

Developing Data-Intensive Cloud

Applications with Iterative Quality

Enhancements

DICE delivery tools – Final version

Deliverable 5.3

Ref. Ares(2017)3823254 - 31/07/2017

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 2

Deliverable: D5.3

Title: DICE delivery tools - Final version

Editor(s): Matej Artač (XLAB)

Contributor(s): Giuliano Casale (IMP), Derek Ho Law (IMP, Tatiana Ustinova (IMP),

Gabriel Iuhasz (IeAT), Matej Artač (XLAB), Tadej Borovšak (XLAB),

Damian Andrew Tamburri (PMI)

Reviewers: José Merseguer (ZAR), Ismael Torres (PRO)

Type (R/P/DEC): Demonstrator

Version: 1.0

Date: 31-July-2017

Status: Final

Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright © 2017, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre

FLEXI: Flexiant Limited

IEAT: Institutul E Austria Timisoara

IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA

PMI: Politecnico di Milano

PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.

ZAR: Universidad de Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 644869

http://www.dice-h2020.eu/deliverables/

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 3

Executive summary

This document contains the report of the final release of the DICE delivery tools: DICE Deployment

Tool, DICE Continuous Integration and DICE Configuration Optimisation. The purpose of these

tools in the DICE methodology is to create a runtime of a DIA described in a DDSM / TOSCA

blueprint, provide scheduled or on-commit execution of complex automated tasks on top of the DIA,

and offer recommendations for the optimal configuration for the DIA's deployment. The report

focuses on new functionalities and validations that we carried out between months 24 and 30 of the

project.

In the DICE Deployment Tool, the new functionalities include strengthening of security of the tools

themselves as they are installed to use HTTPS for communication, added support for MongoDB

deployment, and ability of the new blueprints to freely migrate between platforms (OpenStack,

Amazon EC2, …). The use of HTTPS will slightly slow down the installation of the tools, but

significantly improve the security of the tools’ operation. Applying security to the DIAs by design

is the next step, where our DICE technology library creates and enables user accounts in MongoDB

automatically. We provide validation of the final version of the tool through a custom city traffic

data use case, showing a 4x speed-up when using DICE tools. In a logical sense, deployment is also

related with growingly popular container technology. We argue that the technology is

complementary to the DICE building blocks and can be viewed at the same level as user’s custom

components.

The main functionalities of the DICE Continuous Integration was already complete, but we extended

the DICE Jenkins plug-in to support improved pipeline project types in Jenkins. This enables using

a Continuous-Integration-as-Code approach, increasing flexibility of DIA automated deployment

and testing. We took advantage of the approach to speed up ATC Topic Detector’s Quality Testing

process by only deploying the Storm cluster once, then reusing it in consecutive builds.

For the DICE Configuration Optimisation, we provide substantial usability upgrades by bringing all

the controls into the Eclipse IDE: the new IDE plug-in now provides a guided creation of experiment

configuration. Additional integration of IDE with Jenkins Continuous Integration enables an

experiment execution that is driven from the IDE. On request, the outcome of the experiment can

then be displayed in the IDE.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 4

Glossary

DDSM DICE Deployment Specific Model

DICE Data-Intensive Cloud Applications with iterative quality enhancements

FCO Flexiant Cloud Orchestrator

TOSCA Topology and Orchestration Specification for Cloud Applications

IDE Integrated Development Environment

CI Continuous Integration

BO4CO Bayesian Optimisation for Configuration Optimisation

DIA Data Intensive Application

HDFS Hadoop File System

GUI Graphical User Interface

VCS Version Control System

JSON JavaScript Object Notation

YAML YAML Ain’t Markup Language1

SWT Standard Widget Toolkit (a Java library for user interfaces)

CSRF Cross-Site Request Forgery

1 http://yaml.org/

http://yaml.org/

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 5

Table of contents

Executive summary 3

Glossary 4

Table of contents 5

List of Figures 6

List of Tables 7

1 Introduction 8

1.1 What is new in Y3 8

1.1.1 DICE Deployment Tool 8

1.1.2 DICE Continuous Integration 9

1.1.3 DICE Configuration Optimisation 9

2 Requirements 11

3 Tools 13

3.1 DICE Deployment Tool 13

3.1.1 Main components 13

3.1.2 DICE Deployment Service 13

3.1.2.1 TOSCA technology library 16

3.1.2.2 Security by design 17

3.1.2.3 Multi-cloud support through unified approach 18

3.1.3 Supported technologies 19

3.1.4 Container technology perspective 22

3.1.5 Evaluation and validation: a city traffic use case 23

3.2 DICE Continuous Integration 25

3.3 Configuration Optimisation 29

3.3.1 Overview of integrated solution 29

3.3.2 CO Eclipse plugin 31

3.3.3 CO Jenkins integration 33

4 Conclusion 35

4.1 DICE Requirement compliance 36

References 38

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 6

List of Figures

Figure 1: Deployment Diagram of the DICE Deployment Tool ... 13

Figure 2: Architecture of the city traffic use case ... 23

Figure 3: Architecture of the Configuration Optimisation solution .. 30

Figure 4: Interface for building an experiment configuration with the Eclipse plug-in 31

Figure 5: Hierarchy of components used in the Parameter Selection tab .. 32

Figure 6: Interface for providing configuration for external services used by the Configuration

Optimisation .. 33

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 7

List of Tables

Table 1: Summary of services and their required method of creating certificates 15

Table 2: Break down of the times required for applying DICE Deployment Tool to the city traffic

use case .. 24

Table 3: Level of compliance of the initial version of the DICE delivery tools with the initial set of

requirements .. 36

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 8

1 Introduction

The DICE delivery tools are able to consume blueprints that are based on the OASIS TOSCA

standard, and produce in a fully automated and unattended way a running application. They

unburden the users from the tedium of configuring individual hosts one by one, and speed up the

deployment and testing workflow considerably. This enables a DevOps [1] workflow, which

according to DICE Methodology [8] starts at modelling and offline validation, then transitions using

the deployment tool into the realm of the DIA’s runtime.

The tools are then capable of varying the configuration parameters of the deployment, while at the

same time measuring performance of the DIA. This yields a recommendation on the best

configuration for the specific DIA, automatically helping with an increased quality of the resulting

application.

Both components of the tools are now available from Eclipse IDE, making them comfortably close

to the developer's regular workflow. This is useful for hands-on experimentation. The DevOps

approach, on the other hand, is enabled through the Jenkins Continuous Integration.

This report accompanies the final release of the tools that include DICE Deployment Tool, DICE

Continuous Integration, and DICE Configuration Optimisation. The reported work is a part of

the DICE project’s WP5 on deployment and delivery. Specifically, it includes results from T5.1

Deployment plan execution and T5.2 Continuous integration. This report is the final one in a series

starting with D5.1 DICE delivery tools – Initial version [2], where we introduced the tools, their

initial architecture and functionalities. The D5.2 DICE delivery tools – Intermediate version [3] was

then an update, reporting on GUI improvements, technologies added to the support, and acceleration

of assessment of optimal configuration.

In the rest of this section we summarize the changes and improvements since Y2 (M24). The Section

2 summarizes the requirements for the DICE delivery tools, extracted from the D1.2 [4]. In the

Section 3 we present the details of each tool’s new features, also presenting their usage and

validation results. Finally, in Section 4 we present the conclusions, including the analysis of the

requirements fulfilled by the work.

1.1 What is new in Y3

For the final release of the tools in the M30, we have addressed all the issues that remained open in

M24. Here, the major focus was on maximizing the stability and usability of the tools. In this section,

we briefly highlight results by each tool.

1.1.1 DICE Deployment Tool

At the end of Y2, the DICE Deployment Tool has already provided to the users a great improvement

in the develop-deploy-test cycle [3]. It demonstrated that spinning up complex clusters of Big Data

technologies to support DIAs can be a quick, reliable and automatic. For our Deployment Service,

we have since improved the following aspects:

● The installation process and the clients (i.e., command line tool, IDE plug-in) now support

and indeed mandate communication across encrypted (HTTPS) channels. This is an

important step towards security by design, which needs to start from the supporting services.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 9

● New integration with the DICE Monitoring Tool allows that the DICE Deployment Service

automatically registers the whole application with the monitoring tool, thus storing in the

Monitoring Warehouse essential information about each application’s deployment. This

information is then valuable to all the downstream tools such as Enhancement Tools.

● An increased fault tolerance improves reliability of the tool, making the DevOps process

work without human interventions.

