
  

 

 

Developing Data-Intensive Cloud 

Applications with Iterative Quality 

Enhancements 

 

  

 

 

 

 

 

 

 

Iterative quality enhancement tools – 

Final version 

Deliverable 4.6 

 

 

 

 

  

Ref. Ares(2017)3767059 - 26/07/2017



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           2 

 

Deliverable: D4.6 

Title: Iterative quality enhancement tools – Final version 

Editor(s): Giuliano Casale (IMP), Chen Li (IMP) 

Contributor(s): Giuliano Casale (IMP), Chen Li (IMP), Jose-Ignacio Requeno (ZAR), 

Marc Gil (PRO) 

Reviewers: Youssef RIDENE (NETF), Simona Bernardi (ZAR) 

Type (R/DEM/DEC):  DEM 

Version: 1.0 

Date: 27-July-2017 

Status: Final version 

Dissemination level: Public 

Download page: http://www.dice-h2020.eu/deliverables/   

Copyright: Copyright © 2017, DICE consortium – All rights reserved 

 

 
DICE partners 

ATC: Athens Technology Centre 

FLEXI: Flexiant Limited 

IEAT: Institutul e-Austria Timisoara 

IMP: Imperial College of Science, Technology & Medicine 

NETF: Netfective Technology SA 

PMI: Politecnico di Milano 

PRO: Prodevelop SL 

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o. 

ZAR: Universidad de Zaragoza 

 

 

The DICE project (February 2015-January 2018) has received funding from the European 

Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869 

  

http://www.dice-h2020.eu/deliverables/


Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           3 

 

Executive summary 
This deliverable documents the final work on tools for iterative quality enhancement, developed as part of 

task T4.3. Therefore, it provides the final versions of the DICE-FG and DICE-APR. This deliverable is an 

incremental update of the deliverable 4.5 (Iterative quality enhancement tools – Initial version) published 

in M18. The document exclusively focuses on the new contributions of the DICE-APR with respect to the 

previous deliverable. Mainly this works covers 1) support for transforming UML diagrams annotated with 

DICE profiles to performance model (i.e., Layered Queueing Network), 2) identify popular anti-patterns 

of DIAs, 3) provide refactoring decisions for a designer if the selected anti-patterns are found in the 

performance model, and 4) demonstrate applicability to a specific technology (Apache Storm). 

  



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           4 

 

Glossary 
APR Anti-Patterns & Refactoring 
APDR Anti-Patterns Detection and Refactoring 
DDSM DICE Deployment Specific Model  
DIAs Data-intensive applications 
DICE Data-Intensive Cloud Applications with iterative quality enhancements 
DMon DICE Monitoring platform 
DPIM DICE Platform Independent Model  
DTSM DICE Technology Specific Model  
FG Filling-the-Gap 
LQN Layered Queueing Network 
MARTE Modeling and Analysis of Real-Time and Embedded Systems 
MCR MATLAB Compiler Runtime 
MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds 
M2M Model-to-Model Transformation 
Tulsa Transformation from UML model to Layered queueing networks for Storm-based 

Application 
UML Unified Modelling Language 
VM Virtual Machine 
 

  



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           5 

 

Table of contents 

 

Executive summary ....................................................................................................................................... 3 

Glossary ........................................................................................................................................................ 4 

Table of contents ........................................................................................................................................... 5 

List of Figures ............................................................................................................................................... 7 

List of Tables ................................................................................................................................................ 7 

1. Introduction ........................................................................................................................................... 8 

1.1. What is new in Year 3 ................................................................................................................ 8 

1.1.1 DICE Anti-Patterns & Refactoring................................................................................. 8 

1.1.2 DICE Filling-the-Gap tool .............................................................................................. 9 

1.2. Structure of the Document ......................................................................................................... 9 

2. Requirements ....................................................................................................................................... 10 

2.1 Requirements ........................................................................................................................... 10 

3. DICE-APR Tool .................................................................................................................................. 12 

3.1 Model Transformation Module ................................................................................................ 12 

3.1.1 Transformation design .................................................................................................. 13 

3.1.2 Source model ................................................................................................................ 14 

3.1.3 Target model ................................................................................................................. 15 

3.1.4 Mapping rules ............................................................................................................... 16 

3.2 Anti-Patterns Detection & Refactoring .................................................................................... 18 

3.2.1 Overview of popular Anti-Patterns............................................................................... 18 

3.2.2 Anti-Patterns selection and specification ..................................................................... 18 

3.2.3 Anti-Patterns Detection & Refactoring process ........................................................... 20 

3.3 Tool Usage ............................................................................................................................... 22 

