviour when resources become exhausted

Priority Must have

Description: The QTESTING_TOOLS MUST provide the ability to saturate and exhaust

resources used by the application.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 9

ID R5.17

Title Quick testing vs comprehensive testing

Priority Must have

Description: The QTESTING_TOOLS MUST receive as input parameter the scope of the tests

to be run.

ID R5.3.1

Title VM Fault deployment

Priority Must have

Description: The Fault Injection Tool MUST be able to cause faults on Virtual Machines.

1.4 ‘Should have’ requirements

ID R5.7

Title Data loading support

Priority Should have

Description: DEPLOYMENT_TOOLS and QTESTING_TOOLS SHOULD support bulk

loading and bulk unloading of the data for the core building blocks.

ID R5.14.2

Title Trigger deliberate outages and problems to assess the application’s behaviour

under faults

Priority Should have

Description: The QTESTING_TOOLS SHOULD use the fault injection environments

functionality to test the application's resilience.

ID R5.7.2

Title Data feed actuator

Priority Should have

Description: QTESTING_TOOLS SHOULD provide an actuator for sending generated or

user-provided data to the application under test.

ID R5.3.2

Title Integration with DICE deployment service

Priority Should have

Description: The Fault Injection Tool SHOULD interface with the DICE deployment service

in order to cause faults on various VMs used for a deployment.

ID R5.3.3

Title FIT GUI

Priority Should have

Description: The Fault Injection Tool SHOULD have a graphical user interface.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 10

1.5 QT, FIT and DICE Architecture

The Quality Testing and Fault Injection tools in the context of the DICE architecture are highlighted

in Figure 1:

Figure 1 DICE Architecture - QT and FIT tools highlight

As shown in the figure, QT is a stand-alone component, which is aimed at injecting load into specific

running components of the data-intensive application. QT tools can be used together with the fault

injection tool (FIT) to assess the quality of the application in the presence of specific faults, such as

simulated interruption of service for one or more VMs, or saturated resources that compromise

performance up to reaching unavailability of one or more services. Both tools are meant to assess

the quality of a Big data application, but QT has an emphasis on load-testing, whereas FIT focuses

on checking the resilience to faults.

1.6 Deliverable organisation

The rest of this deliverable is organised as follows.

• In Chapter 3 we provide an overview of Apache Kafka and present the extended QT tool.

• In Chapter 4 we describe the enhancements to the Fault Injection tool delivered in year 3.

• In Chapter 5 we introduce the DMON-gen utility and how it is used to generate anomalies.

• In Chapter 6, we give conclusions assessing requirement fulfillment.

• The final Appendix gives additional material related to the FIT.

Source code, installation instructions and documentation of the tools can be found at:

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-

Repository#quality

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-

Repository#fault

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#quality
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#quality
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#fault
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#fault

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 11

2 Quality Testing (QT)

In the next sections, we introduce the main extensions developed for QT in Year 3. We begin by

reviewing Apache Kafka support, and subsequently we discuss improved support for DMON and

Storm.

2.1 QT-LIB extension: an overview of Apache Kafka

Apache Kafka is a multi-purpose distributed streaming platforms, which can be used to build real-

time processing applications. In the context of DICE, Kafka is primarily supported to define high-

throughput data pipelines that can be used to ingest high-velocity high-volume data streams into

streaming processing systems such as Spark or Storm.

The general architecture of Kafka is as follows. Kafka supplies streams of records, grouped into

topics. For each topic, Kafka maintains a set of partitions, where records are appended in sequential

order. Partitions are used to distribute the records for a same topic across different servers and in

this way enable scalable processing and load-balancing. Each topic has one or more subscribers that

are automatically notified when a new record becomes available. A customizable retention period

also allows to recover records that have been already pushed to subscribers. It is important to note

that Kafka data structures are meant for high-performance access to streams.

Four APIs are made available to end users: Production API and Consumer API, which allow to

publish and subscribe topics on Kafka; Streams API, which allow to process records in transit on

one of more topic, sending the results to output topics; Connector API, which are used for integrating

Kafka with existing applications and data sources (e.g., databases). The QT-LIB extension makes

use primarily of the Production API.

2.2 QT-LIB for Apache Kafka

2.2.1 Baseline: kafka-perf-tool

In order to extend the QT-LIB load testing tool to Apache Kafka, we have customized, extended,

and integrated in QT-LIB an existing Java codebase for Kafka performance testing, which is the one

underpinning the kafka-perf-tool1.

kafka-perf-tool is an open source tool (Apache licensed) for load testing, which provides a

customizable JSON-based interface to specify the characteristics of the workload sent to a Kafka

instance. kafka-perf-tool is very flexible, as it allows to parallelize production and consumption of

Kafka topics and records, either generated at random or consumed from a static file. Among the

main customizable parameters offered natively by kafka-perf-tool we find:

• Control over the duration and concurrency level of a test experiment

• Control over the number of producers, on the volume of messages they send and the message

sizes, configurable strategies to allocate data to topics and partitions therein.

• Control over the number of consumers, on the topics to receive records from, and the

preferred polling intervals and number of messages to receive.

As these were the features we were seeking to add to QT, we have decided to develop the QT-LIB

extension starting from this baseline.

2.2.2 Customization and extension

Within DICE, we integrate and extend the capabilities of kafka-perf-tool to address some limitations

that restrict its use within the DICE methodology.

1 https://github.com/jkorab/ameliant-tools/tree/master/kafka/kafka-perf-tool

https://github.com/jkorab/ameliant-tools/tree/master/kafka/kafka-perf-tool

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 12

The main limitations we identified were as follows:

• Baseline limitation 1: In its official distribution, when kafka-perf-tool was configured to

issue pre-generated messages to the Kafka system, the tool was repeatedly publishing the

same message multiple times, which is appropriate for benchmarking purposes but

insufficient for reproducing an actual workload. In a realistic workload one would expect to

reproduce data with varying messages types and message intensities.

QT-LIB Solution: QT-LIB includes a customized version of kafka-perf-tool that publishes

different messages, in the order in which they are read from an external file trace. Such trace

is generated in output by QT-GEN, similar to what done in the case of Storm technology.

Our extension allows the user to cyclically read data from such an external trace file, so that

the number of messages generated can be longer than the original trace itself. This is

particularly useful to generate realistic workloads that would be expensive to acquire (e.g.,

new Twitter traces).

• Baseline limitation 2: Another limitation of kafka-perf-tool is that it does not allow to use

a custom release time for each message. The user can only specify the number of messages

and the duration of the testing experiment. This was perceived as a limitation compared to

what QT-LIB offers for the Storm environment, where the user is allowed to replay the exact

time series of records as they were originally exposes by a data source (e.g., from the Twitter

API).

QT-LIB Solution: We have modified kafka-perf-tool to inject records as custom times

supplied in the trace file to be replayed. This has been tested against synthetic Twitter data

generated by QT-GEN.

• Baseline limitation 3: in the QT-LIB library for Storm applications, DICE offers to the end

user the possibility to customize all properties of QT-LIB in a programmatic manner, directly

from within the Java application code. This was preferred to a solution involving JSON or

XML configuration files for each test, which created certain complication in the automated

deployment phase of the QT spouts on the application testbed. However, kafka-perf-tool

follows a JSON-based configuration approach, being primarily designed as a command line

tool. Thus it needs to be modified.

