

Developing Data-Intensive Cloud

Applications with Iterative Quality

Enhancements

Iterative quality enhancement tools –

Final version

Deliverable 4.6

Ref. Ares(2017)3767059 - 26/07/2017

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 2

Deliverable: D4.6

Title: Iterative quality enhancement tools – Final version

Editor(s): Giuliano Casale (IMP), Chen Li (IMP)

Contributor(s): Giuliano Casale (IMP), Chen Li (IMP), Jose-Ignacio Requeno (ZAR),

Marc Gil (PRO)

Reviewers: Youssef RIDENE (NETF), Simona Bernardi (ZAR)

Type (R/DEM/DEC): DEM

Version: 1.0

Date: 27-July-2017

Status: Final version

Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright © 2017, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre

FLEXI: Flexiant Limited

IEAT: Institutul e-Austria Timisoara

IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA

PMI: Politecnico di Milano

PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.

ZAR: Universidad de Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

http://www.dice-h2020.eu/deliverables/

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 3

Executive summary
This deliverable documents the final work on tools for iterative quality enhancement, developed as part of

task T4.3. Therefore, it provides the final versions of the DICE-FG and DICE-APR. This deliverable is an

incremental update of the deliverable 4.5 (Iterative quality enhancement tools – Initial version) published

in M18. The document exclusively focuses on the new contributions of the DICE-APR with respect to the

previous deliverable. Mainly this works covers 1) support for transforming UML diagrams annotated with

DICE profiles to performance model (i.e., Layered Queueing Network), 2) identify popular anti-patterns

of DIAs, 3) provide refactoring decisions for a designer if the selected anti-patterns are found in the

performance model, and 4) demonstrate applicability to a specific technology (Apache Storm).

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 4

Glossary
APR Anti-Patterns & Refactoring
APDR Anti-Patterns Detection and Refactoring
DDSM DICE Deployment Specific Model
DIAs Data-intensive applications
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DMon DICE Monitoring platform
DPIM DICE Platform Independent Model
DTSM DICE Technology Specific Model
FG Filling-the-Gap
LQN Layered Queueing Network
MARTE Modeling and Analysis of Real-Time and Embedded Systems
MCR MATLAB Compiler Runtime
MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
M2M Model-to-Model Transformation
Tulsa Transformation from UML model to Layered queueing networks for Storm-based

Application
UML Unified Modelling Language
VM Virtual Machine

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 5

Table of contents

Executive summary ... 3

Glossary .. 4

Table of contents ... 5

List of Figures ... 7

List of Tables .. 7

1. Introduction ... 8

1.1. What is new in Year 3 .. 8

1.1.1 DICE Anti-Patterns & Refactoring... 8

1.1.2 DICE Filling-the-Gap tool .. 9

1.2. Structure of the Document ... 9

2. Requirements ... 10

2.1 Requirements ... 10

3. DICE-APR Tool .. 12

3.1 Model Transformation Module .. 12

3.1.1 Transformation design .. 13

3.1.2 Source model .. 14

3.1.3 Target model ... 15

3.1.4 Mapping rules ... 16

3.2 Anti-Patterns Detection & Refactoring .. 18

3.2.1 Overview of popular Anti-Patterns... 18

3.2.2 Anti-Patterns selection and specification ... 18

3.2.3 Anti-Patterns Detection & Refactoring process ... 20

3.3 Tool Usage ... 22

3.3.1 Tulsa Configuration .. 23

3.3.2 Running APR ... 24

3.3.3 APR configuration file ... 24

3.4 Obtaining the Tool ... 25

3.5 Tool Validation .. 25

3.5.1 UML model .. 26

3.5.2 LQN model and solved LQN model ... 26

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 6

3.5.3 Anti-Patterns detection & refactoring ... 27

4. DICE-FG Tool ... 29

4.1 EST-LE: a new maximum likelihood estimator for hostDemands .. 29

4.1.1 Validation ... 29

5. Conclusions and future plans .. 31

5.1 Achievements ... 31

5.2 Summary of Progress at M30 .. 31

References ... 33

APPENDIX A. Main Elements and Stereotypes of DICE UML Model Supported by DICE-APR 35

A.1 Deployment Diagram Model Elements .. 35

A.2 Activity Diagram Model Elements .. 35

APPENDIX B. Core Functions for Anti-Patterns Detection & Refactoring .. 37

B.1 AP1: Infinite Wait .. 37

B.2 AP2: Excessive Calculation ... 37

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 7

List of Figures

1 Figure 1. Updated Architecture of Enhancement Tool .. 12

2 Figure 2. Transformation Steps ... 13

3 Figure 3. Model Transformation Process .. 13

4 Figure 4. Example of Deployment Diagram of the Source Model .. 14

5 Figure 5. Example of Activity Diagram of the Source Model ... 15

6 Figure 6. Example of LQN model .. 16

7 Figure 7. AP IW detection and refactoring process ... 21

8 Figure 8. AP EC detection and refactoring process ... 22

9 Figure 9. Example of APR configuration file .. 25

10 Figure 10. Activity Diagram of WordCount Example ... 26

11 Figure 11. Deployment Diagram of WordCount Example .. 26

12 Figure 12. Excerpt of LQN Model of WordCount Example ... 27

13 Figure 13. Excerpt of Solved LQN Model of WordCount Example ... 27

14 Figure 14. Anti-Patterns detection & refactoring results of WordCount Example 28

15 Figure 15. Validation results for the EST-LE ... 29

List of Tables

1 Table 1: Resource consumption breakdown Requirement ... 10

2 Table 2: Bottleneck Identification Requirement .. 10

3 Table 3: Semi-automated anti-pattern detection Requirement .. 10

4 Table 4: Enhancement tools data acquisition ... 11

5 Table 5: Enhancement tools model access Requirement ... 11

6 Table 6: Parameterization of simulation and optimization models Requirement 11

7 Table 7: Propagation of changes/automatic annotation of UML models Requirement 11

8 Table 8: Model Mapping: from UML+DICE+MARTE to LQN Element 17

9 Table 9: Anti-Patterns for DICE-APR .. 19

10 Table 10: Output parameters of analysis results supported by lqns and LINE 24

11 Table 11. Status of the Enhancement tool at M30. Data brought from Deliverable D4.5 [1] 32

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 8

1. Introduction
The goal of DICE is to offer a novel UML profile and tools that will help software designers reasoning

about quality of data-intensive applications, e.g., reliability, safety and efficiency. Furthermore, DICE

develops a new methodology that covers quality assessment, architecture enhancement, continuous

testing and agile delivery, relying on principles of the emerging DevOps paradigm. In particular, the goal

of WP4 is to build tools and techniques to support the iterative improvement of quality characteristics in

data-intensive applications obtained through feedback to the developers that will guide architectural

design change.

This deliverable presents the final release of the DICE Enhancement tools (i.e., DICE Filling-the-Gap,

DICE Anti-Patterns & Refactoring), which are being developed in task T4.3, to provide feedback to

DICE developers on the application behaviour at runtime, leveraging the monitoring data from the DICE

Monitoring Platform (DMon), in order to help them iteratively enhance the application design.

This deliverable describes the final version of the DICE Enhancement tool at M30 of the project. The

initial version of Enhancement tool was reported in deliverable D4.5 [1] at M18. The DICE Enhancement

tools include DICE Filling-the-Gap (DICE-FG), a tool focusing on statistical estimation of UML

parameters used in simulation and optimization tool, and DICE-APR (Anti-Patterns & Refactoring), a

tool for anti-patterns detection and refactoring.

Compared to the initial version of the Enhancement tool, released at M18, the final version has enhanced

the functionality and interaction with the user of DICE-FG and developed the DICE-APR to provide the

refactoring suggestions if anti-patterns (APs) are detected. Regarding the functionality enhancements and

interaction, the DICE-FG has been extended to include a novel estimation algorithm for resource

consumption [22].