● A better overall usability and user experience.

With the service side being stable and feature complete, we were able to focus on contributing with

major improvements to the DICE TOSCA technology library:

● A unification across the underlying platforms now enables a true abstracting in the TOSCA,

making the blueprints that exploit the DICE TOSCA technology library functional for any

supported platform.

● Added support for Amazon’s EC2 extends the possibility to deploy DIAs using DICE to a

wider variety of public cloud platforms.

● Added support for MongoDB.

● All of the technologies supported now by the DICE Monitoring Tool get automatically

connected for monitoring during deployment. After the undeployment, they are also capable

of deregistering from the monitoring.

These changes enable a wider spectrum of possible uses of the DICE tools, both in terms of the

technologies used in the DIA as well as by enabling new deployment targets.

1.1.2 DICE Continuous Integration

The most notable new aspect of the DICE Continuous Integration is that we have migrated from

classic free-style Jenkins projects to newer and more flexible pipeline projects. To support them, we

have updated the DICE Jenkins plug-in to its version 0.3.0. This means that the DevOps aspect now

includes handling the Continuous Integration aspects of the project as well.

1.1.3 DICE Configuration Optimisation

The Configuration Optimisation (CO) tool provides a software mechanism to explore alternative

configurations for a DIA and identify the optimal one with respect to a given performance metric

(e.g., throughput, response time, ...). The intermediate version of this tool, presented in deliverable

D5.2 – DICE delivery tools – Intermediate version [3], is based on an algorithm, called BO4CO,

which drives the search for an optimal configuration using a technique known as Bayesian

Optimisation, which can cope with variability in the measurements and allow to customize the

optimal trade-off between exploitation of existing measurements and exploration of new

configurations. A large-scale validation has been performed for Storm-based DIA and Apache

Cassandra.

In Y3 we have consolidated the CO tool as follows. First, we have resolved minor bugs in the

instantiation of the tool on testbeds with arbitrary combinations of Big Data technologies and in the

initial generation of the Latin hypercube design.

Next, we observed that the configuration parameters of big data frameworks fall into these four

categories: 1) Integer – the parameter may take any integer value between a set of lower and upper

bounds. 2) Percentage – the parameter may take any value between 0 and 1. 3) Boolean – the

parameter value may be true or false. 4) Categorical – the parameter may take any value from a list

of Strings options. In the original release, BO4CO tool only supported numerical parameter values,

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 10

i.e. Integer and Percentage parameters. In order to have “fully automatic” configuration

optimisation, all parameters should be supported. Hence, we extended the BO4CO tool to support

Categorical and Boolean types.

Third, we have developed an Eclipse plugin to instantiate runs of BO4CO directly from the DICE

IDE, mediated by communication with the Jenkins instance in the DICE continuous integration

toolchain. In this deliverable, we primarily focus on discussing the implementation of this plugin.

With these updates, the DICE Configuration Optimisation has now become better accessible to the

users, because they can include setting up and managing the Configuration Optimization

experiments directly in their IDEs. The support for additional configuration categories further

extends the possible technologies addressed by the tool.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 11

2 Requirements

With the Deliverable D1.4 [5], we have provided a Companion document with all the updates presented the

requirement analysis for the DICE project. This section includes summaries of the prominent requirements

in their state at the end of M30.

ID R5.4.5

Title Deployment tools transparency

Priority Should have

Description: The DEPLOYMENT_TOOLS SHOULD NOT require from

ADMINISTRATOR to take part in any individual deployment.

ID R5.4.6

Title Deployment plans extendability

Priority Could have

Description: The DEPLOYMENT_TOOLS MAY be extended by the

ADMINISTRATOR with other building blocks not in the core set.

ID R5.7.1

Title Data loading hook

Priority Should have

Description: DEPLOYMENT_TOOLS SHOULD provide a well-defined way

to accept the initial bulk data that they can load.

ID R5.4.9

Title Deployment plans portability

Priority Should have

Description: The DEPLOYMENT_TOOLS SHOULD be able to support more

than one vendor's IaaS.

ID R5.27.1

Title Brute-force approach for CONFIGURATION_OPTIMISATION

deployment

Priority Should have

Description: CONFIGURATION_OPTIMISATION SHOULD apply

intelligent ML methods in order to enable a sequential decision

making approach that selects a promising configuration setting at

each iteration. CONFIGURATION_OPTIMISATION should find

the best possible configuration at the end within the

ID R5.27.6

Title CONFIGURATION_OPTIMISATION experiment runs

Priority Must have

Description: CONFIGURATION_OPTIMISATION MUST be able to derive

the experiment by running the application under test with specific

configuration setting by contacting DEPLOYMENT_TOOL.

CONFIGURATION_OPTIMISATION MUST be able to retrieve

the monitoring data regarding the experiments by contacting

MONITORING_PLATFORM.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 12

ID R5.27.7

Title Configuration optimisation of the system under test over different

versions

Priority Should have

Description: CONFIGURATION_OPTIMISATION SHOULD be able to

utilize the performance data that have been collected regarding

previous versions of the system under test in the delivery pipeline.

ID R5.27.8

Title Configuration Optimisation's input and output

Priority Must have

Description: CONFIGURATION_OPTIMISATION MUST be able to receive

a TOSCA blueprint, which describes the application under test

including any initial configuration. It MUST return a TOSCA

blueprint updated with optimal parameters, or a stand-alone

configuration file.

ID R5.43

Title Practices and patterns for security and privacy

Priority Must have

Description: The DEPLOYMENT_TOOLS MUST enable applying practices

and patterns to ensure that the deployed application is reasonably

secure and protecting privacy.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 13

3 Tools

3.1 DICE Deployment Tool

3.1.1 Main components

At the end of M30, the DICE deployment tool is a collection of the following components:

● DICE deployment service version 0.3.4

● DICE TOSCA technology library version 0.7.0

● DICE Chef Cookbooks version 0.1.12 (in use by the DICE TOSCA technology library)

● Cloudify 3.4.2 (provided by the GigaSpaces).

Figure 1: Deployment Diagram of the DICE Deployment Tool

As the deployment diagram on Figure 1 shows, the architecture of the DICE Deployment Tool

remains unchanged since M24. The entities marked in blue are from DICE, while the others are

from third parties.

3.1.2 DICE Deployment Service

The DICE Deployment Service is an abstraction layer, which we created on top of a Cloud

orchestration layer with one purpose in mind: to simplify the inclusion of the continuous

deployments into a DevOps workflow. We have achieved this by providing an interface with simple

actions: deploy a blueprint, redeploy/replace the previous blueprint with a new one, and undeploy

a previously deployed blueprint. Through applying these actions onto a specific virtual deployment

container, the tools for DevOps such as the Continuous Integration may rely on a clear separation

of applications and their roles. For example, a specific virtual deployment container may be

dedicated to main DIA’s branch testing, another one to an experimental branch, a third one might

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 14

be manually deployed (i.e., by manually submitting a blueprint) and used for manual acceptance

tests, etc.

Of course, the DICE Deployment Service offers a wider variety of API calls, which allow for

managing a list of the virtual deployment containers, and setting up testbed-specific input values.

We consider these calls to be for administration purposes. As already presented in [3], delegation

of platform parameters into the central service essentially enables that the blueprints themselves can

be platform-agnostic and thus highly portable across private and public cloud providers. Input

parameters related to the target platform such as cloud account credentials and identifiers of cloud

images are still needed by the blueprint, but their values will be dynamically supplied by the DICE

Deployment Service. The service is now also less strict when validating the submitted blueprint’s

input list, such that it does not require any of the inputs that already have default values set. As a

result of these improvements, the usability of the deployment tool has already increased

considerably.

Integration with DICE Monitoring Service. In M30, the DICE Deployment Service is aware of

the functionality of the DICE Monitoring Service [9], which allows an application to be registered

at the beginning of its runtime. The integration is controlled by two aspects. First, the Administrator

needs to assign input parameters to the service, which provide locations of specific DICE

Monitoring Service’s access points. Listing 1 shows the list of the needed parameters. These will

cue the DICE Deployment Service to submit an application (deployment) ID to the DICE

Monitoring Service, which stores it in its history. Optionally, the DICE Deployment Service can

supply the deployment metadata (such as the name of the application, the version of the DIA being

deployed, etc.) with this registration. The action of registration thus becomes searchable by the

metadata, helping various anomaly detection and enhancement tools to easier browse or discover

past DIA runtime instances.

dmon_address: Main dmon address (eg. 10.50.51.4:5001).
logstash_graphite_address: Graphite address (eg. 10.50.51.4:5002).
logstash_lumberjack_address: Lumberjack address (eg. 10.50.51:5003).
logstash_lumberjack_crt: Lumberjack certificate.
logstash_udp_address: Logstash udp address (eg. 10.50.51.4:25826).

