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Executive summary

This deliverable documents the anomaly and trace checking tools from the DICE solution. It details the
development and architecture of the Anomaly Detection Tool (ADT) from Task 4.2 and that of the Trace
Checking (TraCT) from T4.3. The initial versions of the Regression based Anomaly Detection method is
also detailed in this deliverable. With the final versions of these tools we have created a comprehensive
and extensible yet lightweight solution which can be used for quality and performance related contextual
and sequential anomaly detection. We have done this by implementing the architecture and workflow for
ADT as well as TraCT defined during the course of the project. Furthermore, we also detail a Regression
based AD solution that is able to compare and highlight anomalies in different versions of the same
application.

The document is structured as follows: the Introduction section highlights the objectives and features
of the anomaly detection, trace checking tools as well as that of the Regression based AD method. It
also describes the contributions of these tools to DICE objectives and DICE innovation objectives. This
is followed by the presentation of the position of the tools inside the overall architecture and interfaces
to other DICE tools. The first section also highlights the achievements of the period under report. The
second section, Architecture and design of the tool, details the constituent components of each of the
tools. The third section connects the DICE Monitoring platform to DICE use cases and requirements
identified and presented in deliverable D1.2. Deployment and validation of the tools is tackled in section
4. The last section draws final conclusions and sets the future development plans for DICE ADT and
Trace Checking.



Glossary

AD Anomaly Detection

ADT Anomaly Detection Tool

DIA Data Intensive Applications

DICE Data-Intensive Cloud Applications with iterative quality enhancements
DICE-TraCT DICE Trace-checking Tool

DMon DICE Monitoring

D-VerT DICE Verification Tool

ELK Elasticsearch, Logstash and Kibana
IDE Integrated Development Environment
LM Log Merger

PMML Predictive Model Markup Language
TCE Trace Checking Engine

UML Unified Modelling Language
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1 Introduction

This section will describe the motivation and context for this deliverable. A summary view of the project
methodology is shown in the Figure 1:
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Figure 1: Summary view of the project methodology.

This deliverable presents the final release of the DICE Anomaly Detection Tool (ADT) and Trace
checking tool (DICE-TraCT) whose main goals are to enable the definition and detection of anomalous
measurements from Big Data frameworks such as Apache Hadoop, Spark, Storm as well as NoSQL
databases such as MongoDB and Cassandra . Both tools are developed in WP4, more specifically the
ADT is developed in T4.2 Quality incident detection and analysis while the DICE-TraCT tool in T4.3
Feedbacks for iterative quality enhancement. We can see that these tools are represented in Figure 1
and are responsible for signaling anomalous behavior based on measured metrics (ADT and Regression
based AD) and on framework logs (DICE-TraCT).

The main objectives of these tools are to detect anomalies, in particular contextual anomalies. DICE-
TraCT on the other hand will be used for detecting sequential anomalies. Also, the creation of a lambda
architecture when combining ADT with DMon.

Main features of the anomaly detection are:

o Integration with several open source machine learning frameworks

Trace checking capabilities for Apache Storm

Regression based anomaly detection

Integration with DMon [17]

Ability to train and validate supervised predictive models

The remaining of this section presents the positioning of ADT and Trace checking tool relative to
DICE innovation objectives, DICE objectives and relation to other tools from DICE tool-chain.



1.1 Objectives

The focus of the DICE project is to define a quality-driven framework for developing data-intensive
applications that leverage Big Data technologies hosted in private or public clouds. DICE will offer a
novel profile and tools for data-aware quality-driven development. The methodology will excel for its
quality assessment, architecture enhancement, agile delivery and continuous testing and deployment,
relying on principles from the emerging DevOps paradigm. The DICE anomaly detection and trace
checking tools contribute to all core innovations of DICE, as follows:

I1: Tackling skill shortage and steep learning curves in quality-driven development of data- intensive
software through open source tools, models, methods and methodologies.

ADT and Regression based AD will enable the detection and alerting of anomalous behavior dur-
ing data intensive application development. DICE-TraCT on the other hand will deal with sequen-
tial anomalies identified from log data. This will help identify quality related anomalies and signal
these, in essence making the debugging and identification of performance bottlenecks much easier.

12: Shortening the time to market for data-intensive applications that meet quality requirements, thus
reducing costs for ISVs while at the same time increasing value for end-users.

Several tools and actors profit from the information (anomalies) signaled by ADT and DICE-
TraCT, thus using the detected anomalies in their initial setup.

13: Decreasing costs to develop and operate data-intensive cloud applications, by defining algorithms
and quality reasoning techniques to select optimal architectures, especially in the early develop-
ment stages, and taking into account SLAs.

By detecting quality and performance related anomalies operational costs can be reduced by the
optimized version of the application. At the same time other tools may use the detected anoma-
lies to provide feedback to the end user/developer and the output of these optimization tools can
provide significant financial and performance advantages.

14: Reducing the number and severity of quality-related incidents and failures by leveraging DevOps-
inspired methods and traditional reliability and safety assessment to iteratively learn application
runtime behavior

Runtime application behavior is collected by DMon which is then used as a data source for ADT
permitting the timely detection of quality-related incidents.

1.2 Relation to DICE objectives

The following table 1 highlights the contributions of ADT and Trace checking tool to DICE objec-
tives.

1.3 Relation to DICE Tools

Figure 2 illustrates the interfaces between the ADT (marked with red) and the rest of the DICE
solution. The main goal of ADT is to detect inconsistencies at runtime and on historical data for jobs and
services in data intensive applications. It is meant to provide a powerful but still light weight solution for
both developers, architects and software engineers.

As mentioned in deliverable D4.1 [17], there exists a tight integration between DMon and ADT as
these two tools will for the basis of a lambda type architecture. DMon is the serving layer while instances
of ADT can take the role of both speed and batch layers.

Other tools that make use of ADT are: Fault Injection, Quality Testing and IDE. The fault injection
tool is able to produce system level anomalies which can be used by ADT for the creation of training/-
validation datasets. Quality testing tool will use the detected anomalies while the IDE will permit the



Table 1: Relation to DICE objectives

DICE Objective Description

Relation to Anomaly Detection tools

DICE profile and methodology,

Define a data-aware profile and a data-aware
methodology for model-driven development

of data-intensive cloud applications.

The profile will include data abstractions

(e.g., data flow path synchronization),

quality annotations (e.g., data flow rates)

to express requirements on reliability,
efficiency and safety

(e.g., execution time or availability constraints).

None

Ad-hoc feature vector are definable in ADT however no
direct link to the DICE Profile exists. These feature
vectors have to be manually added by the user.

Quality analysis tools,

Define a quality analysis tool-chain

to support quality related decision-making
through simulation and formal verification.

The quality testing and Delivery tool [5] will
be able to use detected anomalies.

Quality enhancement tools,

An approach leveraging on DevOps tools to
iteratively refine architecture design and
deployment by assimilating novel data
from the runtime, feed this information to
the design time and continuously redeploy
an updated application configuration to

the target environment.

Enhancement tools may use the detected
anomalies to further streamline its
input data.

Deployment and testing tools,
Define a deployment and testing
toolset to accelerate delivery of the application.

The final versions of the tools use setuptools
for installation. This method allows easy installation on
most operating systems.

IDE, Release an Integrated Development
Environment (IDE) to simplify adoption
of the DICE methodology.

ADT will be controllable from the IDE,
meaning that query definition.

Open-source software,
Release the DICE tool-chain
as open source software.

ADT as well as Regression based AD and TraCT
rely heavily on open source technologies and are using an
Apache 2.0 license scheme.

Demonstrators, Validate DICE productivity
gains across industrial domains through 3 use
cases on data-intensive applications for media,
e-government, and maritime operations.

All demonstrators will use the ADT, in particular the ATC
usecase will use the TraCT tool for their Storm

based application and POSIDONIA

Operations will use the anomaly detection.

Dissemination, communication,

collaboration and standardisation, Promote
visibility and adoption of project results
through dissemination, communication,
collaboration with

other EU projects and standardization activities.

All tools have been or will be presented in both scientific
publications as well as Big Data innovation events.

Long-term tool maintenance beyond
life of project.,The project coordinator
(IMP) will lead maintenance of tools,
project website and user community
beyond DICE project lifespan.

Monitoring platform source code and homepage are
stored using, Github as a public open-source software.
Community is welcome to contribute,to the platform,
during and after DICE end.

interaction of actors with ADT, creating custom feature vectors, defining roles etc.




Deliverable 4.4. Quality anomaly detection and trace checking tools - Final version.

TRACE
CHECKING
ANOMALY
DETECTION
(U]
£2
FAULT 25 -
INJECTION S u
'—
VERIFICATION - -CONFIGURATION -
g OPTIMIZATION -
DICE .5
PROFILE IDE O
_ i f _ ENHANCEMENT
SIMULATION S
! | DELIVERY
OPTIMIZATION TOOL
MONITORING

Figure 2: DICE Overall architecture.

1.4 Achievements of the period under report

Overview of the main achievements in the reported period:
e Final versions of ADT, Trace Checking and regression based AD tools

Validation of tools using toy applications and use cases

Integration of tools into the DICE ecosystem

Supervised methods for anomaly detection

Grid search for automatic method parameter setting

Checked performance of DMon (DICE Monitoring Platform) and ADT on container based solu-
tions

Outline of potential improvements

1.5 Structure of the document

The structure of this deliverable is as follows:
e Section 2 the architecture and implementation details of the anomaly detection, Trace Checking
and Regression based Anomaly Detection tools and methods since last deliverable

e Section 3 gives some details related to the use cases for the tools
e Section 4 presents details on initial integration and validation of these tools

e Section 5 gives conclusions and outlines future work

Copyright 2017, DICE consortium All rights reserved 10



2 Architecture and Implementation

The following section will detail the overall architecture, implementation as well as the requirement
coverage of each tool. It also covers the main rationale behind the necessity of each tool as well as the
interaction between them and the overall DICE toolchain.