DICE-APR transforms the UML model annotated with DICE profiles [2] to the Layered Queueing

Networks (LQNs) [3] model for performance analysis, and the results will be used for APs detection and

generating refactoring decisions. DICE Enhancement tool concerns the quality properties, e.g.,

performance, of the DIAs and offers possibilities to annotate and analyse the DIA models at DTSM and

DDSM level. By using the Epsilon framework [4] and queueing theory [5], the new DICE-APR tool

offers possibilities to analyse more quality properties of DIAs (e.g. response time distribution for

reliability, utilization for performance, etc), detects if there is an AP (e.g. a server performs all of the

work of an application) in the UML model and provides the corresponding advice to designer to

refactoring the architecture. The implementation of M2M transformations, from UML to LQN, used by

the DICE-APR is a tool called Tulsa which is mainly developed using Java and Epsilon languages (i.e.,

Epsilon Transformation Language (ETL) and Epsilon Object Language (EOL)). Solvers, e.g., LINE [6],

lqns [7] can be used to solve the LQN model which is generated by Tulsa. The APs detection is

implemented by using Matlab scripts. The Enhancement tool is developed as standalone tool. We also

integrated Enhancement tool in the DICE IDE. It is published as an open source software that can be

downloaded from the DICE-FG [8] and DICE-APR [9] GitHub repository.

1.1. What is new in Year 3
Updates in Y3 to the presented Enhancement tools were an outcome of a development process, which

aimed at a) addressing any open or partially addressed requirements, and b) to improve general stability

and usability of the tools.

1.1.1 DICE Anti-Patterns & Refactoring

Inferring the bad practices in software design (i.e., performance anti-patterns) according to the data,

especially performance data, acquired at runtime during testing and operation. In order to achieve the

above goal, DICE enhancement tools introduces a new methodology to close the gap between runtime

performance measurements and design time model for the anti-patterns detection and refactoring.

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 9

New features and properties of the DICE-APR tool include the following:

● Developed Tulsa, a M2M transformation tool, to transform the design time model (i.e, UML

model), which is annotated with runtime performance quality characteristics by DICE-FG tool,

into performance model (i.e., Layered Queueing Network model); a series of transformation tasks

can be specified in an Ant build file; a specific launch configuration can be invoked from the IDE

run-configuration panel. The run-configuration in question invokes the APR back-end and

performs the model-to-model transformation that parses the diagrams and returns a LQN model

for performance anti-pattern detection.

● Specified the selected popular AP of DIAs and formally defined it by using Matlab scripts;

implemented the AP detection algorithm and provided refactoring suggestions to the designer.

● Improved support of the existing general applications and support for Big Data technologies (e.g.

Storm).

1.1.2 DICE Filling-the-Gap tool

● Integrated a novel estimation algorithm for hostDemand, called est-le, that outperforms several

state-of-the-art algorithms.

1.2. Structure of the Document
The structure of this deliverable is as follows:

● Chapter 2 presents updates requirements of final version of the architecture of Enhancement

tools.

● Chapter 3 presents new DICE-APR tool including M2M transformation, AP detection and tool

usage, obtaining the DICE-APR tool and evaluation result.

● Chapter 4 presents updates of the initial version of the DICE-FG with respect to resource demand

estimation.

● Chapter 5 summarizes achievements and outlines the future work.

Appendix A provides more detail on DICE UML model elements and stereotypes. Appendix B provides

core functions for Anti-Patterns Detection and Refactoring.

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 10

2. Requirements
The deliverable D1.4 Companion [23], an updated version of the requirement specification of deliverable

D1.2 [10], was released at M24. The requirements of the DICE Enhancement tools are basically the same

as the previous version.

2.1 Requirements
This section reviews the requirements of the Enhancement tool. The “Must have” requirements of

Enhancement tool are list as following. “Should have” and “could have” requirements are available in

D1.4 Companion [23] released on the DICE Website1.

Table 1: Resource consumption breakdown Requirement

ID R4.11

Title Resource consumption breakdown

Priority Must have

Description The DEVELOPER MUST be able to obtain via the ENHANCEMENT_TOOLS

the resource consumption breakdown into its atomic components.

Table 2: Bottleneck Identification Requirement

ID R4.12

Title Bottleneck Identification

Priority Must have

Description The ENHANCEMENT_TOOLS MUST indicate which classes of requests

represent bottlenecks for the application in a given deployment.

Table 3: Semi-automated anti-pattern detection Requirement

ID R4.13

Title Semi-automated anti-pattern detection

Priority Must have

Description The ENHANCEMENT_TOOLS MUST feature a semi-automated analysis to

detect and notify the presence of anti-patterns in the application design.

1 www.dice-h2020.eu/deliverables/

http://www.dice-h2020.eu/deliverables/

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 11

Table 4: Enhancement tools data acquisition

ID R4.17

Title Enhancement tools data acquisition

Priority Must have

Description The ENHANCEMENT_TOOLS must perform its operations by retrieving the

relevant monitoring data from the MONITORING_TOOLS.

Table 5: Enhancement tools model access Requirement

ID R4.18

Title Enhancement tools model access

Priority Must have

Description The ENHANCEMENT_TOOLS MUST be able to access the DICE profile model

associated to the considered version of the APPLICATION.

Table 6: Parameterization of simulation and optimization models Requirement

ID R4.19

Title Parameterization of simulation and optimization models.

Priority Must have

Description The ENHANCEMENT_TOOLS MUST extract or infer the input parameters

needed by the SIMULATION_TOOLS and OPTIMIZATION_TOOLS to perform

the quality analyses.

Table 7: Propagation of changes/automatic annotation of UML models Requirement

ID R4.27

Title Propagation of changes/automatic annotation of UML models

Priority Must have

Description ENHANCEMENT_TOOLS MUST be capable of automatically updating UML

models with analysis results (new values)

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 12

3. DICE-APR Tool
In this section, we present the finalized DICE-APR tool. It is integrated with the DICE IDE as a popup

menu. It also has a standalone version which includes two sub tools, M2M transformation (i.e., Tulsa) and

Anti-Patterns Detection & Refactoring (APDR). Tulsa transforms the design time model (i.e., UML

model) to performance model (i.e., LQN model). The LQN solver is needed to solve the LQN model

when users use Tulsa as a standalone tool. The APDR, which is implemented in Matlab, invokes AP

detection algorithm and provides the refactoring suggestions to designer. In the integration version,

DICE-APR will invoke Tulsa and APDR in sequence. Figure 1 shows the updated architecture of

Enhancement tool which we defined for task T3.4. It provides more details of functionalities of the DICE-

APR.

Figure 1. Updated Architecture of Enhancement Tool

The updated DICE-APR is described as follows:

● Modelling: this step is focused towards transforming the UML model to LQN model by using

Tulsa. Tulsa will generate a XML format LQN model which follows the XML schema of LQN.

● Analyzing: the LQN solver (e.g., LINE, lqns) will be used to solve the XML format LQN model

and to generate the analysis results, a XML format file as well.

● Extracting: extracting the pre-defined performance thresholds indices (e.g., maximum

utilization) to set the anti-patterns boundaries.

● AP Defining: anti-pattern is defined as rules (i.e., trigger conditions) for AP detection.

● Detecting: LQN model, solved model, anti-patterns boundaries and anti-patterns rules will be

used for detection algorithms to check if there is AP in the current model. The refactoring

suggestions will be provided if AP is detected.