Listing 1: Inputs used from DICE Deployment Service to enable registration of applications and services with the
DICE Monitoring Service

The second aspect comes from the DICE TOSCA technology library. Many of the node types

declare property monitoring, which lets individual node template to indicate whether it needs to

be monitored. Listing 2 shows an example usage of the property. For such nodes, the library defines

configuration steps for setting up the DICE Monitoring tool’s local agent, configuring the services

to enable logging, and notifying DICE Monitoring Service about the monitored nodes.

node_templates:

 master:
 type: dice.components.spark.Master
 properties:
 monitoring:
 enabled: true
 # ...

Listing 2: Example of how to enable in a blueprint that a Spark master node is automatically monitored

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 15

Security of the services. It is important to be aware that with exchange of parameters and blueprints

during deployment, sensitive data get exchanged between clients and services. It is therefore

essential to secure communication channels using encryption. Up until Y3, our approach to this

issue has been relaxed in the sense that all exchanges were in clear-text HTTP. By working with

prototypes and in a non-mission-critical environment, the risk or consequences of potential leaking

of information was acceptable. In exchange, we were able to focus on functionality, while

postponing the effort of establishing secure connections to the later time.

With the M29 release 0.3.4 of the DICE Deployment Service, we have upgraded the service

deployment blueprints to setting up the secure (HTTPS) connections by default. As a

consequence, no eavesdropping is now possible for any of the API calls, be it on the private or a

public network. Additionally, the set up of the services creates user accounts, unsolicited visitors

from accessing the deployments or administration interfaces.

This change has a small impact on the ease of use of the services. Now, the users need to supply

their user credentials, and configure their clients with the public certificate of the service. For

convenience (which should not considerably diminish the security benefits), all of our clients

provide the means to locally store these credentials: the command line interface creates a hidden

configuration file, the IDE plug-in uses Eclipse’s secure data store, and the web user interface uses

a standard token (cookie) based authentication once the user provides their credentials.

On the other hand, the added security does require more effort of the Administrators when setting

up and configuring the services. In particular, the Administrators need to create and maintain a

Certificate Authority to be able to create public certificates and private keys. There should be one

such key pair per a service to be set up. This process adds to up to 30 minutes of the Administrator’s

time when first setting up the Cloudify orchestrator and the DICE Deployment Service. We estimate

that each certificate needed to be created manually then takes additional 15 minutes of time,

including the time for creating the private key and certificate signing request, signing the public key,

and configuring the service’s blueprint with the certificate and private key. The process uses

standard open source OpenSSL tool, and we have provided quick instructions2. Table 1 summarizes

the services and the methods of creating service certificates.

On the clients’ side, the user needs to install the public certificate so that the client will trust the

service. This incurs a one-time cost of 5 minutes to the user. The installation steps are the same

regardless of the certificate creation method used for the server.

Table 1: Summary of services and their required method of creating certificates

Service Method of certificate creation

Cloudify Manager Manual

DICE Deployment Service Automatic

In our understanding, the cost of creating the certificates is relatively low comparing to the gained

benefits of sensitive data protection. Also, the process is by nature only needed once (or, when

2
 https://github.com/dice-project/DICE-Deployment-Service/blob/master/doc/certificates.md

https://github.com/dice-project/DICE-Deployment-Service/blob/master/doc/certificates.md

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 16

renewing the certificates, infrequent), and therefore negligible in comparison to the high frequency

of accesses and use of these services in a day-to-day DevOps methodology.

As shown in Table 1, we built into the DICE Deployment Service’s bootstrap process an automatic

creation of the service’s certificates. This is a convenience measure, which saves Administrator’s

time at a cost of transferring all control of the certificate creation process to the orchestrator.

3.1.2.1 TOSCA technology library

While the DICE Deployment Service provides the means for deployment, the content of the DICE

project comes from the TOSCA technology library. The goal of the library is to provide every DICE-

supported building block’s configuration and deployment capabilities and wrap them into easy to

use elements in arbitrary DIA topologies.

As already reported [7][3], there are three components making up our TOSCA technology library.

First, the TOSCA YAML definitions provide component-specific node types and relationships.

We built them by inheriting node types from the ones provided by Cloudify. For example, a

blueprint for deploying a stand-alone MongoDB cluster involves the following node types:

● dice.hosts.ubuntu.Medium: represents a compute host of a medium size.

● dice.firewall_rules.mongo.Common: a node type for defining a networking security

group or firewall, such that only the ports needed for MongoDB to communicate are

accessible, and this includes peer engine services and any clients.

● dice.components.mongo.Server: a component containing all the MongoDB-related

modules that comprise a stand-alone instance of the MongoDB engine.

● dice.components.mongo.DB: represents a database in a MongoDB engine.

● dice.components.mongo.User: a user in a MongoDB cluster.

Many of the node templates need to be in a relationship with another node template. We do this

using the following relationship types:

● dice.relationships.ProtectedBy: the source of this relationship is a compute host,

and the target is a dice.firewall_rules node template defining the secure group or a

firewall.

● dice.relationships.ContainedIn: may connect a service-related node template to a

compute host, or a database to a database engine such as MongoDB.

● dice.relationships.mongo.HasRightsToUse: enables permission of the source user

node template with the target database node template.

The TOSCA YAML definitions provide a foundation for declarative representation of the DIA at

the same level as the DDSM [7]. We have made sure that these concepts can be mapped directly

from the DICE metamodel into a TOSCA blueprint, because in this way a DICE UML model created

in the IDE becomes fully actionable. This means that suitable orchestrators will accurately and

consistently turn the DIA’s model into the DIA’s runtime.

The second aspect of the library are Chef cookbooks for each building block. Cookbooks are

composed of recipes, and their purpose is to implement one or more components’ lifecycle steps

(e.g., install, start, configure, stop). While granularity of Chef is much smaller than that of the cloud

orchestrator, focussing on files and services of a compute host, the structure of the Chef cookbook

recipes also has a strong declarative nature. Ultimately, the steps are implemented as imperative

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 17

components, but they are embedded into higher-level structures. This property lets us segment

recipes into stages of the orchestration workflow, granting us a good level of flexibility. As an

exercise of reusability, we were able to use our Chef recipes to implement a working Ubuntu JuJu

charm3.

The final elements of the technology library are plug-ins and extensions for the Cloudify

orchestration engine. Many of the workflow steps and relationship implementations in the TOSCA

library require tailored approaches and careful handling of installation sequences. We implemented

these as Python scripts and registered them to be triggered at certain times of the workflow. For

example, some of the clustered services require that all of the peers are installed, configured

individually and running first. Then they need to enter a common cluster one by one. Such workflow

needs a special logic implemented as a Python script to access and update the state (context) of a

blueprint’s deployment.

This context becomes available to the Chef recipes (which themselves are able to manipulate), thus

enabling insight into orchestrator’s wider picture to the configuration management. While the shape

and format of this context is Cloudify-specific, it was trivial for us to recreate it in the

aforementioned Ubuntu JuJu charm, proving a possibility to migrate to other orchestration engines

(e.g., ARIA TOSCA) with low effort.

3.1.2.2 Security by design

When surveying the installation and configuration instructions of various Big Data technologies,

we found a common theme that security aspects of the components are often secondary or are

even more neglected. Protecting a new or an existing cluster requires many seemingly arcane and

cumbersome steps that strictly speaking are not necessary during development and test phases.

However, it is quite likely that the Ops keep the development-level set-up also when going to

production, putting systems and data at risk. Many of these systems end up on publicly available

network interfaces, where a specialized search tool such as Shodan4 is able to index them en masse.

Just recently, media5 reported of 5.12 Petabytes of Hadoop Distributed File System datasets being

uncovered in such a way. Earlier in the year, a high number of MongoDB and ElasticSearch datasets

were stolen, held ransom or deleted6.

Systems that are secure by design start already at the modelling phase with security and, possibly,

privacy of the DIAs in mind. In D2.2 [6], we have already covered the modelling aspects, where the

architect can express security policies through an interplay of: resources (what needs to be

protected), actions (what can be done to/with the resources), actors and roles (who is doing the

actions against the resources) and permissions (specific actors and roles allowed to do specific

actions against specific resources).