2.1 Anomaly detection tool

Anomaly Detection is an important component involved in performance analysis of data intensive appli-
cations. We define an anomaly as an observation that does not conform to an expected pattern [6, 10].
Most tools or solutions such as Sematex', Datadog? etc. are geared more towards a production environ-
ment in contrast to this the DICE Anomaly Detection Tool (ADT) which is designed to be used during
the development phases of big data applications.

2.1.1 Big Data framework metrics data

In DICE most data preprocessing activities will be done within DMon [17]. However, some additional
preprocessing such as normalisation or filtering will have to be applied at method level.

In anomaly detection the nature of the data is a key issue. There can be different types of data such
as: binary, categorical or continuous. In DICE we deal mostly with the continuous data type although
categorical or even binary values could be present. Most metrics data relate to computational resource
consumption, execution time etc. There can be instances of categorical data that denotes the status/state
of a certain job or even binary data in the form of boolean values. This makes the creation of data sets on
which to run anomaly detection an extremely crucial aspect of ADT, because some anomaly detection
methods don’t work on categorical or binary attributes.

It is important to note that most, if not all, anomaly detection techniques and tools, deal with point
data, meaning that no relationship is assumed between data instances [10]. In some instances this as-
sumption is not valid as there can be spatial, temporal or even sequential relationships between data
instances. This in fact is the assumption we are basing ADT on with regard to the DICE context.

All the data which the anomaly detection techniques use are queried from DMon. This means that
some basic statistical operations (such as aggregations, median etc.) can already be integrated into the
DMon query. In some instances this can reduce the dataset size in which to run anomaly detection.

Since the last deliverable D4.3 [9] we have added native support for several Big data frameworks on
which Data Intensive Applications (DIAs) are based. ADT now supports; Yarn, Spark, Storm, Cassan-
dra, MongoDB. In addition to these we have also added native support for the Complex event processor
(CEP) component from the Posidonia Operations usecase. Later additions are possible as the moccations
necesary in order to add support for other technologies is limited to the Data Formatter component.

Anomaly detection libraries

In recent years, there have been a great deal of general machine learning frameworks developed.
These can deal with a wide range of problems. One of the problem domains that can be tackled using
them is that of anomaly detection. It is important to mention that we will use not only bespoked anomaly
detection libraries/methods but also more general supervised (i.e. classification based) and unsupervised
(i.e. clustering based) techniques in ADT. In Figure 3 we have a short overview of the core libraries in
the current version of ADT. For the sake of completeness we will briefly describe the machine learning
libraries used, and the rationale behind using them in ADT.

During integration of the anomaly detection libraries we have encountered a few unforeseen diffi-
culties. The performance of JVM based libraries such as Weka [16] and ELKI [23] is quite poor. This
doesn’t mean that the trained models are of a lower quality but rather their reliance on JVM creates some
difficulties when running them from ADT. Because of this, we decided to focus our work on the libraries

"https://sematext.com/spm/
Zhttps://www.datadoghq.com/



which are written or officially support bindings in Python. The JVM methods are still integrated and
usable from ADT but they are not used on any use cases or experiments.

Since the last deliverable we have integrated TensorFlow [1] based deep learning methods into ADT.
We have found that although there is quite a substantial documentation available for Tensorflow using it
is quite difficult. The Keras® library is a high level neural network API which is capable of running on
top of TensorFlow, CNTK* or Theano?. It is extremely user friendly and is very good at abstracting the
underlying backend.

2.1.2 Anomaly detection methods

There are a wide range of anomaly detection methods currently in use [6]. These can be split up
into two distinct categories based on how they are trained. First there are methods used in supervised
methods. In essence these can be considered as classification problems in which the goal is to train a
categorical classifier that is able to output a hypothesis about the anomality of any given data instances.
These classifiers can be trained to distinguish between normal and anomalous data instances in a given
feature space. These methods do not make assumptions about the generative distribution of the event
data, they are purely data driven. Because of this the quality of the data is extremely important.

For supervised learning methods labeled anomalies from application data instances are a prereq-
uisite. False positives frequency is high in some instances, this can be mitigated by comprehensive
validation/testing. Computational complexity of validation and testing can be substantial and represents
a significant challenge which has been taken into consideration during in the ADT tool. Methods used
for supervised anomaly detection include but are note limited to: Neural Networks, Neural Trees, ART1,
Radial Basis Function, SVM, Association Rules and Deep Learning based techniques.

In unsupervised anomaly detection methods the base assumption is that normal data instances are
grouped in a cluster in the data while anomalies don’t belong to any cluster. This assumption is used in
most clustering based methods [20, 21] such as: DBSCAN, ROCK, SNN FindOut, WaveCluster. The
second assumption [6, 23] on which K-Means, SOM, Expectation Maximization (EM) algorithms are
based is that normal data instances belong to large and dense clusters while anomalies in small and spars
ones. It is easy to see that the effectiveness of each unsupervised, or clustering based, method is largely
based on the effectiveness of individual algorithms in capturing the structure of normal data instances.

It is important to note that these types of methods are not designed with anomaly detection in mind.
The detection of anomalies is more often than not a by product of clustering based techniques. Also, the
computational complexity in the case of clustering based techniques can be a serious issue and careful
selection of the distance measure used is a key factor.

The following paragraphs will present the available anomaly detection methods from ADT.

Unsupervised

KMeans [3] is one of the simplest unsupervised learning algorithms used for clustering. It is able to
classify any given data set through a certain number of clusters which have to be defined a priori. Each
of the user defined clusters will be represented internally by a centroid as far away from each other as
possible. Then each data point is associated with the closest centroid. The next step is to recalculate new
centroids and this process is repeated until the centroids do not move anymore. The goal of the algorithm
is to minimize an objective function denoted by equation 1:

k

J:Zi ngﬂ_chQ (M

j=1i=1

J

2 ,
where Hxl —¢j H is the distance measure between a datapoint 2() and cluster center c;, is an indi-

cator of the distance of the n data points from their perspective cluster center.

*https://keras.io/
“https://github.com/Microsoft/cntk
>https://github.com/Theano/Theano



DBSCAN [8] is a density based data clustering algorithm that marks outliers based on the density
of the region they are located in. There are several advantages to using this algorithm. First, we don’t
have to specify the number of clusters a priori as opposed to KMeans. Secondly, and most importantly
DBSCAN has the concept of noise or outliers which are in fact anomalies from the point of view of the
DICE Methodology.

As with many algorithms DBSCAN has some limitations, some of which directly impact it’s useful-
ness in DICE. First, because it is density based, its performance on large feature spaces is quite poor and
the amount of data points categorized as noise is unrealistic. Second, performance is largely dependent
on the distance measure used. If the standard euclidian distance is used the problem of high dimension
data is greatly increased.

EM [24] can be used to generate the best hypothesis for the distribution of parameters for multi-
modal data. In this case we define the best hyphotesis as being the most likely one. This algorithm has
been successfully used in some for or another in the detection of anomalies for differernt types of use
cases [27].

Isolation Forest [18] ’isolates’ observations by randomly selecting a feature and then randomly se-
lecting a split value between the maximum and minimum values of the selected feature. Since recursive
partitioning can be represented by a tree structure, the number of splittings required to isolate a sample is
equivalent to the path length from the root node to the terminating node. This path length, averaged over
a forest of such random trees, is a measure of normality and our decision function. Random partitioning
produces noticeably shorter paths for anomalies. Hence, when a forest of random trees collectively pro-
duce shorter path lengths for particular samples, they are highly likely to be anomalies.

Supervised

Random Forest [4] is a meta estimator that fits a number of decision tree classifiers on various sub-
samples of a data-set. In order to improve accuracy and reduce overfitting it uses averaging. It can be
used for classification as well as regression tasks. Bootstrap aggregation is used as a generalized training
technique. Given a training set X = z1,...,z, with the desired features as Y = i, ..., y,, bagging
repeatedly (B times) and selecting random samples from the training set to which trees are fitted. For
b=1,...,B:

1. B training examples from X,Y (denoted as X, Y3)

2. Training of a regression tree f, on X3, Yp

After training, predictions for unseen sample = is made by averaging predictions from all distinct
. ! . .
regression trees on x as seen in equation 2.

B
f=1/BY_ filx) @)
b=1

Decision Trees [2] are used as predictive models for observation (represented by the branches) to
conclusions (represented by leaves). In our case the leaves of a learned decision tree will present class
labels while branches will represent conjunctions of features that lead to the labels. Algorithms usually
work top down by choosing a variable at each step that best splits the set of items. The Gini impurity
is a measure of how often a randomly chosen element would be incorrectly labeled. It is the sum of
the probability p; of an item with label ¢ being chosen times the probability 1 — p; of a mistake in
categorizing that item. To compute Gini of a set of items with 7" classes, suppose ¢ € 1,2, ...,T and let
p; be the fraction of items labeled with class 7 in the set, see equation 3.

Io(p) =) pix 3

i#k
AdaBoost [7] is a meta learning algorithm specially designed to tackle the curse of dimensionality
problem related to the features present in a data-set. During training, AdaBoost selects only the features
which improve the predictive power of the model, thus leading to a reduction in the dimensionality of



the data and a great potential to reduce execution time. A boost classifier as used in AdaBoost is defined
as seen in equation 4

T
Fr(z) =) fi(x) @)
t=1

where f; is a weak learner that takes an object x as input and returns a value indicating the class of
the object. Each weak learner produces a hypothesis denoted by h(z;), for each sample in the training
set. At each iteration ¢ a learner is selected and a coefficient ¢ is assigned to it such that the training
error I (equation 5) is minimized.

E, = Z E[F;_1 (%) + agh(2;)] 5)

Neural Networks [25, 13, 26] are based on biological neural network and are designed to mimic the way
a biological brain functions. It has a series of artificial neurons which are interconnected with weighted
connections. The number of layers (they are referred to as hidden layers) is a variable as well as the
number of input and outputs of the neural network. In the context of anomaly detection, neural networks
and deep neural networks have been extensively used. In DICE we aim to enable the use of not only feed
forward but also of recurrent and even deep learning based neural networks.