3.1 Model Transformation Module
DICE follows the model-centric perspective to capture different abstraction layers of Big Data

applications. In order to support Big Data application modelling, the DICE profile introduces new

stereotypes, tags and related constraints to specify the data location and data properties for DIAs. It

leverages the UML as its modelling basis, and provides computational independent perspective, platform-

independent perspective and platform-specific perspective via DICE Platform Independent Model

(DPIM), DICE Technology Specific Model (DTSM) and DICE Deployment Specific Model (DDSM).

DICE-APR transformation work mainly focuses on the DTSM and DDSM layer.

To fulfil one of tasks of DICE-APR, we develop a tool, Tulsa, for transforming software architecture

models specified through UML into LQNs, which are analytical performance models used to capture

contention across multiple software layers. In particular, we generalize an existing transformation based

on the Epsilon framework to generate LQNs from UML models annotated with the DICE profile, which

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 13

extends UML to modelling DIAs based on technologies such as Apache Storm.

3.1.1 Transformation design

Our transformation follows the transformation principle of [3]. Tulsa takes four steps to implement the

model transformation (see Fig 2).

1) Step 1: Refining UML Model. Identifying invocations within or among Partition(s) by assigning

the inPartition attribute to controlflow in an activity diagram.

2) Step 2: Generating LQN Model. Performing transformation from UML model to an XML format

LQN model (initial version).

3) Step 3: Refining LQN Model. Modifying the initial LQN model and make it confirm the LQN

XML schema. The output of this step is a well formatted LQN model which can be accepted by

LQN solver (e.g., lqns, LINE).

4) Step 4: Generating Results. Showing the results (e.g., utilization, Throughput) which are

generated from the LQN solver.

Figure 2. Transformation Steps

Figure. 3 shows the corresponding model transformation process. In figure 3, a UML model is annotated

with the runtime parameters of the runtime systems which are obtained by DICE-FG. By using mapping

rules, a UML model is then transformed to a LQN model. Then, lqns or LINE is leveraged to solve the

LQN model and return the results to the DICE-APR tool. More details of lqns and LINE can be found in

section 3.3.1.

Figure 3. Model Transformation Process

In this section, we first presents the source and target models for Tulsa, which include the required

diagrams, model elements and conditions for the transformation. Second, we describe the transformation

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 14

rules and operations. Then, we explain the transformation process of Tulsa.

3.1.2 Source model

Tulsa takes the UML model which follows the UML 2.5 standard extended with MARTE [12] and DICE

profiles, which provide stereotypes to annotate the UML model for capturing the performance and

reliability metrics, as input. In order to obtain a LQN model, the developer not only needs to design the

configuration structure for the DIAs, e.g., developing the functional components, assigning key attributes

and defining constraints, but also needs to capture the behavior of the design time model for the later

analysis. Thus, our transformation mainly considers two UML diagrams: a deployment diagram, to

represent the system structure, and an activity diagram, to describe the system behavior. The UML

diagrams need to be annotated with core tags of the stereotypes of DTSM and DDSM layers to support

performance and reliability analysis. The main elements and stereotypes of the DICE UML model are

given in appendix A.

The following figure 4 and figure 5 show the examples of the UML activity diagram on DTSM level and

UML deployment diagram on DDSM level respectively.

Figure 4. Example of Deployment Diagram of the Source Model

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 15

Figure 5. Example of Activity Diagram of the Source Model

3.1.3 Target model

Tulsa chooses the Layered Queueing Network as the target model, which is introduced in this section.

There are three reasons for choosing LQNs. First, the core elements of LQN models are semantically

similar to the corresponding elements of UML activity and deployment diagrams. Second, a Storm

topology may be seen as a network of buffers and processing elements that exchange messages, so it is

quite natural to map them into a queueing network model. Third, LQN solvers such as LINE or lqns are

available to provide analytical methods to solve the LQN model.

A LQN model can be regarded as a directed graph. It consists of nodes and directed edges. The core

model elements are processors, tasks, entries, activities and precedence [15].

Processors: Processors are used by the activities within a performance model to consume time. They

model the physical servers that accept requests and execute the operations. They can be actual processors

in the system, or may simply be placeholders for tasks representing customers and other logical resources.

One of the key properties of the processor is the queueing disciplines, e.g., FIFO, PPR, HOL, PS, CFS,

etc.

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 16

Tasks: Tasks are used in layered queueing networks to represent resources, e.g., software component,

buffers, and hardware devices. Tasks are capable of serving requests and performing the actions defined

by the entries. Two key properties of the task are scheduling policy (e.g., FIFO, ref) and multiplicity (i.e.,

the number of concurrent instances of the task).

Entries: Entries service requests are used to differentiate the service provided by a task. An entry can

accept a synchronous call from a closed queueing model and an asynchronous call from the open

queueing model.

Activities: Activities are the lowest-level of specification in the performance model. An activity

represents the basic computation unit. To represent a non-sequential workflow (e.g., probabilistic choice,

fork, join), activities can be organized via precedence to form a directed graph.

Precedence: It is used to connect activities within a task to from an activity graph. “Pre” and “Post” are

two sub-elements of Precedence. The source activity is labelled with “Pre” and the target activity is

labelled with “Post”.

Figure 6. Example of LQN model

The figure 6 shows a screenshot of fragment of a LQN model. The root element is the processor

Server_CateAgg3 with the fcfs scheduling policy. It hosts an inf task PagesPerCategoryCassandraWriter.

The task has one entry AC7 and three activities, OP8, OP88 and Stop9. The activity OP88 also invokes

synchronous call AC7Entry. The precedence specifies the controlflow direction.

3.1.4 Mapping rules

In this paragraph, we explain the mapping rules between the LQN model and the UML model.

1) Mapping from deployment diagram to LQN model

The elements concerned in this transformation are Device and Artifact of the deployment diagram. A

Device, annotated with ≪GaExecHost≫ to represent a server, is mapped to processor in LQN model. For

Storm-based applications, VM cluster is also represented as Device node and annotated with

≪GaExecHost≫ and ≪DdsmVMsCluster≫ stereotypes to specify the characteristics of a VM cluster. An

Artifact can be transformed into a Task which stands for the software component in LQN model. To

assign the scheduling policy and multiplicity to a Task in LQN domain, the stereotypes ≪Scheduler≫,

≪StormSpout≫ and ≪StormBolt≫ can be added to the Artifact.

2) Mapping from Activity diagram to LQN model

The mapping from the Activity diagram to LQN model starts from the InitialNode which is the starting

point of the activity diagram. It is transformed to an entry in LQN model. Stereotype

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 17

≪GaWorkloadEvent≫ is applied to describe the workload. AcceptEventAction, accepting the event call

(i.e., synchronous call or asynchronous call) from CallOperationAction, can also be mapped to an entry in

LQN model. ControlFlow, representing the incoming and outgoing invocation paths, is mapped to either

a synch-call or asynch-call in LQN model according to the type of the event call. If it is a synchronous

event call, SendSignalAction is used to send feedback message to the caller. The OpaqueAction represents

a specific action in activity diagram. The CallOperationAction, SendSignalAction and OpaqueAction,

annotated with the ≪GaStep≫, are all mapped to activity in LQN model. OpaqueAction might also be

annotated with Stereotype ≪StormSpout≫ and ≪StormBolt≫ due to different abstract view of the Storm-

based application. Activity diagram leverages control nodes (i.e., Decision Node, Merge Node, Join Node

and Fork Node) to represent parallelism and choice scenarios. Those nodes are transformed into

precedence in LQN model.

More details of UML model elements and stereotypes can be found at Appendix A. The table 8 shows the

model mapping from UML model to LQN model.