Transferring these capabilities into the context of the deployment and configuration is beyond the

scope of the DICE project. The long-term goal would be two-fold: wherever possible, the deployed

DIA has to be deployed from the ground up in such a way that it prevents any unauthorized users

3
 https://github.com/xlab-si/DICE-Juju-Charms

4
 https://www.shodan.io/

5
 http://thehackernews.com/2017/06/secure-hadoop-cluster.html

6
 http://thehackernews.com/2017/01/mongodb-database-security.html

https://github.com/xlab-si/DICE-Juju-Charms
https://www.shodan.io/
http://thehackernews.com/2017/06/secure-hadoop-cluster.html
http://thehackernews.com/2017/01/mongodb-database-security.html

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 18

from gaining access to the restricted data or functionality of the DIA. Where that is not possible, it

should at least be possible to detect anomalous usage from the logs or other monitoring approaches.

It is important to note that policies expressed in the DIA’s models need to be applied at various

levels of the application’s deployment. At the level of a DIA’s supporting cluster, we can typically

create database engine-level users and assign permissions to datasets such as tables or keyspaces.

However, this is a relatively coarse-grained access control, which cannot enforce policies that work

at the level of individual records in a dataset. This, in turn, is a responsibility of the user’s custom

application.

By M30, we chose MongoDB as the technology to demonstrate concepts of the security by design.

As noted earlier, this NoSQL database engine is often set up using default configurations and thus

unprotected from any actors within the engine’s network. As a minimum security measure, all our

MongoDB deployments will have created an administrator account with a strong password that

is randomly generated during each deployment. Additional users may be defined in the TOSCA

blueprint, and the orchestrator will generate passwords for them that are random and strong as well.

Any clients needing to access the MongoDB datasets then must know these credentials (obtainable

either through orchestrator’s dynamic attributes or manually by copying them from deployment

outputs). Anonymous access is therefore disabled.

The work related with security by design has uncovered an important aspect of orchestration:

generation and exchange of secrets. This includes pieces of information such as passwords, API

keys, service or host private keys and any other sensitive items. They are essential for a successful

deployment orchestration, but the challenge is to keep them away from the eyes of the users of the

deployment services. In Cloudify, this functionality is subject to commercial and paid licenses,

while in the community version, users need to be careful with who can use the services and for what

purposes. As a part of future work, we plan to include third party solutions such as HashiCorp Vault7

to solve this problem.

3.1.2.3 Multi-cloud support through unified approach

The version 0.7.0 of the DICE TOSCA technology library8 released in M29 has enabled truly multi-

platform blueprints. Originally, the particular platform plug-ins in Cloudify exposed node types that

were specific to that platform not only in the name of the node type, but also in structure of

properties. DICE unifies all the supported computation and networking concepts, encapsulated in

the following base node types:

● dice.firewall_rules.Base

● dice.VirtualIP

● dice.hosts.centos.Base

● dice.hosts.ubuntu.Base

In terms of the node type names, this is only a slight improvement over the M24 release. In

particular, we introduced an explicit selection of the compute host’s OS distribution: Ubuntu or

CentOS. Any existing blueprints would therefore simply need to replace occurrences of

7
 https://www.vaultproject.io/

8 https://github.com/dice-project/DICE-Deployment-Cloudify/releases/tag/0.7.0

https://www.vaultproject.io/
https://github.com/dice-project/DICE-Deployment-Cloudify/releases/tag/0.7.0

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 19

“dice.hosts.” with “dice.hosts.ubuntu.” to become functional with the version 0.7.0 of

the library.

To support this change, DICE needed to also implement its own plug-in (i.e. Python code

components) for platform operations. Using platform native libraries (please see justification

below), the selection of the target platform is now a matter of providing an appropriate platform

property name:

● fco: the instance will be provisioned in Flexiant Cloud Orchestrator

● openstack: supports OpenStack version Icehouse or newer (tested also on Mitaka and

Newton)

● aws: deploys in Amazon’s EC2

● If the property is not explicitly set in the node template, the DICE Deployment Service will

pick the default platform, usually in its own testbed environment.

The library therefore provides for interesting and highly flexible deployments. In the common

scenario, also used by all the use cases in DICE, the DIAs’ blueprints will not prescribe any

platform. This will make the blueprint deployable without any change into any of the supported

platforms.

Additionally, we can envision DIAs spanning multiple types of clouds, e.g. a combination of public

and private clouds. In this scenario, some or all of the relevant node templates will have the

platform property set to the relevant platform type. It is then a matter of supplying the proper

inputs containing each platform’s access credentials, image IDs and other parameters for such

deployment to work. This scenario, however, is out of scope of the DICE project and is thus subject

to potential future work.

A note on the choice of the third party libraries used to support a platform: we were careful to evaluate whether it is

better to use the target platform’s native client library, or an abstraction such as Apache Libcloud9. With an abstracted

library, our expectation was that it would make extending support for new platforms simpler. In practice it turned out

that support for OpenStack in Libcloud was not fully available and thus the approach was not usable for us.

Additionally, we still needed to study and understand intricacies, parameters and structures particular to each platform,

which diminished any benefits of having a single common library.

This experience has shown us from another perspective that only through abstraction at a higher level is it possible to

achieve a multi-cloud operation. Cloud orchestration engines are such an abstraction, and while they internally need

to handle specific interfaces of the supported platforms, the blueprint writers and users do not have to.

3.1.3 Supported technologies

This section briefly presents the technologies supported by the DICE Technology Library in its M29

version 0.7.0.

Apache Zookeeper. This component is a support service for many of the other Big Data services,

and might also be used by some of the DIAs. It is a distributed service, which helps coordinate other

distributed services and keep their local or global configurations. The distributed services are

instances of the dice.components.zookeeper.Server node type. Clusters of Zookeeper

servers need to be connected using the dice.relationships.zookeeper.MemberOfQuorum

9
 https://libcloud.apache.org/

https://libcloud.apache.org/

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 20

relationship to a common node template of type dice.components.zookeeper.Quorum. All

the other node templates that require connection to the Zookeeper need to use

dice.relationships.zookeeper.MemberOfQuorum relationship to connect to the quorum

(and not to the Zookeeper itself).

Apache Storm. A Big Data service for stream processing of data streams and batches. Each Storm

cluster needs to contain at least one instance of node template belonging to type

dice.components.storm.Nimbus, which serves both as the nimbus (i.e., supervisory) node and

the web interface to the Storm cluster. The actual work is performed by instances of the node

templates of type dice.components.storm.Worker. Both the Nimbus and the Worker nodes

require connection dice.relationships.storm.ConnectedToZookeeperQuorum to the

Zookeeper’s quorum node template. Each Worker also needs to connect to its Nimbus using

dice.relationships.storm.ConnectedToNimbus.

User applications in Storm are Storm topologies. These are represented by node templates of type

dice.components.storm.Topology. They are in a relationship with the Nimbus node by

dice.relationships.storm.SubmittedBy. The custom applications will therefore be started

by the Cloudify orchestrator, to be then run independently in the Storm.

Apache Spark. This technology is suitable for executing batches or micro-batches (to simulate

stream processing) in a distributed manner on top of Big Data. A Spark topology is composed of

Master nodes instantiated from node templates of type dice.components.spark.Master, and

of Worker nodes from dice.components.spark.Worker. Workers need to be connected to the

Master node template using dice.relationships.spark.ConnectedToMaster.

User applications are presented as dice.components.spark.Application node templates,

related to the Master through dice.relationships.spark.SubmittedBy.

Apache Kafka. Messaging bus such as the one provided by Kafka is an important element in DIAs,

offering message passing and queueing, publishing messages and content to multiple listeners,

balancing load between resources, etc. In a DIA blueprint, we include them as node templates of

type dice.components.kafka.Broker. Each node template has to be connected to Zookeeper

Quorum using dice.relationships.zookeeper.ConnectedToZookeeperQuorum.

Hadoop File System (HDFS). A cluster for the object data store is composed of name nodes and

data nodes. To define the name nodes, add a node template of type

dice.components.hadoop.NameNode. The data nodes are defined by a node template of type

dice.components.hadoop.DataNode, which needs to be in the

dice.relationships.hadoop.ConnectedToNameNode relationship with the name node’s

node template.

