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Executive summary

This document is the final report on the activities of task T3.3 that focuses on safety verification
of data-intensive applications (DIA). All the activities of the task are founded on temporal formalisms
that enable the modeling of DIA and the automated analysis of the runtime behavior of the applications
by means of temporal logic models. Further details on Task3.3 can be found in D1.1 - State of the art
analysis, and D1.2 - Requirements specifications.

Deliverable D3.7 describes both the integration of the D-VerT front-end in the DICE IDE and the
enhancements applied to the Spark temporal model, already described in deliverable D3.6. The former
allow users to define Spark-based DIAs as DICE-profiled UML activity diagrams directly from the DICE
IDE, and to automatically run verification tasks on them; the latter allow D-VerT to perform a faster
verification than the one carried out using the previous modeling of D3.6.

Working on efficiency aspects turned out to be fundamental to increase the usability of the verifica-
tion tool that, as usual in this context, might suffer from state explosion that worsen the performance.
Improving the modeling makes the automated analysis of the DIA models more viable in terms of time
cost and, therefore, more practicable for users. The document briefly reports on some aspects of the
temporal logic model of Spark applications and focuses on the improvements to the model that are
implemented in D-VerT. The main verification approach adopted for verification in DICE is based on
satisfiability checking of temporal formulae that relies on an engine solving the satisfiability problem
called Zot1. Being the procedure based on SMT-solvers, the two fundamental modifications investigated
aim at reducing the size of the formula and the size of its solutions.

The document also describes the UML representation that the user can use to specify the Spark ap-
plication. Activity diagrams are the adopted solution that allow the modeling of a Spark application by
means of a high level graphical language. Basic functional blocks corresponding to Spark transforma-
tions and actions are available to the user that can design the application with a compositional approach.

1https://github.com/fm-polimi/zot
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Glossary

CLTLoc Constraint Linear Temporal Logic over clocks
DIA Data-Intensive Application
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DPIM DICE Platform Independent Model
DTSM DICE Platform and Technology Specific Model
FOL First-order Logic
IDE Integrated Development Environment
JSON JavaScript Object Notation
M2M Model to Model transformation
QA Quality Assurance
TL Temporal Logic
UML Unified Modelling Language
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1 Introduction

The DICE Verification Tool (D-VerT) is designed for the analysis of safety aspects of data-intensive
application. It allows designers to evaluate the design against safety properties expressed with a temporal
language (such as reachability of undesired configurations of the system, meeting of deadlines, and so
on) based on the very well-known Linear Temporal Logic (LTL). The outcome of the verification task
performed through the use of D-VerT is employed by the designer of an application for refining its model
at design time, in case anomalies are detected.

Verification is commonly considered an hard task. The theoretical complexity of verification algo-
rithms is, in general, not suitable for the analysis even for small systems. However, in some cases where
the complexity of verification is considered tractable in practice, the state space explosion is still the
most significant barrier hampering the feasibility of the analysis. The state space explosion often leads
the execution time of verification procedures to a dramatic growth. Many and various are the techniques
and approaches to limit this disadvantage. Verification in DICE is realized through a bounded approach
stemming from the well-know bounded model-checking, a verification approach that turned out to be
effective for limiting the cost of the analysis in many practical scenarios. This verification approach was
originally devised to identify violations of a property of a system that can be described by means of a
representation of limited size. The verification procedure does not look for a possible violation candidate
in the set of all the violating executions of the system but it does operate the search in a smaller set, i.e.,
the set of all the violating executions that can be represented by means of a representation smaller than a
given size.

In many situations however, the time expended to solve the instances of a verification problem that
can be found in realistic scenario is still high, despite the adoption of a bounded verification approach.
In Deliverable D3.6, we presented a temporal logic model of the execution of a Spark job that can be
suitable for verifying the overall time span of the computation. The model considers that jobs run on a
cluster with a finite number of computational resources and that all the computations terminate (i.e., the
number of loop iterations is limited). The temporal logic model of Spark was used in a first experimental
campaign to test its usability in terms of time to perform the analysis. The experimental results showed
however that the time to verify an excerpt of a possible execution of a Spark application, i.e., determining
the existence of executions that violate specific temporal properties, is high and not suitable for practical
use. Deliverable D3.7 provides a first analysis of this issue and it introduces two techniques that can be
adopted to lower the solving time of the verification. Both of them rely on the same principle according
to which the resolution time of a problem can be reduced by reducing the size of the representation of
both the instance of the problem and the solution. To this end, the two means that were implemented are
the following.

• To reduce the size of model, being it based on logic, we devise a way to diminish the number of
atomic propositions that appear in the formulae. This avoids the use of a large set of atoms, by
fostering the reuse of the same atom to model more than one system event or state.

• A solution of a temporal formula is either unsat or a finite sequence of system events that violates
a property. In general, each position of the sequence is associated with an event of the system. To
reduce the size of the solution some modifications still affected the logical model and allowed the
representation of more than one event of the system for each single position of the execution trace.