2.1.3 Anomaly detection Implementation

The ADT is made up of a series of interconnected components that are controlled from a simple
command line interface. An eclipse plugin was also developed for this tool which is integrated into the
DICE IDE. A more user friendly interface is also possible.

In total there are 8 components that make up ADT. The general architecture can be seen in Figure
3 These are meant to encompass each of the main functionalities and requirements identified in the
requirements deliverable [12].

First we have the data connector(called dmon-connector) component which is used to connect to
DMon. It is able to query the monitoring platform and also send it new data. This data can be used for
both detected anomalies or as training dataset for creating predictive models. For each of these types of
data dmon-connector creates a different index inside DMon. In deliverable 4.3 [9] we detailed how we
created an anomaly index that was rotated every 24 hours. In the latest version of ADT this behavior has
changed so that only one anomaly index is created and it is up to the user to decide when to purge it.
This has been done in order to maximize the performance of the serving layer (i.e. DMon) as creating
potentially hundreds of indexes of limited size is not efficient.

It is important to note that both DMon and ADT where tested on a container based deployment of
Spark. This was done in collaboration with the CloudLightning research project. In CloudLightning they
use an Apache Mesos cluster on top of which they run Marathon® container orchestrator. We managed
to run DMon successfully on a container based deployment of Spark. No major issues where detected,
DMon is fully capable of monitoring container based DIAs.

After the monitoring platform is queried the resulting dataset can be in JSON, CSV or RDF/XML.
However, in some situations additional formatting is required. This is done by the data formatter com-
ponent. It is able to normalize the data, filter different features from the dataset or even window the
data. The type of formatting the dataset may or may not need is highly dependent on the anomaly detec-
tion method used. One example of additional formatting is that of categorical feature encoding. Some
anomaly detection methods require categorical data to be reencoded, in these situations ADT has the
capability to encode these in a so called one hot encoding. This can be done automatically (ADT is able
to detect categorical features) or for user defined features.

The feature selection component is used to reduce the dimensionality of the dataset. Not all features
of a dataset may be needed to train a predictive model for anomaly detection. So in some situations it is

®https://mesosphere.github.io/marathon/
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Figure 3: General overview of Anomaly Detection Stack.

important to have a mechanism that allows the selection of only the features that have a significant impact
on the performance of the anomaly detection methods. Currently only two types of feature selection is
supported. The first is Principal Component Analysis’ (from Weka) and Wrapper Methods. Because of
the difficulties encountered during the integration of JVM based methods the PCA version implemented
in scikit-learn is the recommended and the default one used.

The next two components (see Figure 3 model trainer and exporter) are used for training and then
validating predictive models for anomaly detection. For training a user must first select the type of
method desired. The dataset is then split up into training and validation subsets and later used for cross
validation. The ratio of validation to training size can be set during this phase. Parameters related to each
method can also be set in this component. It is also possible to side load” training data into ADT.

Validation is handled by a specialized component which minimizes the risk of overfiting the model
as well as ensuring that out of sample performance is adequate. It does this by using cross validation and
comparing the performance of the current model with past ones. Crossvalidation can be ommited at user
request.

Once validation is complete the model exporter component transforms the current model into a seri-
alized loadable form. We will use the PMML [14] format wherever possible in order to ensure compat-
ibility with as many machine learning frameworks as possible. This will also make the use of ADT in a
production like environment much easier.

The resulting model can be uploaded into DMon. In fact the core services from DMon (specifically
Elasticsearch) have the role of a serving layer from a lambda architecture. Both detected anomalies and
trained models are stored in DMon and can be queried directly from the monitoring platform. In essence
this means that other tools from the DICE toolchain need to know only the DMon endpoint in order to
see what anomalies have been detected.

Furthermore, the training and validation scenarios (see Figure 15) is in fact the batch layer while
unsupervised methods and/or loaded predictive models are the speed layer. Both these scenarios can be
accomplished by ADT. This integration will be further detailed in later sections.

The last component is the anomaly detection engine. 1It is responsible for detecting anomalies. It
is important to note that it is able to detect anomalies however it is unable to communicate them to the
serving layer (i.e. DMon). It uses the dmon-connector component to accomplish this. The anomaly
detection engine is also able to handle unsupervised learning methods. We can see this in Figure 3 in
that the Anomaly detection engine is in some ways a subcomponent of the model selector which select
both pre-trained predictive models and unsupervised methods.

We can see in Figure 4 the sequence diagram for ADT and DMon. It is clearly observable that both
anomalies and predictive models are served and stored inside DMon.

"http://weka.sourceforge.net/doc.dev/weka/attributeSelection/Principal Components.html
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2.1.4 Configuration

In order to run ADP we must execute the following command:
$ python dmonadp.py <args>

There are currently two ways of configuring ADT. First we have the command line arguments and
second we have the configuration file. The following paragraphs will deal with the command line argu-
ments.

S python dmonadp.py -h
Where the h argument lists a short help message detailing some basic usage of for ADT.
$ python dmonadp.py —-f <file_location>

Where the f argument will define the configuration file is location. If the config file is not defined it
will use a default location with the name dmonadp.ini.

$ python dmonadp.py —-e <es_endpoint>

Where the e argument allows the setting for the Elasticsearch endpoint. It is important to note that
ADT is tightly integrated with DMon and requires both the controller and Elasticsearch endpoints.

$ python dmonadp.py —-a <query> -t -m <method> -v <folds> —-x <model>



The query string is represented by a and is used to generate the final DMon query. The resulting
data will be used for training. The query is a standard elasticsearch query® containing also the desired
timeframe for the data. Also it can be in the form of the aggregated preset queries detailed later in this
deliverable.

The ¢ parameter if set instructs ADT to initiate the training of the predictive model. While m represent
the method name used to create the predictive model (or clusterer). In order to run cross-validation the
v parameter has to be set and will run for the number of fold defined by the use. In order to export the
model in PMML format the = parameter has to be set together with the model name. This user defined
model name is used together with the model to generate the final model name. It is important to note that
this name will be used to identify the model thus the user has the obligation to give it a suitable name.
The last two arguments namely v and x, are optional and can be omitted.

$ python dmonadp.py —-a <query> —-d <model>

By setting the d parameter ADT will predict use the user defined predictive model to detect anomalies in
the incoming monitoring event stream.

2.1.5 Configuration File

The configuration file allows the definition of all of the arguments already listed. The settings passed
as command line arguments will override any settings written in the configuration file. The file uses an
ins format which makes integration into the DICE IDE much simpler as this file format is extensively
used in Eclipse. Listing 1 contains an example configuration file.

Connector

The Connector section sets the parameters for use in connecting and querying DMon:
[ ]

e ESEndpoint - sets the current endpoint for DMon, it can be also in the form of a list if more than
one elasticsearch instance is used by DMon

e ESPort - sets the port for the elasticsearch instances. It is important to note that this setting is
important for anomaly index creation and updating.

e DMonPort - sets the port for DMon

e From - sets the first timestamp for query, the use of time arithmetic of the form “now-2h” is also
supported.

e 7o - sets the second timestamp for query, lower bound

Query - defines what metrics context to query from DMon

— each metric context is divided into subfields as follows:
* yarn - cluster, nn, nm, dfs, dn, mr
* system - memory, load, network
* spark - executor, driver
* storm - all
+ cassandra - all
+ mongodb - all

* userquery - the user can define a manually created elasticsearch query which will be
use instead of the aforementioned aggregated queries

e Nodes - list of desired nodes, if nothing specified than uses all available nodes

8hittps://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html



e (Size - sets the query size (number of instances), if set to O then no limit is set
e Qlnterval - sets aggregation interval

Each large context is delimited by ”;” while each subfield is divided by ,”. Also QInterval must be
set to the largest value if query contains both system and platform specific metrics. If the values are two
far apart it may cause issues while merging the metrics. In this case ADT will issue a warning to the
user. Another important point is that in some circumstances if the interval value is set to low DMon will
not be able to successfully aggregate the Elasticsearch response which might cause unwanted behavior.
In order to fix this the interval should never be set lower than the interval set for the monitoring auxiliary
components from DMon.

The userquery aggregation option was added in the final version of ADT so that users which might
use different technologies than the ones officially supported by DICE can use the anomaly detection
platform. The query must be in JSON format and be stored in the queries directory. An example query
can be found in listing 2.

Mode

The Mode section defines the mode in which ADP will run. The options are as follows:
e Training - If set to True the selected method will be trained using metrics collected from DMON

o Validate - If set to True the trained methods are compared and validated

e Detect - If set to True the trained model is used to decide if a given data instance is an anomaly or
not.

Filter

The Filter section is used to filter the collected data and can be used to select which features are used
for anomaly detection. The options are as follows:
e Columns - Defines the columns to be used during training and/or detecting. Columns are delimited
by ’7;’7

e Rows - Defines the minimum (using ld) and maximum (using gd) of the metrics. The time format
used is utc.

e DColumns - Defines the columns to be removed from the dataset.

Detect

The Detect section is used for selecting the anomaly detection methods for both training and detecting
as follows:
e Method - sets the desired anomaly detection method to be used (available ’skm’, ’em’, ’dbscan’,
isolationforest, randomforest, decisiontree, adabost, neural)

e Type - type of anomaly detection (available ’clustering’, ’classification)
e Export - name of the exported predictive/clustering model
e Load - name of the predictive/clustering model to be loaded

If "Export’ and "Load’ is set to the same value then one a model is trained it will be automatically
loaded and used to detect anomalies. If the model is not yet available then detect will try every 30 seconds
until it detects a model with the given name. Since D4.3 [9] we have implemented a set of classification
algorithms in addition to the clustering and density based ones.



Point

The Point section is used to set threshold values for memory, load and network metrics to be used
during point anomaly detection. This type of anomaly detection is run even if *Train’ and ’Detect’ is set
to False.

