
Developing Data-Intensive Cloud
Applications with Iterative Quality

Enhancements

DICE simulation tools - Final version

Deliverable 3.4

Ref. Ares(2017)3820009 - 30/07/2017

Deliverable 3.4. DICE simulation tools - Final version

Deliverable: D3.4
Title: DICE simulation tools - Final version

Editor(s): Diego Perez (ZAR)
Contributor(s): Simona Bernardi (ZAR), José Merseguer (ZAR), José Ignacio

Requeno (ZAR), Giuliano Casale (IMP), Lulai Zhu (IMP)
Reviewers: Andrew Phee (FLEXI), Ismael Torres (PRO)

Type (R/P/DEC): Report
Version: 1.0

Date: 31-July-2017
Status: Final version

Dissemination level: Public
Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright c© 2017, DICE consortium – All rights reserved

The DICE project (February 2015-January 2018) has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

Copyright c© 2017, DICE consortium – All rights reserved 2

Deliverable 3.4. DICE simulation tools - Final version

Executive summary

This document presents the final results of the development of the Simulation tool. It details the advances
of this tool with respect to the intermediate version reported at M24. Main achievements in this final
version are in the functionality offered by the tool. Nevertheless, it also contains new implementations
in the graphical interaction with users. This deliverable is related to D1.2 (Requirement specification) as
it evaluates the level of accomplishment of requirements achieved by this final version of the Simulation
tool. New achievements on the functionality and graphical user interface allow the final version of the
tool to fulfill all its requirements.

All the artifacts presented in this document are publicly available in the so-called DICE-Simulation
Repository [36], whose structure and components are described in the Appendix A of this document.

Copyright c© 2017, DICE consortium – All rights reserved 3

Deliverable 3.4. DICE simulation tools - Final version

Glossary

AWS Amazon Web Services
DAM Dependability Analysis and Modeling
DIA Data-Intensive Application
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DPIM DICE Platform Independent Model
DTSM DICE Technology Specific Model
EC2 Elastic Cloud Computing
GUI Graphical User Interface
IDE Integrated Development Environment
JMT Java Modelling Tools
M2M Model-to-model Transformation
M2T Model-to-text Transformation
MARTE Modeling and Analysis of Real-time Embedded Systems
MDE Model-Driven Engineering
MTBF Mean Time Between Failures
MTTF Mean Time to Failure
MTTR Mean Time to Repair
OSGi Open Services Gateway initiative
PNML Petri Net Markup Language
QVT Meta Object Facility (MOF) 2.0 Query/View/Transformation Standard
QVTo QVT Operational Mappings language
RBD Reliability Block Diagram
UML Unified Modelling Language

Copyright c© 2017, DICE consortium – All rights reserved 4

Deliverable 3.4. DICE simulation tools - Final version

Contents

Executive Summary . 3

Glossary . 4

Table of Contents . 5

List of Figures . 7

List of Tables . 8

1 Introduction and Context . 9
1.1 Structure of the Document . 10

2 Summary of achievements in the intermediate version of the Simulation Tool 11
2.1 Requirements coverage summary . 11
2.2 Summary of functionality and GUI of the intermediate version of the Simulation tool . . 12

3 Functionality enhancements to interpret user inputs . 18
3.1 Enhancements on the models to simulate: Apache Spark 18
3.2 Enhancements on the quality properties that can be simulated 18

3.2.1 New performance metrics . 19
3.2.2 New reliability metrics . 21

3.3 Enhancements on the specification of SLA . 22

4 Functionality enhancements to produce simulation results 24
4.1 Enhancements on the computation of performance results: Apache Spark 24
4.2 Enhancements on the computation of reliability results for Apache Hadoop, Storm, and

Spark . 25
4.2.1 Computation of MTTF . 25
4.2.2 Computation of Availability . 26
4.2.3 Computation of reliability R(t) . 26

4.3 Enhancements on the solvers implementation . 27
4.3.1 Solving with JMT . 29

5 Updates in the Graphical User Interface . 30
5.1 Graphical representation of specified SLA . 30
5.2 Graphical configuration of quality properties solver . 31

6 Simulation tool for containerized DIA deployments . 34

7 Conclusion . 35

References . 37

Appendix A. The DICE-Simulation Repository . 40

Appendix B. Modeling and transformations to Analysis Models of Apache Spark DIAs . . . 41
B.1 Introduction of model-driven performance assessment of Spark applications 41
B.2 Spark and Performance . 41
B.3 Modelling Spark applications with UML . 44
B.4 A UML Profile for Spark . 46
B.5 Transformation of the UML Design . 49

Appendix C. JMT Petri Net Extension . 54

Copyright c© 2017, DICE consortium – All rights reserved 5

Deliverable 3.4. DICE simulation tools - Final version

Appendix D. Validation of Apache Spark . 61

Appendix E. GSPN . 63

Copyright c© 2017, DICE consortium – All rights reserved 6

Deliverable 3.4. DICE simulation tools - Final version

List of Figures

1 Sequence diagram depicting the interaction between the components of the Simulation tool 12
2 Create a new Simulation launch configuration from icon in menu. 13
3 Create a new Simulation launch configuration from a workspace model. 13
4 A Simulation launch configuration window showing the Main tab. 14
5 A Simulation launch configuration window showing the Filters tab. 15
6 A Simulation launch configuration window showing the Parameters tab. 16
7 View of the Invocations Registry with the results of a what-if analysis composed of nine

concrete simulations . 16
8 Simulation result of DIA throughput . 16
9 New option Plot Results within the Invocations Registry view 17
10 Plot showing what-if analysis results with the correlation of how the arrival rate affects

the response time. 17
11 Sequence diagram highlighting the functionality enhancement with respect to the en-

hancements on the models to simulate. 18
12 Activity diagram depicting a Spark execution scenario that is now accepted by the Simu-

lation tool. 19
13 Deployment Diagram modeling the resources used by a DIA based Spark technology. . . 19
14 Sequence diagram highlighting the functionality enhancement with respect to the quality

properties that can be simulated . 20
15 Definition of response time and throughput metrics in Spark scenarios 20
16 Definition of Utilization metric in Spark scenarios . 20
17 Configuration of metrics to simulate . 21
18 Definition of availability in a Hadoop scenario . 21
19 Definition of MTTF in a Storm scenario . 21
20 Definition of reliability in a Spark scenario . 22
21 Definition of the response time metric to calculate and its SLA of 1 second 22
22 Sequence diagram highlighting the functionality enhancement with respect to the pro-

duction of new simulation results. 24
23 Computed MTTF in a Storm application . 26
24 Computed Availability in a Hadoop application . 26
25 what-if analysis over variable MTTF to obtain a required Availability 27
26 Computed R(t) in a Spark application . 27
27 Computed R(t) in a Spark application in function of the number of resources 28
28 Computed R(t) in a Spark application in function of the mission time t 28
29 Sequence diagram highlighting the GUI enhancement with respect to the representation

of results. 30
30 Computed R(t) and limit SLA in a Spark application in function of the number of resources. 31
31 Computed R(t) and limit SLA in a Spark application in function of the mission time t. . 31
32 Sequence diagram highlighting the GUI enhancement with respect to the choice of solvers. 32
33 Choice of simulation solver during the simulation configuration in LaunchConfiguration

window. 32
34 Choice of simulation solver in the general preferences of the DICE IDE. 33
35 DAG representing a Spark application . 42
36 Example of an activity diagram for Spark with profile annotations 44
37 Example of deployment diagram for Spark with profile annotations 45
38 GSPN for the Spark design in Figures 36 and 37 . 51
39 Example of a simple PN model with two closed classes. 54
40 Storage section panel of Place 1. 55
41 Enabling section panel of Transition 1. 55
42 Timing section panel of Transition 1. 56
43 Firing section panel of Transition 1. 56

Copyright c© 2017, DICE consortium – All rights reserved 7

Deliverable 3.4. DICE simulation tools - Final version

44 Structure of a queueing place. 58

List of Tables

1 Level of compliance with requirements of the intermediate version of the Simulation
tool, at M24. Data brought from D3.3 [15] . 11

2 Level of compliance with requirements of the final version of the Simulation tool 35
3 Spark concepts that impact in performance . 43
4 Spark profile extensions . 48
5 Transformation Patterns for Spark-profiled UML Activity Diagrams 50
6 Transformation Patterns for SparkMap stereotype in Spark-profiled UML Activity Dia-

grams . 52
7 Transformation Patterns for Spark-profiled UML Deployment Diagrams 53
8 Results of the SparkPrimes experiment . 62

Copyright c© 2017, DICE consortium – All rights reserved 8

Deliverable 3.4. DICE simulation tools - Final version

1 Introduction and Context

The goal of the DICE project is to define a quality-driven framework for developing data-intensive ap-
plications (DIA) that leverage Big Data technologies hosted in private or public clouds. DICE offers
a novel profile and tools for data-aware quality-driven development. In particular, the goal of WP3 of
the project is to develop a quality analysis tool-chain that will be used to guide the early design stages
of the data intensive application and guide quality evolution once operational data becomes available.
Therefore, the main outputs of tasks in WP3 are: tools for simulation-based reliability and efficiency
assessment; tools for formal verification of safety properties related to the sequence of events and states
that the application undergoes, and tools for numerical optimization techniques for searching the optimal
architecture designs. Concretely, Task T3.2 in WP3 is in charge of developing the DICE Simulation tool,
a simulation-based tool for reliability and efficiency assessment of DIA.

This deliverable describes the final version, at M30 of the project, of the DICE Simulation tool. The
intermediate version of this Simulation tool was already reported, at M24, in deliverable D3.3 [15], while
its initial version was reported in deliverable D3.2 [14] at M12. Simulations carried out by the Simulation
tool are model-based simulations. To perform its model-based simulation task, the tool takes as input
UML models annotated with the DICE profile developed in Task T2.2. Then, it uses Model-to-model
(M2M) transformations, that transform the DIA execution scenarios represented in these profiled UML
models into Petri net models, evaluates these Petri nets, and finally uses the results of the Petri net eval-
uation to obtain the expected performance and reliability values in the domain of DIA software models.

Compared with the intermediate version of the tool, released at M24, the final version has enriched its
functionality and its Graphical User Interface (GUI) to accomplish all its requirements defined in [12,13].

The functional enhancements extend the capabilities of the tool both to accept and interpret differ-
ent inputs, and to produce results of the quality of the DIA for the users. Regarding the extensions in
accepted inputs, the final version of the tool is able to accept DIAs models based on Apache Spark tech-
nology. It is also able to read specifications of reliability properties at the technology specific level for
Hadoop, Storm and Spark technologies, and to accept the specification of limit values for the Service
Level Agreements (SLA) of quality properties.

Regarding the extensions in produced outputs, the final version of the tool is able to compute per-
formance and reliability metrics for Spark technology and reliability metrics for Hadoop and Storm
technologies (the ability to compute performance metrics for Hadoop and Storm was already present in
the intermediate version of the tool at M24). This final version is also equipped with a new solver of the
quality properties for which exists a direct analytical solution, and an additional third solver based on
Java Modelling Tools (JMT) has been extended to evaluate the Petri nets generated by the output of the
M2M transformations developed for the Simulation tool. JMT was extended to handle Petri net models
as it allows to efficiently simulate certain classes of models that cannot be handled by GreatSPN, such
as hybrid models mixing queueing networks and Petri nets. Moreover, with JMT it is possible to run
experiments that read traces of monitoring data, allowing a more realistic parameterization of complex
models, where needed.

Regarding the extensions on the graphical interaction of the tool with the user, the final version of
the tool has enhanced the representation of simulation results in what-if analysis with a graphical repre-
sentation of the SLA and has also enhanced its configuration windows to allow to graphically choose the
quality properties solver to use.

The implementation of the previously mentioned M2M transformations used by the Simulation tool
is also one of the objectives of Task T3.2. This objective is achieved in close interaction with WP2, since
Tasks T2.1 and T2.2 of WP2 define the languages and notations that are used to express the input design
models. Therefore, the M2M transformations that lacked in the intermediate version have been defined

Copyright c© 2017, DICE consortium – All rights reserved 9

Deliverable 3.4. DICE simulation tools - Final version

and implemented. Transformation rules for Apache Hadoop and Storm were reported in Deliverable
D3.1 [16], while transformation rules for the simulation of Apache Spark are reported in this document
in Appendix B. The Apache Spark transformation reported in this document completes the set of M2M
transformations implemented by the Simulation Tool.

The tool is implemented as a set of intercommunicated Eclipse plugins and it is integrated in DICE
IDE. The code of the tool is published as an open source software that can be downloaded from the
DICE-Simulation repository [36].

1.1 Structure of the Document

The structure of this deliverable is as follows:
• Section 2 presents a summary of the achievements already included in the intermediate version of

the Simulation tool and the the fulfillment of requirements of that intermediate version.

• Section 3 details the new functionalities of the final version the tool to accept inputs from users.

• Section 4 details the new functionalities of the final version of the tool to produce simulation results
for users.