3.3.1 Tulsa Configuration ...................................................................................................... 23 

3.3.2 Running APR ............................................................................................................... 24 

3.3.3 APR configuration file ................................................................................................. 24 

3.4 Obtaining the Tool ................................................................................................................... 25 

3.5 Tool Validation ........................................................................................................................ 25 

3.5.1 UML model .................................................................................................................. 26 

3.5.2 LQN model and solved LQN model ............................................................................. 26 



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           6 

 

3.5.3 Anti-Patterns detection & refactoring ........................................................................... 27 

4. DICE-FG Tool ..................................................................................................................................... 29 

4.1 EST-LE: a new maximum likelihood estimator for hostDemands .......................................... 29 

4.1.1 Validation ..................................................................................................................... 29 

5. Conclusions and future plans .............................................................................................................. 31 

5.1 Achievements ........................................................................................................................... 31 

5.2 Summary of Progress at M30 .................................................................................................. 31 

References ................................................................................................................................................... 33 

APPENDIX A. Main Elements and Stereotypes of DICE UML Model Supported by DICE-APR ........... 35 

A.1 Deployment Diagram Model Elements ........................................................................................ 35 

A.2 Activity Diagram Model Elements .............................................................................................. 35 

APPENDIX B. Core Functions for Anti-Patterns Detection & Refactoring .............................................. 37 

B.1 AP1: Infinite Wait ........................................................................................................................ 37 

B.2 AP2: Excessive Calculation ......................................................................................................... 37 

 

 

 

   



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           7 

 

List of Figures 
 

1 Figure 1. Updated Architecture of Enhancement Tool .................................................................. 12 

2 Figure 2. Transformation Steps ....................................................................................................... 13 

3 Figure 3. Model Transformation Process ........................................................................................ 13 

4 Figure 4. Example of Deployment Diagram of the Source Model ................................................ 14 

5 Figure 5. Example of Activity Diagram of the Source Model ....................................................... 15 

6 Figure 6. Example of LQN model .................................................................................................... 16 

7 Figure 7. AP IW detection and refactoring process ....................................................................... 21 

8 Figure 8. AP EC detection and refactoring process ....................................................................... 22 

9 Figure 9. Example of APR configuration file .................................................................................. 25 

10 Figure 10. Activity Diagram of WordCount Example ................................................................... 26 

11 Figure 11. Deployment Diagram of WordCount Example ............................................................ 26 

12 Figure 12. Excerpt of LQN Model of WordCount Example ......................................................... 27 

13 Figure 13. Excerpt of Solved LQN Model of WordCount Example ............................................. 27 

14 Figure 14. Anti-Patterns detection & refactoring results of WordCount Example .................... 28 

15 Figure 15. Validation results for the EST-LE ................................................................................. 29 

 

List of Tables 
 

1 Table 1: Resource consumption breakdown Requirement ........................................................... 10 

2 Table 2: Bottleneck Identification Requirement ............................................................................ 10 

3 Table 3: Semi-automated anti-pattern detection Requirement .................................................... 10 

4 Table 4: Enhancement tools data acquisition ................................................................................. 11 

5 Table 5: Enhancement tools model access Requirement ............................................................... 11 

6 Table 6: Parameterization of simulation and optimization models Requirement ....................... 11 

7 Table 7: Propagation of changes/automatic annotation of UML models Requirement ............. 11 

8 Table 8: Model Mapping: from UML+DICE+MARTE to LQN Element ................................... 17 

9 Table 9: Anti-Patterns for DICE-APR ............................................................................................ 19 

10 Table 10: Output parameters of analysis results supported by lqns and LINE .......................... 24 

11 Table 11. Status of the Enhancement tool at M30. Data brought from Deliverable D4.5 [1] ..... 32 

   



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           8 

 

1. Introduction 
The goal of DICE is to offer a novel UML profile and tools that will help software designers reasoning 

about quality of data-intensive applications, e.g., reliability, safety and efficiency. Furthermore, DICE 

develops a new methodology that covers quality assessment, architecture enhancement, continuous 

testing and agile delivery, relying on principles of the emerging DevOps paradigm. In particular, the goal 

of WP4 is to build tools and techniques to support the iterative improvement of quality characteristics in 

data-intensive applications obtained through feedback to the developers that will guide architectural 

design change.  