Miscellaneous

The Misc section is used to set miscellaneous settings which are as follows:
e heap - sets heap space max value for all JVM based AD method implementations

e checkpoint - If set to false, all metrics will be saved as csv files into the data directory otherwise all
data will be kept in memory as dataframes. It is important to note the if the data is kept in memory
processing will be much faster. If checkpointing is activated each pre-processing and processing
step will yield a csv file which serves as a checkpoint. If an operation fails or the platform crashes
it will resume from the last checkpoint.

e delay - sets the query delay for point anomalies
e interval - similar to delay however it sets the query interval for complex anomalies

o resetindex - if set to True the *anomalies’ index will be reset and all previously detected anomalies
will be deleted.

2.1.6 Method Settings

The MethodSettings section of the configuration files allows the setting of different parameters of
the chosen training method. These parameters can’t be set using the command line arguments and if
not defined will use default values. Some algorithms such as KMeans and EM will not be covered in
detail in this deliverable as during testing these algorithms have proven to be of limited use for detecting
anomalies. There available parameters can be found in the official ADT wiki®.

Unsupervised Methods

As mentioned in section DBSCAN is a density based data clustering algorithm that marks outliers
based on the density of the region they are located in. For this algorithm we support two versions.
The first one is base on the Weka implementation of the algorithm while the second one is based on
the scikit-learn implementation. During testing we have found that the Weka implementations are not
that computationally efficient especially when considering the fact that they require the starting of a
Weka JVM as a subprocess from inside ADT which can then execute training and validation. The two
implementation have the following method settings:

DBSCAN Weka'”
e [ - epsilon which denotes the maximum distance between two samples for them to be considered
as in the same neighborhood (default 0.9)

e M - the number of samples (or total weight) in a neighborhood for a point to be considered as a
core point. This includes the point itself (default 6)

e D - distance measure (default weka.clusterers.forOPTICS AndDBScan.DataObjects.EuclideanDataOb-
ject)

DBSCAN scikit-learn!!

e ¢ps - epsilon which denotes the maximum distance between two samples for them to be considered
as in the same neighborhood (default 0.5)

*https://github.com/dice-project/DICE-Anomaly-Detection-Tool/wiki
"http://weka.sourceforge.net/doc.packages/optics_dbScan/weka/clusterers/DBScan.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster. DBSCAN.html



IsolationFores

min_samples - The number of samples (or total weight) in a neighborhood for a point to be con-
sidered as a core point. This includes the point itself (default 5)

metric - metric used when calculating distance between instances in a feature array (default eu-
clidean)

Algorithm - the algorithm used by the nearest-neighbor module to compute pointwise distance and
find nearest neighbor (default auto)

leaf size - leaf size passed to BallTree or cKDTree, this can affect the speed of the construction
and query, as well as the memory required to store the tree (default 30)

p - the power of the Minkowski metric used to calculate distance between points (default None)
n_jobs - the number of parallel jobs to run (default 1, if -1 all cores are used)

t'2 implementation used is the one found in the scikit-learn library. It has the wollowing

parameters:

n_estimators - number of base estimators in the ensemble (default 100)
max_samples - number of samples to draw to train each base estimator (default auto)

contamination - the amount of contamination of the dataset, used when fitting to defined threshold
on the decision function (default 0.1)

max _features - the number of features to draw to train each base estimator (default 1.0)

boostrap - if true individual trees are fit on random subsets of the training data sample with re-
placements, if false sampling without replacement is performed (default false)

n_jobs - the number of jobs to run in parallel for both fit and predict, (default 1, if -1 all cores are
used)

Supervised Methods

Random Forest parameters are:

n_estimators - number of trees in the forest (default 10)

criterion - function to measure the quality of the split; supported criteria are ”gini” for Gini impu-
rity and “entropy” for the information gain (default gini)

min_sample_split - minimum number of samples required to split an internal node; if int it is
considered the minimum sample if float it is a percentage (default 2)

min_sample_leaf - minimum number of samples required to be at a leaf; if int it is considered the
minimum sample if float it is a percentage (default 1)

min_weight_fraction_leaf - minimum weighted fraction of the sum total of weights required to be
a leaf node (default 0)

bootstrap - whether bootstrap samples are used when building trees (default True)

n_jobs - the number of jobs to run in parallel for both fit and predict, (default 1, if -1 all cores are
used)

random_state - if int it is the seed used by the random number generator if None uses np.random
(default None)

Phttp://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html



Decision Tree parameters are:

e criterion - function to measure the quality of the split; supported criteria are ”gini” for Gini impu-
rity and “entropy” for the information gain (default gini)

e splitter - strategy used to chose the split at each node; strategies supported are “best” for chose the
best split and “random” to choose the best random split.

e max_features - number of features to consider when looking for the best split (default None):

— if int represents the number of features

— if float represent the percentage of features at each split
- if "auto” then max reatures = sqrt(neatures)

— if ”sqrt” then max features = sqrt(nreatures)

- if ”log2” then max reatures = log2(n reatures)

— if None then maz reatures = nyeatures

o min_sample_split - the minimum number of samples reqired to split an internal node; if inf it is
considered the minimum sample if float it is a percentage (default 2)

o min_weight_fraction_leaf - minimum weighted fraction of the sum total of weights required to be
a leaf node (default 0)

e random_state - if int it is the seed used by the random number generator if None uses np.random
(default None)

AdaBoost parameters are:
e n_estimator - number of trees in the forest (default 10)

e random_state - if int it is the seed used by the random number generator if None uses np.random
(default None)

e learning_rate - learning rate shrinks the contribution of each classifier (default 1.)

Neural Network parameters are:
e hidden_layer _sizes - tuple, represents the number of elements in the hidden layer (default (100, ))
e max_iter - maximum number of iterations until convergence (1le — 4) or this number of iterations

e qactivation - activation function for hidden layers (default relu):

’identity’, no-op activation f(x) = z

"logistic, sigmoid function f(z) = 1/(1 + exp(—x))

"tanh’, hyperbolic tan function, f(x) = tanh(x)

relu’, rectified linear unit function, f(z) = maxz(0, x)

solver - solver for weight optimization:

— ’Ibfgs’ is a quasi-Newton method optimizer
— ’sgd’ stochastic gradient descent

— ’adam’ stochastic gradient-based optimizer proposed by Kingma, Diederik and Jimmy Ba

batch_size - size of mini-batches for stochastic optimizer

learning_rate- learning rate schedule for weight updates (default constant):



— ’constant’ constant learning rate
— ’invscaling’ gradually decreases the learning rate at each timestep

— ’adaptive’ keeps the learning rate constant as long as training loss keeps decreasing
e momentum - momentum for gradient descent updates (default 0.9)
e alpha - L2 penalty (regularization term) parameter (default 0.0001)

This tool is still a work in progress. All commands and their behaviors are subject to changes. Please
consult the official DICE repository changelog!? to see any significant changes.

2.1.7 Requirements

Table 2: Anomaly Detection Tool requirements

D Title Priority | Status | Comments

R4.24 | Anomaly detection in app quality MUST v

ADT is capable of running

R4.24.1 | Unsupervised Anomaly Detection MUST v clustering based methods

ADT is able to query and
R4.24.2 | Supervised Anomaly Detection MUST v generate datasets for
training and validation.

Is possible to define

R4.24.3 | Contextual Anomalies Should v feature vectors that define
context.

R4.24.4 | Collective anomalies Should v Using the data formatter

R4.24.5 | Predictive Model saving for AD MUST v Is cap.ab'le of genc?ra.t ing PMML
or serialized predictive models

R4.24.6 | Semi-automated data labeling Could v Can be done via dmon-gen
component.

R4.24.7 | Adaptation of thresholding Could v User defined treasholding

R4.26.2 | Report generation of analysis results | Should 4 Local generat.lon of
report is possible.

R4.36 | AD between two versions of DIA MUST v Querying based on DIA tags
R437 | ADTshould getinput MUST | « | DICE IDE plugin

parameters from IDE

In table 2 we can see the current status of the requirements related to ADT. Requirements marked
with an x are still to be started while the other ones are either started (grey) or fully operational (black).

2.2 Trace checking tool

In Deliverable D4.3 DICE-TraCT has already been presented as a stand-alone application, taking
part of the definition of the Anomaly Detection component in the DICE ecosystem. DICE-TraCT has the
purpose of enabling log analysis of the DIA implemented in Apache Storm by means of trace-checking
techniques. To this end, DICE-TraCT exploits a direct connection to the monitoring platform (DMon)
which is used to retrieve and collect log traces of the application currently analysed. The architecture
presented in D4.3 has already introduced the fundamental connections between DICE-TraCT and the
IDE component and between DICE-TraCT and Dmon, not yet implemented at the time of delivering the
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Figure 5: Dependencies between DICE-TraCT, DMon and the IDE component

document. The following Figure 5 shows the architectural connections among the three components.
By means of suitable API methods, available from Dmon (depicted on the left-hand side), DICE-
TraCT can:
e activate a log monitoring session on the current application running in the deployed Storm topology
by calling

POST /dmon/v1l/overlord/storm/logs
e visualize the list of the available logs that can be obtained from Dmon by calling
GET /dmon/vl1/overlord/storm/logs

e collect the logs of the application that were stored in the specified session and that are available in
the platform

GET /dmon/vl/overlord/storm/logs/{log_name}

The REST calls required to implement such functionalities are arguments of deliverable D4.3 and will
not further explained in this document.

On the right-hand side of Figure 5, the connection between DICE-TraCT and the IDE has the purpose
of enabling the trace-checking analysis by making the trace-checking service available to the DICE user,
who enforces the iterative refinement of the DIA application through the quality analysis and enhance-
ment tools.