QT-LIB Solution: To overcome this limitation, we have defined a wrapper API that, similar

to what already offered by QT-LIB for Storm, enables the developer to fully control the

kafka-perf-tool load testing directly from within the Java application code. In this way, a

simple unit test for the application can be written to test its performance.

2.2.3 Final QT-LIB internal architecture

In light of the above changes, the final internal architecture of QT-LIB is summarized in Figure 2.

We assume in this overview that the typical usage consists of replaying a given trace, recorded in a

log file. We have the following steps:

• The QT-LIB user should first provide the trace in JSON format to QT-GEN, which will then

produce one or more new output traces for subsequent use with QT-LIB. Such output traces

provide statistically similar data to the one present in the original log file but typically differ

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 13

by rate of arrival of the messages or the total number of messages in each trace. We point to

deliverable D5.4 for an introduction to QT-GEN.

• Subsequently, the user writes Java code within her data-intensive application to use QT-LIB.

If the purpose of the load injection is to test a Storm topology, the user will need to instantiate

a RateSpout object, whereas for Kafka, she will need a RateProducer object. In both cases,

these objects can be instantiated within the DIA code.

• Prior to execution of the test, the output trace generated by QT-GEN to be used in the test

needs to be packaged as a resource within the jar file of the DIA.

• In the case of Kafka load-testing, it is possible to consume from a Spark or Storm application

the Kafka topic that is used by QT-LIB to send messages.

Figure 2 Revised QT-LIB architecture

2.2.4 Using QT-LIB for Kafka

We now illustrate the practical use of QT-LIB with Kafka. Below we present a compact example

that is included in the QT-LIB distribution (KafkaRateProducer.java). Our goal is to load test a

Kafka instance by injecting a set of random messages and JSON messages from a trace file under a

specified topic.

Initially, as done also with Storm, we construct a QTLoadInjector factory that will assemble the

load injector. Moreover, we specify the name of the input trace file, which is assumed to be packaged

within the jar file of the data-intensive application.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 14

We are now ready to instantiate a QT load injector for Kafka, which is called a RateProducer:

We assume that our target topic is called dice3 and it is exposed by a Kafka instance available on

the local machine on port 9092. This corresponds to the port of the so-called Kafka bootstrap server,

and should not be confused with the port of the Zookeeper instance associated to Kafka. We can use

the run() command of the RateProducer to start immediately the experiment.

By default, the RateProducer will send a single random message of size 1024 bytes to the server. It

is possible to increase the number of messages to be sent using the setMessageCount(int msgCount)

and setMessageSize(int msgSize) methods exposed by RateProducer.

We may now repeat the same workload generation, but reading the message from the test.json file

shipped with the application jar. To do so, we use the syntax

where we now specify the input trace file. In the DICE distribution of QT-LIB, test.json contains

100 messages. In order to validate the ability of QT-LIB to cyclically reuse this set of messages we

run

2.2.5 Kafka support validation

To validate the extended capabilities of QT-LIB we have performed two major tests. In the first test,

we have run QT-LIB against a Kafka installation, producing a sequence of JSON messages from

ATC’s Social Sensor platform onto a newly created topic, and subsequently using the kafka-console-

consumer utility, shipped with the default distribution of Kafka, to check that the topic correctly

received the messages. This test proved successful and it is included in the example/ folder of the

QT-LIB official distribution on github.

Next, we have considered a more challenging scenario in which we have injected load on a Kafka

pipeline, which was later pushed onto a Spark testbed running a wordcount application connected

to a MySQL instance. The Spark instance was installed using a simple open source distribution that

offers a graphical dashboard to visualize the volume of messages received by wordcount2. We

modified the test code of QT-LIB to inject into the topic used by this wordcount application by

modifying the input data to align with the format used by wordcount.

2 https://github.com/trK54Ylmz/kafka-spark-streaming-example

https://github.com/trK54Ylmz/kafka-spark-streaming-example

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 15

The format of the messages included in the JSON file reproduced by QT-LIB is as follows:

{"type":"south_america","value":893.4258}

{"type":"oceania","value":989.20374}

{"type":"oceania","value":554.9144}

…

Here type and value are examplars of JSON fields, and do not bear a specific meaning for the application’s internal

logic, which simply counts the number of messages of a given type. Figure 3 below is a screenshot from the

dashboard of the wordcount application, showing the rate of message flow in the system for two

types of messages sent by QT-LIB (“oceania” and “south_america”), one injected with constant

rate, the other with peak rate in the central part of the experiment.

Figure 3 QT-lib JSON data injection in a Spark testbed for two types of messages. The y-axis represents the number

of messages, the x-axis is dynamically updated by the wordcount application every few seconds.

2.3 Extended integration with Storm and DMON

2.3.1 DMON integration

QT-LIB now offers a new class, called DMONCapacityMonitor, which eases the integration of QT

with DMON. Let us consider for example the following scenario: a user wishes to increase the load

on a Storm testbed until hitting peak capacity at one of the bolts, which will therefore be a bottleneck

for the DIA. To avoid making the system unstable, the user wants to progressively increase the load

until reaching the desired peak capacity, but unfortunately it is not possible to predict beforehand

how many messages the system will need to inject before incurring a capacity bottleneck. By using

DMONCapacityMonitor the DICE user can easily check automatically from DMON if the system

has reached the desired utilization.

The usage of DMONCapacityMonitor is illustrated in the follow example. The end user first

specifies the desired time-window to check in DMON, which in the example corresponds to 30

seconds on 4-March-2017, between 12:19:30 and 12:20:00. As this may still correspond to many

records, it is possible to require that at most maxDMONRecords are actually retrieved from the

monitoring platform, neglecting the others. DMONCapacityMonitor exposes a function

getMaxCapacity that recursively parses the JSON data retrieved from DMON, which is located via

the specified URL and port, until determining the maximum capacity utilization across all bolts.

The recursion is needed to accommodate for arbitrarily nested JSON files.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 16

The main added value of this class is the recursive method to parse the DMON JSON file. The

collection mechanism of metrics such as maximum capacity is rather easy to extend to other metrics.

2.3.2 Storm integration

In addition to DMON integration, we have added in QT-LIB native methods to retrieve performance

data from the Storm UI interface. Storm UI is a graphical user interface, standard within the Storm

release, that allows the end user to check status for a running Storm topology. For example, in the

screenshot below one can see that it is possible to check latency and throughput (“Emitted” tuples)

of a topology directly from Storm UI.

The DICE QT class StormUICapacityMonitor delivers similar functionalities of

DMONCapacityMonitor but uses Storm UI as the source of the data. In particular, it also offers a

getMaxCapacity API to extract the maximum bolt capacity. A usage example is given below.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 17

As shown in the code snippet, a difference with respect to DMONCapacityMonitor, is that

StormUICapacityMonitor requires to uniquely identify the topology through the getId() command,

which accepts in input the topology name.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 18

3 Fault Injection Tool (FIT)

3.1 Overview

The operation of data intensive applications almost always requires dealing with various failures.

Therefore during the development of an application, tests have to be made in order to assess the

reliability and resilience of the system. These test the ability of a system to cope with faults and to

highlight any vulnerable areas.