This deliverable presents the final release of the DICE Enhancement tools (i.e., DICE Filling-the-Gap, 

DICE Anti-Patterns & Refactoring), which are being developed in task T4.3, to provide feedback to 

DICE developers on the application behaviour at runtime, leveraging the monitoring data from the DICE 

Monitoring Platform (DMon), in order to help them iteratively enhance the application design. 

This deliverable describes the final version of the DICE Enhancement tool at M30 of the project. The 

initial version of Enhancement tool was reported in deliverable D4.5 [1] at M18. The DICE Enhancement 

tools include DICE Filling-the-Gap (DICE-FG), a tool focusing on statistical estimation of UML 

parameters used in simulation and optimization tool, and DICE-APR (Anti-Patterns & Refactoring), a 

tool for anti-patterns detection and refactoring. 

Compared to the initial version of the Enhancement tool, released at M18, the final version has enhanced 

the functionality and interaction with the user of DICE-FG and developed the DICE-APR to provide the 

refactoring suggestions if anti-patterns (APs) are detected. Regarding the functionality enhancements and 

interaction, the DICE-FG has been extended to include a novel estimation algorithm for resource 

consumption [22].  

DICE-APR transforms the UML model annotated with DICE profiles [2] to the Layered Queueing 

Networks (LQNs) [3] model for performance analysis, and the results will be used for APs detection and 

generating refactoring decisions. DICE Enhancement tool concerns the quality properties, e.g., 

performance, of the DIAs and offers possibilities to annotate and analyse the DIA models at DTSM and 

DDSM level. By using the Epsilon framework [4] and queueing theory [5], the new DICE-APR tool 

offers possibilities to analyse more quality properties of DIAs (e.g. response time distribution for 

reliability, utilization for performance, etc), detects if there is an AP (e.g. a server performs all of the 

work of an application) in the UML model and provides the corresponding advice to designer to 

refactoring the architecture. The implementation of M2M transformations, from UML to LQN, used by 

the DICE-APR is a tool called Tulsa which is mainly developed using Java and Epsilon languages (i.e., 

Epsilon Transformation Language (ETL) and Epsilon Object Language (EOL)). Solvers, e.g., LINE [6], 

lqns [7] can be used to solve the LQN model which is generated by Tulsa. The APs detection is 

implemented by using Matlab scripts. The Enhancement tool is developed as standalone tool. We also 

integrated Enhancement tool in the DICE IDE. It is published as an open source software that can be 

downloaded from the DICE-FG [8] and DICE-APR [9] GitHub repository. 

1.1. What is new in Year 3 
Updates in Y3 to the presented Enhancement tools were an outcome of a development process, which 

aimed at a) addressing any open or partially addressed requirements, and b) to improve general stability 

and usability of the tools. 

1.1.1 DICE Anti-Patterns & Refactoring 

Inferring the bad practices in software design (i.e., performance anti-patterns) according to the data, 

especially performance data, acquired at runtime during testing and operation. In order to achieve the 

above goal, DICE enhancement tools introduces a new methodology to close the gap between runtime 

performance measurements and design time model for the anti-patterns detection and refactoring. 



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           9 

 

New features and properties of the DICE-APR tool include the following: 

● Developed Tulsa, a M2M transformation tool, to transform the design time model (i.e, UML 

model), which is annotated with runtime performance quality characteristics by DICE-FG tool, 

into performance model (i.e., Layered Queueing Network model); a series of transformation tasks 

can be specified in an Ant build file; a specific launch configuration can be invoked from the IDE 

run-configuration panel. The run-configuration in question invokes the APR back-end and 

performs the model-to-model transformation that parses the diagrams and returns a LQN model 

for performance anti-pattern detection. 

● Specified the selected popular AP of DIAs and formally defined it by using Matlab scripts; 

implemented the AP detection algorithm and provided refactoring suggestions to the designer. 

● Improved support of the existing general applications and support for Big Data technologies (e.g. 

Storm).  

1.1.2 DICE Filling-the-Gap tool 

● Integrated a novel estimation algorithm for hostDemand, called est-le, that outperforms several 

state-of-the-art algorithms. 

1.2. Structure of the Document 
The structure of this deliverable is as follows: 

● Chapter 2 presents updates requirements of final version of the architecture of Enhancement 

tools. 

● Chapter 3 presents new DICE-APR tool including M2M transformation, AP detection and tool 

usage, obtaining the DICE-APR tool and evaluation result. 

● Chapter 4 presents updates of the initial version of the DICE-FG with respect to resource demand 

estimation. 

● Chapter 5 summarizes achievements and outlines the future work. 

 

Appendix A provides more detail on DICE UML model elements and stereotypes. Appendix B provides 

core functions for Anti-Patterns Detection and Refactoring.   