Hadoop YARN. The popular distributed application task runtime management needs two

components in its cluster: resource managers and node managers. The node type

dice.components.hadoop.ResourceManager defines a node template of a resource manager.

The blueprint then needs to contain a node template of type

dice.components.hadoop.NodeManager, which is in a relationship

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 21

dice.relationships.hadoop.ConnectedToResourceManager with the resource manager

node.

Apache Cassandra. Cassandra is a distributed highly available and fault resistant NoSQL database

engine. A cluster of Cassandra service composes a seed node (of multiple instances) represented by

node template of type dice.components.cassandra.Seed, and worker nodes of type

dice.components.cassandra.Worker. A worker needs to be in a relationship

dice.relationships.cassandra.ConnectedToSeed with a seed node.

MongoDB. Another NoSQL database engine based entirely on the concept of document storage. A

MongoDB cluster can take many forms, including a stand-alone server, a replicated cluster, or a

shared cluster.

For the stand-alone mode, the blueprint simply needs to provide a node template of type

dice.components.mongo.Server.

In the replicated cluster mode, instead of a simple server, the blueprint needs to contain a

replicated server represented by a node template inherited from the node type

dice.components.mongo.ReplicaServer. This node template then belongs in a

MongoDB group represented as dice.components.mongo.Group, which connects to

the replica server using dice.relationships.mongo.ComposedOf.

The sharded cluster mode needs to contain configuration servers, represented by the

dice.components.mongo.ConfigServer node type’s template instances. A group of

configuration service replicas is represented by dice.components.mongo.Group, and

the relationship between a replica group and a configuration server is

dice.relationships.mongo.ComposedOf. The actual data is stored in shards

represented by multiple node templates of type

dice.components.mongo.ShardServer, where each shard server node template must

be in its own relationship dice.relationships.mongo.ComposedOf with its own node

template for the dice.components.mongo.Group. To connect the whole structure, the

cluster also needs a router node, represented as a dice.components.mongo.Router

node template type. The router works with configuration data stored in the configuration

server, so its node template connects using

dice.relationships.mongo.ConfigurationStoredIn to that of the configuration

server’s node template. The router then routes requests to the shard server replicas, therefore

for each target replica group there has to be a relationship of type

dice.relationships.mongo.RoutesTo.

The DICE TOSCA technology library also provides definition for MongoDB databases and users.

A node template for a database uses node type dice.components.mongo.DB. It needs to be

connected using dice.relationships.ContainedIn to the appropriate database server or

server replica: dice.components.mongo.Server in the stand-alone mode,

dice.components.mongo.ReplicaServer in a replicated cluster mode, and

dice.components.mongo.ShardServer in a sharded cluster mode. To define a user, add a

node template of type dice.components.mongo.User and use

dice.relationships.ContainedIn to apply it to the database server or server replica. To set

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 22

a user’s permission to use a database, add to the user’s node template a relationship of type

dice.relationships.mongo.HasRightsToUse with the target database.

Custom script. For the DIA components that do not conform to any of the above building blocks,

it is possible to use a simple custom script building block.

dice.components.misc.ScriptRunner node type provides properties to set a language of the

script (either python or bash), to list command line arguments for the script, and enumerate any

additional resources (files, scripts, libraries, etc.) that need to be in the file system of the host

running the script. These files need to be present in the blueprint bundle when submitting the

blueprint for deployment. The node template is limited in that the library doesn’t have any

relationships defined to connect a script node with other node templates. However, TOSCA enables

using built-in functions to obtain inputs, properties and dynamic runtime attributes to supply

information on other node template instances to the script.

3.1.4 Container technology perspective

Containers are a special form of computer virtualization, enabled by operating system containers,

where multiple applications run in isolation from any other containers or processes within the same

user space. Container technologies are gaining a growing interest and support in the industry. The

advantages include a high level of portability, the fact that the containers are lightweight and are

also quickly deployed. They can be used to package single services, composite parts of an

application such as micro services, or whole applications.

In terms of DICE deployment and configuration, we view individual containers as a special type of

user's custom application or component. These were not in focus of the DICE project, which instead

gave the majority of its attention to Big Data technologies. In principle, containers could provide an

alternative approach to configuring and deploying the building blocks supported by DICE, such as

Spark, Storm or Cassandra. While we consider this an interesting possibility, we believe that our

existing approach already works well and has enough flexibility for serious use. The container

approach might provide some deployment speed, but it also increases the complexity of the DICE

tools implementation, and likely reduces the component’s performance.

That said, DICE Delivery Tools offer a good basis for possible future support of container

technologies. For a container to be able to run, a TOSCA blueprint (as well as the deployment

document) would need to specify: 1) a template for a host such as a virtual machine, 2) a capability

of this host to receive containers of a particular brand (Docker, Linux kernel containers – LXC, etc.)

either through a special type of the host template or an associated node type, and 3) a template for

the actual container to be deployed. The DICE TOSCA technology library would need to contain

the needed building blocks. In this schema, the orchestrator such as Cloudify in the back-end of the

DICE Deployment Service treats containers equally as any other component, and it also takes

responsibility for the containers' lifecycle.

Many container technologies are now complemented by orchestrators specialized to handle

containers. Kubernetes and Docker Swarm are just two of such solutions. Typically, they expose an

interface that makes a cluster of container hosts appear as a single virtual container host. For DICE

Deployment Service, a container orchestrator then appears like a persistent implicit (i.e., not

explicitly represented in a TOSCA blueprint) platform for hosting containers. This concept is not

very different from how we represent data centres and cloud providers in DICE TOSCA.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 23

Specifically, the host node templates do not have to explicitly specify the infrastructure that they

are guests to. Instead, this is handled by Cloudify as an orchestrator, and the DICE Deployment

Service, which supplies credentials and configuration values through TOSCA inputs.

This last scenario is also interesting because we could implement a TOSCA blueprint to deploy a

container orchestrator, then update the inputs in the DICE Deployment Service to have the

subsequent blueprints use this orchestrator as an extended platform.

3.1.5 Evaluation and validation: a city traffic use case

We validated the DICE Deployment Tool in an industrial use case developed internally at XLAB.

The use case collects various publicly available data on traffic conditions in the Slovenian capital

city Ljubljana. This use case was developed in collaboration with the TIMON10 H2020 project.

Figure 2: Architecture of the city traffic use case

The city traffic DIA architecture is shown on Figure 2. As shown, it is composed mostly of services

that are supported by DICE and are thus available in the TOSCA technology library: Kafka, Spark

and Cassandra. For additional components we developed custom Chef cookbook recipes. The goal

of the validation was to show that DICE tools provide a speed-up in the development and

deployment process of the use case DIA.

In the first phase, we created a skeleton blueprint with all the nodes that are already supported in

DICE, and we added to the blueprint additional host nodes with no services assigned to them. The

resulting cluster would be suitable for manual installation of the use case’s custom components.

10

 https://www.timon-project.eu/

https://www.timon-project.eu/

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 24

Next, we extended the skeleton blueprint with the node templates that would represent the custom

and unsupported components of the city traffic DIA. In particular, we needed to accommodate for

installation of:

● the data collector component, which periodically queries the data sources and sends results

to Kafka topics, custom made for the use case,

● Stream Reactor11, a connector for Kafka that receives data from a pre-configured topic and

writes the contents into a Cassandra keyspace, a third-party solution with configuration

specific to the use case.

As the descriptions of these components suggest, each component has an external dependency to

Kafka or Cassandra, the access points of which need to be written into an appropriate configuration

file during the deployment. In the blueprint, we therefore created custom relationships to express

such dependencies. In the deployment workflow, these relationships also make sure that the values

needed in configuration of either of the custom components are available at the time the orchestrator

triggers configuration of the components. Our relationships were derived from

dice.relationships.Needs and reused interface implementation available in the TOSCA

technology library for storing the target node host’s FQDN into a runtime attribute specified by the

relationship.

The DICE TOSCA technology library does not yet provide any means for describing service nodes

with custom Chef recipe runlists. For creating custom node templates, we therefore needed to

create a custom node type, which we derived from dice.chef.SoftwareComponent and

provided the ability to assign arbitrary recipes. This ensured that Cloudify would execute our Chef

recipes for the use case’s custom components. Next, we adapted our Chef recipes slightly to use

Cloudify’s context and its dynamic attributes, which enabled them to use Kafka and Cassandra

access point addresses in the configuration process.