The second contribution of Deliverable D3.7 the translation of UML activity diagrams, that we use
to represent Spark applications, into a temporal logic formula. Spark applications are implemented by
means of basic functional blocks, called transformations and actions, that perform specific functionality
on their input data (e.g., filtering, functional mapping, etc.). An activity diagram can be adopted by
the DICE designer to structure the application and to define the flow of computation by means of a
sequence of Spark transformations that can be executed in parallel and that are concluded by an action.
This sequence of operations is then automatically transformed into the actual execution DAG, which is
composed of stages (sets of pipelined operations that can be executed in parallel). As described in [1],
the temporal logic model derives from the execution DAG. Therefore, the automatic translation of the
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UML diagram allows the analysis of the user design by hiding the technical details of the underlying
verification engine.

D-VerT is published as an open source tool in the DICE-Verification repository of the project
Github2.

1.1 Objectives
The main achievement of Work Package 3 (WP3) is the development of a quality analysis tool-chain

that supports the following analysis:
(i) simulation-based assessment for reliability and efficiency,

(ii) formal verification of safety properties, and

(iii) numerical optimization techniques for the search of optimal architecture designs.

Task T3.3 is related to point (ii) and concerns the following issues.

• Task T3.3 works towards a verification framework that enables automatic evaluation of safety
properties of DIAs, limited to Storm topologies and Spark jobs.

• Verification is carried out through satisfiability checking of Constraint LTL over-clocks (CLTLoc)
formulae, that represent (an abstraction of) the DIA behavior over time. The safety analysis is
carried out at the DTSM level of the DICE design workflow.

• The outcome of the verification task allows the designers to analyze whether the system properties
are satisfied, and not where the problem occurred and how to fix it. In the case of violations, the
output trace gives a hint to the designer on what should be fixed.

The work undertaken in the last period of activity in Task T3.3 has been focused on the following
activities.

1. Modeling Spark application in UML. The activity investigated the use of UML diagrams as spec-
ification languages to be adopted at design time for the specification of a Spark application. The
result of this work is described in Section 3.

2. Integration of D-VerT in the DICE framework. The activity has been carried on in order to add the
Spark technology in D-VerT and allow users to run verification for Spark applications.

3. Definition of strategies for improving performance of verification. The activity provided D-VerT
with a refined encoding of Spark jobs that results in a faster verification tasks. The result of this
work is described in Section 5.

1.2 Motivation
The analysis of correctness is fundamental to produce systems that behave correctly at runtime.

Verification in DICE aims to define the meaning of correctness for DIAs and provides implementation
of tools supporting formal analysis of DIAs. Task T3.3 is motivated by this need and promotes safety
verification of DIAs through the use of D-VerT.

Verification in DICE relies on a fully automatic procedure that is based on dense-time temporal logic
and it is realized in accordance with the bounded model-checking approach. A common limitation of
formal verification in general is the high cost in term of time required to perform verification. Therefore,
to exploit formal analysis in DICE, the research of efficient procedure has been supported at all levels,
from the modeling to the underlying solvers used to carry out verification. In particular, this document

2https://github.com/dice-project/DICE-Verification
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focuses on the definition of some refinements of the Spark temporal model that was presented the first
time in Deliverable D3.6. The effectiveness of the new model has been observed through experimental
results showing the benefits in terms of resolution time.

1.3 Structure of the deliverable
Section 2 outlines the main requirements of the verification solution achieved by D-VerT. Section 3 sum-
marizes the main concepts about the behavior of Spark at runtime, shows the assumptions that allowed
the definition of the temporal logic model of Spark jobs and recalls the fundamental UML objects in the
DICE profile that enables the verification of Spark jobs, bridging WP2’s models with verification goals.
Section 4 outlines the main steps enforced to integrate the new features in D-VerT. Section 5 elaborates
on the improvements that are implemented in the latest version of the temporal logic model of Spark
jobs. Section 6 provides a use case for validating the new features of D-VerT. Section 7 comments on
the use of containerizing technologies with respect to the verification approach adopted so far. Section 8
draws the conclusions about the work realized by WP3 - Verification unit.

Copyright © 2017, DICE consortium – All rights reserved 9
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2 Requirements and usage scenarios

Deliverable D1.2 [2, 3] presents the requirements analysis for the DICE project. The outcome of the
analysis is a consolidated list of requirements and the list of use cases that define the project’s goals.

This section summarizes, for Task T3.3, the requirements and the use case scenarios and explains
how they have been fulfilled in the current D-VerT.

2.1 Tools and actors
As specified in D1.2, the data-aware quality analysis aims at assessing quality requirements for DIAs and
at offering an optimized deployment configuration for the application. The assessment elaborates DIA
UML diagrams, which include the definition of the application functionalities and suitable annotations,
including those for verification, and employs the following tools:

• Transformation Tools
• Simulation Tools
• Verification Tools — D-VerT, which takes the UML models produced by the application designers,

and verifies the safety and privacy requirements of the DIA.
• Optimization Tools
In the rest of this document, we focus on the tools related to Task T3.3, i.e., D-VerT. According to

deliverable D1.2 the relevant stakeholders are the following:
• QA ENGINEER — The application quality engineer uses D-VerT through the DICE IDE.
• Verification Tool (D-VerT) — The tool invokes suitable transformations to produce, from the

high-level UML description of the DIA, the formal model to be evaluated. It is built on top of two
distinct engines that are capable of performing verification activities for temporal logic-based mod-
els and FOL-based models, respectively. Such tools are invoked according to the QA ENGINEER
needs. We later refer to them as TL-solver and FOL-solver, respectively.