The FIT allows users to generate faults on their Virtual Machines, giving them a means to test the

resiliency of their installation. Using this approach the designers can use robust testing, highlighting

vulnerable areas to inspect before it reaches a commercial environment. Users or application owners

can test and understand their application design or deployment in the event of a cloud failure or

outage, thus allowing for the mitigation of risk in advance of a cloud based deployment.

3.2 Motivation

Current and projected growth in the big data market provides three distinct targets for the tool. Data

Centre owners, cloud service providers and application owners are all potential beneficiaries due to

their data intensive requirements. The resilience of the underlying infrastructure is crucial to these

areas. Data Centre owners can gauge the stress levels of different parts of their infrastructure and

thus offer advice to their customers, address bottlenecks or even adapt the pricing of various levels

of assurances.

For developers FIT provides the missing and essential service of evaluating the resiliency and

dependability of their applications, which can only be demonstrated in the application’s runtime by

deliberately introducing faults. By designing the FIT to be a lightweight and versatile tool it is trivial

to use it during Continuous Integration or within another tool for running complex failure scenarios.

Used in conjunction with other tools not within the scope of this report, FIT could monitor and

evaluate the effect of various faults on an application and provide feedback to the developers on

application design.

3.3 Design

The FIT can generate VM faults for use by application owners and VM admins. The tool is designed

to run independently and externally to any target environment, as indicated in Figure 4.

Figure 4 Fault Injection Tool architecture

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 19

To access the VM level and issue commands the DICE FIT uses JSCH to SSH to the Virtual

Machines. By using JSCH the tool is able to connect to any VM that has SSH enabled and can then

issue commands as a pre-defined user. This allows greater flexibility of commands as well as the

installation of tools and dependencies. The DICE FIT is released under the permissive APACHE

LICENCE 2.0 and supports the OS configurations Ubuntu (tested with versions 14.04 and 15.10),

and Centos with set Repo configured and wget installed (tested on version 7).

3.4 Operation

The FIT is designed to work from the command line or through a Graphical User Interface. The user

can invoke actions which connect to the target VM and automatically install any required tools and

dependences or evoke the required APIs. The command line switches and parameters allow users

to select a specific fault and the parameters of the fault such as the amount of RAM to user or which

services to stop.

An example command line call to connect to a node using SSH and cause memory stress with 2GB

is as follows:

--stressmem 2 2048m Ubuntu@109.231.126.101 -no home/ubuntu/SSHKEYS/VMKey.key

This call was ran on a real cloud system. The tool connected via SSH and determined the OS version

by checking the /etc/*-release, Ubuntu in this case. It then gathered the memory stress tool suitable

for Ubuntu, which is Memtester in this case. Finally the FIT called Memtester to saturate memory

on the target node. Figure 5 shows the results as detecting by a monitoring tool, where it can be seen

that nearly all 2GB of available RAM had been saturated.

3.5 Graphical User Interface

The GUI provides the same functionality as the command line version of the tool. The GUI provides

users with a visual way of interacting with the tool which can make the tool more accessible for a

range of users. The user can select from the available actions from a home screen, as seen in Figure

6. Each button leads to a page where a user can enter the relevant inputs and then the fault can be

executed. These inputs are the equivalent of the command line parameters.

Figure 5 Memory available on the target node before (left) and during the

invocation (right)

mailto:Ubuntu@109.231.126.101

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 20

Figure 6 The FIT GUI home screen

In Figure 7 we can see the CPU overload page where the user enters the details of the VM and the

amount of time to run the overload for. In place of the password the user can also upload an SSH

key from a file. Any feedback and output from running the fault is shown at the bottom of the page.

Figure 7 CPU Overload page

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 21

Using the GUI is a straightforward process of selecting the desired fault and providing the VM

details. In the example below a high CPU usage fault is chosen, and the address, username and

password of the VM is entered. The number of CPUs on the machine is entered and then the amount

of time to overload the CPU for, in this case 30 seconds, as shown in Figure 8.

3.1 Integration

A major step forward in the development of the Fault Injection Tool is the integration with other

DICE tools. This work incorporates the FIT deeper within the DICE toolset, and provides further

useful functionality for users of the FIT.

One tool in which the FIT has been fully integrated with is the DICE Deployment Service,

developed by XLAB, which is shown in Figure 9. This new feature allows faults to be caused on all

of the VMs which make up a deployment into a DICE virtual deployment container.

The method in which this integration works is through the GUI version of the FIT. First, the user

must acquire a token from the deployment service, in order to be able to authenticate with the API.

From there, an option is given on the GUI to list all containers running on the DICE deployment

service. The user can then choose the container they wish to cause faults on. A JSON file can also

be uploaded in order to further customise the type of faults to be caused on certain VMs within the

deployment. This is accomplished by matching a fault with the name of the component type that is

associated (e.g., hosted on) with the VM in the application’s deployment blueprint. After these

attributes are provided, the desired faults are automatically caused on all of the selected VMs inside

the container, to simulate the faults occurring at an application level. This enables that the user needs

to fill in the form only once for a virtual deployment container, then use the same information for

all the subsequent (re)deployments in the container.

Additionally, we show in the next chapter the integration of FIT with the new dmon-gen utility to

automate the generation of anomalies.

Figure 8 High CPU usage GUI input

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 22

Figure 9 Fault Injection tool Dice Deployment Service

3.2 Validation

Using the Linux ‘top’ command on the target VM the current state of its resources can be seen.

Before running the CPU overload fault, the %Cpu usage is at 0.7% as seen in Figure 10. While

running the CPU overload the %Cpu quickly rises to 100%. In the processes below we can see that

the stress command is using 99.2% of the CPU as shown in Figure 11.

Figure 10 Before running CPU overload

Figure 11 While running CPU overload

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 23

The GUI successfully complements the objectives achieved by the command line tool. It makes the

fault injection tool highly accessible, allowing anyone to find vulnerabilities and test the resiliency

of their systems.

3.3 Installation

The source code can be found in the DICE GitHub repository3. The repository contains the source

code and a WAR file so it can be deployed on a server, such as Apache Tomcat. Once the image is

deployed on the server it will be immediately available and ready to use.

3 https://github.com/dice-project/DICE-Fault-Injection-GUI

https://github.com/dice-project/DICE-Fault-Injection-GUI

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 24

4 DMON-Gen Utility

4.1 General Overview

The proliferation of Big Data technologies and of the DIAs based on these have resulted in a

shortage of software developers and architects with specialized knowledge. In particular, the

identification of anomalous behavior of these applications differs from one version to another. In

DICE we have developed a specialized tool that handles the detection of both point and contextual

anomalies. In this deliverable we present a module of the quality testing tool that is suitable to assess

anomaly detection performance. In addition to this DMON-gen can be used in combination with

FIT to run different testing scenarios geared towards ensuring DIA is working as intended.

The Anomaly detection tool (ADT) is detailed in D4.4 and D4.5 respectively. For the sake of

completeness we will give a short description in the following paragraphs. One of the most

important facts to consider is that the ADT has a closer integration with DMON than any other tools

from the DICE solution. That is mainly due to two facts. Firstly, ADT needs data on which to run

anomaly detection methods. Thus it is extremely important to have data available in a format which

is usable. Second, ADT together with the monitoring forms a lambda architecture. Each instance of

ADT can have the role of batch or speed layer while DMON has the role of a serving layer.