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           10 

 

2. Requirements 
The deliverable D1.4 Companion [23], an updated version of the requirement specification of deliverable 

D1.2 [10], was released at M24. The requirements of the DICE Enhancement tools are basically the same 

as the previous version.  

2.1 Requirements 
This section reviews the requirements of the Enhancement tool.  The “Must have” requirements of 

Enhancement tool are list as following. “Should have” and “could have” requirements are available in 

D1.4 Companion [23] released on the DICE Website1. 

Table 1: Resource consumption breakdown Requirement 

ID R4.11 

Title Resource consumption breakdown 

Priority Must have 

Description The DEVELOPER MUST be able to obtain via the ENHANCEMENT_TOOLS 

the resource consumption breakdown into its atomic components. 

  

Table 2: Bottleneck Identification Requirement 

ID R4.12 

Title Bottleneck Identification 

Priority Must have 

Description The ENHANCEMENT_TOOLS MUST indicate which classes of requests 

represent bottlenecks for the application in a given deployment. 

  

Table 3: Semi-automated anti-pattern detection Requirement 

ID R4.13 

Title Semi-automated anti-pattern detection 

Priority Must have 

Description The ENHANCEMENT_TOOLS MUST feature a semi-automated analysis to 

detect and notify the presence of anti-patterns in the application design. 

  

 

 

                                                      
1 www.dice-h2020.eu/deliverables/ 

http://www.dice-h2020.eu/deliverables/


Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           11 

 

Table 4: Enhancement tools data acquisition 

ID R4.17 

Title Enhancement tools data acquisition 

Priority Must have 

Description The ENHANCEMENT_TOOLS must perform its operations by retrieving the 

relevant monitoring data from the MONITORING_TOOLS. 

  

Table 5: Enhancement tools model access Requirement 

ID R4.18 

Title Enhancement tools model access 

Priority Must have 

Description The ENHANCEMENT_TOOLS MUST be able to access the DICE profile model 

associated to the considered version of the APPLICATION. 

   

Table 6: Parameterization of simulation and optimization models Requirement 

ID R4.19 

Title Parameterization of simulation and optimization models. 

Priority Must have 

Description The ENHANCEMENT_TOOLS MUST extract or infer the input parameters 

needed by the SIMULATION_TOOLS and OPTIMIZATION_TOOLS to perform 

the quality analyses. 

  

Table 7: Propagation of changes/automatic annotation of UML models Requirement 

ID R4.27 

Title Propagation of changes/automatic annotation of UML models 

Priority Must have 

Description ENHANCEMENT_TOOLS MUST be capable of automatically updating UML 

models with analysis results (new values) 

 

  



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           12 

 

3. DICE-APR Tool 
In this section, we present the finalized DICE-APR tool. It is integrated with the DICE IDE as a popup 

menu. It also has a standalone version which includes two sub tools, M2M transformation (i.e., Tulsa) and 

Anti-Patterns Detection & Refactoring (APDR). Tulsa transforms the design time model (i.e., UML 

model) to performance model (i.e., LQN model). The LQN solver is needed to solve the LQN model 

when users use Tulsa as a standalone tool. The APDR, which is implemented in Matlab, invokes AP 

detection algorithm and provides the refactoring suggestions to designer. In the integration version, 

DICE-APR will invoke Tulsa and APDR in sequence. Figure 1 shows the updated architecture of 

Enhancement tool which we defined for task T3.4. It provides more details of functionalities of the DICE-

APR. 

 

Figure 1. Updated Architecture of Enhancement Tool 

The updated DICE-APR is described as follows: 

● Modelling: this step is focused towards transforming the UML model to LQN model by using 

Tulsa. Tulsa will generate a XML format LQN model which follows the XML schema of LQN. 

● Analyzing: the LQN solver (e.g., LINE, lqns) will be used to solve the XML format LQN model 

and to generate the analysis results, a XML format file as well. 

● Extracting: extracting the pre-defined performance thresholds indices (e.g., maximum 

utilization) to set the anti-patterns boundaries. 

● AP Defining: anti-pattern is defined as rules (i.e., trigger conditions) for AP detection. 

● Detecting: LQN model, solved model, anti-patterns boundaries and anti-patterns rules will be 

used for detection algorithms to check if there is AP in the current model. The refactoring 

suggestions will be provided if AP is detected.  