2.2 Use cases and requirements
The requirements elicitation of D1.2 considers a single use case that concerns D-VerT, namely UC3.2.
This use case can be summarized as follows [2, p.104]:

ID: UC3.2
Title: Verification of safety and privacy properties from a DICE UML model
Priority: REQUIRED
Actors: QA ENGINEER, IDE, TRANSFORMATION TOOLS, VERIFICA-

TION TOOLS
Pre-conditions: There exists a UML model built using the DICE profile. A property to be checked

has been defined through the DICE profile, or at least through the DICE IDE, by
instantiating some pattern.

Post-conditions: The QA ENGINEER gets information about whether the property holds for the
modelled system or not

The requirements listed in [2] are the following:

Copyright © 2017, DICE consortium – All rights reserved 10
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ID: R3.1
Title: M2M Transformation
Priority of accomplishment: Must have
Description: The TRANSFORMATION TOOLS MUST perform a model-to-

model transformation, [...] from DPIM or DTSM DICE annotated
UML model to formal model.

ID: R3.2
Title: Taking into account relevant annotations
Priority of accomplishment: Must have
Description: The TRANSFORMATION TOOLS MUST take into account the rel-

evant annotations [...] and transform them into the corresponding
artifact [...]

ID: R3.3
Title: Transformation rules
Priority of accomplishment: Could have
Description: The TRANSFORMATION TOOLS MAY be able to extract, inter-

pret and apply the transformation rules from an external source.

ID: R3.7
Title: Generation of traces from the system model
Priority of accomplishment: Must have
Description: The VERIFICATION TOOLS MUST be able [...] to show possible

execution traces of the system [...]

ID: R3.10
Title: SLA specification and compliance
Priority of accomplishment: Must have
Description: VERIFICATION TOOLS [...] MUST permit users to check their

outputs against SLA’s [...]

ID: R3.12
Title: Modelling abstraction level
Priority of accomplishment: Must have
Description: Depending on the abstraction level of the UML models (detail of

the information gathered, e.g., about components, algorithms or any
kind of elements of the system we are reasoning about), the TRANS-
FORMATION TOOLS will create the formal model accordingly,
i.e., at that same level that the original UML model

Copyright © 2017, DICE consortium – All rights reserved 11
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ID: R3.15
Title: Verification of temporal safety/privacy properties
Priority of accomplishment: Must have
Description: [...] the VERIFICATION TOOLS MUST be able to answer [...]

whether the property holds for the modeled system or not.

ID: R3IDE.2
Title: Timeout specification
Priority of accomplishment: Should have
Description: The IDE SHOULD allow [..] to set a timeout and a maximum

amount of memory [...] when running [...] the VERIFICA-
TION TOOLS. [...]

ID: R3IDE.4
Title: Loading the annotated UML model
Priority of accomplishment: Must have
Description: The DICE IDE MUST include a command to launch the [...] VERI-

FICATION TOOLS [...]

ID: R3IDE.4.1
Title: Usability of the IDE-VERIFICATION TOOLS interaction
Priority of accomplishment: Should have
Description: The QA ENGINEER SHOULD not perceive a difference between

the IDE and the VERIFICATION TOOL [...]

ID: R3IDE.4.2
Title: Loading of the property to be verified
Priority of accomplishment: Must have
Description: The VERIFICATION TOOLS MUST be able to handle [...] proper-

ties [...] defined through the IDE and the DICE profile

ID: R3IDE.5
Title: Graphical output
Priority of accomplishment: Should have
Description: [...] the IDE SHOULD be able to take the output generated by the

VERIFICATION TOOLS [...]

ID: R3IDE.5.1
Title: Graphical output of erroneous behaviors
Priority of accomplishment: Could have
Description: [...] the VERIFICATION TOOLS COULD provide [...] an indica-

tion of where in the trace lies the problem

Copyright © 2017, DICE consortium – All rights reserved 12
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3 Modeling Spark Applications for Verification

This section elaborates on how Spark applications can be modeled by means of DICE-profiled UML
activity diagrams.

We already mentioned in [1] all the assumptions that have been made with respect to the modeling
of Spark applications. A brief excerpt from [1] about the main features of the framework modeled for
the verification and the assumptions underlying the modeling is provided afterwards.

3.1 Spark basics
Spark is a framework that allows developers to implement DIAs that process data streams or batches and
run on clusters of independent computational resources. The computational model of Spark is specifi-
cally designed to guarantee data parallelism and fault-tolerant executions. Data are uniformly partitioned
across nodes and multiple partitions can be concurrently processed by applying the same operations in
parallel. Spark allows the development based on two types of operations:

• Transformations are operations (such as map, filter, join, union, and so on) that are performed on
data and which yield new data.

• Actions are operations (such as reduce, count, first, and so on) that return a value obtained by
executing a computation on data.

Transformations in Spark are “lazy” as they do not compute their results immediately upon a function
call. Spark arranges the transformations to maximize the number of such operations executed in parallel
by scheduling them in a proper way. It keeps track of the dataset that the transformation operates and
computes the transformations only when an action is called.

As the code is submitted to it, Spark creates the so-called operator DAG (or RDD DAG), whose nodes
are the operations performed over data. This graph keeps track also of all the RDDs that are created as
consequence of the operations.