Table 8: Model Mapping: from UML+DICE+MARTE to LQN Element

UML Model Element DICE + MARTE Stereotype LQN Model

Element

model None lqnmodel

Deployment Diagram

Device GaExecHost, DdsmVMsCluster processor

Artifact Scheduler, DdsmBigDataJob, StormSpout, StormBolt task

Activity Diagram

AcceptEventAction GaStep entry

InitialNode GaWorkloadEvent entry

OpaqueAction GaStep, StormSpout, StormBolt activity

CallOperationAction GaStep activity

SendSignalAction GaStep activity

DecisionNode None precedence

MergeNode None precedence

JoinNode None precedence

ForkNode None precedence

ControlFlow None or StormStreamStep precedence

ControlFlow None or StormStreamStep synch-call

ControlFlow None or StormStreamStep asynch-call

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 18

3.2 Anti-Patterns Detection & Refactoring
In this section, we review some popular anti-patterns. Then we report the APs we have chosen and

specified their conditions. Finally, we discuss the approach we followed in order to detect the APs and

provide refactoring suggestions.

3.2.1 Overview of popular Anti-Patterns

In software engineering, anti-patterns are recurrent problems identified by incorrect software decisions at

different hierarchical levels (architecture, development, or project management). Software APs are

largely studied in the industry. They are catalogued according to the source problem and a generic

solution is suggested [18], [19], [20].

According to current formalizations, performance APs in software engineering are categorized in two

families: single-value APs, that can be detected by inspecting the mean, max or min values of a

performance index; and multiple-values APs, that require the observation of a performance index over the

time [16], [21].

On the one hand, examples of popular single-value APs are: Blob, Unbalanced Processing, Circuitous

Treasure Hunt, Empty Semi Trucks, Tower of Babel, One-Lane Bridge and Excessive Dynamic

Allocation. On the other hand, examples of popular multiple-values: Traffic Jam, The Ramp, and More is

Less.

More in detail, single-value APs are performance bottlenecks detected by a high utilization of a device, a

low response time of the system, etc. For instance, performance APs are caused by an unbalanced

utilization of the devices originated in a bad deployment of processes among the hardware resources

(Unbalanced Processing); a low response time because of an excessive centralization of functionality in a

single software package (Blob); or a high latency when retrieving data from central sources of

information such as databases (Circuitous Treasure Hunter). An Empty Semi Trucks happens when two

processes exchange lots of small messages that lead to a low utilization of the net. In a Tower of Babel,

the exchange of information requires a constant transformation of formats between files. In a One-Lane

Bridge APs, the level of concurrency of an application is drastically reduced when the workflow reaches a

particular point. Finally, an Excessive Dynamic Allocation is detected when a process spends a

considerable amount of time in the dynamic allocation/destruction of objects during runtime, while it

could be treated more efficiently if the variables were reused or “compiled”.

In opposition, multiple-values APs are performance bottlenecks detected by a variation in the response

time of the system during runtime. For instance, the effects of a Traffic Jam are a high variability in the

response time in the transient behavior; the response time oscillates from low to high. The Ramp is

revealed by an increasing response time and decreasing throughput over time. Changes in the state of the

system (e.g., the amount of data that the system has to manage) affect the execution time of the internal

tasks (e.g., searching operations in a database). Finally, More is Less happens when the system spends

more time thrashing than executing real work.

3.2.2 Anti-Patterns selection and specification

In our case, we investigate three classic APs, Circuitous Treasure Hunt, Blob and Extensive Processing

[16] and define two APs (i.e., Infinite Wait and Excessive Calculation). For integration version, APR

supports the Excessive Calculation detection in DICE IDE. For standalone version, APR can detect both

of the APs. Table 9 lists the corresponding APs we defined.

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 19

Table 9: Anti-Patterns for DICE-APR

Anti-Pattern Name Problem Solution

Infinite Wait (IW) Occurs when a component must ask

services from several servers to

complete the task. If a large amount

of time is required for each service,

performance will suffer.

Report the component which

causes the IW and provide

component replication or

redesign suggestions to the

developer.

Excessive Calculation

(EC)

Occurs when a processor performs

all of the work of an application or

holds all of the application’s data.

Manifestation results in excessive

calculation that can degrade

performance.

Report the processor which

causes the EC and provide

suggestion, adding new

processor to migrate tasks, to

the developer.

In order to formally specify the above APs (i.e., IW and EC), we interpret them crossing different

modelling level, UML model, LQN model and Solved LQN model. We also give the corresponding AP

condition.

1) Infinite Wait

UML Model: AP IW mainly concerns the invocations among the software components. A software

component is represented as an ActivityPartition in the activity diagram. The service calls among the

ActivityPartitions can be synchronous or asynchronous. In our case, DICE-APR only counts the number

of the synchronous calls.

LQN Model: Each software component is regarded as a task of a processor in LQN model. The service

calls (i.e., synchronous calls) among the tasks are specified by the synch-calls within activities in LQN

model.

Solved LQN Model: To check if the software component, which has extensive synchronous calls,

requires a large amount of time to fulfil the task, DICE-APR analyses solved LQN model, which is

generated by a LQN solver and represented as an XML format file, to see if the response time is greater

than the response time threshold.

Condition: given the AP boundaries, maximum number of synchronous calls (ThMaxCall) and maximum

response time (ThMaxResT). The IW can be detected by checking the following conditions:

FmaxSynCall(LQN) >= ThMaxCall (1)

 FmaxResT(Solved LQN, processor) >= ThMaxResT (2)

Where FmaxSynCall(LQN) represents the function for checking if there is any component in LQN model has

extensive synchronous calls which are greater than the threshold of synchronous calls, and the

FmaxResT(Solved LQN, processor) stands for the function for checking if the response time of the

corresponding processor, which holds the component, is greater than the threshold of response time.

2) Excessive Calculation (EC)

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 20

UML Model: AP EC mainly concerns the server and the software components (or actions) which are

deployed on it. A server is represented as a Device and a software component is represented as an Artifact

in the deployment diagram.

LQN Model: Server is regarded as a processor in LQN model. The main services of each Artifact are

represented as the activities of entry of the hardware processor in LQN model. In our case, DICE-APR

calculates the number of the entries of the hardware processor to see if it is greater than the threshold.

Solved LQN Model: To check if the server, which has extensive entries, performs extensive calculation

to fulfil the task, DICE-APR analyses solved LQN model, which is generated by a LQN solver and

represented as an XML format file, to see if its utilization is greater than the threshold.

Condition: given the AP boundaries, maximum number of entries (ThMaxEntry) and maximum

utilization (ThMaxUtil). The EC can be detected by performing the following conditions:

FmaxEntry(LQN) >= ThMaxEntry (1)

 FmaxUtil(Solved LQN, processor) >= ThMaxUtil (2)

Where FmaxEntry (LQN) represents the function for checking if there is any processor in LQN model has

extensive entries which are greater than the threshold of entry, and the FmaxUtil (Solved LQN, processor)

stands for the function for checking if the utilization of the corresponding processor, which holds the

entries, is greater than the threshold of utilization.

3.2.3 Anti-Patterns Detection & Refactoring process

Based on the above two APs, this section describes the AP detection and refactoring suggestions

generation process.

1) AP IW detection and refactoring suggestion generation

Step1: Calculating the synchronous calls (numSyn) from the obtained the LQN model (preLQN) to see if

there is any task that has the number of synchronous call greater than the threshold (ThMaxCall). If the

task is found, then goes to Step 2 otherwise exits.

Step2: Calculating the response time of the entry of the found task (entrRes) from the obtained solved

LQN model (preSLQN) to see if corresponding response time is greater than the threshold (ThMaxResT).

If the answer is yes, then goes to Step 3 otherwise exits.

Step3: Reporting AP IW is found and providing two refactoring suggestions, that is redesigning the task

(i.e., component) to reduce the synchronous calls or duplicating the task.

2) AP EC detection and refactoring suggestion generation

Step1: Calculating the number of entry (numEnt) of hardware processor from the obtained LQN model

(preLQN) to see if there is any processor that has the number of entry is greater than the threshold

(ThMaxEntry). If the processor is found, then goes to Step 2 otherwise exits.