• Section 5 presents the new updates of the the final version of the tool with respect to the GUI.

• Section 6 discusses the utilization of the tool for DIAs that are deployed on containers.

• Section 7 presents the updates on the fulfillment of requirements by the final version of the Simu-
lation tool and concludes the deliverable.

Copyright c© 2017, DICE consortium – All rights reserved 10

Deliverable 3.4. DICE simulation tools - Final version

2 Summary of achievements in the intermediate version of the Simulation
Tool

This section provides an overview of the intermediate version of the Simulation tool reported in D3.3
on M24, and a summary of the requirements accomplished by such intermediate version.

2.1 Requirements coverage summary

Deliverable D1.2 [12,13], released at M6, presented the requirements analysis for the DICE project. The
outcome of the analysis was a consolidated list of requirements and the list of use cases that define the
project’s goals that guide the DICE technical activities. Deliverables D3.2 [14] and D3.3 [15] gathered
the requirements on Task T3.2 and reported the level of accomplishment of each of these requirements
of the initial and intermediate versions of the Simulation tool, respectively. Table 1 brings from D3.3
[15] the level of accomplishment that the the intermediate version of the tool already achieved for each
requirement. It provides a schematic view of their ID, Title and Priority. The meaning of the labels used
in column Level of fulfillment is the following: (i) 7 (unsupported: the requirement is not fulfilled); (ii)
4 (partially-low supported: a few of the aspects of the requirement are fulfilled); (iii) 4 (partially-high
supported: most of the aspects of the requirement are fulfilled); and (iv) 4 (supported: the requirement
is fulfilled and a solution for end-users is provided).

Table 1: Level of compliance with requirements of the intermediate version of the Simulation tool, at
M24. Data brought from D3.3 [15]

Level of
Requirement Title Priority fulfillment

intermediate
R3.1 M2M Transformation MUST 4

R3.2 Taking into account relevant annotations MUST 4

R3.4 Simulation solvers MUST 4

R3.6 Transparency of underlying tools MUST 4

R3.10 SLA specification and compliance MUST 4

R3.13 White/black box transparency MUST 4

R3IDE.1 Metric selection MUST 4

R3IDE.4 Loading the annotated UML model MUST 4

R3.3 Transformation rules COULD 4

R3.14 Ranged or extended what if analysis COULD 4

R3IDE.2 Timeout specification SHOULD 4

R3IDE.3 Usability COULD 7

R3IDE.7 Output results of simulation in user-friendly format COULD 4

Since M24, there has been an update in the DICE requirements that affect the work to carry out in
Task 3.2 and in the Simulation tool. The update refers to the deprecation of R3IDE.3 “Usability”. The
rationale for deprecating R3IDE.3 is that the Simulation tool is implemented as a set of Eclipse plugins
to be incorporated either in the DICE IDE or to work as a standalone in a standard Eclipse installation.
Therefore, the general usability and Look&Feel of the tool is strictly attached to the guidelines of Eclipse
views, perspectives and editors. Nevertheless, within the remaining degree of freedom to compose the
perspectives, views and configuration pages, the development of Simulation tool has highly taken into
account its usability and user experience. Graphical interfaces and process interruptions have been imple-
mented as much as possible to make easier the user interaction and to avoid unnecessary waiting times;
albeit a requirement on the formal process of analyzing the Usability of the tool has been discarded.

Copyright c© 2017, DICE consortium – All rights reserved 11

Deliverable 3.4. DICE simulation tools - Final version

2.2 Summary of functionality and GUI of the intermediate version of the Simulation tool

The high-level view of the behavior of the intermediate version of the tool and the interactions of their
components is depicted in Figure 1 (brought from D3.3 [15]). The user interacts with the tool through
a simulate step, whose characteristics have been set by a precedent configuration step. Once the
Simulator GUI component receives the model to simulate and the simulation configuration characteris-
tics, it invokes the Simulator component, which orchestrates the rest of steps until it gets the results of
the simulation. These steps comprise: model-to-model M2M transformations of the input profiled UML
model to create a Petri net, model-to-text M2T transformations to save the Petri net in files in the format
accepted by GreatSPN simulation engine, the invocation to GreatSPN simulator and the processing of
its results –which are in the domain of Petri nets– to transform them to the domain of the UML model
and the quality properties to evaluate.

Figure 1: Sequence diagram depicting the interaction between the components of the Simulation tool

The functionality of the intermediate version of the tool accepted platform independent models (i.e.,
at DPIM level) for evaluating their performance and reliability, and also accepted Apache Hadoop and
Storm technology specific model (i.e., at DTSM level) for evaluating their performance. Moreover, the
tool accepted several configuration parameters, specially remarking its possibility to choose a what-if
analysis over intervals of values, and already returned the simulation results in the domain of the quality
metrics.

The GUI of the intermediate version was composed of:

Copyright c© 2017, DICE consortium – All rights reserved 12

Deliverable 3.4. DICE simulation tools - Final version

• Two different ways to launch a simulation configuration: through the icon in the menu bar (see
Figure 2), and through a shortcut menu when a UML model was selected in the IDE (depicted in
Figure 3).

Figure 2: Create a new Simulation launch configuration from icon in menu.

Figure 3: Create a new Simulation launch configuration from a workspace model.

• Configuration windows that allow to characterize the evaluation of the model. The available con-
figuration options were: choose the scenario to simulate among the multiple possible scenarios in
the model, choose the type of the quality evaluation, give value to variables in the model (enabling
what-if analysis when multiple values are given to some variables), check the set of quality prop-
erties to evaluate, set maximum simulation execution time through a Timeout value. Figures 4-6
show these configuration windows.

Copyright c© 2017, DICE consortium – All rights reserved 13

Deliverable 3.4. DICE simulation tools - Final version

Figure 4: A Simulation launch configuration window showing the Main tab.

Copyright c© 2017, DICE consortium – All rights reserved 14

Deliverable 3.4. DICE simulation tools - Final version

Figure 5: A Simulation launch configuration window showing the Filters tab.

Copyright c© 2017, DICE consortium – All rights reserved 15

Deliverable 3.4. DICE simulation tools - Final version

Figure 6: A Simulation launch configuration window showing the Parameters tab.

• A view for the simulation results, called Invocation Registry to keep a list of all the simulations ex-
ecuted and to see easily their quality results, also hierarchically grouped when a set of invocations
where launched within a single what-if analysis. Figure 7 depicts this view Invocation Registry
with lists of simulations and Figure 8 depicts an example of the visualization of a single result of
the list for throughput evaluation.

Figure 7: View of the Invocations Registry with the results of a what-if analysis composed of nine
concrete simulations

Figure 8: Simulation result of DIA throughput

• a Wizard to plot the results of what-if analysis. The wizard is launched from the container of

Copyright c© 2017, DICE consortium – All rights reserved 16

Deliverable 3.4. DICE simulation tools - Final version

the what-if analysis int the Invocation Registry view, as depicted in Figure 9. After a three-step
interaction process with the wizard, where it is set the location of the resulting plot, the independent
variable to be placed in the x-axis of the plot and the variable to be placed in the y-axis, the result
is a plot of the type illustrated in Figure 10 for the variables arrival rate (in x-axis) and response
time (y-axis).

Figure 9: New option Plot Results within the Invocations Registry view

Figure 10: Plot showing what-if analysis results with the correlation of how the arrival rate affects the
response time.

Copyright c© 2017, DICE consortium – All rights reserved 17

Deliverable 3.4. DICE simulation tools - Final version

Figure 11: Sequence diagram highlighting the functionality enhancement with respect to the enhance-
ments on the models to simulate.

3 Functionality enhancements to interpret user inputs

This section provides the enhancements in the functionality offered by the final version of the Simulation
tool regarding type of information from users that the tool is able to accept and appropriately interpret.
Section 3.1 provides the information for the new Big Data technology that the Simulation tool is able to
interpret, Apache Spark; Section 3.2 provides information for the new quality metrics, both for perfor-
mance and reliability evaluation, whose computation is accepted by the Simulation tool; and Section 3.3
provides information for the definition of SLA that is accepted by the final version of the tool.
3.1 Enhancements on the models to simulate: Apache Spark

The final version of the Simulation tool accepts DIAs at DPIM level and DIAs at DTSM based on
technologies Apache Hadoop, Apache Storm, and Apache Spark.; i.e., it accepts UML models that are
annotated with the DICE DTSM:Hadoop, DTSM:Storm or DTSM::Spark profiles. The intermediate
version of the tool already accepted DTSM models for DIAs based on Hadoop and Storm. Therefore,
the novel enhancement of the final version of the tool regarding its accepted models is the new capability
on Apache Spark. Figure 14 highlights the part of the behavior of the tool where the user perceives
this new enhancement; i.e., the user is allowed to execute simulate with Apache Spark UML models.
While guidelines for the UML modeling with DTSM profiles and transformation from UML models to
analyzable models for these Hadoop and Storm technologies were reported in Deliverable D3.1 [16], the
primary source of the DICE report for modeling and transformation of DIAs based on Apache Spark to
analyzable Petri net models is in Appendix B of this document.

With this new functionality, the user can request for simulation UML designs of DIAs based on
Spark, such as the example depicted in Figure 12. The goal of this Spark-based DIA is to compute the
prime numbers within a interval [0,N]. More details about the example model are provided in Appendix
B.3. This UML activity diagram is helped by the UML deployment diagram in Figure 13 to represent
the existence and allocation of resources.

In order to offer this enhancement on the models, it has been necessary to extend the definition of
plugins to recognize UML models stereotyped with Spark profile and to implement new M2M transfor-
mations to generate analyzable models. For a detailed description of the UML modeling of DIAs based
on Spark technology, the DTSM::Spark UML profile, and the M2M transformations, readers can consult
Appendix B.

This enhancement increments the fulfillment level of requirements R3.1, R3.2 and R3IDE.4.

3.2 Enhancements on the quality properties that can be simulated

The final version of the tool is equipped with the possibility to study additional performance and relia-
bility metrics of DIAs. The intermediate version of the tool allowed to define:

• Performance and reliability metrics for DIAs at DPIM level.

Copyright c© 2017, DICE consortium – All rights reserved 18

Deliverable 3.4. DICE simulation tools - Final version

Activity1

 Composite
«SparkWorkloadEvent»

Transformation

«SparkMap»
Map1

«SparkMap»
Repartition

«SparkMap»
FlatMap

«SparkMap»
Map2

Action

«SparkReduce»
Substract

«SparkReduce»
Collect

 ActivityFinalNode1

 Prime

«SparkWorkloadEvent»

{MapType=Map
numTasks=$nC1
hostDemand=(expr=$map1T,
unit=ms,
statQ=mean,
source=est)}

{nAssignedCores=$nAssignedCores,
nAssignedMemory=$nAssignedMemory,
sparkDefaultParallelism=$defaultParallelism}

{MapType=Repartition
numTasks=$nC1
hostDemand=(expr=$repT,
unit=ms,
statQ=mean,
source=est)}

{MapType=Map
numTasks=$nC1
hostDemand=(expr=$flatmapT,
unit=ms,
statQ=mean,
source=est)}

{MapType=Map
numTasks=$nC1
hostDemand=(expr=$map2T,
unit=ms,
statQ=mean,
source=est)}

{ReduceType=Substract
numTasks=$nC1
hostDemand=(expr=$substractT,
unit=ms,
statQ=mean,
source=est)}

{ReduceType=Collect
numTasks=$nC1
hostDemand=(expr=$collectT,
unit=ms,
statQ=mean,
source=est)}

{sparkPopulation=$nC1
sparkExtDelay=
(expr=$th1,
unit=ms,
statQ=mean,
source=est)}

{sparkPopulation=$nC2
sparkExtDelay=
(expr=$th2,
unit=ms,
statQ=mean,
source=est)}

Figure 12: Activity diagram depicting a Spark execution scenario that is now accepted by the Simulation
tool.

«SparkNode»
SparkNode_2

«artifact»
Action

{nCores=nP2;
nMemory=nM2;
utilization=
(expr=$UNode2,
statQ=mean,
source=calc)}

«SparkNode»
SparkNode_1

«artifact»
Transformation

{nCores=nP1;
nMemory=nM1;
utilization=
(expr=$UNode1,
statQ=mean,
source=calc)}

Figure 13: Deployment Diagram modeling the resources used by a DIA based Spark technology.

• Performance metrics for DIAs at DTSM level, concretely for DIAs based on Apache Hadoop and
Apache Storm technologies.

The final version of the tool has been enhanced to also allow to define:

• Performance metrics for DIAs at DTSM level that are based on Apache Spark technology. Con-
cretely, the mean response time of Spark applications, their throughput and the utilization of hard-
ware resources.

• Reliability metrics for DIAs at DTSM level, for all three technologies Apache Hadoop, Apache
Storm and Apache Spark. Concretely, it can be defined the Mean Time To Failure (MTTF) of the
DIA, the expected availability of the DIA –for DIAs that execute in preemptable resources– and
the probability of the DIA to continuously offer correct service during a given period of time (this
definition conforms to the pure definition of reliability (R(t)) property of computing systems [8]).