The operator graph is then submitted to the Spark DAG Scheduler. The DAG scheduler pipelines
operators together when possible, and creates what we will refer to as the execution DAG, whose nodes
are stages.

A stage is a sequence of transformations that are performed in parallel over many partitions of the
data and that are generally concluded by a shuffle operation. Each stage is a computational entity that
produces a result as soon as all its constituting operations are completed. Each stage consists of many
tasks that carry out the transformations of the stage; a task is a unit of computation that is executed on
a single partition of data. The computation realized by a DAG is called Spark job, i.e., an application
which reads some input, performs some computation and returns some output data. A DAG defines the
functionality of a Spark job by means of an operational workflow that specifies the dependencies among
the stages manipulating RDDs. The dependency between two stages is a precedence relation. Hence, a
stage can be executed only if all its predecessors have finished their computation.

3.2 Modeling assumptions and Job model
The verification of Spark jobs is carried out on the DAG underlying the application and it is based
on an abstraction of the temporal behavior of the tasks implementing the stages. The logical model
characterizes each task with

• a latency that is an estimation of the duration of the task per data partition

• the number of CPU cores executing the task.

The data partitions are obtained by the Spark engine when the Spark job is launched and the partition
size is a parameter that can be set before launching the application. For this reason, the DAG of the

Copyright © 2017, DICE consortium – All rights reserved 13
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Spark job, the number of tasks per stage and number of cores are required parameters to instantiate the
analysis.

Verification is performed by means of a logical model written in CLTLoc. The CLTLoc model repre-
sents the execution of a DAG of stages over time. In particular, it describes their activation, execution and
termination with respect to the precedence relation among the stages, that is entailed by the DAG of the
application. The prerequisite for the analysis is the availability of the task latency required to perform
the Spark operators occurring in the DAG, as each task carries out the operation of a Storm operator.
Verification concerns non-functional properties of the DIAs and the task functionalities are abstracted
away with their timing requirements.

3.2.1 Assumptions
Spark environment

• The runtime environment that Spark instruments to run a job is not considered in the modeling.

• The latency generated by the execution of services managing the jobs is considered negligible with
respect to the total time for executing the application.

Cluster environment

• The workload of the cluster executing the application is not subject to oscillations that might alter
the execution of the running jobs.

• The cluster performance is stable and does not vary over time.

Spark job

• The number of CPU cores that are available for computing the Spark job is known before starting
the execution of the job and does not vary over the computation.

• All the stages include a finite number of identical tasks, i.e., the temporal abstraction that models
their functionalities is the same; therefore, all the tasks constituting a stage have durations that can
vary non-deterministically by at most a fraction of the nominal stage duration.

3.3 DICE Profile for Spark design
The modeling of Spark applications for verification benefits from the features provided by the DICE
Profiles [4]. The profile includes all the stereotypes to define the main functional and non-functional
details of the elements constituting DIAs implemented in Spark. The set of stereotypes needed to enable
verification is shown in Fig. 1. Specifically, << SparkScenario >> allows the designer to define some
general information about the application and its context, such as the default parallelism adopted by
Spark, the number of cores and the quantity of memory of the underlying cluster that are assigned to the
application. << SparkMap >> and << SparkReduce >> provide the features to define, respectively,
transformations and actions. The attribute MapType (ReduceType, respectively) is used to specify
the kind of operation that is performed. Other attributes, such as duration and numTasks define
the reference duration of each operation with respect ot a single unit of data (partition) and the level of
partitioning (if specified) that will be applied on the input data to perform such operation.

3.4 UML design for verification
Spark applications can be designed from the DICE IDE as UML Activity Diagrams. The main building
blocks provided by the Papyrus editor are the following:

• Activity node: acts as a “container” of the Spark application, as all the nodes of the operations
DAG need to be included in it. By applying on it the << SparkScenario >> stereotype, the user
can define the context of the application.
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Figure 1: Stereotypes from the DICE::DTSM::Spark profile that are needed to model Spark DIAs for
verification.

• Opaque Action nodes: are used to specify generic Spark operations. The user, by applying
the specific stereotype (which can be either << SparkMap >> or << SparkReduce >>) can
characterize further the operation as a transformation or action.

• Control Flow edges: are used to connect the various operations (Opaque Action nodes) to com-
pose the operator DAG.

• Initial Nodes: express the starting points of the computation and the initialization point for RDDs.

Consistently with how applications are defined to run the simulation tools [5], the semantics that is
considered for the Activity diagrams is slightly different from the standard UML semantics, in which
there can be only one initial node and one end node for each activity: the user can define more than one
initial node, as each one of them corresponds to the initialization of an RDD that is used as a source of
computation.

In order to clarify the design process, we are showing the representation of a very simple application–
the classic “word-count” example.
The word-count application consists of a series of steps that are performed in order to obtain, given an
input text, the number of occurrences of each different word on that text. Listing 1 shows the few lines
of Python code that are needed to define the application.

Listing 1: Python implementation of the word-count application.

text = sc.textFile("s3://...")

words = text.flatMap(lambda x: x.split(" "))

result = words.map(lambda x: (x, 1)).reduceByKey(lambda x, y: x + y).collect()
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Figure 2: UML representation of word-count application

As can be seen from the code, the first step consists in reading from file with the textfile() transfor-
mation, which produces the text RDD (containing the whole text to analyze). Then a flatmap() is
applied on text to split the text in words. Subsequently, each word x is mapped to a tuple (x, 1) by
means of a map() transformation. Finally the reduceByKey() transformation computes the count
of the occurrences for each word. The collect action triggers the execution of the previous steps as a
Spark job and allows for the collection of the final outcome on the driver machine.