Step2: Checking if the utilization (procUtil) of the found processor from the obtained the solved LQN

model (preSLQN) is greater than the threshold (ThMaxUtil). If the answer is yes, then goes to Step 3

otherwise exits.

Step3: Reporting AP EC is found and providing refactoring suggestion, that is introduce new server to the

current cluster and migrate part of components to the new server.

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 21

The Figures 7 and 8 show the detection of the two APs and the corresponding refactoring process of the

DICE-APR.

Figure 7. AP IW detection and refactoring process

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 22

Figure 8. AP EC detection and refactoring process

3.3 Tool Usage
DICE Enhancement tools (i.e., DICE-FG and DICE-APR) were developed as standalone tools. By M30,

we integrated DICE Enhancement tools in the DICE IDE as a plug-in. The details of how to use the DICE

Enhancement tool within the DICE IDE can be found in Cheat Sheet or the GitHub page:

https://github.com/dice-project/DICE-Enhancement-APR/tree/master/Plugin/doc. The follow paragraphs

show how to configure and run DICE-APR as a standalone tool.

DICE-APR includes two sub tools, Tulsa and APDR. Tulsa is running inside the Eclipse IDE and can be

invoked by using the run configuration panel. APDR runs in Matlab. User needs to interact with the

Tulsa’s ANT build file to configure the source model and target model, and configure the input

parameters, LQN model, solved LQN model and APs Boundaries. In this section, we describe how to

configure the DICE-APR, input data format for LQN Solver and APDR.

https://github.com/dice-project/DICE-Enhancement-APR/tree/master/Plugin/doc

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 23

3.3.1 Tulsa Configuration

The pre-requirements of running the Tulsa are to install Eclipse 4.6.1, the DICE Profile and the Epsilon

framework [17]. Tulsa is mainly written by Epsilon Transformation Language (ETL), Epsilon Object

Language (EOL) and Java. Tulsa takes four steps to implement model transformation (see Figure. 2).

Each step has the corresponding script. To run the Tulsa scripts, user has to either interact with

configuration panel or build an ANT build file to:

1) specify the location of the source model (i.e., UML model) and the target model (i.e., LQN

model);

2) build link with metamodels for UML, LQN and Trace (i.e., recording links between UML model

elements and LQN model elements);

3) identify the location of scripts (*.eol and *.etl). The generated LQN model can be viewed as an

XML format file.

To obtain the analysis results, we need to solve the LQN model with an existing solver, e.g., lqns and

LINE. Here we present a brief description of the lqns and LINE.

1) lqns

LQNS is an analytic solver for LQN model developed by Carleton University. It accepts the XML format

LQN model with the suffix .lqnx as input. LQNS can be executed with the command line: lqns

Lqnfile.lqnx and produces two output files with the default name lqnfile.out and lqnfile.lqxo. The

lqnfile.out is the summary of the analysis results, e.g., processor identifiers and scheduling algorithms,

throughputs and utilizations per phase. The lqnfile.lqxo is a parameterized XML format with analysis

results. It can be viewed directly or parsed by executing the EOL script to get the summary of the results

in console. The LQN model generated by Tulsa can be used as input file of lqns directly. However, lqns

also has some limits of parameter types, e.g., only supporting three scheduling policies, FIFO, HOL and

PPR, only accepting phases not greater than 3.

lqns is available from the download page2 for Linux and Windows. It has a comprehensive main page

describing many options for different solver algorithms, for tracing solutions and for printing more or less

details.

2) LINE

LINE is an efficient parallel solver for LQN models developed by Imperial College London. It can be

integrated with the Palladio Bench suite used for performance analysis of Palladio Component Models

(PCM). LINE can numerically compute percentiles of response times for service-level agreement (SLA)

assessment, describe uncertainty about an operational environment using random environments, and solve

models with a parallel solver for multi-core. The LQN model generated by Tulsa can be easily modified

to fit LINE requirements. LINE can be executed in MATLAB environment. It will produce an output file

with the default name lqnfile_line.xml. Different from LQNS, there are two types of the processors in

LQN model, software processor and hardware processor. Software processor represents the virtual

processor which host the task and hardware processor represents the real computation resource (e.g.,

server). Comparing with LQNS, LINE does not has limits of the phases but it does not fully support the

parallelism situation (i.e., pre-and, post-and).

LINE is available from [6] and user can also find the documents and installation instructions from it.

The Table 10 shows some core output parameters of the analysis results of the solved LQN model

supported by LINE and lqns.

2 http://www.sce.carleton.ca/rads/lqns/

http://www.palladio-simulator.com/tools/

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 24

Table 10: Output parameters of analysis results supported by lqns and LINE

Output LQN Model

Solved by

Parameter Name Description

lqns utilization (processor) processor utilization for every entry and

activity running on the processor

utilization (task) reciprocal of the service time for the task

service-time total time a phase or activity uses processing a

request

throughput the rate at which an entry (or an activity) is

executed

LINE util processor utilization for every entry and

activity running on the processor

throughput the rate at which an entry (or an activity) is

executed

responseTime response time (elapsed time since a user

submits a job to the cluster and return of the

result)

responseTimeDistribution distribution of the response times, the

distribution includes information such as the

percentiles, i.e., the longest response time x

faced by p% of the users is called the p-th

percentile.

3.3.2 Running APR

The prerequisites of running the APR is installing the MATLAB. End-users can either install MATLAB

(2012a or later) with a valid license or Matlab Compiler Runtime (MCR) R2015a which is a royalty-free

runtime that does not require owning a Matlab license. Before we run the APR tool, we need to specify

the input data format and the configuration file provided for anti-patterns detection and refactoring. These

are the only inputs required to run the tool. It may be invoked from the command line, e.g., the following

is an example of running APR on Windows Operating Systems:

>diceAPR DICE-APR-Configuration.xml

where diceAPR is a standalone executable file generated from APR source code in Matlab, and the

DICE-APR-Configuration.xml is a configuration file which will be explained in the next section.

3.3.3 APR configuration file

In this paragraph, we describe the specification of the input data that is requested to the user in order to

use DICE-APR. Like DICE-FG, we also use an XML file to specify the input parameters for DICE-APR.

The following figure is an example of DICE-APR-Configuration.xml for standalone version. For the

integration version, you can find the sample configuration files at GitHub page: https://github.com/dice-

project/DICE-Enhancement-APR/tree/master/Plugin/doc/Configuration%20Files

https://github.com/dice-project/DICE-Enhancement-APR/tree/master/Plugin/doc/Configuration%20Files
https://github.com/dice-project/DICE-Enhancement-APR/tree/master/Plugin/doc/Configuration%20Files

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 25

Figure 9. Example of APR configuration file

The above configuration file specifies the input parameters of the DICE-APR:

● inputLQNModel: the value of the parameter inputLQNModel represents the location of the LQN

model file.

● inputSolvedLQNMOdel: the value of the parameter inputSolvedLQNMOdel stands for the

location of the solved LQN model file.

● ThMaxCall: the value of the parameter ThMaxCall means the maximum number of the

synchronous calls.

● ThMaxResT: the value of the parameter ThMaxResT defines the acceptable maximum response

time.

● ThMaxEntry: the value of the parameter ThMaxEntry specifies the maximum number of entries

of a processor.

● ThMaxUtil: the value of the parameter ThMaxUtil means the allowed maximum utilization of a

processor.

Detailed installation and running instructions of standalone version of Tulsa are available on the DICE-

Enhancement-APR wiki at https://github.com/dice-project/DICE-Enhancement-APR/wiki.