As mentioned before the detected anomalies will be sent and indexed into DMON. All DICE actors

and tools will be able to query this special index to see/listen for detected anomalies. In this way it

is possible to create specialized ADT instances for each anomaly detection method in part. The

result will be reflected in the same index from DMON. This architecture also allows us to serve the

results of both the monitoring and anomaly detection on the same endpoint (DMON).

As mentioned in section some anomaly detection methods, more precisely the ones using supervised

learning techniques, need labelled data in order to function properly. The use of supervised learning

for this task is a fairly complicated thing to accomplish. One solution is to label all normal data

instances and all unlabelled instances are considered anomalies. As observed in most systems the

normal data instances outnumber by far the anomalous ones, so labelling them manually is

extremely impractical.

It is easy to see that we require a way in which we can create semi-automatically labelled training

data that can be used by ADT in order to create predictive and cluster models. The resulting tool,

called DMON-gen, is able to execute several jobs on Big Data platforms such as Yarn or Spark

based on user defined parameters.

4.2 Architecture

End users are able to define experiments which in themselves are made up of a series of jobs. A job

contains both runtime parameters for the DIAs as well as platform specific parameters. DMON-gen

has to be located on one of the hosts which comprise a DIA deployment. It is not necessary for it to

be on a particular host as long as it is able to execute jobs from it.

This allows users not only to specify different jobs that need executing but to create a particular

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 25

usage pattern or load when it comes to Yarn and Spark based systems.

4.3 Monitoring data generation

In order to use DMON-gen the user is required to create the experiment description as mentioned in

the previous sections. This descriptor is in JSON format. An example can be seen in Listing 1.

{

 "exp1":

 [

 {

 "yarn":["pi","10","100"],

 "cardinality": 1,

 "conf":{"hdfs":{"DATANODE": {"dfs_datanode_du_reserved": "8455053312"}},

 "yarn":{"NODEMANAGER": {"mapreduce_am_max-attempts": "2"}}}

 }

]

}

Listing 1 Experiment Descriptor for DMON-gen

We see that the descriptor defines one YARN experiment called pi which has two parameters (10

signifies the number of maps while 100 is the sample size). The cardinality setting is used to define

how often the experiment is to be run. Some experiments might require the execution of the same

DIA numerous times without changing any settings. In this case pi is the DIA which runs on Yarn.

Because DMON-gen has no preconceptions about the DIA it has to run (it is application agnostic)

we only need to specify any command line parameter that might be required. Of course these

command line parameters could also point to a configuration file. It is up to the end user and

developer to decide which ones are the required parameters. If a DIA does not require any

parameters, only the application type (in his case “yarn”) and DIA name (in the example it is “pi”)

has to be defined. Lastly, we have the conf settings which denote the settings based on roles for each

big data service. It is that we use Cloudera CDH 5.7.x for DMON-gen so the naming conventions

are the same for our tool as with the current version of CDH 8.

Listing 1 shows that we wish to change the configuration of the HDFS service data-node roles

reserved space for non DFS and for Yarn services the node manager roles maximum number of jobs

attempts value. The complete list of available parameters can be found in Annex of this document.

Inspiration and starting point for the creation of this tool was the generation of semi-labelled training

data for the anomaly detection platform. It is easy to see that by using DMON-gen we are able to

induce some types of anomalies in an automatic manner and are than be able to correlate these with

the metrics collected during a specified time-frame. In essence labelling the data based on the

settings from both the DIA parameters and platform specific parameters. Once a particular

experiment defined in DMON-gen has run its course we can use the output to label metrics data

from the monitoring platform. For example we have set some parameters related to Yarn mappers

so we can see from the DMON-gen output at what time each map task has run. We use this

information to add a label in the monitoring data.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 26

During platform specific parameter changes the entire infrastructure might need to be restarted. In

these situations DMON-gen will not only enact the changes but also enforce them by checking the

correct application of the new parameters. Once a restart is needed it will wait for the platform to

come back online and then start the execution of the DIA. Invalid parameters are not caught before

execution but rather at execution start. If this happens DMON-gen will just skip the offending job

and start executing the next set of jobs.

ADT4 as well as the DMON-gen tool can be found at the official DICE Github Repository. These

repositories also contain the up to date documentation for each of the tools.

4.4 Use-cases and configuration

All experiments for DMON load testing and ADT functionality testing was done using DMON-gen.

This setup allowed us to define a set of long running experiments that took days to weeks to run. As

soon as they finished to just collect the data from DMON. The example given below illustrates the

combined use of DMON-gen with the Fault Injection tool (FIT).

{

 "exp1":

 [

 {

 "yarn":["pi","10000","10000000"],

 "cardinality": 1,

 "conf":{"hdfs":{"DATANODE": {"dfs_datanode_du_reserved": "8455053312"}},

 "yarn":{"NODEMANAGER": {"mapreduce_am_max-attempts": "2"}}},

 "fit":["cpu", "mem"]

 },

 {

 "yarn":["pi", "1000", "10000"],

 "cardinality": 1,

 "conf":{"hdfs":{"DATANODE": {"dfs_datanode_du_reserved": "8455053"}},

 "yarn":{"NODEMANAGER": {"mapreduce_am_max-attempts": "5"}}}

 },

 {

 "yarn":["pi", "10000", "1000"],

 "cardinality": 1,

 "conf":{"hdfs":{"DATANODE": {"dfs_datanode_du_reserved": "845"}},

 "yarn":{"NODEMANAGER": {"mapreduce_am_max-attempts": "5"}}}

 }

],

 "exp2":

 [

 {

 "spark":["pi", "10000000"],

 "cardinality": 100

 },

4 https://github.com/dice-project/DICE-Anomaly-Detection-Tool

https://github.com/dice-project/DICE-Anomaly-Detection-Tool

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 27

 {

 "spark":["pi", "10000"],

 "cardinality": 100

 }

]

}

Listing 2 Experiment Descriptor example

Listing 2 details one of the experiment batches. We can see that it defines 2 experiments. In the first

experiment the “pi” DIA is run three times. Each job changes data node and node manager related

parameters. The second experiment contains 2 spark jobs which run 100 times each.

We can also specify Fault Injection Tool (FIT) specific parameters for each experiment. In Listing

2 we can see that “fit” is set to stress the CPU and memory of all of the hosts from the platform. If

not otherwise specified FIT is set to stress CPU and memory to 50% of the available resources.

Platform specific parameters are not always required to be explicitly set. Most of the time during

development DIA parameters are much more important. Because of this platform specific

parameters are not mandatory to be defined in DMON-gen, it may be sufficient to specify the yarn

and cardinality configuration to be able to run experiments. The tool enables developers to define

different experimental scenarios and see how individual changes are reflected (and detected in the

case of ADT) by the available metrics.

4.5 Validation

The above sections detail how to setup the job descriptor, in this section we will show what the

output is and how we use it to create a labeled dataset. The DMON-get tool has to be located on one

of the processing nodes that houses the DIA. The user then decides what job he or she wants to run

and what parameters to use.

The output of DMON-gen can be split up into 3 distinct parts. The first part (see Listing 3) shows

the main output containing high level data of the job that is executed. It gives us the name of the

experiments as well as the beginning and end timestamp of each run together with the settings used.