The corresponding UML description of the application is depicted in Fig. 9. The activity node
called wordcount contains the operator DAG and is tagged with the << SparkScenario >> stereotype.
The various computation steps (textFile, flatMap, map, reduceByKey, collect) are inserted as Opaque
Action nodes and are tagged with the appropriate stereotype: collect, being an action, is tagged with the
<< SparkReduce >> stereotype, while the others are all tagged as << SparkMap >>. Each operation is
then configured properly by setting the specific MapType (or ReduceType) as well as the other required
parameters, such as duration and numTask. The activity partitions shown in Fig. 2 highlight how the
variables defined in the code are mapped over the different nodes of the Activity diagram. Their usage
is exclusively for illustrative purpose and they do not provide any semantic value that will be considered
for the transformations from UML to temporal logic.
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4 Integration in the DICE IDE

This section reports the enhancements that have been done regarding the integration of D-VerT in the
DICE IDE.

The front-end of D-VerT, consisting of a set of Eclipse plugins, was already integrated in the DICE
IDE, as described in [6]. However, the previous version of the tool only supported the verification of
Storm DIAs from the front-end. Therefore, most of the effort was dedicated to enabling Spark verification
starting from UML models.
The support for Spark verification was made possible by:

1. the definition of a UML semantics for designing Spark application, provided by the updated DICE
Profile and by the modeling criteria discussed in Sect. 3;

2. the creation a new, dedicated, launch configuration dialog (DICE Verification - Spark);

3. the implementation of the transformation from DICE-profiled UML diagram to the formal model;

4.1 Transformation from UML diagram to formal model
The transformation from the DICE-profiled Spark UML diagram to the formal model has been imple-
mented by extending the approach already adopted in D-VerT to support Apache Storm technology.

As reported in [7], D-VerT defines a two-steps transformation process (Fig. 3): the first step, carried
out on the front-end by the Uml2Json component, translates the UML diagram to a specific JSON
description of the DIA; the second step, implemented in the back-end through the Json2MC component,
which generates the specific instance of the formal model by based on the content of the JSON object
received as input.

Figure 3: Two-steps transformation flow of D-VerT: the DIA, designed as a DICE-profiled UML diagram
(1), is first translated to a JSON object (2) and then to the corresponding Temporal Logic model (3).

The Uml2Json component, part of the D-VerT Eclipse plugins, is entirely developed in Java and
relies on the Eclipse UML23 Java Library, an EMF-based implementation of the UML 2.x OMG meta-
model for the Eclipse platform. Uml2Json traverses the XMI file containing the diagram and extract all
the needed information, instantiating the data structures to perform the transformation, shown in Fig. 4
and Fig. 5. As presented in Fig. 4, abstract class Node encapsulates a generic node of an activity dia-
gram and provides some basic operations. The SparkOperationNode abstract class extends it, defining
the concept of a generic Spark operation and providing the methods which are common to all the op-
erations. SparkTransformationNode and SparkActionNode are the concrete classes representing the two
kinds of Spark operations. They provide all the functionalities to extract the specific values defined in
the corresponding stereotypes. While traversing the UML diagram, Uml2Json decorates each occur-
rence of an Opaque Action node with the appropriate concrete SparkOperation node, depending on the
applied stereotype. Each node keeps track of its connected nodes and is added to a SparkOperationsDAG
instance.

3http://www.eclipse.org/modeling/mdt/?project=uml2
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Figure 4: UML Class diagram showing the hierarchy of nodes, each of them encapsulating UML activity
nodes.

Figure 5: Class diagram showing the classes used to implement the transformation.

Differently from the transformation from Storm UML class diagrams to JSON, in which the transla-
tion was merely structural, Spark operator DAGs need to be transformed by producing the corresponding
Spark execution DAGs, whose nodes consist in stages. For this reason Uml2Json needs to mimic the
same policies that are used by Spark to create the execution DAG. Once the SparkOperationsDAG in-
stance is instantiated, it is analyzed in order to create the set of stages that will form the execution DAG.
The creation of a new stage, consisting in the instantiation of the SparkStage class of Fig. 5, is done
whenever a shuffle transformation is encountered. A stage is typically composed of many operations
which are pipelined and executed in sequence by each thread, therefore the duration parameter of the
stage (i. e. the reference duration of each task in the stage) consists in the sum of the durations of all
the operations in the stage. The list of stages is included in an instance of the SparkVerificationJsonCon-
text class (Fig. 5) together with the configuration provided through the run configuration. At this point,
all the information needed to proceed with the transformation is put together and serialized as a JSON
Object by means of the gson4 Java library. The JSON Object is then used to build a POST request to
the D-VerT server which will trigger the second step of the transformation and consequently the launch
of the verification task. More details about the generation of the formal model starting from the JSON
object can be found in [1].

4https://github.com/google/gson
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Figure 6: Launch configuration for Spark verification in DICE

4.2 Launch configuration type
As for Storm verification, the transformation process is triggered from the IDE by means of a specific
launch configuration type, which provides all the necessary tool settings to perform formal verification.