This section elaborates on the implementation of the two connectors and shows the definition of the
core API that DICE-TraCT supplies as a REST service. In addition, besides the architectural relations
existing among the components required by DICE-TraCT to perform the log analysis, the second argu-
ment of the section is related to the extensions implemented in the last version of the tool and that have
been included in the M30 release. In particular, these improvements affect one subcomponent of DICE-
TraCT called Trace Checking Engine (TCE). According to Figure 6 in D4.3, DICE-TraCT is composed
of three main components: DICE-TraCTor, Trace Checking Engine and Log Manager (LM).

e Trace Checking Engine (TCE) actually performs the trace analysis. The input is a time stamped
log of events and a property to analyze; the output is the result of the evaluation of the property
over the specified log.

e Log Merger (LM) collects the logs that undergo the analysis and splits them into various smaller
logs, each one specific for a node of the Storm topology in analysis. Storm worker log might
contain more than one sequence of events, each one associated with an executor spawned in that
worker. Therefore, to reduce the size of the analyzed logs, that can entail an onerous trace-checking
analysis, DICE-TraCT first manipulates the collected logs to aggregate all the relevant events gen-
erated by a node (or a subset of the nodes in the topology) into a new smaller log trace.

Bhttps://github.com/dice-project/DICE- Anomaly-Detection-Tool/wiki/Changelog
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Figure 6: DICE-TraCT architecture

e DICE-TraCTor coordinates all of the activities carried out by DICE-TraCT. It manages the trace-
checking request from the IDE, instructs LM and TCE and handles the communication with the
monitoring platform.

The modification affecting TCE allows the use of different trace-checking engines. In the previous
version, TCE only dealt with one external solver whereas in M30 release TCE is able to select the most
appropriate engine based on the log analysis that the user wants to carry out.

2.2.1 DICE-TraCT REST API

DICE-TraCT can be accessed through a POST call with the following input data:
e parameter ip and port specify the IP address and the port where the DICE-TraCT service is de-
ployed and running;

o the payload is a json descriptor which defines the trace-checking analysis to be carried out. The
format of the json descriptor has been already shown in deliverable D4.3 and it is examined in
detail afterwords.

The blue component in Figure 6 is implemented by a Flask '* module dicetractservice.py,
shown in Figure 7. DICE-TraCT is implemented by function dicetract () which is associated with
the POST method /run. Line 1 of Figure 7 specifies that /run is a POST method. DICE-TraCTor
component of DICE-TraCT is called at line 6 through function dicetractor (), which is invoked
with parameter request .get_json () returning the JSON payload of the call.

Assuming that DICE-TraCT is deployed at dicetracturl on port 5050 and that the monitoring platform
is deployed at dmonurl at port dmonport, an example of a method call can be the following:

POST http://dicetracturl:5050/run?ip=dmonurlé&port=dmonport

The payload associated with the POST call is obtained, at line 6, through the request .get_json ()
function which is specified as a parameter of dicetractor () function. An example of a possible
payload that DICE-TraCT can manage is shown if Figure 8. It specifies two trace-checking tasks for the
nodes “word” and “exclaim1” of ExclamationTopology, a simple Storm benchmark application which is
distributed within the Storm framework and that was used to validate DICE-TraCT.

The json descriptor consists of two main items: the topology name, specified by the key “topology-
name”, and a list of descriptors of the trace-checking instances for each node in the tuple associated with
the key “nodes”. Each node descriptor provides the following data.

e The name of the node to analyze is specified in the “name” string. The specified identifiers must
match the names that are used in the deployed topology and that appear in the log files associated
with the events of the nodes in the topology.

“http://flask.pocoo.org/
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Figure 7: POST method implementing DICE-TraCT main service in dicetractservice.py.

Figure 8: An example of payload specifying two trace-checking analysis on spout “word” and bolt
“exclaim1” of ExclamationTopology.

e The “type” of node can be either a “spout” or a “bolt” (Storm topologies are defined by graphs of
computational nodes. Spouts are the data sources of a topology and always produce messages -
or tuples - that are elaborated by the bolts. Bolts receive tuples from one or more nodes and send
their outcome to other bolts, unless they are final. In this last case, a bolt does not emit tuples).

e The parameter (or property) that the analysis has to consider for the node. The current implemen-

Copyright 2017, DICE consortium All rights reserved 25



tation of DICE-TraCT only deals two two distinct parameters for the quality analysis assessment
and they are tightly related to the verification analysis that is carried out by D-VerT according
to the line presented in deliverables D3.5 DICE Verification tool Initial version. In particular,
the two possible parameters are: “spoutrate” and “sigma”. “Spoutrate” is the emitting rate of a
spout node, defined as the number of tuple emitted per second, and “sigma” is the ratio between
the number of tuples produced by a bolt node in output and the number of tuples that it has are
received in input.

The length of the time window limiting the trace-checking analysis. The size, specified by the value
of the key “window”, determines how many log events are considered to carry out the evaluation
of the property defined by “parameter”. The unit measurement is the millisecond.

The kind of the analysis, that DICE-TraCT has to use to calculate the value of the property, is spec-
ified in the method keyword. The analysis is performed by running the engine that is specific for
the property to be verified. This feature was not implemented in the first release of DICE-TraCT
and it represents one improvement that is implemented for the final release. The first implemen-
tation of DICE-TraCT exploited a trace-checking procedure that is based on a logical approach.
Logical languages involved in the trace checking analysis are usually extensions of metric tempo-
ral logics which offer special operators called aggregating modalities. These operators are useful
to count events in the logs or calculate an average on the occurrences over a certain time window
and compare the value with a given threshold. Therefore, the outcome is always a boolean answer.
DICE-TraCT is based on Soloist language[3]. The current implementation of DICE-TraCT can
also call a simpler trace-checker (called SimpleTC) than the one for Soloist, that is developed to
provide quantitative information calculated from the logs: specifically, the value of the emit rate
for the spouts and the sigma of bolts can be directly extracted from the logs and provided to the
user. The possible values of the key “method” are:

counting : it enables the evaluation of the “parameter” by means of the so called Counting
formulae of the Soloist logic. This choice will call the Soloists trace-checker (https:
//bitbucket.org/krle/mtlmapreduce/overview).

”average” : it enables the evaluation of the “parameter” by means of the so called Average
formulae of the Soloist logic. This choice will call the Soloists trace-checker (https:
//bitbucket.org/krle/mtlmapreduce/overview).

quantitative : it enables the quantitative analysis of the logs which extracts the value of “param-
eter”. This method will call SimpleTC engine.

The analysis instantiated by the Soloist trace checker is designed to provide a boolean result calcu-
lated by comparing the number of occurrences of an event in the log with a user defined threshold.
The relation “<”, “=" or “>" is specified by “relation” and the threshold value is provided in
“designvalue” key.

For each instance descriptor in the JSON payload, DICE-TraCT carries out the proper trace-checking
analysis. The trace-checking engine and the Soloist formula for the analysis are identified in DICE-
TraCT by means of a specific hierachy of classes defined in the module formula.py.

Formula is an abstract class and the root of the hierarchy.

SpoutRateAverage and SpoutRateCounting are the subclass of Formula representing the analysis
is the emit rate of spout nodes by means of average and counting criteria.

SigmaAverage and SigmaCounting are the subclass of Formula representing the analysis is the
sigma value of bolt nodes by means of average and conting criteria.

SigmaQuantitative and SpoutRateQuantitative are the two classes enabling the quantitative analy-
sis of logs.
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2.2.2 Trace Checking Engine - TCE

The core part of DICE-TraCT hinges on a specific object implementing class TCRunner, which is
defined based on the trace-checking analysis specified in the payload of the REST call /run. The
portion of code shown in Figure 9 is a part of function dicestractor () which in responsible
of performing all the trace-checking instances in the tc_instances. Variable tc_instances is
a TCRunner object which is instantiated with the information derived from the payload in variable
tc.descriptor. tc_instances is an iterable object and each element in tc_instances is a
(solvable) trace-checking instance that can be actually carried out by calling the engine associated with it
by means of the function call 1. run () atline 4. If no errors occurred while calling the trace-checking
engine, the outcome of the analysis is appended to the result list in variable result, which is returned
to the caller at the end of all the trace-checking tasks at line 12.

tc_instances = TCRunner (tc_descriptor)
for i in tc_instances:
try:
i.run ()

if (i.getResult()):
result.append (i.getResult ())
else:
# return error
except Exception, err_msg:
# return error
return result

Figure 9: Portion of code showing the use of the iterator pattern on the trace-checking instances obtained
from the TCRunner object tc_instances.

Component TCE in DICE-TraCT is implemented by TCRunner class in the dicetract . py mod-
ule. TCE has been improved in the M30 release to allow trace-checking analysis with Soloist trace-
checking engine and with SimpleTC engine, the latter specifically developed to allow the extraction of
quantitative values of emit rate for spout and sigma for bolts.

2.2.3 Trace-checking Runner

TCRunner returns an iterator on a set of trace-checking instances, each one associated with an ele-
ment of the list in the value of the key “nodes” of the payloads provided with the call to /run. Each
trace-checking instance represents a trace-checking problem that can be solved with one of the available
engines. The solver is selected based on the subclass of Formula that contribute to the definition of the
problem instance and that is derived from the description of the analysis in the payload (through the
keys “parameter” and “method”). TCRunner includes a chain-of-responsibility defined by the available
trace-checking engines that can be used to select the most appropriate engine to solve an instance.

The portion of code in Figure 10 is an excerpt of the implementation of the class TCRunner. The con-
structor method instantiates, at line 5 and 6 respectively, the two solvers: the first one is sparkTC, with
an attrbute of class with class SparkTCSolver (), and the second one is simpleTC, with an attribute
of class SimpleTCSolver (). In addition, it declares a chain-of-responsibility composed by means
of the two solvers, at line 8. TCRunner implements method next (), which returns a trace-checking
instance properly set with the formula to analyze and the node undergoing the analysis. This method ac-
tually realizes the iterator behavior of the class. The method call to getRunnableTCInstance (),
at line 15, allows TCRunner to visit the chain-of-responsibility and obtain the suitable trace-checking
solver that can manage the problem instance defined for node and the formula in analysis.



class TCRunner () :

def = init_ (self, tc_descriptor):
# Declaration of Chain-Of-Responsibility handlers
self.sparkTC = SparkTCSolver ()
self.simpleTC = SimpleTCSolver ()

self.sparkTC.setSuccessor (self.simpleTC)

def next (self):
if (there are trace-checking instances to solve):
# define the formula to solve based on tc _descriptor

# return a TCInstance specifying the node and the formula

return self.sparkTC.getRunnableTCInstance (node[’name’ ], formula)
else:

raise Stoplteration ()

Figure 10: Class TCRunner and (i) the declaration of the chain-of-responsibility with sparkTC and
simpleTC instances, (i7) the method next () implementing the iterator on the solvable trace-checking
instances.