The second part of the output has information on each of the jobs from the first output. It is in fact

a modified version of the debug output from big data platform services (i.e. Spark, Yarn, HDFS

etc). These contain fine grained information of the currently running jobs. The most useful data is

that pertaining to the internal state and metrics associated with the currently running job. We can

see exactly when a map or reduce phase was executed, how long it took, the number of bytes

written/read etc. You can see an example output in Listing 4.

The last part of the output is the actual monitoring data resulting from all of the jobs defined in

DMON-gen. The quantity of information contained depends on how long the jobs took to execute

and on the polling period set during DMON setup.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 28

Loaded experimental descriptor from pieexp.json

Started jobs at 2017-03-16 07:07:49.882789

Started experiment pierunexperiment1 at 2017-03-16 07:07:49.882947

Started iteration 0 for job {u'cardinality': 5, u'yarn': [u'pi', u'10', u'100']} from experiment pierunexperiment1 at 2017-03-16

07:07:49.883308

Yarn job selected with arguments [u'pi', u'10', u'100']

Started job exp-pierunexperiment1-0-1

Finished iteration 0 for job {u'cardinality': 5, u'yarn': [u'pi', u'10', u'100']} from experiment pierunexperiment1 at 2017-03-16

07:08:22.729229

Started iteration 1 for job {u'cardinality': 5, u'yarn': [u'pi', u'10', u'100']} from experiment pierunexperiment1 at 2017-03-16

07:08:22.729531

Yarn job selected with arguments [u'pi', u'10', u'100']

Started job exp-pierunexperiment1-1-1

Finished iteration 1 for job {u'cardinality': 5, u'yarn': [u'pi', u'10', u'100']} from experiment pierunexperiment1 at 2017-03-16

07:08:53.649757

Started iteration 2 for job {u'cardinality': 5, u'yarn': [u'pi', u'10', u'100']} from experiment pierunexperiment1 at 2017-03-16

07:08:53.650065

Yarn job selected with arguments [u'pi', u'10', u'100']

Started job exp-pierunexperiment1-2-1

Finished iteration 2 for job {u'cardinality': 5, u'yarn': [u'pi', u'10', u'100']} from experiment pierunexperiment1 at 2017-03-16

07:09:24.198293

Started iteration 3 for job {u'cardinality': 5, u'yarn': [u'pi', u'10', u'100']} from experiment pierunexperiment1 at 2017-03-16

07:09:24.198600

Yarn job selected with arguments [u'pi', u'10', u'100']

…

Listing 3 Example of DMON-gen first level output

17/03/16 07:07:55 INFO mapreduce.Job: Running job: job_1489577180719_0001

17/03/16 07:08:04 INFO mapreduce.Job: Job job_1489577180719_0001 running in uber mode : false

17/03/16 07:08:04 INFO mapreduce.Job: map 0% reduce 0%

17/03/16 07:08:10 INFO mapreduce.Job: map 10% reduce 0%

17/03/16 07:08:12 INFO mapreduce.Job: map 30% reduce 0%

17/03/16 07:08:14 INFO mapreduce.Job: map 70% reduce 0%

17/03/16 07:08:15 INFO mapreduce.Job: map 80% reduce 0%

17/03/16 07:08:18 INFO mapreduce.Job: map 100% reduce 0%

17/03/16 07:08:22 INFO mapreduce.Job: map 100% reduce 100%

17/03/16 07:08:22 INFO mapreduce.Job: Job job_1489577180719_0001 completed successfully

17/03/16 07:08:22 INFO mapreduce.Job: Counters: 49

 File System Counters

 FILE: Number of bytes read=94

 FILE: Number of bytes written=1293891

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=2700

 HDFS: Number of bytes written=215

 HDFS: Number of read operations=43

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=3

 Job Counters

 Launched map tasks=10

 Launched reduce tasks=1

 Data-local map tasks=10

 Total time spent by all maps in occupied slots (ms)=53924

 Total time spent by all reduces in occupied slots (ms)=4058

 Total time spent by all map tasks (ms)=53924

 Total time spent by all reduce tasks (ms)=4058

 Total vcore-seconds taken by all map tasks=53924

 Total vcore-seconds taken by all reduce tasks=4058

 Total megabyte-seconds taken by all map tasks=55218176

 Total megabyte-seconds taken by all reduce tasks=4155392

 Map-Reduce Framework

 Map input records=10

 Map output records=20

 Map output bytes=180

 Map output materialized bytes=340

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 29

 Input split bytes=1520

 Combine input records=0

 Combine output records=0

 Reduce input groups=2

 Reduce shuffle bytes=340

 Reduce input records=20

 Reduce output records=0

 Spilled Records=40

 Shuffled Maps =10

 Failed Shuffles=0

 Merged Map outputs=10

 GC time elapsed (ms)=1132

 CPU time spent (ms)=9080

 Physical memory (bytes) snapshot=4698320896

 Virtual memory (bytes) snapshot=28443156480

 Total committed heap usage (bytes)=4822401024

 Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 WRONG_MAP=0

 WRONG_REDUCE=0

 File Input Format Counters

 Bytes Read=1180

 File Output Format Counters

 Bytes Written=97

Listing 4 Example of DMON-gen second level output

These two files contain enough information to label the monitoring data. We can label based on job

or even at discrete task level (i.e. metrics of a particular map task). This runtime information together

with the parameters defined in the description file make it easy to link each parameter changes to

the resulting concrete metrics.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 30

5 Conclusion

5.1 Summary of achievements

In this deliverable we have presented the final version of the quality testing tools (QT) and the fault

injection tool (FIT). The main advancements in year 3 are novel support for Kafka and Spark load

testing, a utility for injecting anomalies in a data-intensive application (DMON-gen), and a GUI for

the fault injection tool. In Section 2 we provided a summary of the requirements. Table 1 below

indicates the level that DICE QT comply in their final release. The Level of fulfilment column has

the following values:

• ✗ - not supported in the initial version yet

• ✔ - initial support

• ✔✔ - medium level support

• ✔✔✔ - fully supported

Table 1: Level of compliance of the initial version of the DICE delivery tools with the initial set of requirements.

Requirement Title Priority Level of

fulfilment

R5.6 Test workload generation MUST ✔✔✔

R5.8.2 Starting the quality testing MUST ✔✔✔

R5.8.3 Test run independence MUST ✔✔✔

R5.8.5 Test outcome MUST ✔✔✔

R5.13 Test the application for efficiency MUST ✔✔✔

R5.14.1 Test the behavior when resources become

exhausted

MUST ✔✔✔

R5.17 Quick testing vs comprehensive testing MUST ✔✔✔

R5.7 Data loading support SHOULD ✔✔

R5.7.2 Data feed actuator SHOULD ✔✔✔

R5.14.2 Trigger deliberate outages and problems to assess

the application’s behavior under faults

SHOULD ✔✔✔

As shown in the table, in year 3 we have fulfilled all the main requirements for the quality testing

and fault injection. The main advancements compared to year 2 of the project are:

• The greater integration with the rest of DICE (R5.8.2, R5.8.5), which allows to start/stop

and visualize the outcome of the experiments using the DICE Delivery Tools. These

advances of QT are reported primarily in deliverables D5.3 and D6.3.

• The ability to control the experiment duration and quickly or comprehensively test Storm,

Spark, and Kafka based DIAs (R5.17), loading data from external sources such as MongoDB

or JSON files (R5.7), producing test workloads with QT-GEN (R5.6), and feed the loaded

data into the system using QT-LIB (R5.7.2).