The work we have described was carried out by a senior engineer. The Table 2 shows estimates of

the time they needed to create and fully test the city traffic DIA TOSCA blueprint. The entire process

of creating deployable application (excluding the implementation time of the DIA’s functionality

itself) took around 40 hours. Of that time, only 10 hours were applied to the use of DICE tools.

In comparison, if we didn’t have DICE, but wanted to create deployable TOSCA blueprints, we

would have spent at least 38 hours on the same activities as described above except for the skeleton

blueprint creation. We would then need to create and implement blueprints that would deploy Kafka,

Spark and Cassandra, which would take a senior engineer at least 3 weeks (120 hours) to implement.

This means that with DICE we have achieved at minimum an almost 4x speed-up of the use case

deployment implementation.

Table 2: Break down of the times required for applying DICE Deployment Tool to the city traffic use case

Task Time required [engineering hours]

Skeleton blueprint creation 2 h

Custom relationships implementation 1 h

Custom node templates implementation 5 h

Adaptation of Chef recipes 2 h

11

 https://github.com/datamountaineer/stream-reactor

https://github.com/datamountaineer/stream-reactor

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 25

Total 10 h

3.2 DICE Continuous Integration

In DICE, the aim of the Continuous Integration task is to provide execution of automated tools and

processes (from DICE or from third parties) in a manner that is itself automated: it happens when a

developer pushes a new version to the VCS, or at specific times of day or week. By M24, we have

implemented a Jenkins plug-in to help visualize the progress the developers make in terms of quality

of the DIA. By M30, we have refined the method of setting up the Jenkins jobs, and enabled speed-

ups of the Jenkins projects executions. In the following paragraphs, we will present the updated

approach on the example of the ATC’s NewsAssets’ Topic Detector application.

The agile methods encourage the use of Everything as Code. The DDSM, Chef cookbooks and

TOSCA blueprints all are great examples of Infrastructure as Code. In the context of Continuous

Integration, Jenkins also provides the means to present test jobs in a DSL that is based on the Apache

Groovy12 language. The developers need to include a file named Jenkinsfile in their project, and

the Administrator only needs to add a project in Jenkins of type pipeline, such that it reads the VCS

and executes the selected Jenkinsfile. The developers are then free to build and modify the test

definition, evolving it organically just as the DIA project evolves, without having to involve the

Administrator any further.

From the methodological point of view, we now also want to separate Continuous Integration jobs

into stages by the frequency of their required execution and the time they take in each of their cycles.

As the analysis in the previous deliverable [3] has shown, a single cycle of deployment and teardown

could take up to 10 minutes on a reasonably occupied testbed. From the point of view of deployment,

we consider this to be fast. However, in the context of application testing, we strive to bring the

Continuous Integration job execution times to as low a number as possible. In looking for reserves

and through noting the typical DevOps team’s behaviour, we have established that modelling and

updating the cluster takes up a small number of commits. In particular, for the Posidonia Operations,

less than 5% of commits influence the models. Similarly, the Netfective Technologies teams

practically never change the model once it is finalized, while the DIA’s logic commits occur daily.

To test these, it is normally acceptable to reuse the cluster deployed in the previous deployment

runs.

Note: the approach is only safe as long as the developers implement removal of all traces of the

previous tests’ runs, e.g., by making sure that any datasets created and populated during each job’s

run get fully purged before beginning of the next runs.

The Jenkins pipeline definition’s Jenkinsfile is composed of stages, which correspond to the

various phases that the developer of an application wants to have Continuous Integration run. In

Listing 3, we see a skeleton of such a Jenkinsfile. The skeleton represents a mandatory

pipeline block, indicating that this file uses the declarative syntax. The pipeline stages will run

on any of the available agents as declared with the agent any declaration. This means that the job

will run on any of the currently available Jenkins nodes. The stages directive declares the stages

to be executed during the main job’s execution. They will be executed in sequence until one of them

12

 http://www.groovy-lang.org/

http://www.groovy-lang.org/

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 26

either fails or until all of them succeed. The post block tells about what should happen after the

stages are finished.

pipeline {
 agent any

 stages {

 stage('build-test') {
 }

 stage('deploy') {
 }

 stage('quality-testing') {
 }
 }

 post {
 always {
 }
 success {
 }
 }
}

Listing 3: Jenkinsfile skeleton for multi-stage testing and deployment

We could easily populate this skeleton for any type of DIA. We will illustrate this on a Storm

application, which we based on the ATC’s Topic Detector [11] use case.

The first stage is named build-test. Its goal is to compile the application and test it, as shown in

Listing 4. The outcome is a jar file containing the user’s compiled application, stored in the project’s

workspace on Jenkins (thus it will be available for subsequent stages). The stage also runs unit tests,

so if anything is wrong in the code, the execution stops here.

stage('build-test') {
 steps {
 sh 'mvn clean assembly:assembly test'
 }
}

Listing 4: Declaration of stage for building the DIA and running unit tests.

Next, we provide the details in the deployment block. As discussed before, we want to save time

and execute it only if really needed. To this end, we add a pre-stage named pre-deploy, as shown

on Listing 5: we note down a hash of the current blueprint bundle. For the edge case of the stage

running on a fresh workspace, we also initialize a file containing the previous blueprint’s hash. Then

we read the two and note down if they are equal or not.

In the actual deploy stage, also shown in Listing 5, we use a when block to make sure the stage is

run only if the blueprints have changed. If yes, we submit the blueprint bundle to the DICE

Deployment Service and wait for the deployment to be finished. Please note that the environment

variables for the DICE Deployment Service’s configuration path DDS_CONFIG, and the UUID of

the virtual deployment container to be used by this DIA STORM_APP_CONTAINER need to be

assigned by the ADMINISTRATOR in the Jenkins configuration.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 27

stage('pre-deploy') {
 steps {
 sh 'sha256sum blueprint.tar.gz > current-hash.txt'
 sh 'touch last-successful-hash.txt'
 script {
 env.CURRENT_HASH = readFile('current-hash.txt')
 env.LAST_HASH = readFile('last-successful-hash.txt')
 env.CHANGED = env.CURRENT_HASH != env.LAST_HASH
 }
 }
}

stage('deploy') {
 when {
 expression { return "${env.CHANGED}" == "true" }
 }
 steps {
 sh '''
 dice-deploy-cli deploy --config $DDS_CONFIG \
 $STORM_APP_CONTAINER \
 blueprint.tar.gz

 dice-deploy-cli wait-deploy --config $DDS_CONFIG \
 $STORM_APP_CONTAINER
 '''
 }
}

Listing 5: The stages for deploying the cluster needed by the DIA onto the testbed

If the previous stage succeeds or was skipped, we assume that the Big Data cluster for the DIA is

available13. The Listing 6 then shows the steps needed to run the DIA in the Quality Testing [10]

mode. Here, we obtain the address of the Nimbus service using a convenience wrapper around the

DICE Deployment Service client tool, and we store the result in STORM_NIMBUS_HOST variable.

The rest of the variables are pre-set and DIA specific: TOPOLOGY_CLASSPATH provides the full

name of the Storm application’s class to be executed, TOPOLOGY_NAME is the name to be used in

Storm for the topology, and METRICS_FILE_PATH is the path in the workspace to contain an

outcome of the quality testing runs. Only the STORM_UI_URL is dynamic and composed of the

Nimbus host address obtained earlier.

The last command in the step executes the actual submission of the DIA into the cluster. Here we

assume that the application is written such that it employs QT-LIB and performs the needed

querying of the monitoring subsystem of the Storm. At the end, it also needs to return the metrics

to be displayed at the Continuous Integration.