During the interaction of the user with the simulation tool, these new functionalities are perceived by
the user in the interactions depicted in Figure 14. The following subsections detail how the user has now
the possibility to define these new quality properties to be sent within the simulate message, and how
to configure the simulation process.

3.2.1 New performance metrics

The new performance metrics that can be requested to compute by users are related to Apache Spark
technology. Users can define their profiled UML models with variables to store the average response

Copyright c© 2017, DICE consortium – All rights reserved 19

Deliverable 3.4. DICE simulation tools - Final version

Figure 14: Sequence diagram highlighting the functionality enhancement with respect to the quality
properties that can be simulated

time of Spark application, their throughput and the utilization of hardware resources. Figure 15 de-
picts how the response time and throughput are defined within <<SparkScenario>> stereotype, and
Figure 16 depicts how the utilization of resources is defined for computation resources stereotyped as
<<SparkNode>>. This information is included in the highlighted message simulate in Figure 14 be-
tween User and Simulator-GUI.

Figure 15: Definition of response time and throughput metrics in Spark scenarios

Figure 16: Definition of Utilization metric in Spark scenarios

Later, at the simulation configuration step (i.e., the highlighted message configuration in Figure
14 between User and Simulator-GUI), the users can choose which metrics, among the previously defined,
they wish to simulate. Figure 17 shows a screenshot of this step where, for instance, the user has decided
to compute response time and utilization of resources, but not the throughput.

This two-step process is useful because it relieves users from modifying the attributes of stereotypes

Copyright c© 2017, DICE consortium – All rights reserved 20

Deliverable 3.4. DICE simulation tools - Final version

Figure 17: Configuration of metrics to simulate

in the model between different simulations. Following this process, the metrics of interest are defined
only once in the model and do not need to be further modified, regardless the metric of interest in a
concrete simulation. The user can alternate between different sets of metrics to simulate by just clicking
on a check-box at the configuration step.

3.2.2 New reliability metrics

The new reliability metrics that users can request to compute affect all technologies covered by the
DICE Simulation tool: Apache Hadoop, Apache Storm and Apache Spark. The new metrics that can
be defined are MTTF, availability and probability of continuous correct operation. Figures 18-20 show
three examples of such definition.

Figure 18: Definition of availability in a Hadoop scenario

Figure 18 highlights the definition of the availability definition in a DIA that uses Hadoop technology
(see that the attribute “ssAvail” belongs to <<HadoopScenario>> stereotype). This metric provides the
percentage of time that the DIA is reachable. According to [7], engineers may choose to rent large
amounts of preemptable resources for their cloud deployments of Hadoop applications, for instance spot
instances of Amazon AWS Elastic Cloud Computing [5, 20]. They are much cheaper than on-demand
resources although their availability is not guaranteed. Anticipating some details of the computation of
metrics in Section 4, this metric is calculated by using two values: the mean time that it is possible to use
a resource between two consecutive preemptions, and the mean time to boot and set up a new resource.
Therefore, this definition of availability metric is intended to be used when the DIA is deployed using an
infrastructure of resources that can be preempted and relaunched.

Figure 19: Definition of MTTF in a Storm scenario

Copyright c© 2017, DICE consortium – All rights reserved 21

Deliverable 3.4. DICE simulation tools - Final version

Figure 19 highlights the definition of the MTTF definition in a DIA that uses Storm technology (see
that the attribute “failure” belongs to <<StormScenarioTopology>> stereotype). This metric provides
information of the expected working time of a Storm application until failure. Different from the previous
availability metric, which was defined in DAM profile as NFP Percentage type –and which, in turn, is
defined in MARTE profile– MTTF definition is included in the complex type DaFailure defined in DAM
profile. Therefore, to define this metric, the user fills the “failure” attribute of <<StormScenarioTopology>>
by creating a new DaFailure element, and fills its MTTF field as represented on the right side in Figure
19.

Figure 20: Definition of reliability in a Spark scenario

Figure 20 highlights the definition of the reliability definition in a DIA that uses Spark technology
(see that the attribute “reliability” belongs to <<SparkScenario>> stereotype). This metric provides
information of the probability that the application works correctly and continuously for a given period
of time t. Anticipating some details of the computation of this metric that will be given in Section 4, this
metric R(t) requires as input from the user the MTTF value of Spark nodes and the target time t (also
called mission time).

Later, the simulation configuration step highlighted in Figure 14 proceeds analogously as explained
above for the new performance metrics for Spark scenarios: the user sees all the metrics defined in the
model and can check the subset of metrics in which s/he is interested in each simulation.

These enhancements on the quality metrics that are accepted for evaluation by the Simulation tool
increment the fulfillment level of requirements R3.2, and R3IDE.4.

3.3 Enhancements on the specification of SLA

The final version of the tool allows specifying an SLA value for the quality metrics to compute. It accepts
definitions of SLA that follow the MARTE proposal for expressing required Non-Functional Properties1.
Concretely, the user can define the required value for a property next to the definition of the property to
compute. Figure 21 provides an example for the definition of the computation of the response time
property together with its required values. In this example, “respT” attribute has two values:

1. the definition of the metric to compute, (expr=$responseTime, statQ=mean, source=calc),
meaning that variable responseTime will store the calculated value for the mean response time.

2. the definition of the limit accepted value for the property, (expr=1.0, unit=s, statQ=mean,
source=req), meaning that it is required a mean response time with a limit value of 1 second.

Figure 21: Definition of the response time metric to calculate and its SLA of 1 second

1The source attribute of MARTE NFP CommonType allows to express the origin of the NFP specification, being some of
its predefined sources calculated (‘calc’) –which is used to define the properties to compute– and required (‘req’) –which is
used to specify that the the NFP is a required value for the stereotyped element.

Copyright c© 2017, DICE consortium – All rights reserved 22

Deliverable 3.4. DICE simulation tools - Final version

This enhancement on the specification of SLA that is accepted by the Simulation tool increments the
satisfaction level of requirements R3.10.

Copyright c© 2017, DICE consortium – All rights reserved 23

Deliverable 3.4. DICE simulation tools - Final version

4 Functionality enhancements to produce simulation results

This section provides the enhancements in the functionality offered by the final version of the Simulation
tool regarding to the results of the quality of the DIA that are produced during the model-based evalu-
ation. These enhancements affect the functionality of the system in messages process raw results
and delivery of results, highlighted in Figure 22.

Figure 22: Sequence diagram highlighting the functionality enhancement with respect to the production
of new simulation results.

The final version of the tool implements the computation of performance metrics for DIAs based on
Spark technology, described in Section 4.1, and the computation of reliability metrics for deployments of
DIAs based on Hadoop, Storm and Spark, described in Section 4.2. It is worth noting that performance
metrics for DIAs based on Hadoop and Storm technologies were already implemented in the intermediate
version of the tool at M24.

4.1 Enhancements on the computation of performance results: Apache Spark

Performance metrics that can be computed by the final version of the Simulation tool for Spark scenarios
are: throughput of the DIA, response time of the DIA, utilization of its assigned resources. The compu-
tation of each quality metric is based on the following raw results of the Petri net evaluation returned by
GreatSPN engine:

• Throughput of the DIA is computed from the throughput of transition that represents the final
activity of the scenario. Then, the result set of the raw results from the evaluation of the Petri
net is explored to find the correct transition and its value translated to the units in which the DIA
throughput was requested by the user (in case that no definition of units is provided, they are
produced in Hertzs by default –the inverse of seconds).

• Response time of the DIA is computed from the throughput of the DIA and the mean number of
executions active. The latter value is divided by the former. This means that the calculation of
the response time follows Little’s Law where the mean response time (R) of a system is equal to
the mean number of users (N) divided by the mean throughput (t), R = N/T . Therefore, the
computation of the response time requires two values among the set of raw results –a throughput
of a transition and the mean number of tokens of a place–, operates with them and translates the
result to the units in which the DIA response time was requested.

• Utilization of resources used by operations of the DIA are computed from the mean number of
tokens in the place that represents that a resource is being used and from the number of existing
resources defined in the model. It is computed the proportion between the value of resources used
and total existing resources, and later this value is transformed to a percentage. Therefore, the

Copyright c© 2017, DICE consortium – All rights reserved 24

Deliverable 3.4. DICE simulation tools - Final version

computation of the utilization requires a value among the set of raw results –a mean number o
tokens in a place– and a value in the definition of the Petri net –the number of existing resources,
which is the initial marking of the place that represents the resource–.

For further details, Appendix D provides a validation of the computation of performance metrics and
transformations of Spark scenarios to analyzable models, by comparing the model-based results with
measurements from a running system.

These enhancements on the computation of performance metrics increment the satisfaction level of
requirements R3.4.

4.2 Enhancements on the computation of reliability results for Apache Hadoop, Storm,
and Spark

Many of the technologies covered for DIAs are designed as fault-tolerant, which means that their failures
are internally handled and are not visible to users. Therefore, computed metrics (MTTF, availability and
reliability R(t)) are calculated from the properties of the resources used by the technologies, rather than
from the activities executed by the DIA. The following paragraphs detail how each of the new reliability
metrics is computed.

4.2.1 Computation of MTTF

In order to calculate the global MTTF of the DIA, it is required that the user provides information about
the expected time to failure of the resources used for computation. This is done by stereotyping with
<<DaComponent>> the resources, and filling its attribute “failure”. The “failure” attribute is a DaFailure
complex type and, concretely, the field that is necessary to fill is its MTTF. We will refer to in the
following as DaComponent.failure.mttf.

In this <<DaComponent>> stereotype, the user should also specify the number of existing resources
through its attribute “resMult”. We will refer to it in the following as DaComponent.resmult.

Since the covered DIA technologies autonomously handle failures of some of its nodes by using the
rest of still working nodes, a failure of the application (i.e., when the run of the application is considered
as failed and requires human intervention) happens when all of its resources have failed. Therefore, the
overall MTTF of the application is the mean time until all elements in a pool of DaComponent.resmult
independent resources, each of them with specific MTTF of DaComponent.failure.mttf, have failed.

Computation of MTTF in Storm applications: For the computation of the MTTF, we consider DIAs
based on Apache Storm as special case. The rationale is the following, Storm applications are fault-
tolerant and the progress of the computation of elements in the input streams is managed and stored
by a differentiated software, Zookeeper [4, 6]. Therefore, for the failure of a DIA based on Storm, the
important concept to consider is the failure of the cluster of Zookeeper nodes, rather than the failure
of workers and bolts. In this case resources that execute Zookeeper service have to be stereotyped
with <<StormZookeeper>> to point out their functionality and with <<DaComponent>> to specify their
multiplicity in “resMult” attribute and the estimated MTTF of the resource in the “failure” attribute.

To compute the MTTF of a Storm DIA, the Simulation tool traverses all Nodes and Devices repre-
sented in the Deployment Diagram of the DIA looking for the element stereotyped as <<StormZookeeper>>.
When it finds this element, it gets from it the information in its <<DaComponent>> stereotype regarding
the number of resources used for the Zookeeper cluster and the estimated MTTF of each of them. Finally,
the computation of the global MTTF considers that the Storm DIA takes place when all the resources
dedicated to execute Zookeeper cluster have failed. Figure 23 shows the MTTF results of a Storm plat-
form whose Zookeeper cluster comprises 3 resources, each of them with a MTTF of 10h. The result is a
gobal MTTF of the DIA of 18.3h.

Copyright c© 2017, DICE consortium – All rights reserved 25

Deliverable 3.4. DICE simulation tools - Final version

Figure 23: Computed MTTF in a Storm application

4.2.2 Computation of Availability

Availability property of a system is defined as the readiness for correct service [8]. We compute the per-
centage of time that a system is available, i.e., the percentage of time that the system ready for executing
a correct service for its users. It is defined as the mean time that the system is working correctly between
two consecutive failures (i.e., MTTF) with respect to the Mean Time Between two consecutive Failures
(called MTBF). In turn, MTBF is defined as the mean time of correct service until a failure plus the Mean
Time to Repair (MTTR). Therefore, as traditionally calculated:

Availability =
MTTF

MTTF +MTTR
· 100

As described in the previous section, we opted to offer a computation of the system availability when
users chose to use preemptable resources, such as Amazon AWS EC2 spot instances. Users need to
fill the a) expected amount of time that a preemptable resource will be granted for utilization, and b)
the expected amount of time required to choose an alternative affordable set of resources, boot them
and set up and configure the technology (i.e., repair time of the application). This information is pro-
vided by the stereotypes devoted to mark the nodes of the computing platform, for instance, stereotype
<<HadoopComputationNode>> for Hadoop applications, or <<SparkNode>> for Spark applications.
These stereotypes have again the attributes “failure” and “repair”. Information a) is filled into field
MTTF of “failure” attribute and information b) is filled into filed MTTR of “repair” attribute. The com-
putation of the availability is computed from these two values.