2.2.4 Trace-checking Instance

A trace-checking instance is represented by the class TClInstance. It implements the design pattern
Chain-of-Responsibility to allow the selection of the trace-checking engine to be used for the resolution.
Therefore, TClnstance is an abstract class providing

e two methods setSuccessor () and getRunnableTCInstance () implementing the pat-

tern and

e the abstract method run (), that actually executes the solver on the problem instance and that is
implemented by the concrete classes SparkTCSolver and SimpleTCSolver, being them associated
with an existing trace-checking engine.

Figure 11 shows the main structure of the class

SparkTCSolver and SimpleTCSolver are the two implementations of TCSolver representing the
Soloist trace-checker and the Simple trace-checker. Both implement the abstract method canProcess ()
based on their solving capabilities. The outcome of the method is a boolean that determines if the formula
provided in the parameter of the call can be undertaken by the solver.

SparkTCSolver deals with the trace-checking instances that can be solved by the Soloist trace-
checker, which is implemented in Spark; whereas SimpleTCSolver captures the instances that are solved
by SimpleTC. For the sake of brevity, only an excerpt of SimpleTC is provided in Figure 12, as details
on the Soloist trace-checker was already described in the previous deliverable D3.4. SimpleTC can han-
dle formulae of type SigmaQuantitative and SpoutRateQuantitative. Hence, method canProcess ()
checks that the trace-checking instance, represented by the formula to be verified, has type SigmaQuan-
titative and SpoutRateQuantitative. Method run () actually launches the SimpleTC on the logs that
has been obtained by component LM (see Figure 6), according to what has already been explained in
deliverable D4.3.

2.2.5 Monitoring connectors

DICE-TraCT exploits two different log retrieval features. The first one is developed for testing pur-
poses and does not require a running monitoring platform (“nodmon” mode). The second one, on the
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Figure 11: Class TClInstance and the implementation of the Chain-of-Responsibility pattern methods
setSuccessor () and getRunnableTCInstance ().

Figure 12: Class SimpleTCSolver and the two methods canProcess () and run ().

other hand, implements the communication with a running instance of DMon that might be working lo-
cally or remotely. RemoteDMonConnector is the class in module dicetract . py that instruments
the REST calls to DMon to retrieve the application logs from the monitoring platform. Figure 13 shows

the fundamental methods that realize the functionality of the connector to the DMon platform.
e getTopologyDescriptor () is the main method that builds the topology descriptor associ-
ated with the analysis to be performed. A topology descriptor is a json file specifying the list
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of all the log files where each node of the topology appers. The information included therein are
fundamental to carry out the functionality of component LM (already detailed in deliverable D4.3).

e availableStormLogs () retrieves the list of all the collected logs available in DMon, by
calling the method GET /v1/overlord/storm/logs/.

e whichLog () provides the capability for selecting the proper log files archive from DMon based
on the characteristic of the trace-checking analysis specified by the user.

e getStormLog (): calls the method GET /v1/overlord/storm/logs/{workerlog}
specifiying the “workerlog” to download. The obtained file is then used to perform the analysis.

Figure 13: RemoteDMonConnector classin dicetract.py

Requirements

This paragraph reports on the achievements obtained for the trace checking tool. Table 3 provides
the most relevant requirements and shows the degree of completion.
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Listing 1: Configuration file for ADT
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Listing 2: Example user defined query
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Table 3: Trace Checking tool requirements

IF Title Priority | Status Comments
R4.28 Safety and privacy MUST v
properties loading
R4.26 | Report generation of | Should v Trace checking results are
analysis results shown in the DICE IDE.
R4.28 Safety and privacy MUST v Log analysis is based on the
properties loading kind of property the user
chooses.
R4.28.1 Definition of time MUST v Storm monitoring allows the
window of interest user to select the the time
for safety/privacy window.
properties
R4.29 Event occurrences MUST v DICE-TraCT implements the
detection for safety logic to customize how to select
and privacy events from Storm logs.
properties
monitoring
R4.30 Safety and privacy MUST v Storm monitoring is currently
properties supported.
monitoring
R4.30.1 | Safety and privacy MUST v
properties result
reporting
R4.31 Feedback from Could 4
safety and privacy
properties
monitoring to UML
models
R4.30 Safety and privacy MUST 4 Privacy properties are not
properties supported yet. Safety properties
monitoring are related to some parameters
of the verification model
R4.32 | Correlation between | MUST v The case of Storm application

data stored in the
DW and DICE
UML models

has been studied to verify the
need of instrumenting the
source code.




3 Use cases

This section details what use cases are handled by each tool. It shows the main workflow for ADT
as well as that of TraCT. For the Regression based AD the input parameters for the method are detailed
as well as example configuration files.

3.1 Anomaly Detection

Anomaly detection tool will check for anomalies during the runtime of a deployed application on a
wide range of Big Data frameworks. These frameworks are unchanged from those supported by the DICE
Monitoring platform (DMon) [17]. In the case of unsupervised anomaly detection methods the querying
of DMon will result in the generation of the data sets on which these methods will operate. In essence the
only thing that the end user needs to do is to specify the query string and the desired time frame. There
are several operations made available by ADT which enable the reencoding and filtering of features as
detailed in section 2.1.5. It is important to remember that the bigger the time frame specified the more
accurate the anomaly detection becomes. The tradeoff is that querying as well as cluster creation become
computationally more expensive the bigger the query time frame is.

For supervised anomaly detection methods this is a bit more complicated as it is not enough to give
the query string and time frame. The data sets must be labeled in order to create a viable training and
validating data set. Once this is done the resulting predictive models can be easily applied at runtime.

feature model model model
v —>»|selection —————| trainer ———|validator |——>»| exporter
dmon data
connector |———»| formater [—
A method anomaly
—»| selector |————»|detection

Figure 14: Anomaly Detection flow.

Figure 14 show the basic flow of data between all components of ADT. It is easy to see that there are
two branching workflows. The first one is meant for training and validating the aforementioned predictive
models while the second one is meant for unsupervised methods and the loading of the validated models.

It is important to note that the method selector and anomaly detection engine are the two tools re-
quired for detecting and signaling anomalies. The method selector is used to select between unsuper-
vised and supervised methods (including their runtime parameters). This component is also responsible
for loading pre-trained predictive models. The anomaly detection engine is in charge of instantiating the
selected methods and signalling to the dmonconnector any and all detected anomalies.

We can think of the first branch as the batch layer of a lambda architecture. Once it trains and
validates a model it sends it to be stored and indexed into DMon. From there the second branch can
download it and instantiate it. This in essence represents the speed layer. There can be more than one
instance of ADT at the same time so scaling should not pose a significant problem.

3.1.1 Training Data

In deliverable D5.5 we have introduced the dmon-gen too which is used to define different Big Data
and DIAs related jobs thus ensuring semi-supervised labeling of training data. In some instances this is
not available. For instance if a developer is using the DICE solution to develop and deploy his DIA the



first versions of the application will not have known anomalies. In these kinds of instances unsupervised
methods are extremely useful allowing the detection of anomalous events soley based on the avilable
data.

There are several problems with this approach. The first problem is that we cannot distinguish be-
tween different types of anomalies, we only know that a particular event is anomalous when compared
to the others. Secondly, the incidence of false positives can be significant. Because of this we have
developed a method of boostraping labeled training data suing the output of unsupervised methods.

First we run the Isolation forest algorithm in order to detect anomalous events. Then we isolate the
resulting anomalies and cluster these using DBSCAN. This will create clusters of anomalies, in essence
creating labels for them. This is not an optimal solution as the clustered anomalies are still largely
meaningless for the developer. It is meant to help the developer or architect in identifying the underlying
cause of the anomalies. Finally, the clustered information is added back into the original data set thus
creating a first iteration of a training set. This can later be fine tuned, anomalies can be added or removed
as required.

Thus ADT facility aids in creating valid training sets for predictive model training. ADT is also able
to accept manually created training and validation data sets. If no validation set is defined ADT can split
the user defined labeled data set into two parts training and validation. At the same time the user can
define what percentage of the original set is to be defined as the validation sets. All datapoints selected
to be in the validation set are chosen randomly ensuring that during cross validation we do not fall prey
to cherry picking.

3.1.2 Parameter Selection

During the development of ADT we have found that most algorithms have a large set of available
parameters that can be fine tuned. This fine tuning requires extensive knowledge of the underlying
algorithms which can result in low uptake of ADT as most novice user will be overwhelmed. In order to
mitigate this as much as possible we have implemented a GridSearch method which allows the definition
of the parameter space for any given method which is then used for an exhaustive search. At the end of
this optimization step the best combaination is retained and used for the final predictive model creation.

This step has to be run only once as long as the data set has the same feature dimensionality. The re-
sulting model has a very good chance to outperform any naively chose parameters. It requires no futher
input from the user while at the same time guaranteeing exelent detection performance of all trained
models. Sadly there is one downside to this method. It requires a lot of computational resources for large
parameter search spaces. One solution is to define a set of parameter vectors to the grid search method
which it then uses to perform the optimizations instead of just individual parameter values.

3.2 Trace Checking tool

DICE-TraCT has been developed to perform log analysis of Storm applications. It is used to assess
the runtime behavior of a deployed application as log traces collected from the monitoring platform are
analyzed to certify the adherence to the behavioral model that is assumed at design time. If the runtime
behavior does not conform to the design, then the design must be refined and later verified to obtain a
new certification of correctness.