13 Please note that in the presented example, the target Big Data cluster might be off-line even if the pre-deploy check

assumes that it is available. We skipped this condition for brevity, but it can be easily addressed by adding a check using

DICE Deployment Service’s RESTful calls to confirm that the cluster is indeed deployed in the virtual deployment

container.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 28

stage('quality-testing') {
 steps {
 sh '''
 STORM_NIMBUS_HOST=$(dice-get-output.sh $STORM_APP_CONTAINER \
 storm_nimbus_host "$DDS_CONFIG")

 TOPOLOGY_CLASSPATH="gr.iti.mklab.focused.crawler.QTTopicsDetector"
 TOPOLOGY_NAME="topic-detector"
 TOPOLOGY_JAR="target/focused-crawler-jar-with-dependencies.jar"
 STORM_UI_URL="http://$STORM_NIMBUS_HOST:8080"
 METRICS_FILE_PATH="output/result.json"

 bash submit-topology.sh \
 "$TOPOLOGY_JAR" \
 "$TOPOLOGY_NAME" \
 "$TOPOLOGY_CLASSPATH" \
 "$STORM_NIMBUS_HOST" \
 "$STORM_UI_URL" \
 "$DMON_URL" \
 "$METRICS_FILE_PATH"
 '''
 }
}

Listing 6: Definition of the quality testing stage block

The post block defines how to wrap up the job. As shown in Listing 7, we are interested in

addressing two conditions: the always block executes regardless of any of the steps failing or

succeeding. Here, we collect and archive the compiled .jar files, if they exist. By archiving the

results, we ensure that they will be accessible using a permanent URL composed separately for each

build. The success block executes only if all the stages succeed. Here we archive also the outcome

of the Quality Testing, and we supply this same file as an input to the DICE Jenkins plug-in.

post {
 always {
 archive 'target/*.jar'
 }
 success {
 archive 'output/result.json'
 DICEQualityCheck(pathToResults: 'output/result.json')
 }
}

Listing 7: Definition of actions to happen after the build

A Jenkinsfile as shown here then needs to be committed into a VCS in the DIA’s repository.

Jenkins will execute it on schedule as it is obtained from the VCS. After a number of the job’s

executions, the project’s dashboard in Jenkins will display a summary similar to Listing 8. The view

contains two important components: on the top right, DICE Jenkins plug-in shows a chart of metrics

for each build. The rest of the view is occupied by the table, where rows represent individual builds,

and columns represent stages of the pipeline. Notice that the timing in the deploy column varies

depending on whether a build involved a changed blueprint or not.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 29

Listing 8: Sample execution history view in Jenkins

As shown, Jenkins displays timings of each stage. Like at M24, DICE plug-in shows a chart of the

metrics in the past Quality Testing executions.

3.3 Configuration Optimisation

3.3.1 Overview of integrated solution

The implementation of the CO Eclipse Plugin consisted of two main parts:

1) Provide a development environment in the Eclipse IDE, where developers can explore

configuration optimisation and the performance of their applications.

2) Fully integrate the development environment to trigger configuration optimisation on remote

automation server and run tests on remote testbed.

The challenges addressed in Y3 for the first part focused on the Eclipse IDE were as follows:

● Allow selection of configuration parameters of corresponding Big Data technology for

optimisation.

● Allow specification of parameter values, ranges and intervals to experiment upon – Extend

BO4CO tool to support broader types of input: boolean, categorical, ranges and intervals.

● Allow configuration of experiment set-up, e.g.: test application to run, numbers of iterations

and experiment time.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 30

● Allow setting of connections to remote Jenkins server, remote testbed and monitoring

services.

The challenges addressed in Y3 for the second part focused on the integrated toolchain were as

follows:

● Integrate Eclipse and Jenkins for triggering parameterised builds with configuration files

remotely.

● Integrate Jenkins automation server and MATLAB-based BO4CO tool to start experiment.

● Integrate BO4CO tool and remote Storm testbed to deploy tests with different configuration

parameters and retrieve performance metrics.

● Integrate Eclipse and Jenkins to retrieve and display BO4CO configuration results.

A schematic view of the overall CO solution is shown below in Figure 3.

Figure 3: Architecture of the Configuration Optimisation solution

Initially, the developer selects the configuration parameters to optimise via the user-friendly

interface on the Eclipse IDE. The experiment configuration file is generated according to the

selections, and sent to the remote Jenkins CI server as it triggers the experiment to run. Jenkins

executes the Configuration Optimisation tool, and monitors the status of the experiment. When the

CO tool terminates, Jenkins retrieves the results and the optimised configuration.

The developer can access the results conveniently from the Eclipse IDE. The Big Data Auto-tuning

Tool provides a fully integrated solution in the development environment to performance test and

tune big data applications, in line with the DevOps principles of frequent testing in deployment

environment.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 31

In comparison to the existing approach to directly work with the Configuration Optimisation tool,

the developer can now run optimisation and view results without leaving the IDE. The developer no

longer manually creates an experiment configuration file for the tool. The GUI lists the

configuration parameters available for selecting the corresponding big data framework, provides

helpful descriptions to aid non-expert developers. It simplifies the process for the developer, without

requiring that they understand the format of the CO tool’s experiment configuration file. It also

eliminates human error when creating the file and guarantees no parsing problem when it is

executed.

3.3.2 CO Eclipse plugin

A screenshot of the CO Eclipse plugin is shown in Figure 4.

Figure 4: Interface for building an experiment configuration with the Eclipse plug-in

The interface consists of several top-level tabs. Parameter Selection provides a list of standard

configuration parameters for DICE-supported technologies and allows the developer to specify an

arbitrary numerical range for integer and percentage type parameters, and choose from the available

options of categorical parameter.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 32

Figure 5: Hierarchy of components used in the Parameter Selection tab

Figure 5 shows how the different components in the Parameter Selection tab are connected:

● Blue components are Standard Widget Toolkit (SWT) widgets that appear on the user

interface.

● Green components are underlying data collections and objects.

● Deeper shade of blue is used to highlight that multiple instance of the component may exist.

● A SWT widget is the parent of SWT widgets contained inside its box on the diagram.

When the plugin is launched, a collection of parameter objects is created from reading the

params.xml file shipped with the plugin. The SWT Table of available parameters is created, along

with the drop-down list (SWT Combo14) that controls which parameters should be displayed for the

selected big data framework. The SWT Table of selected parameters is initially empty, along with

SWT Buttons for “Add parameter” and “Remove parameter”, which allow the user to include the

parameters that BO4CO should optimize during the experimentation. The Services, Experiment,

and Application configuration tabs are similar in that all of the user inputs are simple single text

fields that specify some required information about the services that need to be tested, such as their

URL and login credentials.

14 http://www.eclipse.org/swt/widgets/

http://www.eclipse.org/swt/widgets/

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 33

Figure 6: Interface for providing configuration for external services used by the Configuration Optimisation

3.3.3 CO Jenkins integration

The aim of this contribution is to provide integration between the Eclipse plugin described in the

above section, and a remote Jenkins server containing the Configuration optimisation tool instance.

The tool requires an experiment configuration file to execute, and hence there is a need to remotely

trigger Jenkins’ parameterised build with a file parameter. A Jenkins project has to be created, with

remote triggering enabled. This opens the option to specify a token used for added security when

remotely executing the build from the Jenkins API. The parameterised trigger option has to be

selected, with a file parameter specified.

We used in this part an existing Eclipse plugin that is capable of running builds and monitoring the

status of remote Jenkins server, called the Hudson/Jenkins Mylyn Builds Connector15. However,

this plugin does not support triggering parameterised builds and does not support sending file (or

any) parameters. The possibility of reusing code from the plugin was investigated, but it was found

that the code required to trigger parameterised build significantly differed from the existing code

that only supported simple builds. Therefore, the integration was built from scratch. Jenkins offers

an API that opens functionality to remote access.

The API requires three security components to remotely trigger builds:

● User-defined project remote trigger token. The project token is a simple plain text token that

is sent as one of the arguments in the HTTP request URL string.

● Credentials of an authorised user – username and password. Pre-emptive authentication is

used to authenticate the user with provided username and password. The pre-emptive

authentication for Apache HTTP client is done by implementing a

HTTPRequestInterceptor that intercepts all HTTP requests and injects the

authentication component.

15 https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/examples/RandomTextWriter.html

https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/examples/RandomTextWriter.html

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 34

● CSRF. There is no available implementation of the Cross-Site Request Forgery (CSRF)

authentication for Jenkins and Apache HTTP client, possibly due to the fact that CSRF was

only enforced recently for new installations of Jenkins 2.x upwards. The CSRF crumb can

be obtained by requesting the Jenkins API’s CrumbIssuer, and the response message is

parsed to extract the crumb value. It is stored and used in subsequent requests. Remotely

triggering parameterised builds is documented in the Jenkins remote access API.

Text based parameters such as strings and integers were simply appended onto the trigger HTML

request URL as parameters. To retrieve the result from Jenkins Server to Eclipse plugin when the

“Show results” button is pressed, an HTTP request is sent. Jenkins API provides a plaintext HTTP

response that contains the entire console log output of the last successful build. The configuration

optimisation results are extracted from this output.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 35

4 Conclusion

In this report, we have presented the final release of the DICE deployment and configuration tools.