3.4 Obtaining the Tool
The source code of standalone version of DICE-APR Tool is available at the following GitHub page:

● https://github.com/dice-project/DICE-Enhancement-APR

The source code of plug-in version of DICE Enhancement Tool is available at the following GitHub page:

● https://github.com/dice-project/DICE-Enhancement-APR/tree/master/Plugin

3.5 Tool Validation
Word Count3 is a well-known Storm-based application. We modify the original version of the Word

Count and design a chain-like topology with one spout and two bolts. The spout SentenceSpout reads a

file one line at a time, and sends each line as a tuple to the bolt SplitBolt which splits the sentence to

single words. The bolt WordCountBolt receives the tuple (i.e., word) from the SentenceSpout and

increments counters based on distinct input word tuples. We use this as an example to demonstrate the

how DICE-APR perform the model transformation, anti-patterns detection and refactoring.

3 http://storm.apache.org/releases/1.1.0/Tutorial.html

https://github.com/dice-project/DICE-Enhancement-APR/wiki
https://github.com/dice-project/DICE-Enhancement-APR/wiki
https://github.com/dice-project/DICE-Enhancement-APR

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 26

3.5.1 UML model

Figures 10 and 11 shows, respectively, the deployment and activity diagrams of the WordCount Example.

Figure 10. Activity Diagram of WordCount Example

Figure 11. Deployment Diagram of WordCount Example

In DICE UML model, the application can be regarded as an artifact in deployment diagram and the

components are represented as OpaqueAction in activity diagram. Thus, the WordCount application is

designed as an Aritfact which is deployed on platform storm_1. It is held in cluster cluster1 in

deployment diagram. The SentenceSpout, SplitBolt and WordCountBolt are represented as three

OpaqueActions in activity diagram. DICE and MARTE stereotypes, e.g., GaExecHost, StormSpout, are

used to annotate the hardware resources and behaviours.

3.5.2 LQN model and solved LQN model

By using Tulsa, the corresponding LQN model can be generated automatically. The obtained LQN model

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 27

can be solved directly by solver lqns. The format of the LQN model for solver LINE is slightly different

from LQNS, but it can be easily modified to meet the LINE requirement. Figure 12 and 13 show an

excerpt of the LQN model and solved LQN model, respectively, of WordCount example supported by

LINE.

Figure 12. Excerpt of LQN Model of WordCount Example

Figure 13. Excerpt of Solved LQN Model of WordCount Example

3.5.3 Anti-Patterns detection & refactoring

Figure 14 shows a screenshot of the Anti-Patterns detection & refactoring results of WordCount example.

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 28

Figure 14. Anti-Patterns detection & refactoring results of WordCount Example

The results show that the current application does not has AP Infinite Wait. However, utilization of the

cluster which holds all components is greater than the utilization threshold, the AP Excessive Calculation

is detected and the corresponding refactoring suggestion is provided. The developer might introduce a

new server and migrate some components to the new server.

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 29

4. DICE-FG Tool
Since the earlier release at M18, the DICE-FG codebase has remained relatively stable, undergoing minor

bug fixes and an extension to a novel demand estimation method published in [22]. In the following, we

provide an overview of the new introduced method.

We also performed a validation of DICE-FG against Apache Spark data generated in the Fraud detection

case study by Netfective. The results of this activity are reported in deliverable D6.3 - Consolidated

evaluation and implementation.

4.1 EST-LE: a new maximum likelihood estimator for hostDemands
In year 3 we developed a novel estimator for hostDemands, which is able to efficiently account for all the

state data monitored for a Big data system. Recall that the hostDemands of a Big data application may be

seen as the time that a request of type c spends at resource k. For example, the execution time of a

Cassandra query of type c at node r of a Cassandra cluster.

A new demand estimation method called est--le (logistic expansion) has been included in the DICE-FG

distribution. Compared to the earlier version of DICE-FG, this method enables to use a probabilistic

maximum-likelihood estimator for obtaining the hostDemands. Such approach is more expressive that the

previous est--qmle method in that it includes information about the response time of the requests, in

addition to the state samples obtained through monitoring. An obstacle that was overcome in order to

offer this method is that the resulting maximum-likelihood method is computationally difficult to deal

with, resulting in very slow execution times for the computation of the likelihood function. In [22] we

developed an asymptotic approximation that allows to efficiently compute the likelihood even in complex

models with several resources, requests types, and high parallelism level.

4.1.1 Validation

To illustrate the difficulties of existing methods for the computation of the likelihood function, we

developed in [22] a systematic comparison against alternative methods for hostDemand estimation that

use the same input data, which is illustrated in the Figure 15. The figure has been obtained by running the

following methods against a set of 1000 random hostDemand estimation problems, where:

● CUB1 is a method for computing likelihood based on cubature rules.

● LE corresponds to the est-le method we added to DICE-FG.

● LE-A is a variant of the LE method that allows to include known values of mean performance

indices.

● MCI3 is a method for computing likelihood based on Monte Carlo sampling.

● NOG is a crude approximation that removes from the likelihood expression the term that is most

computationally demanding to compute, i.e., the normalizing constant.

● RAY is an asymptotic approximation based on a method used in optics.

Figure 15. Validation results for the EST-LE

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 30

As we see from the figure, the LE method and its variant LE-A are in about 60% of the cases the best

hostDemand estimation method overall. Their execution time is considerably faster than that of other

methods such as CUB1 and MCI3 and generally in the order of a few seconds. Storage requirements are

negligible.

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 31

5. Conclusions and future plans
DICE Enhancement Tools are an effort of 3-years development aimed at closing the gap between the

design time model and runtime model. DICE Enhancement tools bring the Model-Driven Development

methodology to DevOps to achieve iterative quality enhancement of DIAs. DICE Enhancement tools are

integrated with the DICE IDE and also has standalone versions. DICE-FG aims at estimating and fitting

application parameter related to memory and execution times and annotate DICE UML models. DICE-

APR enables the model transformation which help to predict the performance of the DIAs, and provides

the refactoring suggestions if the APs are detected. DICE Enhancement tools leverage the third part plug

and tools, e.g., Epsilon framework, LINE, lqns, MCR, which are easily obtained and installed for end-

users. We have evaluated the scalability and performance of the DICE Enhancement tool via general

distributed system and Storm-based applications (e.g., WordCount).

5.1 Achievements
In conclusion of this deliverable we summarize the key achievements of this final release of the

Enhancement Tools:

● DICE-APR has been developed to achieve the anti-patterns detection and refactoring:

○ Transform the UML model annotated with DICE profile to LQN model.

○ Define and specify two APs and the corresponding AP boundaries for DIAs.

○ Detect the above APs from the models and provide the refactoring suggestions to guide

the developer to update the architecture.

● DICE-FG has been consolidated and extended to include a new hostDemand estimation method

called est-ld, that is more powerful than existing hostDemand methods released at M18.