The D-VerT Spark launch configuration, as shown in Fig. 6, allows the user to select the input
model, select the analysis type to perform, configure the deadline against which perform the analysis and
specify the time bound over which the verification has to be carried out. Additionally, it is possible to
add textual informations about the verification task instance, save the intermediate files in a local folder
and configure the network address of the D-VerT server.

The launch configuration was developed in Java exploiting the Eclipse Launching framework.
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5 Improvements and optimizations on formal model and tool

This section introduces some techniques to lower the cost of performing the verification tasks on Spark
models. More precisely, it introduces the following strategies for improvements:

• Reduction of the size of the the model by using a “labeling” mechanism on the DAG.

• Reduction of the size of the possible output traces to be returned by aggregating sequences of
repetitive events.

5.1 Encoding
As already emphasized in the introduction, the research for approaches enhancing the performance of
automatic procedures, suitable for solving complex problems, becomes fundamental to improve the us-
ability of the implementing tools in practical contexts, where the complexity of the scenarios could make
the use of such tools too onerous. In DICE verification, where the analysis relies on of logic-based tech-
niques, the reduction of the size of the models of a formula, modeling for instance the executions of a
Spark job, is one of the possible solutions to reduce the time and the memory needed by the solver to
get the result. This section outlines the rationale that is applied to the model of the Spark job, already
presented in deliverable D3.6 [1], and that allows such improvement.

As pointed out in D3.6 (Section 4.3), the executions of Spark jobs can be modeled by means of a
temporal logic formula written in CLTLoc [8]. The satisfiability problem for CLTLoc is decidable and
can be computed through the Bounded Satisfiability Checking (BSC) technique. Solving the saltisfiabil-
ity problem of a logical formula consists in an assignment of a value to the logical elements that occur
in the formula. For instance, given a propositional formula (A ∨B) ∧ C, the satisfiability problem for
the formula might be the assignment A = true and C = true which makes the overall formula evaluation
equal to true.

Time in logic can be represented by positions in the timeline, for instance, through discrete points
associated with natural numbers in N. When a temporal logic language is considered, a model is therefore
an assignment of values to the logical elements of the formula for all the time positions defining the
timeline. A BSC decision procedure looks for a model of the formula that consists of a fixed and finite
number of time positions. In general, the less the time positions are in the model, the more the resolution
of the formula is feasible in term of time and memory to run the algorithm. The changes implemented in
the temporal logic model presented in deliverable D3.6 pursue this objective, which allow the solver to
find a “small” solution (i.e., an assignment) for the formula.

5.1.1 CLTLoc Spark job modeling
The rest of the section briefly recalls the main parts of the model of D3.6 and, afterwards, introduces
the modifications applied to it. The CLTLoc model makes use of a finite set of atomic propositions and
discrete counters to represent a set of feasible job executions. The atomic propositions model the starting,
the execution and the termination of the stages in a job and also specify the duration of the tasks and the
total number of CPU cores that the stages can use to run the tasks. A trace satisfying the CLTLoc model
is a possible schedule, over the time, of the tasks composing the stages of the job; i.e., it represents a
possible task ordering which can be executed by means of a finite set of cores.

Each task is executed by one CPU core; therefore, the number of running tasks depends on the
number of the available cores. Modeling the execution of tasks requires the following counters whose
value vary over the time.

• runTCi - (runningTasksCounter): Number of tasks currently running for stage i;

• remTCi - (remainingTasksCounter): Number of tasks that still have to be executed for stage i;

• avaCC - (availableCoresCounter): Number of cores currently available to execute the job.
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Finally, the two constant parameters that are specified by the designer to define the verification instance
are:

• TOT TASKSi - Total number of tasks needed to complete job i

• TOT CORES - Total number of cores available in the cluster

The modification applied to the model mainly affects the formulae modeling the behavior of tasks. Spark
tasks are in general executed in parallel as data in Spark can be elaborated by many concurrent tasks
of the same type that execute the same functionality on different partitions of the data (having all the
same type). Therefore, tasks of the same type are always brought together to form batches, whose size
depends on the number of the available CPU cores in the cluster. The behavior of each batch of tasks
is modeled by logical formulae defining the beginning, the end and the execution of the batch. The
following constraints are modeled through CLTLoc:

• if a batch of tasks starts, i.e., atom startTi holds, then: (i) the execution of the batch cannot finish
at the same time (i.e., ¬endTi must hold), (ii) in the previous time position, the stage was enabled
to run and (iii) a new batch cannot start ¬startTi until the termination of the current one.

• any execution of a batch of tasks is started with startTi and ended with endTi, respectively; and
that if a batch is running then, at the same time, the corresponding stage is running.

• The termination of a batch of tasks entails that ¬endTi holds since the position where the current
batch was started.

Other CLTLoc formulae determine how counters runTCi and remTCi vary their value over the time.
Three formulae determine the value of runTCi and remTCi during the execution of the batch. In particu-
lar,

• the variation of the value of runTCi, between two adjacent time positions, is the sufficient condition
to make startTi or endTi true. Therefore, between startTi and endTi, runTCi cannot vary.

• the variation of remTCi is the sufficient condition to activate the execution of a batch (i.e., startTi
holds).