• The FIT and DMON-gen tools fulfills the requirements of R5.14.2 and R5.17, by providing

to the user the ability to generate faults in their data-intensive applications.

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 31

References
[1] Deliverable D1.2 - Requirement specification. Available from: https://www.dice-h2020.eu/deliverables/

https://www.dice-h2020.eu/deliverables/

6 Annex

6.1 Parameter settings for DMON-gen

6.1.1 Parameters for HDFS

Configuration parameters for HDFS service type. It is important to note that name node and secondary name node role parameters have the same

name. During normal performance evaluation and testing secondary name node parameter setting are irrelevant.

Role Display Name API Name

D
at

a
N

o
d

e

DataNode Advanced Configuration Snippet (Safety

Valve) for hdfs-site.xml
datanode_config_safety_valve

Java Configuration Options for DataNode datanode_java_opts

Available Space Policy Balanced Preference dfs_datanode_available_space_balanced_preference

Available Space Policy Balanced Threshold dfs_datanode_available_space_balanced_threshold

DataNode Volume Choosing Policy dfs_datanode_volume_choosing_policy

Hadoop Metrics2 Advanced Configuration Snippet

(Safety Valve)
hadoop_metrics2_safety_valve

DataNode Logging Advanced Configuration

Snippet (Safety Valve)
log4j_safety_valve

Heap Dump Directory oom_heap_dump_dir

Dump Heap When Out of Memory oom_heap_dump_enabled

Kill When Out of Memory oom_sigkill_enabled

Automatically Restart Process process_auto_restart

DataNode Data Directory dfs_data_dir_list

Reserved Space for Non DFS Use dfs_datanode_du_reserved

DataNode Failed Volumes Tolerated dfs_datanode_failed_volumes_tolerated

DataNode Balancing Bandwidth dfs_balance_bandwidthPerSec

Enable purging cache after reads dfs_datanode_drop_cache_behind_reads

Enable purging cache after writes dfs_datanode_drop_cache_behind_writes

Handler Count dfs_datanode_handler_count

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 33

Maximum Number of Transfer Threads dfs_datanode_max_xcievers

Number of read ahead bytes dfs_datanode_readahead_bytes

Enable immediate enqueuing of data to disk after

writes
dfs_datanode_sync_behind_writes

Hue Thrift Server Max Threadcount dfs_thrift_threads_max

Hue Thrift Server Min Threadcount dfs_thrift_threads_min

Hue Thrift Server Timeout dfs_thrift_timeout

Maximum Process File Descriptors rlimit_fds

Bind DataNode to Wildcard Address dfs_datanode_bind_wildcard

DataNode HTTP Web UI Port dfs_datanode_http_port

Secure DataNode Web UI Port (SSL) dfs_datanode_https_port

DataNode Protocol Port dfs_datanode_ipc_port

DataNode Transceiver Port dfs_datanode_port

Use DataNode Hostname dfs_datanode_use_datanode_hostname

Java Heap Size of DataNode in Bytes datanode_java_heapsize

Maximum Memory Used for Caching dfs_datanode_max_locked_memory

Cgroup CPU Shares rm_cpu_shares

Cgroup I/O Weight rm_io_weight

Cgroup Memory Hard Limit rm_memory_hard_limit

Cgroup Memory Soft Limit rm_memory_soft_limit

Java Configuration Options for Failover Controller failover_controller_java_opts

Failover Controller Advanced Configuration

Snippet (Safety Valve) for hdfs-site.xml
fc_config_safety_valve

Failover Controller Logging Advanced

Configuration Snippet (Safety Valve)
log4j_safety_valve

Heap Dump Directory oom_heap_dump_dir

Dump Heap When Out of Memory oom_heap_dump_enabled

Kill When Out of Memory oom_sigkill_enabled

Automatically Restart Process process_auto_restart

Java Heap Size of JournalNode in Bytes journalNode_java_heapsize

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 34

Cgroup CPU Shares rm_cpu_shares

Cgroup I/O Weight rm_io_weight

Cgroup Memory Hard Limit rm_memory_hard_limit

Cgroup Memory Soft Limit rm_memory_soft_limit

N
am

e
N

o
d

e

NFS Gateway Logging Advanced Configuration

Snippet (Safety Valve)
log4j_safety_valve

NFS Gateway Advanced Configuration Snippet

(Safety Valve) for hdfs-site.xml
nfsgateway_config_safety_valve

Java Configuration Options for NFS Gateway nfsgateway_java_opts

Heap Dump Directory oom_heap_dump_dir

Dump Heap When Out of Memory oom_heap_dump_enabled

Kill When Out of Memory oom_sigkill_enabled

Automatically Restart Process process_auto_restart

Maximum Process File Descriptors rlimit_fds

Java Heap Size of NFS Gateway in Bytes nfsgateway_java_heapsize

Cgroup CPU Shares rm_cpu_shares

Cgroup I/O Weight rm_io_weight

Cgroup Memory Hard Limit rm_memory_hard_limit

Cgroup Memory Soft Limit rm_memory_soft_limit

Enable Automatic Failover autofailover_enabled

NameNode Nameservice dfs_federation_namenode_nameservice

Invalidate Work Percentage Per Iteration dfs_namenode_invalidate_work_pct_per_iteration

Quorum-based Storage Journal name dfs_namenode_quorum_journal_name

Replication Work Multiplier Per Iteration dfs_namenode_replication_work_multiplier_per_iteration

Hadoop Metrics2 Advanced Configuration Snippet

(Safety Valve)
hadoop_metrics2_safety_valve

NameNode Logging Advanced Configuration

Snippet (Safety Valve)
log4j_safety_valve

NameNode Advanced Configuration Snippet

(Safety Valve) for hdfs-site.xml
namenode_config_safety_valve

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 35

NameNode Advanced Configuration Snippet

(Safety Valve) for dfs_hosts_allow.txt
namenode_hosts_allow_safety_valve

NameNode Advanced Configuration Snippet

(Safety Valve) for dfs_hosts_exclude.txt
namenode_hosts_exclude_safety_valve

Java Configuration Options for NameNode namenode_java_opts

Mountpoints nameservice_mountpoints

Heap Dump Directory oom_heap_dump_dir

Dump Heap When Out of Memory oom_heap_dump_enabled

Kill When Out of Memory oom_sigkill_enabled

Automatically Restart Process process_auto_restart

NameNode Handler Count dfs_namenode_handler_count

NameNode Service Handler Count dfs_namenode_service_handler_count

Hue Thrift Server Max Threadcount dfs_thrift_threads_max

Hue Thrift Server Min Threadcount dfs_thrift_threads_min

Hue Thrift Server Timeout dfs_thrift_timeout

Maximum Process File Descriptors rlimit_fds

Java Heap Size of Namenode in Bytes namenode_java_heapsize

Cgroup CPU Shares rm_cpu_shares

Cgroup I/O Weight rm_io_weight

Cgroup Memory Hard Limit rm_memory_hard_limit

Cgroup Memory Soft Limit rm_memory_soft_limit

SecondaryNameNode Nameservice dfs_secondarynamenode_nameservice

Hadoop Metrics2 Advanced Configuration Snippet

(Safety Valve)
hadoop_metrics2_safety_valve

SecondaryNameNode Logging Advanced

Configuration Snippet (Safety Valve)
log4j_safety_valve

Heap Dump Directory oom_heap_dump_dir

Dump Heap When Out of Memory oom_heap_dump_enabled

Kill When Out of Memory oom_sigkill_enabled

Automatically Restart Process process_auto_restart

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 36

SecondaryNameNode Advanced Configuration

Snippet (Safety Valve) for hdfs-site.xml
secondarynamenode_config_safety_valve

Java Configuration Options for Secondary

NameNode
secondarynamenode_java_opts

6.2 Parameters for Yarn service

Roles Display Name API Name

G
at

ew
ay

MapReduce Client Advanced Configuration

Snippet (Safety Valve) for mapred-site.xml
mapreduce_client_config_safety_valve

Gateway Client Environment Advanced

Configuration Snippet for hadoop-env.sh

(Safety Valve)