An interesting utilization of this availability metric arises in the moment when the user is deciding
the value of the bid for spot resources. Higher bids entail less frequent preemption and higher costs to run
the application. Lower bids entail more frequent preemption, search for an alternative set of affordable
resources, and setting them up; but lower costs to run the application. Having the user in mind the
quantity of availability s/he wants for her/his application and knowing the amount of time required to
repair/redeploy a failed application, the Simulation tool can be used to perform a what-if analysis over
the MTTF variable. Then, the simulation results can be used to identify the minimum value for the
MTTF that will offer the desired availability. Finally, using such identified MTTF, the user can decide
for a value of the bid for spot instances that is expected to grant resources for such MTTF.

Figure 24: Computed Availability in a Hadoop application

4.2.3 Computation of reliability R(t)

Reliability property is defined as continuity of correct service [8]. Its value is usually computed for
a certain time interval of duration t. Then, reliability R(t) is the probability that the system works
continuously without any failure for a period of length t. There is a relation between these definitions of
R(t) and MTTF, being:

MTTF =

∫ ∞
0

R(t)dt

When failures in the system are memoryless –i.e., there is a constant failure rate which does not
depend on the quantity of time that the system has been already working– the reliability R(t) of a single

Copyright c© 2017, DICE consortium – All rights reserved 26

Deliverable 3.4. DICE simulation tools - Final version

Figure 25: what-if analysis over variable MTTF to obtain a required Availability

element of the system is defined by the exponential distribution R(t) = P (X > t) = e−
t

MTTF . This is a
common assumption in computing systems, that the Simulation tool also follows. See also that, mixing
the previous two formulas, MTTF =

∫∞
0 e−

t
MTTF dt holds.

Having multiple resources to execute the DIA, and having the technologies their internal fault-
tolerant mechanisms to handle failures on some resources, again, a failure of the DIA happens only
when all resources have failed. The computation of the R(t) result is equivalent to compute the R(t)
of a parallel system composed of “resMult” elements. Figures 26, 27 and 28 show three examples of
computed reliability R(t) of a Spark platform. Figure 26 shows how the simulation tool presents a single
result of the tool when the MTTF of single resources is 3h, the target time t is 4h and there are 3 resources
that can execute the Spark operations.

Figure 26: Computed R(t) in a Spark application

Figure 27 shows the computation results of a what-if analysis over the number or resources necessary
to obtain a certain R(t), having each resource the same MTTF=3h and being the target time t = 4h. This
is useful when the user is deciding the number of cloud resources to rent for the DIA deployment.

In turn, Figure 28 shows a different case of interest for the user. In this case the MTTF=3h of each
resource and the number of resources is fixed to 3. It is performed a what-if study over the mission time
of the application. This is useful for the user when s/he can decide the size of the jobs that are accepted
by the DIA. Depending on the size of the job, it will require an amount of time to complete; i.e., the
mission time of the execution. Thus, the user is informed about the probability of failure of the DIA
depending on the expected quantity of time that is required for a concrete execution.

These enhancements on the computation of performance metrics increment the the fulfillment level
of requirement R3.4.

4.3 Enhancements on the solvers implementation

For some quality properties computed by the Simulation tool exists closed-form analytical solution.
For this reason, it was considered convenient to create an additional plugin with calculators of these
properties that does not depend on the results of the Petri net simulation carried out by the GreatSPN
simulation engine. Two metrics that are computed by this new solver plugin are the availability of

Copyright c© 2017, DICE consortium – All rights reserved 27

Deliverable 3.4. DICE simulation tools - Final version

Figure 27: Computed R(t) in a Spark application in function of the number of resources

Figure 28: Computed R(t) in a Spark application in function of the mission time t

the DIA when using preemptable instances and the reliability R(t). Following paragraphs describe the
formulas for computing each of these metrics.

Computation of availability: Availability can be directly computed with the formula presented in
Section 4.2.2, as every variable mentioned in that formula is already present in the input model (i.e,. its
value is not only known after a simulation). Therefore, the availability of a DIA, which uses preemptible
resources and has a repair mechanism with known mean duration that gets an alternative set of resources
and redeploys the DIA, is calculated as (example given for DIA based on Spark, for other technologies
it is sufficient to read the same information from the corresponding stereotype):

Availability =
SparkNode.failure.mttf

SparkNode.failure.mttf + SparkNode.repair.mttr
· 100

Computation of reliability R(t) Reliability R(t) can be directly computed using theory of Reliability
Block Diagrams (RBD) and reliability of series/parallel systems [30]. The reliability to compute in the

Copyright c© 2017, DICE consortium – All rights reserved 28

Deliverable 3.4. DICE simulation tools - Final version

domain of the Simulation tool refers to the reliability of a parallel system. Being R(t) the reliability of
the system at time t, existing n components in the system and being Ri(t) the reliability of component i
(i ∈ [1..n]) of the system at time t, the formula to compute is:

R(t) = 1−
n∏

i=1

(1−Ri(t))

Assuming independent and memoryless failures of components, the formula becomes:

R(t) = 1−
n∏

i=1

(1− e
−t

MTTFi)

Since resources are defined as a cluster of “resmult” with identical characteristics, all MTTFi have
the same value. Therefore, it is possible to transform the previous formula to:

R(t) = 1− (1− e
−t

MTTF)n

As every variable in the previous formula is present in the input model, the reliability R(t) of the DIA
is calculated using the information in the input model as (the example is given using the DaComponent
stereotype that has to be applied in the Deployment Diagram to the resources that execute the DIA):

R(DaComponent.missionT ime) = 1− (1− e
− DaComponent.missionTime

DaComponent.failure.MTTF)DaComponent.resMult

These enhancements on the computation of performance metrics increment the fulfillment level of
requirement R3.4.

4.3.1 Solving with JMT

In Task 3.2 some effort has been devoted to the enhancement of JMT for evaluating Petri nets through
simulation. JMT was extended to handle Petri net models as it allows to efficiently simulate certain
classes of stochastic models such as hybrid models mixing queueing networks and Petri nets. Moreover,
with JMT it is possible to run experiments that read traces of monitoring data, allowing a more realistic
parameterization of complex models, where needed.

The enhanced functionality of JMT to manage Petri nets uses the output of the M2M transformations
developed within the Simulation tool. The simulation tool writes the output model of its transformations
in XML PNML format. A collaboration to match interfaces has been carried out during the third year of
the project. As already planned in Deliverable D3.3 [15], which reported the intermediate version of the
simulation tool, JMT has been extended to read these PNML files to increase compatibility. Therefore,
a partial integration between outputs of Simulation tool transformations and input Petri net models of
JMT has been achieved, although currently the invocation requires human intervention since the set of
plugins to automatically manage the execution cycle and outputs of JMT as an alternative simulator have
not been implemented. Appendix C provides further details on these JMT enhancements.

Copyright c© 2017, DICE consortium – All rights reserved 29

Deliverable 3.4. DICE simulation tools - Final version

5 Updates in the Graphical User Interface

This section presents the enhancements in the GUI of the final version of Simulation tool. The
intermediate version of the tool at M24 already provided a mature graphical interface with the user.
Therefore, new elements in the GUI, here reported, refer to new additions to configure and depict the
new functional enhancements, rather than to modifications in what it was already graphically depicted in
the intermediate version of the tool.

The two main additions in the GUI are the following: graphical representation in a plot of the SLA
together with simulation results, which is detailed in Section 5.1, and two windows to configure the
solver to use graphically, which is presented in Section 5.2.

5.1 Graphical representation of specified SLA

The graphical representation of SLA affects the final interaction with the user, which is highlighted
message visual results in Figure 29.

Figure 29: Sequence diagram highlighting the GUI enhancement with respect to the representation of
results.

After specifying an SLA value for quality properties as described in Section 3.3, the user can check
the compliance of the expected properties evaluated of the system with respect to the SLA limit. In the
case of single evaluation of a model, this reduces to a simple comparison of values. What it is more
interesting is to get information about the compliance of the system with the SLA limit when the user
executes the Simulation tool for what-if analysis over some variable to decide.

To help the user in such task, the final version of the tool implements the visual representation of the
SLA together in the plot that is produced for what-if analysis. To illustrate it, let us reuse the previous
examples given in Section 4.2.3 and assume that the user is interested in building a DIA that has a
probability of 0.85 of finishing its execution without incurring in a failure. This is, the user specifies a
reliability R(t) SLA of 0.85.

In this case, according to Section 3.3 the user defines an SLA in the reliability attribute
(expr=0.85,source=req). The output of the what-if analysis is depicted in Figures 30 and 31.
Regarding the number of resources necessary when each of them have an MTTF=3h and the mission time
is 4h (i.e., plot in Figure 30), the user can easily check how the progression of satisfaction/dissatisfaction
of the SLA evolves, and see that using above 6 resources the platform will be executed as expected.

In turn, regarding the study of what kind of executions can be accepted by the DIA if this is composed
of 3 resources and each of them with MTTF=3h (i.e,. plot in Figure 31), the user can easily check how
evolves the dissatisfaction of the SLA for larger mission times, and also check that executions whose
mission time is below 2h20m can be launched with acceptable confidence in its reliability.

This enhancement increments the satisfaction level of requirements R3.10 and R3IDE.7.

Copyright c© 2017, DICE consortium – All rights reserved 30

Deliverable 3.4. DICE simulation tools - Final version

Figure 30: Computed R(t) and limit SLA in a Spark application in function of the number of resources.

Figure 31: Computed R(t) and limit SLA in a Spark application in function of the mission time t.

5.2 Graphical configuration of quality properties solver

As presented in Section 4.3, the final version of the tool is equipped with a new solver for some quality
properties for which exist a direct analytical solution. The solver that is used in a model evaluation is
a user choice. To make easier the assignment of a solver, the GUI has been extended in two different
places.

The first place is in the LaunchConfiguration window shown when a simulation is being configured.
Figure 32 highlights the configuration message where this extension is perceived by the user. The
new user interaction in this LaunchConfiguration window takes place in the advanced tab. Figure 33
depicts the interaction highlighting its location and list of choices. The configuration is presented as a
list of solvers, which, at present, comprises two possibilities: a simulator based on GreatSPN engine and
a local new solver. The user can choose the preferred solver for the current model simulation.

The second place to assign a solver is in the general configuration of the Simulation tool, which is lo-
cated in the general preferences of the DICE IDE under DICE → Simulation Tools→ Simulation
tab. Figure 34 depicts this extension and highlights its location in the DICE IDE preferences page. The
default option selected in the LaunchConfiguration window when a new model is simulated corresponds
to the choice marked in the this general configuration page of the IDE.

This enhancement increments the fulfillment level of requirement R3.4.

Copyright c© 2017, DICE consortium – All rights reserved 31

Deliverable 3.4. DICE simulation tools - Final version

Figure 32: Sequence diagram highlighting the GUI enhancement with respect to the choice of solvers.

Figure 33: Choice of simulation solver during the simulation configuration in LaunchConfiguration win-
dow.

Copyright c© 2017, DICE consortium – All rights reserved 32

Deliverable 3.4. DICE simulation tools - Final version

Figure 34: Choice of simulation solver in the general preferences of the DICE IDE.

Copyright c© 2017, DICE consortium – All rights reserved 33

Deliverable 3.4. DICE simulation tools - Final version

6 Simulation tool for containerized DIA deployments

This section discusses the utilization of the Simulation tool and the accuracy of its quality results
when the DIA is to be deployed on a platform based on containers.

The Simulation tool works at Platform-independent (DPIM) and Technology-specific (DTSM) levels.
At these levels, the target infrastructure to deploy the DIA may have not been decided yet. Therefore, at
first sight, it may seem that the results of the Simulation tool are valid regardless the target infrastructure
where the DIA will be deployed. However, there are a pair of concerns that should be mentioned and
that the users of the tool should keep in mind when the DIA is deployed on containers.

The first concern is the modeling of resources. The simulation tool uses a specification of the number
of processing resources available for evaluating quality properties. For instance, each resource may
correspond to a future processing core in the infrastructure to deploy the DIA. Containers such as Docker
do not have by default a restricted number of resources that can be used. A container could use all
resources of a machine, having contention with others. Therefore, this discrepancy between the modeling
of available resources and the real availability of resources could create a significant gap between the
results of the model and measures from the running system. Nevertheless, there are mechanisms in
Docker containers to define the resources that a container is allowed to use. Some examples, taken from
Docker [19], are:
• Utilization of option --cpus to set how much of the available CPU resources a container can use.

• Utilization of option cpu-period and cpu-quota to impose a scheduler quota on the container.
This guarantees access to the CPU.

• Utilization of cpuset-cpus to limit the specific CPUs that a container can use. This restricts the
amount of CPU that a container can use.

Unless using container platforms that offer service only as best-effort, application owners will wish
to set at deployment time the CPU resources that will be granted to their applications, and will use some
of the options to set the quantity of CPU. In this plausible case, the concern regarding the modeling of
the available resources for the DIA is avoided because resources specified in the model will match with
actual resources in the running platform.