The DICE Enhancement tool is available online on DICE’s Github repository. The following are the main

links:

● Standalone version:

○ DICE-FG Source Code: https://github.com/dice-project/DICE-Enhancement-FG

○ DICE-FG Documentation: https://github.com/dice-project/DICE-Enhancement-FG/wiki

○ DICE-APR Source Code: https://github.com/dice-project/DICE-Enhancement-APR

○ DICE-APR Documentation: https://github.com/dice-project/DICE-Enhancement-

APR/wiki

● Plug-in version:

○ DICE Enhancement Tool Source Code: https://github.com/dice-project/DICE-

Enhancement-APR/tree/master/Plugin

○ DICE Enhancement Tool Document: https://github.com/dice-project/DICE-

Enhancement-APR/tree/master/Plugin/doc

5.2 Summary of Progress at M30
The following table summarizes the status of requirements implementation at the end of reporting period

(M30). The meaning of the labels used in column Level of fulfillment is the following: (i)✗(not

implemented); (ii) ✔ (partial accomplishment); and (iii) ✔ (implemented at M30).

https://github.com/dice-project/DICE-Enhancement-FG
https://github.com/dice-project/DICE-Enhancement-FG
https://github.com/dice-project/DICE-Enhancement-FG/wiki
https://github.com/dice-project/DICE-Enhancement-FG/wiki
https://github.com/dice-project/DICE-Enhancement-APR
https://github.com/dice-project/DICE-Enhancement-FG/wiki
https://github.com/dice-project/DICE-Enhancement-FG/wiki
https://github.com/dice-project/DICE-Enhancement-FG/wiki
https://github.com/dice-project/DICE-Enhancement-APR/tree/master/Plugin
https://github.com/dice-project/DICE-Enhancement-APR/tree/master/Plugin
https://github.com/dice-project/DICE-Enhancement-APR/tree/master/Plugin/doc
https://github.com/dice-project/DICE-Enhancement-APR/tree/master/Plugin/doc

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 32

Table 11. Status of the Enhancement tool at M30. Data brought from Deliverable D4.5 [1]

Requirement Status at M30

R4.11: Resource consumption breakdown ✔: the DICE-FG module is capable of extracting

resource consumption data (memory, CPU time)

for individual tasks at arbitrary nodes. The

estimated data breaks down the usage of

individual resources through job types that visit

the resource.

R4.12: Bottleneck identification ✔: by estimating the true execution times of

requests, sanitized from contention overheads,

the DICE-FG makes it trivial to identify

bottlenecks. That is, the node with the largest

mean execution time will be the bottleneck

resource for a job type. Such feature is going to

be completed by adding bottleneck identification

capabilities in the APR module.

R4.13: Semi-automated anti-pattern detection ✔: An initial architecture and high-level

approach defined, and initial proof-of-concept

defined.

R4.17: Enhancement tools data acquisition ✔: We have interfaced DICE-FG module with

the DMon platform. APR module will not need

direct access to the DMon. More metrics will be

accessed in the feature to extend the breadth of

the automatic UML parameterization.

R4.18: Enhancement tools model access ✔: This feature is an integration feature to be

developed in the next period. Currently

integration is operated manually, in the future it

will be automated.

R4.19: Parameterization of simulation and

optimization models
✔: We have conducted validation studies on

Hadoop/MapReduce (c.f. D3.8, Section 6),

Cassandra, and SAP HANA that illustrate the

ability of the DICE-FG module to provide good

estimates of parameters.

R4.27: Propagation of changes/automatic annotation

of UML models
✔: DICE-FG can successfully modify UML

models by annotating parameters. The APR

module is planned to introduce changes in the

UML models.

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 33

References

[1] DICE Consortium, Iterative quality enhancement tools – Initial version (Deliverable 4.5), 2016,

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D4.5-Iterative-quality-

enhancement-tools-Initial-version.pdf

[2] DICE Consortium, Design and quality abstractions - Initial version (Deliverable 2.1), 2016,

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-

abstractions-Initial-version.pdf

[3] Altamimi, T., Zargari, M.H., Petriu, D., Performance analysis roundtrip: automatic generation of

performance models and results feedback using cross-model trace links, In: CASCON’16, Toronto,

Canada, ACM Press (2016)

[4] D. Kolovos, L. Rose, A. García-Domínguez, R. Paige, The Epsilon Book,

www.eclipse.org/epsilon/doc/book/, last updated July 2015.

[5] Dubois, D.J., et al., Model-driven application refactoring to minimize deployment costs in

preemptible cloud resources, In: CLOUD’16, IEEE Press, USA (2016)

[6] LINE, http://line-solver.sourceforge.net/

[7] LQNS, https://github.com/layeredqueuing/V5/tree/master/lqns

[8] DICE-FG, https://github.com/dice-project/DICE-Enhancement-FG/

[9] DICE-APR, https://github.com/dice-project/DICE-Enhancement-APR

[10] DICE Consortium, Requirements specifications (Deliverable 1.2), 2015,

http://wp.doc.ic.ac.uk/diceh2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-

specification.pdf

[11] DICE Consortium, Architecture definition and integration plan - Final version (DICE deliverable

1.4), January 2017, http://wp.doc.ic.ac.uk/dice-h2020/wp-

content/uploads/sites/75/2017/02/D1.4_Architecture-definition-and-integration-plan-Final-

version.pdf

[12] UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems, Version

1.1, Object Management Group (2011).

[13] DICE Consortium, Design and Quality Abstractions - Final Version (Deliverable 2.2), 2017,

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-

abstractions-Final-version.pdf

[14] DICE Consortium, Transformations to Analysis Models (DICE deliverable 3.1), 2016,

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D3.1_Transformations-to-

analysis-models.pdf

[15] Franks, R.G., Maly, P., Woodside, C.M., Petriu, D.C., Hubbard, A., Mroz, M.,“Layered

Queueing Network Solver and Simulator User Manual”, Department of Systems and Computer

Engineering, Carleton University, 2015.

[16] Cortellessa, Vittorio, Antinisca Di Marco, and Catia Trubiani. "An approach for modeling and

detecting software performance antipatterns based on first-order logics." Software and Systems

Modeling (2014): 1-42.

[17] Epsilon, http://www.eclipse.org/epsilon/

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D4.5-Iterative-quality-enhancement-tools-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D4.5-Iterative-quality-enhancement-tools-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D4.5-Iterative-quality-enhancement-tools-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D4.5-Iterative-quality-enhancement-tools-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-abstractions-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-abstractions-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-abstractions-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-abstractions-Initial-version.pdf
http://line-solver.sourceforge.net/
http://line-solver.sourceforge.net/
https://github.com/layeredqueuing/V5/tree/master/lqns
https://github.com/layeredqueuing/V5/tree/master/lqns
https://github.com/dice-project/DICE-Enhancement-FG/
https://github.com/dice-project/DICE-Enhancement-FG/
https://github.com/dice-project/DICE-Enhancement-APR
https://github.com/dice-project/DICE-Enhancement-APR
http://wp.doc.ic.ac.uk/diceh2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification.pdf
http://wp.doc.ic.ac.uk/diceh2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification.pdf
http://wp.doc.ic.ac.uk/diceh2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification.pdf
http://wp.doc.ic.ac.uk/diceh2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D1.4_Architecture-definition-and-integration-plan-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D1.4_Architecture-definition-and-integration-plan-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D1.4_Architecture-definition-and-integration-plan-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D1.4_Architecture-definition-and-integration-plan-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-abstractions-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-abstractions-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D3.1_Transformations-to-analysis-models.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D3.1_Transformations-to-analysis-models.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D3.1_Transformations-to-analysis-models.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D3.1_Transformations-to-analysis-models.pdf
http://www.eclipse.org/epsilon/
http://www.eclipse.org/epsilon/

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 34

[18] Smith, C. U. and Williams, L. G. (2000). Software performance antipatterns. In Workshop on

Software and Performance, volume 17, pages 127-136.

[19] Smith, C. U. and Williams, L. G. (2002). New software performance antipatterns: More ways to

shoot yourself in the foot. In Int. CMG Conference, pages 667-674.

[20] Smith, C. U. and Williams, L. G. (2003). More new software performance antipatterns: Even

more ways to shoot yourself in the foot. In Computer Measurement Group Conference, pages 717-

725.

[21] C Trubiani, A Koziolek, V Cortellessa, R Reussner. Guilt-based handling of software

performance antipatterns in palladio architectural models, Journal of Systems and Software 95, 141-

165, 2014.

[22] G. Casale. Accelerating performance inference over closed systems by asymptotic methods.

ACM SIGMETRICS 2017, 25 pages.