mapreduce_client_env_safety_valve

Client Java Configuration Options mapreduce_client_java_opts

YARN Client Advanced Configuration

Snippet (Safety Valve) for yarn-site.xml
yarn_client_config_safety_valve

Compression Level of Codecs zlib_compress_level

Alternatives Priority client_config_priority

Client Failover Sleep Base Time client_failover_sleep_base

Client Failover Sleep Max Time client_failover_sleep_max

Running Job History Location hadoop_job_history_dir

SequenceFile I/O Buffer Size io_file_buffer_size

I/O Sort Factor io_sort_factor

I/O Sort Memory Buffer (MiB) io_sort_mb

I/O Sort Spill Percent io_sort_spill_percent

Use Compression on Map Outputs mapred_compress_map_output

Compression Codec of MapReduce Map

Output
mapred_map_output_compression_codec

Map Tasks Speculative Execution mapred_map_tasks_speculative_execution

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 37

Compress MapReduce Job Output mapred_output_compress

Compression Codec of MapReduce Job

Output
mapred_output_compression_codec

Compression Type of MapReduce Job

Output
mapred_output_compression_type

Default Number of Parallel Transfers

During Shuffle
mapred_reduce_parallel_copies

Number of Map Tasks to Complete Before

Reduce Tasks
mapred_reduce_slowstart_completed_maps

Default Number of Reduce Tasks per Job mapred_reduce_tasks

Reduce Tasks Speculative Execution mapred_reduce_tasks_speculative_execution

Mapreduce Submit Replication mapred_submit_replication

Mapreduce Task Timeout mapred_task_timeout

MR Application Environment mapreduce_admin_user_env

MR Application Classpath mapreduce_application_classpath

Shared Temp Directories mapreduce_cluster_temp_dir

Application Framework mapreduce_framework_name

JobTracker MetaInfo Maxsize mapreduce_jobtracker_split_metainfo_maxsize

Map Task Java Opts Base mapreduce_map_java_opts

Reduce Task Java Opts Base mapreduce_reduce_java_opts

Max Shuffle Connections mapreduce_shuffle_max_connections

ApplicationMaster Java Opts Base yarn_app_mapreduce_am_command_opts

Job Counters Limit mapreduce_job_counters_limit

Enable Ubertask Optimization mapreduce_job_ubertask_enabled

Ubertask Maximum Job Size mapreduce_job_ubertask_maxbytes

Ubertask Maximum Maps mapreduce_job_ubertask_maxmaps

Ubertask Maximum Reduces mapreduce_job_ubertask_maxreduces

Client Java Heap Size in Bytes mapreduce_client_java_heapsize

Map Task CPU Virtual Cores mapreduce_map_cpu_vcores

Map Task Maximum Heap Size mapreduce_map_java_opts_max_heap

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 38

Map Task Memory mapreduce_map_memory_mb

Reduce Task CPU Virtual Cores mapreduce_reduce_cpu_vcores

Reduce Task Maximum Heap Size mapreduce_reduce_java_opts_max_heap

Reduce Task Memory mapreduce_reduce_memory_mb

ApplicationMaster Java Maximum Heap

Size
yarn_app_mapreduce_am_max_heap

ApplicationMaster Virtual CPU Cores yarn_app_mapreduce_am_resource_cpu_vcores

ApplicationMaster Memory

yarn_app_mapreduce_am_resource_mb

Jo
b
H

is
to

ry
S

er
v

er

System Group history_process_groupname

System User history_process_username

JobHistory Server Advanced Configuration

Snippet (Safety Valve) for yarn-site.xml
jobhistory_config_safety_valve

JobHistory Server Advanced Configuration

Snippet (Safety Valve) for mapred-site.xml
jobhistory_mapred_safety_valve

JobHistory Server Logging Advanced

Configuration Snippet (Safety Valve)
log4j_safety_valve

Java Configuration Options for JobHistory

Server
mr2_jobhistory_java_opts

Heap Dump Directory oom_heap_dump_dir

Dump Heap When Out of Memory oom_heap_dump_enabled

Kill When Out of Memory oom_sigkill_enabled

Automatically Restart Process process_auto_restart

Job History Files Cleaner Interval mapreduce_jobhistory_cleaner_interval

Job History Files Maximum Age mapreduce_jobhistory_max_age_ms

MapReduce ApplicationMaster Staging

Root Directory
yarn_app_mapreduce_am_staging_dir

N
o

d
e

M
a

n
ag

er
 Java Heap Size of JobHistory Server in

Bytes
mr2_jobhistory_java_heapsize

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 39

Cgroup CPU Shares rm_cpu_shares

Cgroup I/O Weight rm_io_weight

Cgroup Memory Hard Limit rm_memory_hard_limit

Cgroup Memory Soft Limit rm_memory_soft_limit

Hadoop Metrics2 Advanced Configuration

Snippet (Safety Valve)
hadoop_metrics2_safety_valve

CGroups Hierarchy linux_container_executor_cgroups_hierarchy

NodeManager Logging Advanced

Configuration Snippet (Safety Valve)
log4j_safety_valve

Healthchecker Script Arguments mapred_healthchecker_script_args

Healthchecker Script Path mapred_healthchecker_script_path

Java Configuration Options for

NodeManager
node_manager_java_opts

NodeManager Advanced Configuration

Snippet (Safety Valve) for yarn-site.xml
nodemanager_config_safety_valve

NodeManager Advanced Configuration

Snippet (Safety Valve) for mapred-site.xml
nodemanager_mapred_safety_valve

Heap Dump Directory oom_heap_dump_dir

Dump Heap When Out of Memory oom_heap_dump_enabled

Kill When Out of Memory oom_sigkill_enabled

Automatically Restart Process process_auto_restart

Localized Dir Deletion Delay yarn_nodemanager_delete_debug_delay_sec

Enable Shuffle Auxiliary Service mapreduce_aux_service

Containers Environment Variable yarn_nodemanager_admin_env

Container Manager Thread Count yarn_nodemanager_container_manager_thread_count

Cleanup Thread Count yarn_nodemanager_delete_thread_count

Containers Environment Variables

Whitelist
yarn_nodemanager_env_whitelist

Heartbeat Interval yarn_nodemanager_heartbeat_interval_ms

NodeManager Local Directory List yarn_nodemanager_local_dirs

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 40

Localizer Cache Cleanup Interval yarn_nodemanager_localizer_cache_cleanup_interval_ms