• if the execution of a batch of tasks is starting, the number runTCi of the running tasks in the
batch is the difference of the (number of) remaining tasks at the beginning of the batch (i.e., value
remTCi) and the remaining tasks in its preceding position.

The duration of the processing phases undertaken by the tasks is represented by means of clocks. Clock
tphasej measures the duration of the runTj phases for each task j and its value is set to zero every time a
batch of tasks starts (i.e., startTj holds).

The main change applied to the model is related to the following Formula (1) of D3.6 that limits the
duration of the execution of a batch of tasks. If there is a batch currently running (i.e., runTi holds) then
runTi holds until a time position when the value of clock tphasei is between αi ± ε and endTi is true.

⋀
i∈S

(
(runTi ⇒

(runTi ∧ ¬endTi)U((αi − ε ≤ tphasei ≤ αi + ε) ∧ endTi)
) (1)

The rationale of the new formula replacing Formula (1) is the following. The interval between
startTi and endTi does not represent the execution of one batch of tasks α ± ε time units long but it
models the executions of (one or) many batches of tasks, whose duration is proportional to the actual
number runTi of running tasks. Modeling the aggregation of batches can be done either by means of
parametric formulae or by encoding the size of the batches into the formulae, limiting therefore the
possible solution set that the solver should consider while it is solving the satisfiability of the model.
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• The parametric modeling lets the number of running tasks runTi be unconstrained (as in For-
mula (1)) while it constrains the value of the duration of an aggregation of batches, executed
between startTi and endTi. The total duration tphasei is set with value k ⋅ α, where k is a con-
stant that depends on the number of batches in the aggregation. The value k is a integer in the set
{1, . . . , TOT TASKSi

TOT CORES
} and indicates how many batches (composed at most of TOT CORES and all of

the same number of running tasks) might be active between startTi and endTi. Value TOT TASKSi
TOT CORES

is the maximum number of batches that must be executed to elaborate all the TOT TASKSi tasks of
the i-th stage by means of TOT CORES CPUs.

• The non-parametric modeling guides the solver by limiting the sets of values of variable runTi and,
consequently, of the duration of an aggregation of batches (with similar constraints to those of the
parametric formula). The value of runTi belongs to a pre-computed subset of {1, . . . ,TOT CORES}

that, for instance, might be composed of all the multiple of 3 from 1 to TOT CORES.

The following Formula (2) is the parametric version of Formula (1), where nrounds is TOT TASKSi
TOT CORES

and
Formula (3) defines the update of variable remTCi by an amount that is equal to k times the number of
active tasks runTCi.

⋀
i∈S

( (runTi ⇒ (runTi ∧ ¬endTi)U(φ ∧ endTi) ) (2)

φ ∶=
nrounds

⋁
k=1

⎛
⎜
⎜
⎝

remTCi = Y(remTCi) − k ⋅ runTCi

∧

(k ⋅ αi − ε ≤ tphasei ≤ k ⋅ αi + ε)

⎞
⎟
⎟
⎠

(3)

The experimental results pointed out that the parametric modeling is, in general, not faster than
the original one as the complexity for solving the constraints in Formula (3) turns out to be a relevant
part of the resolution of the satisfiability problem. However, the outcome traces produced when the
formula is satisfiable show a better scheduling of the tasks over the time than the one produced by the
non-parametric version and the one resulting from the old modeling of D3.6. On the other hand, the
non-parametric version is, in general, much faster than the other modelings (the parametric and the old
one in D3.6) but it sometimes fails as it cannot find a model for the (non-parametric) formula, that is
shown to be unsatisfiable, whilst the parametric model can yield a model.

5.2 Model size reduction by means of labeling
Experimental analysis of the execution times registered for verification tasks with the first version of the
Spark formal model showed that, by increasing the size of the DAG (i.e., by adding stages), the time
needed to perform verification in most cases increases exponentially. As could be expected with this
kind of models, this is an instance of the state-space explosion problem. In fact, for each new node in the
DAG, a new dedicated set of formulae is added to the model, significantly augmenting the state space of
the possible solutions. For this reason, the fewer variables are in the model, the less execution time is
affected.

The strategy we adopted to mitigate the problem exploits the fact that, given the dependencies be-
tween stages executions, there are stages that will never be executed in parallel. Because of this structural
characteristic, a way to reduce the number of variables in the model is to “reuse” as much as possible
some variables for representing the stages whose execution is mutually exclusive. For this reason we
partition the graph by assigning the same “label” to the stages that can use the same set of variables. In
this way the set of variable will be generated for each label instead of for each stage.

A trivial example for explaining the advantage of such approach is the case of a “linear” DAG (Fig. 7),
where all the stages have to be executed in sequence and there is no possibility of parallelizing them. In
this case, there is always one and only one stage active, therefore it is sufficient to use the formulae of
one single stage to represent the execution over time of all of the stages. According to our procedure,
only one label (< 0 > in Fig.7) will be assigned to all the nodes in the graph, and only one set of formulae
will be generated.
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Figure 7: Linear DAG
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Figure 8: DAG generated for the k-Means application. Labels are represented between angle brackets.