The second concern is the modeling of the demand of operations in the workflow of the DIA. The
DIA activities usually have a hostDemand attribute that specifies the estimated time that the operation
needs to complete. If containers incurred in some computing overload with respect to other techniques
such as Virtual Machines, engineers would need to take it into account when setting the hostDemand
values. Nevertheless, according to some initial comparisons of the accuracy of the Petri net model-
based evaluation with respect to the execution of DIAs in containers [17], the model results are accurate.
Moreover, what-if analysis provided by the Simulation tool may be helpful if these differences become
significant in the future. Using the what-if analysis it is possible to cover a broad set of alternatives when
the target deployment platform has not been decided yet.

Copyright c© 2017, DICE consortium – All rights reserved 34

Deliverable 3.4. DICE simulation tools - Final version

7 Conclusion

This document has reported the advances achieved in the final version of the Simulation tool. This
tool is the main outcome of Task T3.2. In its current state, the tool covers all the execution flows both
for the platform independent models (i.e., DPIM level) and for the platform specific models (i.e,. DTSM
level) for Apache Hadoop, Storm and Spark.

The schematic view of their ID, Title and Priority is provided in Table 2. It also shows, in column
Level of fulfillment, their accomplishment in the intermediate version of the tool. The meaning of the
labels used in column Level of fulfillment is the following: (i) 7 (unsupported: the requirement is not
fulfilled by the current prototype); (ii) 4 (partially-low supported: a few of the aspects of the requirement
are fulfilled by the prototype); (iii) 4 (partially-high supported: most of the aspects of the requirement
are fulfilled by the prototype); and (iv) 4 (supported: the requirement is fulfilled by the prototype and a
solution for end-users is provided).

Table 2: Level of compliance with requirements of the final version of the Simulation tool

Level of Level of
Requirement Title Priority fulfillment fulfillment

intermediate final
R3.1 M2M Transformation MUST 4 4

R3.2 Taking into account relevant annotations MUST 4 4

R3.4 Simulation solvers MUST 4 4

R3.6 Transparency of underlying tools MUST 4 4

R3.10 SLA specification and compliance MUST 4 4

R3.13 White/black box transparency MUST 4 4

R3IDE.1 Metric selection MUST 4 4

R3IDE.4 Loading the annotated UML model MUST 4 4

R3.3 Transformation rules COULD 4 4

R3.14 Ranged or extended what if analysis COULD 4 4

R3IDE.2 Timeout specification SHOULD 4 4

R3IDE.3 Usability COULD 7 t

R3IDE.7 Output results of simulation in user-
friendly format

COULD s4 4

The reasons of the declared improvements in the level of fulfillment are the followings:
• R3.1 was partially-high supported and only remained to develop the transformation from Apache

Spark to Petri nets, which is now implemented.

• R3.2 was partially-high supported and remained to develop that the simulation tool accepted anno-
tations of Apache Spark and of reliability properties for all technologies at DTSM level (Hadoop,
Storm, Spark). All these concerns have been implemented and the simulation tool accepts Spark
models where performance and reliability annotations are present, as well as accepting Hadoop
and Storm models that now have reliability annotations following DAM profile.

• R3.4 was partially-high supported because the previous version of the tool already had the infras-
tructure to handle more than one simulation solver if they were implemented as Eclipse plugins,
but it lacked the actual solver. Now, the final version has included a solver based on reliabil-
ity block diagrams and series/parallel systems to compute reliability metrics implemented as an
Eclipse plugin. Therefore, the requirement passes to be fully satisfied.

• R3.10 was partially-low supported because it had been studied the utilization of profile annotations
to specify the SLA, but nothing had been implemented. The final version of the tool is able to
read SLA annotations in the specification of the quality properties to compute and during plotting

Copyright c© 2017, DICE consortium – All rights reserved 35

Deliverable 3.4. DICE simulation tools - Final version

activity of what-if analysis results, it represents the SLA limit value introduced together with the
simulation results to make easily realizable the break-even.

• R3.13 was partially-high supported. This requirement is related to the fulfillment level of R3.1.
White/black boxes transparency in the modeling has an effect in DTSM level. At DTSM level, the
intermediate version of the tool already took into account the white/black transparency. The ratio-
nale for Hadoop and Storm in the intermediate version of the tool was the following: Hadoop and
Storm processes were white boxes, meaning that the designer specified the steps that are carried out
inside such processes. The maximum level of granularity inside the processes were HadoopMap
and HadoopReduce steps for Hadoop technology and StormBolt and StormSpout steps for Storm
technology. Therefore, these steps were black boxes and what happened inside them remained as
black boxes. The final version of the tool follows the same principles for Apache Spark: the Spark
process is a white box and, inside it, can be modeled the sequence of Spark operations, each of
them of type either Spark Transformation or Spark Action. This is the maximum level of granular-
ity for Spark, and what happens inside each operation remains hidden. Therefore, all technologies
follow the same principles of white/black box transparency, and the requirement is fully satisfied.

• R3.IDE4 was partially-high supported in the intermediate version of the tool. The lacking part
to be fully supported was that the impossibility to load execution scenarios of the Apache Spark
technology. The final version of the tool is able to load annotated UML models of Spark scenarios,
thus the requirement is fully satisfied.

• R3.3. was marked partially-high supported in the intermediate version of the tool because the
files that stored the code for transformations in QVT remained separated and in a dedicated folder.
After studying different alternatives during Y3 to include QVT files with new transformations
from the GUI, this has been discarded because it would mix the developer view and the user view
unnecessarily and would increase complexity of the tool for users. The creation of correct trans-
formations requires knowledge of the internal metamodels used by the simulation tool, as PNML
models, traces models and variables models. It is not plausible to generate suitable transforma-
tions from a pure user perspective. Therefore, to the best of our knowledge, the current trade-off
of having dedicated folders for the QVT transformation files is the best for the separation of con-
cerns between developer and user. The intermediate version of the tool should have marked the
requirement already as fully satisfied.

In summary, all requirements of the Simulation Tool have been achieved in its final version. As
already expected in the deliverable that reported the intermediate version at M24 [15], the development
has not suffered any limitation or delay in the fulfillment of requirements of type MUST. Moreover, now
we can state that there have not been delays in the development of requirements of type SHOULD or
COULD either.

Copyright c© 2017, DICE consortium – All rights reserved 36

Deliverable 3.4. DICE simulation tools - Final version

References

[1] Apache Hadoop Website. URL: http://hadoop.apache.org/.

[2] Apache Spark Website. URL: http://spark.apache.org/.

[3] Flexiant Cloud Orchestator Website. URL: https://www.flexiant.com/.

[4] Apache ZooKeeper, Jun., 2017. URL: URL: https://zookeeper.apache.org/.

[5] Amazon AWS . EC2 spot instances, Jun., 2017. URL: URL: https://aws.amazon.com/ec2/spot.

[6] Apache Storm. Setting up a Storm Cluster, Jun., 2017. URL: URL:
http://storm.apache.org/releases/1.0.3/Setting-up-a-Storm-cluster.html.

[7] Danilo Ardagna, Simona Bernardi, Eugenio Gianniti, Soroush Karimian Aliabadi, Diego Perez-
Palacin, and José Ignacio Requeno. Modeling Performance of Hadoop Applications: A Journey
from Queueing Networks to Stochastic Well Formed Nets. In Algorithms and Architectures for
Parallel Processing, pages 599–613. Springer, 2016.

[8] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur. Comput., 1(1):11–
33, January 2004.

[9] F. Bause. Queueing petri nets: a formalism for the combined qualitative and quantitative analysis
of systems. In Proc. of the 5th Int.l Workshop on Petri Nets and Performance Models, pages 14–23,
Toulouse (France), 1993. IEEE Press.

[10] F. Bause and P.S. Kritzinger. Stochastic Petri Nets: An Introduction to the Theory. Vieweg Verlag,
2002.

[11] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. JMT: performance engineering tools for
system modeling. SIGMETRICS Perform. Eval. Rev., 36(4):10–15, 2009. URL: URL: jmt.sf.net.

[12] The DICE Consortium. Requirement Specification. Technical report, European Union’s Horizon
2020 research and innovation programme, 2015. URL: URL: http://wp.doc.ic.ac.uk/dice-h2020/wp-
content/uploads/sites/75/2015/08/D1.2 Requirement-specification.pdf.

[13] The DICE Consortium. Requirement Specification - Companion Document. Technical re-
port, European Union’s Horizon 2020 research and innovation programme, 2015. URL:
URL: http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2 Requirement-
specification Companion.pdf.

[14] The DICE Consortium. DICE simulation tools - Initial version. Technical report, European Union’s
Horizon 2020 research and innovation programme, 2016. URL: URL: http://wp.doc.ic.ac.uk/dice-
h2020/wp-content/uploads/sites/75/2016/02/D3.2 DICE-simulation-tools-Initial-version.pdf.

[15] The DICE Consortium. DICE simulation tools - Intermediate version. Techni-
cal report, European Union’s Horizon 2020 research and innovation programme, 2016.
URL: URL: http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D3.3 DICE-
simulation-tools-Intermediate-version.pdf.

[16] The DICE Consortium. DICE transformations to Analysis Models. Technical report, Eu-
ropean Union’s Horizon 2020 research and innovation programme, 2016. URL: URL:
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D3.1 Transformations-to-
analysis-models.pdf.

[17] The DICE Consortium. D3.8 DICE Optimisation Tools - Final version. Technical report, European
Union’s Horizon 2020 research and innovation programme, 2017. To be released at M30.

Copyright c© 2017, DICE consortium – All rights reserved 37

Deliverable 3.4. DICE simulation tools - Final version

[18] Dipartamento di informatica, Università di Torino. GRaphical Editor and Analyzer for Timed and
Stochastic Petri Nets, Dec., 2015. URL: URL: www.di.unito.it/ greatspn/index.html.

[19] Docker. Limit a container’s resources, Jun., 2017. URL: URL:
https://docs.docker.com/engine/admin/resource constraints/#cpu.

[20] Daniel J. Dubois and Giuliano Casale. Optispot: minimizing application deployment cost using
spot cloud resources. Cluster Computing, 19(2):893–909, Jun 2016.

[21] Eugenio Gianniti, Alessandro Maria Rizzi, Enrico Barbierato, Marco Gribaudo, and Danilo
Ardagna. Fluid Petri Nets for the Performance Evaluation of MapReduce and Spark Applications.
ACM SIGMETRICS Performance Evaluation Review, 44(4):23–36, 2017.

[22] Abel Gómez, José Merseguer, Elisabetta Di Nitto, and Damian A. Tamburri. Towards a UML
Profile for Data Intensive Applications. In Proceedings of the 2nd International Workshop on
Quality-Aware DevOps, pages 18–23, New York, NY, USA, 2016. ACM.

[23] ISO. Systems and software engineering – High-level Petri nets – Part 2: Transfer format. ISO/IEC
15909-2:2011, International Organization for Standardization, Geneva, Switzerland, 2011.

[24] Stuart Kent. Model Driven Engineering. In Michael J. Butler, Luigia Petre, and Kaisa Sere, editors,
Proceedings of the 3rd International Conference of Integrated Formal Methods, volume 2335 of
Lecture Notes in Computer Science, pages 286–298, Turku, Finland, May 2002. Springer.

[25] Johannes Kroß, Andreas Brunnert, and Helmut Krcmar. Modeling Big Data Systems by Extending
the Palladio Component Model. Softwaretechnik-Trends, 35(3), 2015.

[26] Johannes Kroß and Helmut Krcmar. Modeling and Simulating Apache Spark Streaming Applica-
tions.

[27] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quantitative
System Performance. Prentice-Hall, 1984.

[28] M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with Generalised
Stochastic Petri Nets. John Wiley and Sons, 1995.

[29] Marco Ajmone Marsan, G. Balbo, Gianni Conte, S. Donatelli, and G. Franceschinis. Modelling
with Generalized Stochastic Petri nets. John Wiley & Sons, Inc., New York, NY, USA, 1st edition,
1994.

[30] P. O’Connor, D. Newton, and R. Bromley. Practical Reliability Engineering. Wiley, 2002.

[31] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Version 1.1,
January 2011. URL: URL: http://www.omg.org/spec/QVT/1.1/.

[32] OMG. UML Profile for MARTE: Modeling and Analysis of Real-time Embedded Systems, Version
1.1, Juny 2011. URL: URL: http://www.omg.org/spec/MARTE/1.1/.

[33] Rajiv Ranjan. Modeling and Simulation in Performance Optimization of Big Data Processing
Frameworks. IEEE Cloud Computing, 1(4):14–19, 2014.

[34] The DICE Consortium. Design and Quality Abstractions - Final Version. Technical report, Eu-
ropean Union’s Horizon 2020 research and innovation programme, 2017. URL: URL: https://vm-
project-dice.doc.ic.ac.uk/redmine/projects/dice/repository/show/WP2/D2.1/submitted/D2.1.pdf.