Trace-checking can be applied to supply information to the verification task carried out by D-VerT
(details can be found in DICE Verification Tool - Initial version [19]). Verification of Storm topologies
takes place at DTSM level on UML models enriched with information needed to represent the application
behavior over time. To verify DTSM models with D-VerT, the designer must provide some parameter
values that abstract the (temporal) behavior of spouts and bolts. Trace checking extracts from real ex-
ecutions the parameter values of the model used by D-VerT that are not available from the monitoring
service of the framework, as they are inherently specific of the modeling adopted for the verification. An
example of such a parameter is the ratio between the number of messages that are received by a bolt and
the number of messages that it emits in output.

The second class of property concerns privacy aspects of the applications. Privacy constraints might



be specified at the DPIM level by means of suitable classes, annotations and new ad-hoc constraints
that impose the accessing restrictions applied to the users of the resources in a database. Checking the
integrity of the deployed and running application can be achieved through the analysis of the application
logs against suitable properties that are annotated by the user in the application model. An examination
of this problem and a solution based on trace-checking techniques has been presented in [15] and also
reported in the final methodology document D2.4 - Deployment abstractions - Final Version.



4 Integration and Validation

This section covers integration as well as validation issues for each tool. The first subsection will deal
with both ADT as well as Regression based AD and how it interacts with the overall DMon Architecture.
The second section details the Trace Checking tool and how it combines logs and checks for sequential
anomalies.

4.1 Anomaly Detection
Integration

ADT has a closer integration with DMon than with other tools from the DICE solution. This is
mainly due to two facts. Firstly, ADT needs data on which to run anomaly detection methods. Thus it is
extremely important to have data available in a format which is usable. Second, ADT together with the
monitoring forms a lambda architecture. Each instance of ADT can have the role of batch or speed layer
while DMon has the role of a serving layer. For more details see Figure 15.
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Figure 15: Anomaly detection integration with DMON.

As mentioned before the detected anomalies are sent and indexed into DMon. All DICE actors
and tools will be able to query this special index to see/listen for detected anomalies. In this way it is
possible to create specialized ADT instances for each anomaly detection method in part. The result will
be reflected in the same index from DMon. This architecture also allows us to serve the results of both
the monitoring and anomaly detection on the same endpoint (DMon).

All anomaly detection methods used have their predictive models (be they clusterers or predictive
models for classification) serialized or saved in PMML format. In order to completely implement a
lambda type architecture we have to ensure that the trained models are versioned and saved inside DMon
(serving layer). Figure 16 shows the REST API resources used for saving and versioning. This feature
from DMon is a heavily modified version of the Artifact Repository from the FP7 MODAC]Iouds research
project [22].

The artifact are stored directly on the file system. The file hierarchy is directly mirrored from the URL
structure shown in figure 16. This means that the folder structure will include folders for repositories,
artifacts, versions and the models. Thus making interrogation extremely intuitive. Another bonus of
using a simple file system based approach is the ability to use rsync as the synchronization mechanism
between artifact repository models. In order to support multicloud environments the artifact repository
is able to sync contents between different instances of DMon.

For the artifact repository to be fully usable in DICE we had to make 2 major modifications. First, we
added the capability to store some metadata about the models stored in the repository pertaining to the
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Figure 16: DMon Predictive model saving resources

shape of the data set (rows and columns), the method parameter settings used and finally the performance
or score. This enables the fast checking of weather a stored predictive mode is usable on a particular data
set and what it’s overall score is. Versioning of the models is done via the naming convention used for the
models. The first part of the name represents the model used for training, the second part is the unique
identifier of the model (this can be user defined or by default is set as the application tag from DMon).
The last part of a name is the timestamp of the model creation.

Second, we completely integrated the artifact repository into DMon as opposed to having a separate
service. This allows a vastly simplified usage pattern and integration. Tools such as the ADT will only
require the access point of DMon for both data fetching and anomaly reporting. From figure 16 we can
see that inside DMon we organize models into repositories which can have several artifact which can
have different versions.

For this version of ADT we have also implemented an Eclipse plugin ) that is part of the integration
with the DICE IDE as seen in figure 17. The plugins main goal is to generate the ADT configuration
file and start the execution. All outputs from ADT (which are not sent to DMon) are shown inside this
plugin. At this point we should mention that if ADT is run from Windows in some circumstance it will
suffer from slow performance.

This is due to the multiprocessing module which behaves differently on Linux and Windows. In
Linux multiprocessing uses the fork system call to create a child process with all the same resources as
the parent while on Windows a new python interpreter has to be spawned and all the information needed
by the child has to be passed as an argument. This difference is only evident during one preprocessing
operation in ADT, namely the reencoding of a data set.

Validation

As mentioned in section some anomaly detection methods, more precisely the ones using supervised
learning techniques, need labeled data in order to function properly. This is a fairly complicated thing to
accomplish. One solution is to label all normal data instances and all unlabelled instances are considered
anomalies. In most systems the normal data instances far outnumber the anomalous ones so labeling
them is extremely impractical. We have detailed several method of ensuring that novice users are able to
train and use anomaly detection methods using ADT, see section 3.1 for more details.
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POSIDONIA Operations is an integrated port operations management system. Its mission consists
on globally monitor vessels positions in real time to improve and automatize port authoritys operations.
In the use case, some scenarios are considered. The deployment or the Posidonia system on the cloud
considering different parameters, supporting different vessel traffic intensities, adding new business rules
(high CPU demand), running simulation scenario to evaluate performance and quality metrics. Posidonia
Operations core functionality is based on analysing a real-time stream of messages that represent vessels
positions to detect and emit events that occur on the real world (a berthing, an anchorage, a bunkering,
etc.).

One of the software components of the Posidonia Operations is the CEP, Complex Event Processing,
engine which analyse all the AIS messages in order to detect patterns and create the corresponding events.
One of the types of requirements of the Posidonia Operations use case is the Assessment of the impact in
performance after changes in software or conditions. The changes in software and conditions include: (1)
Adding, modifying and removing the rules of the existing CEPs,(2) Adding or removing CEPs (since we
can have more than one CEP processing the incoming flow of AIS messages), (3)Increasing or decreasing
the input message rate. The Anomaly Detection Tool is used to fulfill these requirements. During the
development phases of the Posidonia use case, the Anomaly Detection Tool has been validated to detect
anomalies related with the cost execution time of the different events that the CEP component analyses,
this cost impact directly in the performance of the system.

As validation for ADT we used the POSIDONIA use case [11] as well as the Wikistat toy applications
Storm topology related metrics.

The data available for the POSIDONIA usecase has 6 features in it, all extracted by DMon from raw
log information. It is important to mention that not all features are useful when it comes to testing ADT.
We eliminated/filtered the host and ship features as the former one is essentially a constant in the current
deployment (having a cardinality of one). The latter represents the unique identifier of the ship to which
the metrics are relating. ADT is designed to offer DIA performance related anomaly detection so we
only need metrics related to what rules are being activate inside the Complex Event Processor (CEP) not
what it processes.

Two features from the data set are categorical (component and method) because of this they required
re-encoding. We first tried label encoding however it resulted in poor performance, this type of encoding
usually leads to a significant loss of relationships between different data points. Much better results



Method | BScore | BTime | ParamSearch | CV Mean | CV STD | CV Time | Fscore | FTime
RF 0.68 0.0611 | 185.446 99.98% 0.05% 27.5004 1 4.5732
DT 0.53 0.0049 | 5.0348 99.97% 0.09% 0.0478 0.9989 | 0.0036
AD 0.51 0.2358 | 62.6346 100.00% | 0.00% 0.4151 1 0.0548
NN 0.34 0.5640 | 1771.0435 100.00% | 0.00% 0.2695 1.0 0.03283
Table 4: Experimental runs for CEP component
Metric AdaBoost | DecisionTree | Random Forest
AIS_SENTENCE_LISTENER 0.1 0.193142068 | 0.153848567
RETRACT_OLD_AISGEOMDATA | 0.1 0.000700426 | 0.005668693
SESSION 0.1 0.00990615 0.032303538
SIMPLE_ANCHOR_IN 0.1 0.052707564 | 0.196569172
SIMPLE_DOCK_START_OUT 0.1 0.003373742 | 0.035556067
SIMPLE_DOCK_STOP 0.1 0.091526082 | 0.208327863
STOP_OVER_IN 0.1 0.526665234 | 0.194793414
ms 0.3 0.121978734 | 0.172932687

Table 5: Feature Importance for different methods CEP

where obtained using the one hot encoding detailed in section 2.1.3. All subsequent experiments detail
in this section are using this type of encoding.

With the help of the developers from the POSIDONIA use case we where able to manually label a
dataset comprising over 4800 data points. For validation purposes we ran all supervised and unsupervised
methods on this data set. We can see in table 4 the results of the first validations. First we ran a baseline
where all methods had their parameters set to default values. After which we ran parameter optimization
on all methods and executed a 10 fold crossvalidation with 30% of the dataset used for validation. We
can see that the parameter optimization not only allowed us to optimize the predictive performance but
also the required training time (BScore and BTime for the baseline and FScore and FTime for the best
performing).

An interesting observation which can be made using ADT is the so called feature importance. It is
in fact showing what the impact of each feature from the data set has on the classification model. Table
5 show the feature importance for the tree based classification methods. One surprising fact evident in
this table is that although logically the most important feature in detecting anomalies for CEP would be
the ms feature indicating how long a particular rule takes to fire. However, we can see in table 5 that
although this feature has quite an impact on the predictive model it is not the most representative. This
can be explained by the fact that some rules are much more prone to have abnormal behavior and are a
very good indicator of anomalies.

ADT provides in addition to the anomaly reporting inside DMon a more complete report for the
trained models It creates files with the confusion metrics, training related parameters(time it took to train
and validate, parameter optimization information etc.) and some visualizations of the trained model. In
figure 18 we see the best performing decision tree structure learned.