[23] DICE Consortium, Architecture definition and integration plan - Final version (DICE deliverable

1.4 Companion), January 2017,http://wp.doc.ic.ac.uk/dice-h2020/wp-

content/uploads/sites/75/2017/02/D1.4_Companion-2_requirements.pdf

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D1.4_Companion-2_requirements.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D1.4_Companion-2_requirements.pdf

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 35

APPENDIX A. Main Elements and Stereotypes of DICE UML Model

Supported by DICE-APR
The core elements of the UML model (i.e., activity and deployment diagrams) and the corresponding

stereotypes which related to the Tulsa transformation are described as follows. More details can be found

in D2.2[13] and D3.1[14].

A.1 Deployment Diagram Model Elements
Device: A node annotated with the stereotype Device usually represents a physical computational

resource, e.g., server, processor. DICE UML model uses Device to stand for a VM cluster or a single

server.

ExecutionEnvironment: A node annotated with the stereotype ExecutionEnvironment, is used to

represent the execution environment for the application, i.e., the platform where the application is

deployed. In DICE UML model, ExecutionEnvironment is embedded in the Device node (i.e., VM

Cluster) to provide running environment for the DIAs.

Artifact: A node annotated with the stereotype Artifact is used or produced by a software development

process or deployment and operation of a system, e.g., software component. DICE UML model uses

Artifact to stand for a software application or component which is deployed on the Device node or

ExecutionEnvironment node.

 ≪GaExecHost≫: This stereotype is defined by MARTE. It provides core tags for specifying

characteristics of the execution host, e.g., a server. In DICE deployment diagram, GaExecHost is used to

annotate the UML node with Device stereotype. Two tags of the GaExecHost, schedPolicy and resMult,

are used to describe the host’s scheduling policy (e.g. FIFO, RoundRobin) and the number of parallel

processors available.

≪DdsmVMsCluster≫: This stereotype is defined for DICE DDSM layer. It provides core tags for

specifying characteristics of the VM clusters. In DICE deployment diagram, DdsmVMsCluster is used to

annotate the UML node with Device stereotype. One tag of the DdsmVMsCluster, instances, is used by

Tulsa to obtain the number of single server in the VM cluster.

≪Scheduler≫: This stereotype is defined by MARTE. It provides core tags for specifying characteristics

of resources which have a scheduling policy. In DICE deployment diagram, Scheduler is used to annotate

the UML node with Artifact stereotype. Two tags of the Scheduler, otherSchedPolicy and resMult, are

used to describe the tasks scheduling policy (e.g. ref) and the number of concurrent instances of the task

available at runtime (i.e., thread pool size).

A.2 Activity Diagram Model Elements
Activity Partition: An ActivityPartition is also called swimlane. Each ActivityPartition logically

organizes the related activities. In Tulsa, each Artifact in the deployment diagram is equally mapped to an

ActivityPartition of the activity diagram, and the actions (e.g., function call) executed in the Artifact are

specified by Activity element of the ActivityPartition.

Initial Node: It is the start point of the activity diagram. There is no activity execution happening before

it. It has one or more outgoing control flow(s) which indicate(s) the following activities. Tulsa accepts

one InitialNode for each activity diagram.

Activity Final Node: It represents the completion of an activity. All the executions will stop when they

reach the ActivityFinalNode. There can be more than one ActivityFinalNode in the activity diagram and

Tulsa also supports that.

Opaque Action: An OpaqueAction element describes a basic function within an ActivityPartition. It is an

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 36

ExecutableNode and represents the interaction behaviour of the component.

Call Operation Action: It is used for invocating an action which belongs to the other ActivityPartition.

The invocation can be synchronous or asynchronous.

Accept Event Action: It is used to define the acceptance or receipt of a request from an action, e.g.,

CallOperationAction. It can be also the start point of the ActivityPartition.

Send Signal Action: It is used to generate a signal which is sent to the target object. If an

AcceptEventAction receives a synchronized event call, the SendSignalAction will be used to transmit the

signal back to the caller after the job completion.

Control Node: Tulsa considers four types of the control nodes, the Fork Node, the Join Node, the

Decision Node and the Merge Node. The ForkNode splits the control flow into a set of concurrent control

flows. The Join Node joins (i.e., synchronizes) the flow of a set of concurrent control flows. The Merge

Node combines a set of optional control flow paths, and it has multiple incoming control flows and a

single outgoing control flow. The Decision Node represents a point of conditional flow, and it has a single

incoming control flow and multiple outgoing control flows.

Control Flow: It is used to connect two nodes in an Activity diagram by directing the flow to the target

node once the source node's activity is completed. Tulsa checks the property inPartition of ControlFlow

to identify if it is within an ActivityPartition or between ActivityPartitions.

≪GaStep≫: This stereotype is defined by MARTE. It provides core tags for the action or message to

specifying characteristics of behavior steps. The core tags Tulsa considered are blockT (specifying

customer think time for initial node), rep (specifying the repetition times of forwarding requests), prob

(specifying the probability of forwarding requests), hostDemand (specifying the processing time of the

task).

One of the key contribution of Tulsa is it also supports the Storm-based applications. Two important

concepts of Storm are Spout and Bolt. DICE profile provides corresponding stereotypes ≪StormSpout≫

and ≪StormBolt≫ for them respectively. ≪StormSpout≫ and ≪StormBolt≫ also provide tags, e.g.,

blockT, rep, prob, hostDemand, and parallelism (representing the number of threads executing the same

component), for the Spout and Bolt.

Deliverable 4.6. Iterative quality enhancement tools - Final version

Copyright © 2017, DICE consortium – All rights reserved 37

APPENDIX B. Core Functions for Anti-Patterns Detection & Refactoring
Four functions are provided with APR to perform the anti-patterns detection and refactoring. The input

data format is XML, LQN model file and solved LQN model, with the anti-pattern boundaries. The

following are the functions defined in MATLAB:

B.1 AP1: Infinite Wait

[IWProcessor, IWTask, IWNumSynCall] = IWMaxCallCheck (inputLQNFileName, ThMaxCall);

Where ‘inputLQNFileName’ is location of the generated LQN model file and ‘ThMaxCall’ is the anti-

pattern boundary for synchronous calls (i.e., the number of maximum synchronous calls). This function

helps to check if there exists any component has synch-calls are greater than threshold ThMaxCall.

[AP1Processor, AP1ResTime] = IWMaxResTCheck (outputLQNSolvedFileName, IWProcessor,

IWTask, ThMaxResT);

Where ‘outputLQNSolvedFileName’ is location of the solved LQN model file, ‘IWProcessor’ is the

software processor which holds the ‘IWTask’ (i.e., component which has synch-calls are greater than

threshold ThMaxCall) and the ‘ThMaxResT’ is the anti-pattern boundary for the response time (i.e., the

maximum response time). This function helps to check if the components detected by function

IWMaxCallCheck increase the response time.

B.2 AP2: Excessive Calculation

[ECProcessor, ECEntry, ECNumEntry] = ECMaxEntryCheck (inputLQNFileName,

ThMaxEntry);

Where ‘inputLQNFileName’ is location of the generated LQN model file and ‘ThMaxEntry’ is the anti-

pattern boundary for components (i.e., the number of maximum entry). This function helps to check if

there exists any processor has components are greater than threshold ThMaxEntry.

[AP2Processor, AP2Util] = ECMaxUtilCheck (outputLQNSolvedFileName, ECProcessor,

ECNumEntry, ThMaxUtil);

Where ‘outputLQNSolvedFileName’ is location of the solved LQN model file, ‘ECProcessor’ is the

hardware processor which holds the components are greater than threshold ThMaxEntry and the

‘ThMaxUtil’ is the anti-pattern boundary for the processor utilization (i.e., the maximum utilization). This

function helps to check if the utilization of processor detected by function ECMaxEntryCheck is higher

than threshold.