[35] The DICE Consortium. DICE Profile Repository, Dec., 2015. URL: URL: https://github.com/dice-
project/DICE-Simulation.

Copyright c© 2017, DICE consortium – All rights reserved 38

Deliverable 3.4. DICE simulation tools - Final version

[36] The DICE Consortium. DICE Simulation Repository, Dec., 2015. URL: URL:
https://github.com/dice-project/DICE-Simulation.

[37] The Eclipse Foundation & Obeo. Acceleo, Dec., 2015. URL: URL: https://eclipse.org/acceleo/.

[38] Kewen Wang and Mohammad Maifi Hasan Khan. Performance prediction for apache spark plat-
form. In High Performance Computing and Communications (HPCC), 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Conferen on
Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference on, pages
166–173. IEEE, 2015.

Copyright c© 2017, DICE consortium – All rights reserved 39

Deliverable 3.4. DICE simulation tools - Final version

Appendix A. The DICE-Simulation Repository

This appendix describes the DICE-Simulation repository [36]. This repository contains the following
projects/plug-ins:

es.unizar.disco.core — This project contains the Core plug-in. The Core plug-in provides some utility
classes for I/O, together with the shared logging capabilities.

es.unizar.disco.core.ui — This project contains the Core UI plug-in. The Core UI plug-in provides UI
components that are shared across the different plug-ins contained in this repository, such as file
selection dialogs.

es.unizar.disco.pnconfig — This project contains the implementation of the Configuration Model as an
EMF plug-in.

es.unizar.disco.pnml.m2m — This project implements the M2M transformations from UML to PNML
using QVTo.

es.unizar.disco.pnextensions — This project provides some utilities to handle some extensions in PNML
models. The PNML standard does not provide support for time, probabilities and priorities in tran-
sitions. These features are present in the Generalized and Stochastic Petri nets type or the colored
Petri nets of type called Stochastic Well-formed nets. Thus, this plug-in provides the utility meth-
ods to handle this information by using the ToolSpecifics tags provided by the PNML standard.

es.unizar.disco.pnml.m2t — This project contains the Acceleo [37] transformation to convert a DICE-
annotated PNML file to a set GreatSPN files.

es.unizar.disco.simulation.greatspn.ssh — This project contains the OSGi component that controls a
remote GreatSPN instance by using SSH commands.

es.unizar.disco.simulation — This project contains the core component that executes a simulation by
orchestrating the interactions among all the previous components.

es.unizar.disco.simulation.ui — This project contains the UI contributions that allow the users to in-
voke a simulation within the Eclipse GUI and to graphically visualize the simulation results.

es.unizar.disco.simulation.local — This project contains the OSGi component that implements a local
solver of reliability properties based on RBD.

es.unizar.disco.ssh — This project provides a simple extension point contribution to access a remote
host by issuing the connection data using a local file.

com.hierynomus.sshj — This project contains the sshj - SSHv2 library for Java as an OSGi-friendly
bundle. This module is required by es.unizar.disco.simulation.greatspn.ssh to access
a remote GreatSPN instance using SSH/SFTP.

Copyright c© 2017, DICE consortium – All rights reserved 40

Deliverable 3.4. DICE simulation tools - Final version

Appendix B. Modeling and transformations to Analysis Models of Apache
Spark DIAs

This version of the tool has incorporated the quality assessment of the Apache Spark applications.
Section B.1 introduces our work on Apache Spark. Section B.2 presents the basics on Apache Spark Core
focussing on the parameters that mainly affect the performance of an application. Section B.3 presents
our performance modeling approach for Apache Spark applications. Section B.4 introduces the Spark
UML profile required for modelling Apache Spark applications. Section B.5 details the transformation
that we propose to get an analyzable performance model out of a Spark design. Finally, Section B.5 is
devoted to the computation of performance metrics and the validation of our approach. To this end, we
compare the results obtained by real Spark applications with the predictions of the automatically con-
structed performance model.

B.1 Introduction of model-driven performance assessment of Spark applications

In this deliverable, we present a quality-driven approach for developing Spark applications hosted in
private or public clouds. In particular, we offer a modeling approach and a novel UML profile for a better
performance characterization of a Spark design. We define transformations for these Spark designs into
suitable models that are used for performance assessment.

On the previous basis, we have developed a toolchain to guide the early design stages of the Spark
applications and also to guide quality evolution once operational data becomes available. In fact, our
simulation-based approach, with its corresponding tools and formalisms, is useful for predicting the be-
haviour of the application for future demands, and the impact of the stress situations in some performance
parameters (response time, throughput or utilization).

Several works have been already presented in the literature for the modeling and performance as-
sessment in big data platforms [33]. For instance, a profile for modelling big data applications is already
defined for the Palladio Component Model [25]. Mathematical models for predicting the performance of
Spark applications are already introduced in [38]. In [26], the authors model and simulate Apache Spark
streaming applications in Palladio, but they did not focus on Spark Core (MapReduce) operations.

Generalized stochastic Petri nets (GSPNs), the formalism for performance analysis that we adopt
here, have been already used for the performance assessment of Hadoop applications [7]. That work has
been already extended for the Spark performance evaluation using fluid Petri nets [21]. Definitely, to
the best of our knowledge this is the first work entirely devoted to the Apache Spark Core performance
evaluation using a UML profile and GSPNs.

B.2 Spark and Performance

In these paragraphs, we describe the main concepts of the Spark technology, offering then an overview
of this framework. In particular, we stress those concepts that directly impact on the performance of the
system. They are configuration parameters that, when they are correctly tuned, allow one to improve the
performance of the Spark applications. Consequently, these parameters are essential for the performance
analysis of the Spark applications.

Apache Spark is a distributed fault-tolerant computation framework for processing large volumes of
information in cloud and clusters environments [2]. It relies on Apache Hadoop MapReduce [1], which
is based on the MapReduce programming paradigm. Spark solves or mitigates the main limitations that
appeared in the previous technology. First of all, programming in Spark is easier and more expressive
than in Hadoop MapReduce: while Hadoop MapReduce works with plain maps and reduces, Spark
includes more elaborated operations such as filters, joins an groupBy functions. In addition, Spark
counts with a rich ecosystem that exports the Spark core operations to other contexts such as structured
data (Spark SQL + DataFrames), streaming analytics (Spark Streaming), machine learning (MLlib) or
graph computation (GraphX). Finally, and more important, Spark usually gets a better performance than
Hadoop MapReduce for equivalent applications. Spark achieves this speedup by keeping in memory the

Copyright c© 2017, DICE consortium – All rights reserved 41

Deliverable 3.4. DICE simulation tools - Final version

intermediate results of a MapReduce phase as long as possible, instead of storing them directly in hard
disk.

Spark works with resilient distributed datasets (RDD), a fault-tolerant and distributed data structure
that allows the partition and storage of the initial dataset (i.e., files, arrays, etc.) in multiple worksta-
tions. A Spark application consists of a succession of operations over the portions of those RDDs (i.e.,
partitions in the Spark notation). Both the information and the computations are then distributed among
all the computational resources of the cluster. The Spark framework is responsible for the automatic
distribution and coordination of all the workflow; which makes it transparent to the end user. Thus, at
a top level of abstraction, the execution workflow of a Spark application can be described as a directed
acyclic graph (DAG) showing the modifications applied over the RDDs.

Spark operations are grouped in two categories: transformations and actions. Transformations are
similar to Maps in Hadoop MapReduce. They are functions that create a new RDD from the previous
one. They are lazy in nature and they are executed only after an action is triggered. A narrow transfor-
mation converts a partition from a parent RDD into a new one. A wide transformation is another kind of
transformation where multiple child partitions (i.e., operation results) depend on one partition from the
precedent RDD. Examples of narrow transformations are map or filter functions; while examples of wide
transformations are groupByKey or reduceByKey aggregations. The results of a narrow transformation
are shuffled when transmitting them to a wide transformation.

On the other hand, actions are similar to Reduces in Hadoop MapReduce. They are functions that
perform a final operation over an existing RDD but they do not create a new one. For instance, examples
of actions are first, take, collect or count.

Spark organizes a job in multiple stages by breaking the DAG at shuffle boundaries or when a result
set (action operation) are requested. Each stage has a sequence of tasks that run narrow transformations
and finishes with a shuffle operation.

join

RDD2 union

RDD3

load

RDD1 load map

count

stage1

stage2

stage3

Figure 35: DAG representing a Spark application

Both the transformations and actions are internally divided in multiple parallel subtasks inside the
Spark framework. Each task executes the same method defined in the Spark operation but applying it
over a smaller chunk of the dataset (i.e., partition of the RDD). By default, the number of tasks run in
each Spark operation matches the number of partitions of the RDD that is taken as input.

However, the number of parallel tasks is not constant for all the Spark operations of a Spark workflow,
and it may change according to a few factors. The number of parallel tasks can be explicitly defined by
the end user; or automatically adjusted by the Spark context according to the RDD size and the cluster
configuration. For instance, set transformations such as the union, intersection or the cartesian product

Copyright c© 2017, DICE consortium – All rights reserved 42

Deliverable 3.4. DICE simulation tools - Final version

of two RDDs result in a new RDD with a total number of partitions equal to the addition, maximum or
product of partitions from the two RDD.

Figure 35 details the DAG of a Spark application. It loads three RDDs. The dataset RDD1 has three
partitions, and the datasets RDD2 and RDD3 have two partitions each one. Next, a map function is
applied over the partitions of RDD1. RDD2 and RDD3 are united in a new RDD with four partitions.
Later, they are joined in a new RDD during the stage 3. At the end, the system counts the number of
elements inside each partition of the dataset.

Finally, the Spark scheduling algorithm deploys the tasks to the computational resources of the clus-
ter. In Spark, there are two levels of scheduling: an inter-application level, that provides scheduling
across all the Spark applications running in the same cluster at the same time; and an intra-application
(or task) level, that provides scheduling for all the tasks running within a Spark application.

Spark counts with three predefined schedulers at the inter-application level: YARN, Mesos or the
standalone mode. They vary in the management of the cluster resources. They provide either a static
partition of the resources among all the applications before launching (YARN, standalone); or a dynamic
sharing of CPU cores on runtime (Mesos). Within a Spark application, there are also three possible
scheduling policies: fair, fifo or none. A fair scheduling separates all the tasks into a set of pools with
the same priority; and applies a fifo scheduling within each queue.

Complex schedulers may take into account the available computational resources and the software
requirements (memory and CPU consumption) for defining an optimal distribution of the tasks. In sum-
mary, a Spark framework is highly configurable by various parameters that will influence the final per-
formance of the application (see Table 3).

Table 3: Spark concepts that impact in performance

Concept Meaning
1. RDD Resilient distributed dataset.
2. Partition Chunk of data in a RDD.
3. Spark Operation Function that transforms or acts over a RDD.
4. Transformation Spark operation that creates a new RDD.
5. Action Spark operation that produces non-RDD values.
6. Parallelism Number of concurrent tasks per Spark operation.
7. Stage Group of transformations before a shuffle.
8. Scheduling Deployment of tasks.

Copyright c© 2017, DICE consortium – All rights reserved 43

Deliverable 3.4. DICE simulation tools - Final version

B.3 Modelling Spark applications with UML

In this section, we present our approach to model Spark applications for performance evaluation using
UML diagrams. At least we need to represent the Spark topology, i.e., the DAG, and the performance
parameters already identified in Section B.2. Specifically, we will work with activity diagrams com-
plemented with deployment diagrams, which are the diagrams that will be transformed to performance
analysis models.

Activity1

 Composite
«SparkWorkloadEvent»

Transformation

«SparkMap»
Map1

«SparkMap»
Repartition

«SparkMap»
FlatMap

«SparkMap»
Map2

Action

«SparkReduce»
Substract

«SparkReduce»
Collect

 ActivityFinalNode1

 Prime

«SparkWorkloadEvent»

{MapType=Map
numTasks=$nC1
hostDemand=(expr=$map1T,
unit=ms,
statQ=mean,
source=est)}

{nAssignedCores=$nAssignedCores,
nAssignedMemory=$nAssignedMemory,
sparkDefaultParallelism=$defaultParallelism}

{MapType=Repartition
numTasks=$nC1
hostDemand=(expr=$repT,
unit=ms,
statQ=mean,
source=est)}

{MapType=Map
numTasks=$nC1
hostDemand=(expr=$flatmapT,
unit=ms,
statQ=mean,
source=est)}

{MapType=Map
numTasks=$nC1
hostDemand=(expr=$map2T,
unit=ms,
statQ=mean,
source=est)}

{ReduceType=Substract
numTasks=$nC1
hostDemand=(expr=$substractT,
unit=ms,
statQ=mean,
source=est)}

{ReduceType=Collect
numTasks=$nC1
hostDemand=(expr=$collectT,
unit=ms,
statQ=mean,
source=est)}

{sparkPopulation=$nC1
sparkExtDelay=
(expr=$th1,
unit=ms,
statQ=mean,
source=est)}

{sparkPopulation=$nC2
sparkExtDelay=
(expr=$th2,
unit=ms,
statQ=mean,
source=est)}

Figure 36: Example of an activity diagram for Spark with profile annotations

In this section, we present a Spark toy example that helps us to introduce the UML models and
profile. Figure 36 represents the UML activity diagram of a Spark application that calculates all the
prime numbers located in the range [0,N]. The idea behind the naive algorithm consists of deleting from
the interval all the elements that are not primes (i.e., they are multiple of a in [0,N/a]). More in detail,
the procedure consists of:

• map1: creating a dataset with all the pairs (a, list(2 to (N/a)), being list(2 to (N/a) the list of integers
from 2 to N/a;

• repartition: rebalancing the lists in the computational nodes so that each node has a portion (i.e.,
set of lists) of the same size;

• flatmap+map: obtaining new lists by multiplying every element of list(2 to (N/a) by a;

• substract: removing all the elements in the integer range [0,N] that are stored in the previous lists
and, consequently, they are not primes; and, finally,

collect getting the result set.