In the case of the Wikistat toy application we used Storm topology related metrics. As opposed to
the POSIDONIA use case data we do not have any categorical information, reencoding the data is not
necessary. For these experiments we used a dataset with 60218 data points with a total of 54 features.
This is a much larger data set both in event count and feature number. As opposed to the POSIDONIA
data set this data was labeled using the dmon-gen tool.

We have run the same battery of experiments as before. Table 6 shows the overall performance and
computational time of all supervised methods. As before we see that the performance of each resulting
model is much better after the parameter search. We can also see that it took much longer for the
parameter search to complete, this is in large part due to the size of the data set.

An interesting observation can be made from the feature importance metrics. Table 7 shows those
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Figure 18: Decision Tree Model for CEP
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Table 6: Experimental runs for Wikistat Storm
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Storm Metrics AdaBoost | DecisionTree | Random Forest
bolts_0_acked 0 0.261248981 | 0.07353724
bolts_0_capacity 0 0 0.013144028
bolts_0_emitted 0 0.042070332 | 0.091775431
bolts_0_executed 0 1.91E-07 0.074560628
bolts_0_processLatency 0 0.004960664 | 0.008871831
bolts_0_transferred 0.05 0.013922383 | 0.062518511
bolts_1_acked 0.1 0 0.088776415
bolts_1_capacity 0.45 0 0.012296491
bolts_1_emitted 0.05 0.353170154 | 0.093166881
bolts_1_executed 0 0.136724359 | 0.097394063
bolts_1_executeLatency 0.05 0 0.03206146
spouts_0_emitted 0 0.023710512 | 0.059667492
spouts_0_transferred 0 0.033190521 | 0.079343435
topologyStats_10m_emitted 0.25 0 0.009834129
topologyStats_10m_transferred | 0 9.64E-05 0.010155682
topologyStats_1d_emitted 0 0 0.006489571
topologyStats_1d_transferred 0 0 0.006286803
topologyStats_3h_emitted 0 0 0.003205677
topologyStats_3h_transferred 0 2.35E-05 0.003470178
topologyStats_all_emitted 0 0 0.086787035
topologyStats_all_transferred 0.05 0.130881988 | 0.086657019

Table 7: Feature importance for different methods Wikistat

Metric CEP | Storm
Labeled anomalies 1447 | 6624
Detected anomalies | 999 | 4516
False Positives 58 217
Good Anomalies 941 4299
Percentage labeled | 22.4 | 11
Percentage detected | 15.5 | 7.5
Accuracy 93.4 | 95.2

Table 8: Isolation Forest performance on labeled data set

features which have some degree of impact on the predictive performance of the learned models. Unlike
the POSIDONIA data set where only two features can define an anomaly in this case we have a much
wider set of possibilities which can give context to any anomaly.

The last set of validation experiments where done for Isolation Forest unsupervised method. Because
we have already labeled data we can run the unsupervised method and see if it identifies the correct
anomalies. Of course Isolation Forest is not able to distinguish between different types of anomalies it
can mark events as normal or anomalous however, this is enough to test the ratio of false positives to true
positives.

Table 8 shows the performance of Isolation Forest on both labeled dataset. Although at first glance
one might conclude that it has poor performance a closer inspection shows that in fact the number of
false positives is under 6% of the total identified for both data sets. It is true that not all anomalies have
been found but this is of little practical significance as it is more important for the algorithm to detect
true anomalies then to identify false ones. Keeping in mind that this methods precision increases with
the amount of data it has to work with we are confident that this method is extremely useful for detecting
anomalies during the initial stages of DIA development. In the latter stages of DIA development more
data will be available and most likely examples of anomalous behavior These can be used for the training



of supervised predictive models which in turn can yield a much better predictive performance.

4.2 Regression based Anomaly Detection

In year 3, the regression based anomaly detection method (RBAD) was detailed and validated in
the previous deliverable D4.3 [9]. As discussed therein, the purpose of the RBAD tool is to detect
presence of performance anomalies by accept a set of input performance measurs, train regression models
describing application behaviour for the given metric(s) of interest, compare the data with the model,
trained at the previous deployment and identify the presence of anomaly(-ies), if any; generate report
for the developer indicating the presence/absence of performance anomalies and possible root causes (if
anomalous behaviour is detected); repeat the process for each deployment version of the application.

Since then we have integrated this method into the ADT. Because the initial prototype of RBAD was
based on Matlab, we had to adapt it in order to be released with the Matlab compiler runtime for Java.

In the latest version of ADT, we start RBAD as a suprocess which is controlled from the main control
thread. Some functionalities such as data querying and anomaly reporting are done directly by ADT,
while in the previous version RBAD was guiding the user through the interactive analysis. RBAD is
therefore responsible only for instantiating the regression model parameters and generating the anomaly
predictions. Currently the data from DMon is dumped into the data folder from ADT in CSV format.
Once the file is detected by a specialized process within ADT it will load the CSV file into memory
using cStringlO module. After RBAD finishes its processing, it saves the output in JSON format which
is the sent into DMon to be indexed by ADT. There were some challenges in integrating the Java Matlab
runtime into ADT.

Summarizing, the main changes for the regression-based anomaly detection tool in year 3 are:

e [t is now a method in the ADT, not an independent tool.

e It can be invoked by setting Method:regression in the Detect section of the ADT configuration file
(please see below for more information).

e The tool reads all necessary input parameters from the ADT configuration file.
e The method now works with predictive regression models stored in the PMML format.

e The tool performs basic root-cause analysis by reporting which predictors (if any) contributed to
the significant change in a metric of interest (improvement or degradation).

e The report the tool generates will be available to view in the D-Mon.

The integration between ADT and RBAD has been successfully tested with small to medium size
data set up to 100 MB in size.

4.3 Trace Checking tool

Trace-checking tool was initially set up to be validated with ProDevelop use case, as DiceTraCT and
ADT are brought together by similar capabilities of runtime data analysis. However, through a careful
analysis of the scenario involving Posidonia system, we concluded that trace-checking could not be
directly applied to this use case. The log traces of the application include, in fact, only those events that
are related to the ships (like “DOCKING ship A on position X”’) operating in the ports monitored by the
system. All these events, however, have no direct mapping with the concepts available in the DICE profile
and that can be applied for modeling a data-intensive applications like those implemented with the main
technologies supported by DICE. In other words, in the example of event “DOCKING ship A on position
X the notion of “docking”, ship and position do not have a counterpart in the DPIM/DTSM/DDSM
diagrams used to model the DIAs, being all these information application dependent. Therefore, the
use of trace-checking for the log analysis of the Posidonia scenario would have been a customization
of a log analysis technique for a specific application, lacking of a connection with the overall modeling
environment and, in particular, with the verification tool D-verT that, together with DiceTraCT, constitute
a compound toolkit supporting both the modeling and the iterative design refinement.



In conclusion, validation of trace-checking is therefore postponed and it will be realized in collabo-
ration with the DICE industrial partner ATC on the Storm use case.

Nonetheless, the validation of DICE-TraCT has been achieved by running the trace-checking analysis
on a benchmark application called ExclamationTopology, that was already used to test the solution in the
previous deliverable D4.3. ExclamationTopology is a standard and very intuitive Storm application that
is distributed in the Storm framework and that simply consists of three node: one spout emitting strings
of characters, called “word”, and two bolts “exclaim1” and “exclaim2” that elaborate the messages of
“word” and “exclaiml1”, respectively, by simply adding a suffix with some symbols “!”. To validate the
functionality of DICE-TraCT, the topology was deployed in a local cluster running three Storm workers
and one master node coordinating the topology. Beside the Storm topology an instance of the monitoring
platform was executed to provide the monitoring functionalities that are required to carry out the trace-
checking analysis. The trace-checking service has been deployed as a local service at 127.0.0.1 listening
the port 5050.

The topology was first defined in the design panel of the DICE IDE with the UML classes and the
DICE stereotypes <<StormSpout>> and <<StormBolt>> by means of the same procedure that
a user follows to carry out verification with D-VerT. Then, the running Storm topology was registered
in DMon through the web interface and DICE-TraCT was launched from the DICE IDE through the
“Run configuration” window that is shown in Figure 19. A monitoring session was activated by clicking
the button ‘’Activate” in the DICE-TraCT window and, afterwards, loading the Xml descriptor of the
topology previously designed allowed the DICE-TraCT client to visit the structure of the application and
show the nodes that can be analyzed. The value of parameters “sigma” and “emit rate” of the nodes
“exclaim1” and “’word”, respectively, were selected and then the trace-checking analysis was activated.
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Figure 19: Launch configuration for a trace-checking analysis on two topology nodes



5 Conclusions

5.1 Summary

This deliverable presented the final versions of ADT as well as DICE-TraCT. The goal of the final
version (M30) of these tools is to enable the definition and reporting of anomalies present in monitored
performance and quality related data from Big Data technologies. This is directly related to milestone
MSS5 “DICE Integrated framework Second release Currently ADT has been tested on all DICE supported
Big data technologies as well as on of the use case DIAs. DICE-TraCT has been completely integrated
in the DICE framework and has been tested with a benchmark Storm application.

Furthermore we have finalized the connector between the anomaly detection tool and the DICE mon-
itoring platform. This connector can be used both to retrieve datasets and to send detected anomalies to
the Monitoring platform. It is important to note that at this time (M30) this integration is fully functional,
data sets can be created, anomalies are transmitted to DMon and finally predictive models are saved and
versioned.

5.2 Further work

At this stage the ADT and DICE-TraCT tools are fully operational an are an integral part of the DICE
solution. Further work on these tools would be to extend their functionality past the one needed in DICE,
to other problem domains. For example in the case of ADT problem domains such as IoT, Cloud and HPC
can be easily included into the tool by extending some of its functionality (the connector component).
Also, the integration of novel anomaly detection techniques can also be done by adding them to the ADT
engine component. A little effort will be earmarked for the validation of DICE-TraCT with ATC use case
in the next months.
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