Localizer Cache Target Size yarn_nodemanager_localizer_cache_target_size_mb

Localizer Client Thread Count yarn_nodemanager_localizer_client_thread_count

Localizer Fetch Thread Count yarn_nodemanager_localizer_fetch_thread_count

NodeManager Container Log Directories yarn_nodemanager_log_dirs

Log Retain Duration yarn_nodemanager_log_retain_seconds

Remote App Log Directory yarn_nodemanager_remote_app_log_dir

Remote App Log Directory Suffix yarn_nodemanager_remote_app_log_dir_suffix

Java Heap Size of NodeManager in Bytes node_manager_java_heapsize

Cgroup CPU Shares rm_cpu_shares

Cgroup I/O Weight rm_io_weight

Cgroup Memory Hard Limit rm_memory_hard_limit

Cgroup Memory Soft Limit rm_memory_soft_limit

Container Virtual CPU Cores yarn_nodemanager_resource_cpu_vcores

Container Memory yarn_nodemanager_resource_memory_mb

R
es

o
u

rc
e

M
an

ag
er

Hadoop Metrics2 Advanced Configuration

Snippet (Safety Valve)
hadoop_metrics2_safety_valve

ResourceManager Logging Advanced

Configuration Snippet (Safety Valve)
log4j_safety_valve

Heap Dump Directory oom_heap_dump_dir

Dump Heap When Out of Memory oom_heap_dump_enabled

Kill When Out of Memory oom_sigkill_enabled

Automatically Restart Process process_auto_restart

Java Configuration Options for

ResourceManager
resource_manager_java_opts

ResourceManager Advanced Configuration

Snippet (Safety Valve) for yarn-site.xml
resourcemanager_config_safety_valve

ResourceManager Advanced Configuration

Snippet (Safety Valve) for mapred-site.xml
resourcemanager_mapred_safety_valve

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 41

ResourceManager Advanced Configuration

Snippet (Safety Valve) for nodes_allow.txt
rm_hosts_allow_safety_valve

ResourceManager Advanced Configuration

Snippet (Safety Valve) for

nodes_exclude.txt

rm_hosts_exclude_safety_valve

Capacity Scheduler Configuration resourcemanager_capacity_scheduler_configuration

Fair Scheduler Assign Multiple Tasks resourcemanager_fair_scheduler_assign_multiple

Fair Scheduler XML Advanced

Configuration Snippet (Safety Valve)
resourcemanager_fair_scheduler_configuration

Fair Scheduler Preemption resourcemanager_fair_scheduler_preemption

Fair Scheduler Size-Based Weight resourcemanager_fair_scheduler_size_based_weight

Fair Scheduler User As Default Queue resourcemanager_fair_scheduler_user_as_default_queue

ApplicationMaster Monitor Expiry yarn_am_liveness_monitor_expiry_interval_ms

NodeManager Monitor Expiry yarn_nm_liveness_monitor_expiry_interval_ms

Admin Client Thread Count yarn_resourcemanager_admin_client_thread_count

ApplicationMaster Max Retries yarn_resourcemanager_am_max_retries

ApplicationMaster Monitor Interval yarn_resourcemanager_amliveliness_monitor_interval_ms

Client Thread Count yarn_resourcemanager_client_thread_count

Container Monitor Interval yarn_resourcemanager_container_liveness_monitor_interval_ms

Max Completed Applications yarn_resourcemanager_max_completed_applications

NodeManager Monitor Interval yarn_resourcemanager_nm_liveness_monitor_interval_ms

Enable ResourceManager Recovery yarn_resourcemanager_recovery_enabled

Resource Tracker Thread Count yarn_resourcemanager_resource_tracker_client_thread_count

Scheduler Class yarn_resourcemanager_scheduler_class

Scheduler Thread Count yarn_resourcemanager_scheduler_client_thread_count

Java Heap Size of ResourceManager in

Bytes
resource_manager_java_heapsize

Fair Scheduler Node Locality Threshold resourcemanager_fair_scheduler_locality_threshold_node

Fair Scheduler Rack Locality Threshold resourcemanager_fair_scheduler_locality_threshold_rack

Cgroup CPU Shares rm_cpu_shares

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 42

Cgroup I/O Weight rm_io_weight

Cgroup Memory Hard Limit rm_memory_hard_limit

Cgroup Memory Soft Limit rm_memory_soft_limit

Enable Fair Scheduler Continuous

Scheduling
yarn_scheduler_fair_continuous_scheduling_enabled

Fair Scheduler Node Locality Delay yarn_scheduler_fair_locality_delay_node_ms

Fair Scheduler Rack Locality Delay yarn_scheduler_fair_locality_delay_rack_ms

Container Memory Increment yarn_scheduler_increment_allocation_mb

Container Virtual CPU Cores Increment yarn_scheduler_increment_allocation_vcores

Container Memory Maximum yarn_scheduler_maximum_allocation_mb

Container Virtual CPU Cores Maximum yarn_scheduler_maximum_allocation_vcores

Container Memory Minimum yarn_scheduler_minimum_allocation_mb

Container Virtual CPU Cores Minimum yarn_scheduler_minimum_allocation_vcores

6.3 Parameters for Spark service

Roles Display Name API Name

H
is

to
ry

 S
er

v
er

History Server Environment Advanced

Configuration Snippet (Safety Valve)
SPARK_HISTORY_SERVER_role_env_safety_valve

History Server Logging Advanced

Configuration Snippet (Safety Valve)
log4j_safety_valve

Automatically Restart Process process_auto_restart

Java Heap Size of History Server in Bytes history_server_max_heapsize

Maximum Process File Descriptors rlimit_fds

Cgroup CPU Shares rm_cpu_shares

Cgroup I/O Weight rm_io_weight

Cgroup Memory Hard Limit rm_memory_hard_limit

Cgroup Memory Soft Limit rm_memory_soft_limit

Deliverable 5.5. DICE testing tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 43

M
as

te
r

Master Environment Advanced

Configuration Snippet (Safety Valve)
SPARK_MASTER_role_env_safety_valve

Master Logging Advanced Configuration

Snippet (Safety Valve)
log4j_safety_valve

Automatically Restart Process process_auto_restart

Additional Master args master_additional_args

Java Heap Size of Master in Bytes master_max_heapsize

Maximum Process File Descriptors rlimit_fds

Cgroup CPU Shares rm_cpu_shares

Cgroup I/O Weight rm_io_weight

Cgroup Memory Hard Limit rm_memory_hard_limit

Cgroup Memory Soft Limit rm_memory_soft_limit

W
o

rk
er

Worker Environment Advanced

Configuration Snippet (Safety Valve)
SPARK_WORKER_role_env_safety_valve

Worker Logging Advanced Configuration

Snippet (Safety Valve)
log4j_safety_valve

Automatically Restart Process process_auto_restart

Total Java Heap Sizes of Worker's

Executors in Bytes
executor_total_max_heapsize

Work directory work_directory

Additional Worker args worker_additional_args

Java Heap Size of Worker in Bytes worker_max_heapsize

Maximum Process File Descriptors rlimit_fds

Cgroup CPU Shares rm_cpu_shares

Cgroup I/O Weight rm_io_weight

Cgroup Memory Hard Limit rm_memory_hard_limit

Cgroup Memory Soft Limit rm_memory_soft_limit