Thus, the Spark application is composed of a sequence of transformations (maps) and actions (sub-
stract, collect) over two datasets, named composite and prime. A dataset correspond to a RDD in the
Spark notation. The procedure consists in the creation of two datasets with integers and operating over
them. The first RDD composite represents all the non-prime numbers of the interval [0,N]. The second
RDD prime represents all the primes obtained by removing the non-prime numbers (i.e., composite) from
the interval [0,N].

In our approach, the UML activity diagram is interpreted as the DAG of a Spark application. Our
semantic of a UML activity diagram is slightly different from the standard one. The standard UML
semantic considers that the UML activity diagram has a single initial node and a single final node.
However, in our case we are representing the execution workflow; that is, a successive set of operations
over a RDD (Figure 36). A Spark application manages one or more RDDs and, therefore, our UML
activity diagram accepts several initial and final nodes.

Each pipeline shows the operations executed for each RDD. Every initial node in the UML diagram
corresponds to the initialization of a RDD (i.e., loading of a log file, creation of an array, etc.) in the

Copyright c© 2017, DICE consortium – All rights reserved 44

Deliverable 3.4. DICE simulation tools - Final version

corresponding pipeline of the Spark context. There are as many initial nodes as RDDs defined in the
application. Multiple final nodes are also allowed; one per RDD pipeline.

Besides, the combination of two RDDs in a single one is shown by the substract set operation,
whose activity node receives two input arcs (one per RDD). The response time of the Spark application
is considered since the initialization of all the RDDs (initial nodes) until the end of the latest task.

UML fork and join nodes are also supported following the standard UML modelling semantics. The
activity nodes (actions, forks and joins) in the UML activity diagram are grouped by UML partitions (e.g.,
Transformation and Action in Figure 36). Each UML partition is mapped to a computational resource
in the UML deployment diagram following the scheduling policy defined for the topology. Figure 37
shows the deployment diagram, which complements the previous activity diagram. Each computational
resource is stereotyped as SparkNode (equivalent to GaExecHost) and defines its resource multiplicity,
i.e., number of cores. This stereotype is inherited from MARTE GQAM.

«SparkNode»
SparkNode_2

«artifact»
Action

{nCores=nP2;
nMemory=nM2;
utilization=
(expr=$UNode2,
statQ=mean,
source=calc)}

«SparkNode»
SparkNode_1

«artifact»
Transformation

{nCores=nP1;
nMemory=nM1;
utilization=
(expr=$UNode1,
statQ=mean,
source=calc)}

Figure 37: Example of deployment diagram for Spark with profile annotations

Copyright c© 2017, DICE consortium – All rights reserved 45

Deliverable 3.4. DICE simulation tools - Final version

B.4 A UML Profile for Spark

Once the Spark topology and operations have already been represented, we still need to address the
rest of concepts identified in Table 3. We decided to convert these concepts into stereotypes and tags,
which are the extension mechanisms offered by UML. Therefore, we devised a UML profile for Spark.
A UML profile is a set of stereotypes that can be applied to UML model elements for extending their
semantics [22, 34]. In our case, we are extending UML with the Spark concepts.

The Spark profile heavily relies on the standard MARTE profile [32]. This is because MARTE offers
the GQAM sub-profile, a complete framework for quantitative analysis, which is indeed specialized for
performance analysis, then perfectly matching to our purposes. Moreover, MARTE offers the NFPs
and VSL sub-profiles. The NFP sub-profile aims to describe the non-functional properties of a system,
performance in our case. The latter, VSL sub-profile, provides a concrete textual language for specifying
the values of metrics, constraints, properties, and parameters related to performance, in our particular
case.

VSL expressions are used in Spark-profiled models with two main goals: (i) to specify the values of
the NFP in the model (i.e., to specify the input parameters) and (ii) to specify the metric/s that will be
computed for the current model (i.e., to specify the output results). An example VSL expression for a
host demand tagged value of type NFP Duration is:

(expr=$mapT1, unit=ms, statQ=mean, source=est)
(1) (2) (3) (4)

This expression specifies that map1 in Figure 36 demands $mapT1 (1) milliseconds (2) of processing
time, whose mean value (3) will be obtained from an estimation in the real system (4). $mapT1 is a
variable that can be set with concrete values during the analysis of the model.

Another VSL interesting example in Figure 37 is the definition of the performance metric to be
calculated, the utilization in the example:

(expr=$UNode1, statQ=mean, source=calc)
(1) (2) (3)

This expression specifies that we want to calculate (3) the utilization, as a percentage of time, of the
whole system or a specific resource, whose mean value (2) will be obtained in variable $UNode1 (1).
Such value is obviously the result of the simulation of the performance model.

Apart from the MARTE stereotypes, the Spark profile provides genuine stereotypes (see Table 4) for
representing those parameters not already addressed, i.e., the Spark concepts 1, 3-6 and 8 in Table 3.

The initialization of a RDD is described by an initial node in the UML activity diagram. The stereo-
type SparkWorkloadEvent is used for labelling the initial node. This stereotype captures the essential
details of the creation of the RDD. Mainly, the initialization is represented by two parameters. The first
one is the sparkPopulation tag. It corresponds to the number of chunks in which the input data is
divided when generating the RDD structure. This value will affect to the parallelism of the following
operations that are executed over this dataset. That is; it indirectly specifies the number of subtasks that
a Spark operation can run. This parameter can be explicitly overridden by the user (see the numTasks
tag in the SparkOperation stereotype). The second parameter of the SparkWorkloadEvent stereotype is
the sparkExtDelay. It shows the time spent in loading and preparing the data (i.e., a log file) into the
format of a RDD. By default, all the sparkPopulation partitions of the RDD are read and prepared to
be scheduled after sparkExtDelay units of time.

The SparkWorkloadEvent stereotype inherits from MARTE::GQAM::GaWorkloadEvent stereotype.
The inherited attribute pattern allows the definition of arrival policies that modify the management of
the partitions. For instance, the attribute pattern may define the preparation of one partition of the RDD
periodically every X milliseconds instead of preparing all the block of partitions in batch. The definition
of a periodic workload is compatible with the streaming analytics supported by Spark.

Transformations (SparkMap) and actions (SparkReduce) have independent stereotypes because they
are conceptually different, but they inherit from SparkOperation stereotype and, indirectly, from MAR-
TE::GQAM::GaStep stereotype since they are computational steps. In fact, they share the parallelism,

Copyright c© 2017, DICE consortium – All rights reserved 46

Deliverable 3.4. DICE simulation tools - Final version

or number of concurrent tasks per operation, which is specified by the tag numTasks of the SparkOp-
eration stereotype. Each task has an associated execution time denoted by the tag hostDemand, an
attribute inherited from GaStep. The tag OpType specifies the type of Spark operation (i.e., an enumer-
able SparkOperation={transformation, action}) in case of using the SparkOperation stereotype
when modeling UML diagrams.

More in detail, the SparkMap stereotype adds the tag MapType, which represents the kind of trans-
formation applied over the data (e.g., map, filter or a set operation such as union or intersection). The
SparkReduce stereotype includes the tag ReduceType for specifying the kind of action applied over the
data (e.g., reduce, count or collect). All these stereotypes are applied to the opaque actions.

The concept of scheduling in Spark is captured by the stereotype SparkScenario. For simplicity in
this first version, we only support a Spark cluster deployed with a static assignation of the resources to
Spark jobs (e.g., YARN or standalone modes); and an internal fifo policy (task scheduler). Therefore, the
number of CPU cores and memory are statically assigned to the application on launching time. This con-
figuration is reflected in the tags nAssignedCores, nAssignedMemory and sparkDefaultParallelism.
They represent respectively the amount of computational cores and memory resources assigned by the
scheduler to the current application; and the default parallelism of the cluster configuration. The attribute
sparkDefaultParallelism specifies the default number of partitions in a RDD when SparkWorkload-
Event→sparkPopulation is not defined. It also determines the number of partitions returned in a RDD
by transformations and actions like count, join or reduceByKey when the value of numTasks is not ex-
plicitly set by the user.

The stereotype SparkScenario inherits from MARTE::GQAM::GaScenario. It gathers the rest of
the contextual information of the application; for instance, the response time or throughput that will be
computed by the simulation. The SparkScenario stereotype is applied to the activity diagram.

Finally, the SparkNode stereotype is applied over the computational devices in the UML deployment
diagram. It represents a resource in the Spark cluster where the tasks are run. The main attributes are
the nCores and Memory. The first tag corresponds to the number of available CPUs in the device. The
second tag is a boolean that indicates if the size of the partitions in the RDD fit in the memory of the
server or they must be stored in a temporal file. The SparkNode stereotype inherits from DICE::DTSM::-
Core::CoreComputationNode and it is equivalent to the GaExecHost stereotype from MARTE.

The Spark profile has been implemented for the Papyrus Modelling environment for Eclipse and can
be downloaded from [35].

Copyright c© 2017, DICE consortium – All rights reserved 47

Deliverable 3.4. DICE simulation tools - Final version

Table 4: Spark profile extensions

Spark Concept Stereotype Applied to Tag Type
Generic Spark

Operation
�Spark-

Operation�
Action/Activity

Node
OpType SparkOperation

numTasks NFP Integer
hostDemand NFP Duration

Transformation �SparkMap� Action/Activity
Node

MapType SparkMap
Action �SparkReduce� Action/Activity

Node
ReduceType SparkReduce

Scheduler �SparkScenario� Activity Diagram
nAssignedCores NFP Integer

nAssignedMemory NFP Integer
sparkDefaultPa-

rallelism
NFP Integer

RDD
Initialization

�Spark-
Workload-
Event�

Initial Node

sparkPopulation NFP Integer
sparkExtDelay NFP Duration

Computational
Node

�SparkNode� Device/Node

nCores NFP Integer
Memory NFP Boolean

Copyright c© 2017, DICE consortium – All rights reserved 48

Deliverable 3.4. DICE simulation tools - Final version

B.5 Transformation of the UML Design

We need to transform our Spark design into a performance model capable of evaluating the metrics
(e.g., response time, throughput or utilization of the devices) already defined. We choose Generalized
Stochastic Petri Net (GSPN) [29] as target performance model since they are suitable for modelling Spark
applications (See Appendix E). In this section, we propose a set of original transformation patterns;
each pattern takes as input a part of the Spark design and produces a GSPN subnet. These patterns
are ready for implementing a model-to-model transformation (M2M) [24] to automatically generate the
GSPN model. The correctness and compositionality of the transformation are validated experimentally
in Appendix B.5.

Table 5 presents the patterns for the activity diagram. The first column presents the input of the
pattern, i.e., the UML model elements, possibly stereotyped with the Spark profile. The second column
proposes the corresponding GSPN subnet. For an easier understanding of the transformation, we depicted
in the table: a) text in bold to match input and output elements; b) interfaces with other patterns as dotted
grey elements, then they actually do not belong to the pattern.

Pattern P1 corresponds to the transformation of the UML activity scenario into a Petri subnet. Pattern
P1, together with pattern P4, transforms the activity diagram into a closed Petri net. The subnet con-
sists of two places and two immediate transitions. The place pActivity1 is the initial node and the place
pActivity2 represents the set of assigned resources of the cluster. Our transformation only is compatible
with nAssignedCores for the moment.

Pattern P2 shows the transformation of a initial node labelled with the SparkWorkloadEvent. Multiple
initial nodes are supported and each one initializes a new RDD in concurrency. The subnet consists of
two places and a timed transition. It uses two immediate transitions from pattern 1 and pattern 3 as
interfaces. After a mean execution time of 1/$time time units (t1), the RDD is prepared for continuing
the workflow. The timed transition (t1) follows an infinite server semantic; and the execution of tasks
is modelled by a exponential distribution. The value sparkPopulation is stored temporally and later
reused in the following transformation patterns.