We consider the tools to now be feature complete, at least in terms of the requirements gathered at

the beginning of the project and adjusted during the project's progress. In fact, several of the features

that we implemented were not planned initially, but we recognised their importance as we worked

with our own tools, such as security by design, and Continuous Integration as Code. We have

validated the individual tools internally as respective tool owners, and provided the results of the

validation in this report.

The self-validation that we have conducted has shown a high value of the DICE Deployment Tool

even for DIAs that include custom components or technologies not supported by the DICE TOSCA

technology library. We have demonstrated that inclusion of the DICE building blocks is simple and

quick, while connecting custom parts works well. Customization and extension of the DICE TOSCA

technology, however, remains an advanced topic that needs to be done by the experts. The reason

for this is not in the way the technology library is created, but much more due to the fact that

automating any components takes effort and time. Nevertheless, some of the existing elements of

the technology library can readily help speed up the customization work.

An important aspect of usability of a tool is also that it produces results that can be applied in a

variety of contexts. To this end, the DICE TOSCA technology library uses a new unified approach

to handling client side of the hosting platforms, which the cloud orchestrator uses to control the

cloud platforms such as OpenStack or Amazon’s EC2. The DICE Deployment Service also stores

and handles the platform-related parameters, injecting them on the fly into the blueprint being

deployed. This means that the information about target platforms are removed from the blueprint,

thereby substantially widening the possible targets of deploying the same blueprint, enabling

relatively effortless DIA migration between various test beds and even cloud providers.

Having finished the essential features of the Deployment Tool, we have recognised that services

such as Deployment Service and Cloud orchestra tor manager may live outside a relative safety of

the development environment. When they operate on public addresses and in public clouds, they

become discoverable and accessible to random visitors and potential attackers. To mitigate that, we

have ensured that security of the DICE Deployment Tool is present from the moment of its

bootstrapping.

Security of the DIAs is a joint responsibility of the support tools and the teams designing and

developing them. In this direction, DICE has created a good foundation for the DIAs being designed

with elements like encryption of communication channels between services, user-based access

restrictions and security features enabled in engines that don't enable them by default. In this area,

more work will be required in the future to address the need for creating and exchanging secrets that

are involved in Big Data clusters.

Containers are gaining a growing interest of the DevOps communities. In DICE, we do not perceive

this technology as a threat, but rather as a complementing technology. Through demonstrators and

our own validation, we have shown that the developed features are complete in terms of usability

even before containers. Nevertheless, our existing tools can be extended to support Docker,

Kubernetes or any other interesting technologies for future commercial versions of the tools.

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 36

The Continuous Integration is an important element in the DevOps toolbox. It is therefore not

surprising that Jenkins offers a built-in support for projects that are defined in code – a logical

extension of the infrastructure as code. Our documented examples of Jenkins pipeline definitions

represent a starting point for further streamlining and customization of the end users' projects, where

the integration testing definitions live and evolve at the same place as the code being integrated. The

only downside of the approach is that the pipeline definitions have to be aware of a specific set-up

of the Jenkins masters and slaves topology, which reduces their portability.

We have also updated the final release of the Configuration Optimisation tool, with the primary

innovation compared to earlier version being its new Eclipse IDE plugin and Jenkins integration.

This addition allows the developer to conveniently start batch executions of BO4CO from within

Eclipse.

4.1 DICE Requirement compliance

In the Section 2, we provided a summary of the requirements. indicates the level that the DICE

Delivery Tools comply in their initial release. The Level of fulfilment column has the following

values:

● ✗ – not supported

● ✔ – initial support

● ✔✔ – medium level support

● ✔✔✔ – fully supported

Table 3: Level of compliance of the initial version of the DICE delivery tools with the initial set of requirements

Requirement Title Priority Level of fulfilment

R5.3 Continuous integration tools deployment SHOULD ✔✔✔

R5.4 TOSCA format for blueprints MUST ✔✔✔

R5.4.1 Big Data technology support MUST ✔✔✔

R5.4.2 Translation tools autonomy MUST ✔✔✔

R5.4.5 Deployment tools transparency SHOULD ✔✔✔

R5.4.6 Deployment plans extendability SHOULD ✔✔

R5.4.7 Deployment of the application in a test

environment

MUST ✔✔✔

R5.4.8 Starting the monitoring tools MUST ✔✔✔

R5.5 User-provided initial data retrieval MUST ✔✔✔

R5.7.1 Data loading hook SHOULD ✔✔

R5.16 Provide monitoring of the quality aspect of the

development evolution (quality regression)

MUST ✔✔✔

R5.19 Deployment configuration review COULD ✔

R5.20 Build acceptance MUST ✔✔✔

R5.27 Configuration Optimisation MUST ✔✔✔

R5.27.1 Brute-force approach for

CONFIGURATION_OPTIMISATION

deployment

SHOULD ✔✔✔

R5.27.6 CONFIGURATION_OPTIMISATION

experiment runs

MUST ✔✔✔

R5.27.7 Configuration optimisation of the system under

test over different versions

SHOULD ✔✔✔

R5.27.8 Configuration Optimisation's input and output MUST ✔✔✔

R5.43 Practices and patterns for security and privacy MUST ✔✔

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 37

In the final version, we can see that we have addressed a great majority of the requirements of

priority MUST. As already commented and demonstrated by the use case providers [11], the

coverage is satisfactory. We are aware of a few limitations, shown in the requirements with less

than full support:

● R5.4.6: the support for this requirement is at medium level. We have provided a validation

and evaluation of this aspect in Section 3.1.5. We believe that such support is an advanced

functionality, which is not in the main scope of DICE project.

● R5.7.1: while we did not provide a fully built-in support for loading data into Cassandra and

MongoDB, there is already a capability for this functionality using the scripting support in

DICE TOSCA technology library.

● R5.19: this feature has priority COULD because use cases did not express the need for this

requirement. Further, it is already possible to employ a third party code review tool such as

Gerrit16, then protect the main deployment/production in Git, and configuring Jenkins

projects to only proceed with release after an ADMINISTRATOR approves changes in

Gerrit.

● R5.43: we have demonstrated the basis of security by design on MongoDB as described in

Section 3.1.2.2.

16 https://www.gerritcodereview.com/

https://www.gerritcodereview.com/

Deliverable 5.3 DICE delivery tools – Final version.

Copyright © 2017, DICE consortium – All rights reserved 38

References

[1] Balalaie A., Heydarnoori A., Jamshidi P., Microservices Architecture Enables DevOps: an

Experience Report on Migration to a Cloud-Native Architecture. IEEE Software, 2016.

[2] DICE consortium, DICE deliverable 5.1: DICE delivery tools – Initial version, January 2016

[3] DICE consortium, DICE deliverable 5.2: DICE delivery tools – Intermediate version,

January 2017

[4] DICE consortium, DICE deliverable 1.2 Requirement Specification, July 2015

[5] DICE consortium, DICE deliverable 1.4 Architecture definition and integration plan - Final

version, January 2017

[6] DICE consortium, DICE deliverable 2.2 Design and quality abstractions - Final version,

January 2017

[7] DICE consortium, DICE deliverable 2.4 Deployment abstractions – final version, April

2017

[8] DICE consortium, DICE deliverable 2.5 DICE methodology, July 2017

[9] DICE consortium, DICE deliverable 4.2 Monitoring and Data warehousing tools - Final

version, January 2017

[10] DICE consortium, DICE deliverable 5.4 DICE testing tools – Initial version, January 2017

[11] DICE consortium, DICE deliverable 6.3 Consolidated implementation and evaluation, July

2017

	Executive summary
	Glossary
	Table of contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 What is new in Y3
	1.1.1 DICE Deployment Tool
	1.1.2 DICE Continuous Integration
	1.1.3 DICE Configuration Optimisation

	2 Requirements
	3 Tools
	3.1 DICE Deployment Tool
	3.1.1 Main components
	3.1.2 DICE Deployment Service
	3.1.2.1 TOSCA technology library
	3.1.2.2 Security by design
	3.1.2.3 Multi-cloud support through unified approach

	3.1.3 Supported technologies
	3.1.4 Container technology perspective
	3.1.5 Evaluation and validation: a city traffic use case

	3.2 DICE Continuous Integration
	3.3 Configuration Optimisation
	3.3.1 Overview of integrated solution
	3.3.2 CO Eclipse plugin
	3.3.3 CO Jenkins integration

	4 Conclusion
	4.1 DICE Requirement compliance

	References