3.1 Model Transformation Module 
DICE follows the model-centric perspective to capture different abstraction layers of Big Data 

applications. In order to support Big Data application modelling, the DICE profile introduces new 

stereotypes, tags and related constraints to specify the data location and data properties for DIAs. It 

leverages the UML as its modelling basis, and provides computational independent perspective, platform-

independent perspective and platform-specific perspective via DICE Platform Independent Model 

(DPIM), DICE Technology Specific Model (DTSM) and DICE Deployment Specific Model (DDSM). 

DICE-APR transformation work mainly focuses on the DTSM and DDSM layer. 

To fulfil one of tasks of DICE-APR, we develop a tool, Tulsa, for transforming software architecture 

models specified through UML into LQNs, which are analytical performance models used to capture 

contention across multiple software layers. In particular, we generalize an existing transformation based 

on the Epsilon framework to generate LQNs from UML models annotated with the DICE profile, which 



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           13 

 

extends UML to modelling DIAs based on technologies such as Apache Storm.  

3.1.1 Transformation design 

Our transformation follows the transformation principle of [3]. Tulsa takes four steps to implement the 

model transformation (see Fig 2). 

1)  Step 1: Refining UML Model. Identifying invocations within or among Partition(s) by assigning 

the inPartition attribute to controlflow in an activity diagram. 

2)  Step 2: Generating LQN Model. Performing transformation from UML model to an XML format 

LQN model (initial version). 

3)  Step 3: Refining LQN Model. Modifying the initial LQN model and make it confirm the LQN 

XML schema. The output of this step is a well formatted LQN model which can be accepted by 

LQN solver (e.g., lqns, LINE). 

4) Step 4: Generating Results. Showing the results (e.g., utilization, Throughput) which are 

generated from the LQN solver.  

 

Figure 2. Transformation Steps 

Figure. 3 shows the corresponding model transformation process. In figure 3, a UML model is annotated 

with the runtime parameters of the runtime systems which are obtained by DICE-FG. By using mapping 

rules, a UML model is then transformed to a LQN model. Then, lqns or LINE is leveraged to solve the 

LQN model and return the results to the DICE-APR tool. More details of lqns and LINE can be found in 

section 3.3.1.  

 

Figure 3. Model Transformation Process 

In this section, we first presents the source and target models for Tulsa, which include the required 

diagrams, model elements and conditions for the transformation. Second, we describe the transformation 



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           14 

 

rules and operations. Then, we explain the transformation process of Tulsa. 

3.1.2 Source model 

Tulsa takes the UML model which follows the UML 2.5 standard extended with MARTE [12] and DICE 

profiles, which provide stereotypes to annotate the UML model for capturing the performance and 

reliability metrics, as input. In order to obtain a LQN model, the developer not only needs to design the 

configuration structure for the DIAs, e.g., developing the functional components, assigning key attributes 

and defining constraints, but also needs to capture the behavior of the design time model for the later 

analysis. Thus, our transformation mainly considers two UML diagrams: a deployment diagram, to 

represent the system structure, and an activity diagram, to describe the system behavior. The UML 

diagrams need to be annotated with core tags of the stereotypes of DTSM and DDSM layers to support 

performance and reliability analysis. The main elements and stereotypes of the DICE UML model are 

given in appendix A.  

The following figure 4 and figure 5 show the examples of the UML activity diagram on DTSM level and 

UML deployment diagram on DDSM level respectively. 

 

Figure 4. Example of Deployment Diagram of the Source Model 

 



Deliverable 4.6. Iterative quality enhancement tools - Final version 

Copyright © 2017, DICE consortium – All rights reserved                                                                                                           15 

 

 

Figure 5. Example of Activity Diagram of the Source Model 

3.1.3 Target model 

Tulsa chooses the Layered Queueing Network as the target model, which is introduced in this section. 

There are three reasons for choosing LQNs. First, the core elements of LQN models are semantically 

similar to the corresponding elements of UML activity and deployment diagrams. Second, a Storm 

topology may be seen as a network of buffers and processing elements that exchange messages, so it is 

quite natural to map them into a queueing network model. Third, LQN solvers such as LINE or lqns are 

available to provide analytical methods to solve the LQN model. 

A LQN model can be regarded as a directed graph. It consists of nodes and directed edges. The core 

model elements are processors, tasks, entries, activities and precedence [15]. 

Processors: Processors are used by the activities within a performance model to consume time. They 

model the physical servers that accept requests and execute the operations. They can be actual processors 

in the system, or may simply be placeholders for tasks representing customers and other logical resources. 

One of the key properties of the processor is the queueing disciplines, e.g., FIFO, PPR, HOL, PS, CFS, 

etc. 














