The labeling algorithm performs a breadth-first visit of the graph and assigns labels to all the nodes.
Whenever a set of new child nodes is found, the algorithm checks if it is possible to assign them labels
already used for the parent nodes. Only when no existing label is available, a brand new label is created
and assigned to the node. Figure 8 shows the application of labeling to the DAG generated from a Spark
application (implementing an iteration of the K-Means algorithm). The DAG is composed of 18 nodes
and the labels that are created (shown between angle brackets in the figure) by the algorithm are 9. This
means that, for this particular DAG, it is possible to represent the execution of all the stages in the formal
model by generating formulae for only 9 stages instead of 18, halving the size of the final model.
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6 Use case

In this section we propose again the use case that we presented in [1], in order to show how, in its final
version D-VerT supports the verification of Spark applications starting from their UML design.

Listing 2 shows the Python code of the simple application which performs several operations over
a text file in which all the lines have the format: type:name. The final output is the list of all the name
words whose type is different from ‘verb’ and whose first letter equal to last letter.

Listing 2: Python code representing the example Spark application.

from pyspark import SparkContext

sc = SparkContext(’local’, ’example’)

x = sc.textFile("dataset.txt").map(lambda v: v.split(":"))

.map(lambda v: (v[0], [v[1]]))

.reduceByKey(lambda v1, v2: v1 + v2)

.filter(lambda (k,v): k != "verb")

.flatMap(lambda (k, v): v)

y = x.map(lambda x: (x[0], x))

.aggregateByKey(list(),

lambda k,v: k+[v],

lambda v1, v2: v1+v2)

z = x.map(lambda x: (x[−1], x))

.aggregateByKey(list(),

lambda k,v: k+[v],

lambda v1, v2: v1+v2)

result = y.cartesian(z)

.map(lambda ((k1,v1), (k2, v2)):

((k1+k2), list(set(v1) & set(v2))))

.filter(lambda (k,v): len(v) > 1).collect()

print(result)

Figure 9 depicts the corresponding UML diagram that is generated through the Papyrus editor in the
DICE IDE. Each Opaque Action node corresponds to an operation reported in Listing 2 and is tagged
either as a << SparkMap >> or as a << SparkReduce >> according to its operation Type. The MapType
(respectively ReduceType) is set for all the nodes and it will be fundamental to determine if new stages
need to be created in the execution DAG. For example, the two aggregateByKey operations, being two
shuffle transformations, will cause the creation of two different stages. The generated execution DAG is
shown in Figure 10. It can be noticed how the labeling generates two labels (< 0 > and < 1 >) to cover
the graph.
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Figure 9: UML Activity diagram of the use case application.
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Figure 10: Labeled execution DAG generated from the use case application.
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7 Remark on the use of Containerizing technologies

Containerizing technologies do not affect the formal models that were developed to support safety ver-
ification in DICE. The two temporal logic models for Storm topologies and Spark job were devised to
point out a very specific aspect of the applications implemented with such technologies which is not
dependent on the way an application is deployed and distributed over a cluster. The underlying deploy-
ment of the nodes executing the application, in fact, does not affect the temporal features of the running
application itself, that are related, for instance, to the time needed by a Spark/Storm node to carry out its
functionality or to the number of input messages produced by a source node in a Storm topology. For
this reason, being the verification modeling completely transparent with respect to the deployment of the
application, no extensions to the work achieved so far should be considered to include temporal aspects
of containerizing technologies.

8 Conclusions

The primary focus of WP3 - Verification activities was on developing the abstract models supporting
safety verification of applications implemented by two baseline data intensive technologies (Apache
Storm and Apache Spark) in the DICE research agenda.

We implemented such models by means of a logical approach and we developed them by using
CLTLoc logic. We run verification on them by considering standard benchmark applications and we
extended existing external tools to let them support the characteristics of the new models.

We designed the models to be configurable and provided a layered structure to facilitate the future
integration with the DICE framework by decoupling the verification layer from the DTSM diagrams
that the designer exploits to design the application. The activities of the WP3 - Verification have been
also focused on the fulfillment of requirements R3.1 and R3.2 as they were necessary to integrate D-
VerT with the DICE IDE. We developed ad-hoc the model-to-model transformations producing verifiable
models from the user design, that is realized through the verification toolkit in the DICE IDE.

Beside the temporal logic models, other formalisms were explored to represent Storm applications,
opening new possible research activities.

8.1 Upcoming work
In the next months, the activity of the work concerning formal verification in WP3 will focus on bug-
fixing and code-tuning of D-VerT with the collaboration of DICE industrial partners to support them in
the demonstration of the technology.
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Requirement ID Description Coverage To do

R3.1 M2M Transformation 100 % -

R3.2
Taking into account
relevant annotations

100 % -

R3.3 Transformation Rules 100 % -

R3.7
Generation of traces from
system model 100 % -

R3.10
SLA specification and
compliance 100 % -

R3.12 Modelling abstract level 100 % -

R3.15
Verification of temporal
safety/privacy properties 90 % -

R3IDE.2 Timeout Specification 100 % -

R3IDE.4.2
Loading the properties to
be verified

100 % -

R3IDE.5 Graphical output 100 % -

R3IDE.5.1
Graphical output of
erroneous behaviours

100 % -

Table 1: Requirement coverage at month M30. R3.15 is coverd or 90% as the privacy concern require-
ments have been moved to Trace-checking analysis in Work Package 4 (details about privacy are supplied
by deliverable D4.4 and D2.4).
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