Pattern P3 represents the transformation of a Spark Map and Reduce operation. The subnet consists
of four places, three immediate transitions and a timed transition. The first place (pA1) prepares the set of
subtasks that will be executed. The number of tasks is specified by numTasks, in the case that the value
is explicitly defined. The second place (pA2) represents the execution phase. The access to this place
is controlled by pActivity2 and pR (see Pattern P8). After a mean execution time of 1/$time time units
(tA3), the current task has finished and it waits until the rest of tasks are completed (pA3). The timed
transition (t3) follows an infinite server semantic; and the execution of tasks is modelled by a exponential
distribution. Finally, the result is broadcast to the next Spark operation via the last place (pA4).

Table 6 presents the special characteristics of the transformation of a Spark Map and Reduce op-
erations. If numTasks is not initialized, then the number of tasks is equal to the number of partitions
(SparkWorkloadEvent→sparkPopulation) of the RDD. The number of partitions of a RDD is equal
to the default parallelism of the cluster (sparkDefaultParallelism) when the user does not explic-
itly specifies the partitioning (pattern P8). In the case of a Spark operation involving two RDDs, then
the number of tasks depend on the type of operation (mapType/reduceType). For instance, the union,
intersection or Cartesian product of two RDDs leads to numTasks 1 + numTasks 2, max(numTasks 1,
numTasks 2) and numTasks 1 * numTasks 2 respectively (patterns P9–P11).

Patterns P5, P6 and P7 show the concatenation of two Spark operations directly or via fork/join
nodes. The element A in P5 is either a opaque action (SparkMap or SparkReduce) or a UML fork/join
node.

Copyright c© 2017, DICE consortium – All rights reserved 49

Deliverable 3.4. DICE simulation tools - Final version

Table 5: Transformation Patterns for Spark-profiled UML Activity
Diagrams

UML PATTERN PETRI NET PATTERN

P1

«SparkScenario»

sparkDefaultparallelism=$nDf

nAssignedCores = $nAsC
nAssignedMemory = $nAsM

A
c
ti
v
it
y

A

Partition(R)
p

Activity1
t
Activity1

t
Activity2

p
Activity2

)=1M(pActivity1

)=$nAsCM(pActivity2

P2

A

«SparkWorkloadEvent»

source=est, statQ=mean)
sparkPopulation=$nC1

sparkExtDelay = (expr=$time, unit=s,

t
Activity1

p
1

t
1

r(t
1
)=1/$time

p
2

t
A1

P3 «SparkMap»
hostDemand=(expr=$time, unit=s,

source=est, statQ=mean)
numTasks=$n0
mapType=map

A

p
A1

p
A2

t
A1

t
A2

t
A3

t
A4

r(t
A3
)=1/$time

p
A3

p
A4

a
1

a
2

)=W(a
1 $n0 $n0)=W(a

2

P4 A

t
Activity2

p
A4

P5 A B
t
B1

p
A4

P6
A t

A4
p

A4

continued . . .

Copyright c© 2017, DICE consortium – All rights reserved 50

Deliverable 3.4. DICE simulation tools - Final version

. . . continued

UML PATTERN PETRI NET PATTERN

P7
A t

A4
p

A4

Table 7 illustrates the modifications introduced in the GSPN model by the profile extensions in the
deployment diagram. The Spark tasks are first logically grouped into partitions in the activity diagram,
later they are deployed as artifacts and mapped to physical execution nodes in the deployment diagram.
Pattern P12 maps the SparkNode (GaExecHost) to a new place pR in the GSPN, with an initial marking
nCores (resMult) that represents the number of computational cores of the node. The addition of
such place restricts the logical concurrency, number of tasks of the Spark application, to the number of
available cores. In particular, the pattern P8 corresponds to the acquire/release operations of the cores by
the tasks.

Figure 38 presents the final GSPN model for the Spark design in Figures 36 and 37. It has been
obtained by applying the patterns and combining the subnets through the interfaces. For readability
purposes, the portions of the Petri net are encapsulated in a frame with the name of the UML element
that generates it. By default, the number of tasks for each Spark operation is equal to 100. The Spark
application has 10 cores assigned from the 16 cores of the cluster.

Map1

RepartitionFlatMap

Map2

SubstractCollect Primes Composite

Figure 38: GSPN for the Spark design in Figures 36 and 37

The Spark profile, the transformation patterns, and the evaluation of performance metrics have been
implemented for the Papyrus Modelling environment in Eclipse. In particular, they are completely inte-
grated within the DICE Simulation plugin for Eclipse.

The transformation of the UML models to stochastic Petri nets, as well as the evaluation of the perfor-
mance metrics, are fully automatized and they are transparent to the end user. Firstly, the transformation
uses QVT-MOF 2.0 [31] to obtain a Petri Net Markup Language file (PNML) [23], an ISO standard for
XML-based interchange format for Petri nets. A trace file is created during the M2M transformation.

Copyright c© 2017, DICE consortium – All rights reserved 51

Deliverable 3.4. DICE simulation tools - Final version

Table 6: Transformation Patterns for SparkMap stereotype in Spark-profiled UML Activity Diagrams

UML PATTERN PETRI NET PATTERN

P8 «SparkMap»
hostDemand=(expr=$time, unit=s,

source=est, statQ=mean)
numTasks=---
mapType=map

A
p

A1
p

A2
t
A1

t
A2

t
A3

t
A4

r(t
A3
)=1/$time

p
A3

p
A4

a
1

a
2

)=W(a
1

$nC1

$nDf
)=W(a

2

$nC1

$nDf

P9
«SparkMap»

hostDemand=(expr=$time, unit=s,
source=est, statQ=mean)

numTasks=---
mapType=union

A

1

2
p

A1
p

A2
t
A1

t
A2

t
A3

t
A4

r(t
A3
)=1/$time

p
A3

p
A4

a
1

a
2

)=W(a
1 $nC1+$nC2 $nC1+$nC2)=W(a

2

P10
«SparkMap»

hostDemand=(expr=$time, unit=s,
source=est, statQ=mean)

numTasks=---
mapType=intersection

A

1

2
p

A1
p

A2
t
A1

t
A2

t
A3

t
A4

r(t
A3
)=1/$time

p
A3

p
A4

a
1

a
2

)=W(a
1

max($nC1,$nC2) max($nC1,$nC2))=W(a
2

P11
«SparkMap»

hostDemand=(expr=$time, unit=s,
source=est, statQ=mean)

numTasks=---
mapType=cartesian

A

1

2
p

A1
p

A2
t
A1

t
A2

t
A3

t
A4

r(t
A3
)=1/$time

p
A3

p
A4

a
1

a
2

)=W(a
1 $nC1*$nC2 $nC1*$nC2)=W(a

2

Copyright c© 2017, DICE consortium – All rights reserved 52

Deliverable 3.4. DICE simulation tools - Final version

Table 7: Transformation Patterns for Spark-profiled UML Deployment Diagrams

UML PATTERN PETRI NET PATTERN

P12
D
e
p
lo
y
m
e
n
t

A
ct
iv
it
y

Node(R)

A

A

Partition(R)

«SparkNode»
nCores=$nP1
Memory=$nM1

M(p)=$nP1
R

t
A3

p
A2

p
Activity2

p
R

t
A2

This file links the elements of the Petri net with the source components of the UML. It helps for the
identification of the items in the Petri net that the tool needs to inspect during the performance analysis.
Later on, Acceleo [37] has been used to implement a model-to-text (M2T) transformation from PNML
into a GSPN tool specific format, concretely for the GreatSPN tool [18].

The UML Profile for Spark is published inside the DICE Profile and can be downloaded from [35].
The transformation of UML profiled models into Petri nets is implemented in the DICE Simulation
tool. The code of the transformation and the DICE Simulation tool are publicly available. They can be
downloaded from [36].

Copyright c© 2017, DICE consortium – All rights reserved 53

Deliverable 3.4. DICE simulation tools - Final version

Appendix C. JMT Petri Net Extension

JMT (Java Modelling Tools2) is an integrated environment for performance evaluation, capacity planning
and workload characterisation of computer and communication systems [11]. A number of cutting-edge
algorithms are available for exact, approximate and asymptotic analysis of queueing networks (QNs),
with either product-form or non-product-form solutions. Users can define and solve models through a
well-designed graphical interface, or optionally an alphanumeric wizard. Released under GPLv2, JMT
benefits a large community of thousands of students, researchers and practitioners, with more than 5,000
downloads per year.

The focus of JMT is particularly on QNs, in which jobs travel through a number of stations demand-
ing a certain amount of service at each station and possibly suffering a queueing delay due to service
contention. Although QNs are a prevailing class of formalisms for performance modeling purposes, they
are not suitable for describing systems that exhibit logical behaviour, for example synchronization. JMT
integrates a discrete-event simulator known as JSIM. Inspired by the DICE project, an extension has been
contributed to JSIM for supporting Petri nets (PNs), another important class of performance modeling
formalisms which are found especially useful for capturing the logical behaviour of a system.

Two novel types of stations, Place and Transition, have been designed and implemented in JSIM for
simulating PN models. With the Place and Transition stations, JSIM well supports almost all the canon-
ical types of PNs including GSPNs (Generalized Stochastic Petri Nets), CPNs (Colored Petri Nets) and
QPNs (Queueing Petri Nets) [10]. High compatibility has been achieved between PN and QN stations.
Thus, hybrid models comprising both PN and QN components can also be simulated with JSIM. In hy-
brid models, PN components are used to exactly depict logical behaviour while QN components provide
succinct representation of queueing behaviour.

Graphical User Interface
JSIM generalizes each station into input, service and output sections, which constitute elementary simu-
lation entities. The Place station consists of Storage, Tunnel and Linkage sections. The Transition station
is composed of Enabling, Timing and Firing sections. Users may specify the parameters of Storage,
Enabling, Timing and Firing sections. Figure 39 gives an example of a simple PN model with two closed
classes. Let us consider this example to see what parameters are provided by these sections.

Figure 39: Example of a simple PN model with two closed classes.

The Storage section panel shown in Figure 40 allows users to specify the storage capacities and the
storage strategies of Place 1. The storage capacities can be either Infinite or Finite for all the classes as
well as for each class. The storage strategies include queue policies and drop rules, and are specified
separately for each class. Three queue policies, FCFS, LCFS and Random, are applicable to the Storage

2URL: http://jmt.sourceforge.net/

Copyright c© 2017, DICE consortium – All rights reserved 54

Deliverable 3.4. DICE simulation tools - Final version

section. The available drop rules are Drop, BAS Blocking and Waiting Queue, which can be selected in
case of Finite storage capacities.

Figure 40: Storage section panel of Place 1.

With the Enabling section panel shown in Figure 41, users may specify the enabling condition and
the inhibiting condition of Transition 1 in two tables. Each row of the tables represents an input station of
Transition 1, and each column corresponds to a defined job class. Therefore, an entry of the enabling table
indicates the number of jobs of a class required at an input station for enabling Transition 1. Similarly,
an entry of the inhibiting table indicates the number of jobs of a class required at an input station for
inhibiting Transition 1. Please note that for the inhibiting table an input value of 0 means Infinity.

Figure 41: Enabling section panel of Transition 1.

As shown in Figure 42, the Timing section panel is used to specify the number of servers and the
timing strategy of Transition 1. The number of servers can be either Infinite or Finite. Two timing
strategies, Timed and Immediate, are available. With the Timed strategy, users may specify the firing
time distribution, for which all the implemented distributions are applicable. The firing priority and the
firing weight are enabled when the Immediate strategy is selected.

Figure 43 shows the Firing section panel that allows users to specify the firing outcome of Transition 1
in a table. Each row of the table represents an output station of Transition 1, and each column corresponds

Copyright c© 2017, DICE consortium – All rights reserved 55

Deliverable 3.4. DICE simulation tools - Final version

Figure 42: Timing section panel of Transition 1.

to a defined job class. Therefore, an entry of the table indicates the number of jobs of a class released to
an output station on firing Transition 1.

Figure 43: Firing section panel of Transition 1.

The introduction of the Petri net theory is beyond the scope of this document. Please refer to [10] or
other books for more details about the basic concepts such as place, timed/immediate transition, token,
input/output/inhibitor arc, enabling rule, firing rule, marking. The following paragraphs are dedicated to
clarifying several advanced issues regarding the design and implementation of the Place and Transition
stations. Some examples of PN and hybrid models are also provided in the JMT working folder to help
with a better understanding of how to apply these two types of stations.

Multiple Enablings of a Transition
It is possible that a transition is enabled more than once, as multiple enabling sets of tokens may be
present in the input places. The number of times that a transition is enabled, is referred to as the enabling
degree. Formally, transition t has enabling degree k at marking M if and only if

• ∀p ∈ •t, M(p) ≥ kI(p, t)

Copyright c© 2017, DICE consortium – All rights reserved 56

Deliverable 3.4. DICE simulation tools - Final version

• ∃p ∈ •t, M(p) < (k + 1)I(p, t)

where p denotes a place, •t is the set of input places of transition t, M(p) is the number of tokens in place
p at marking M , and I(p, t) is the number of tokens required in place p for enabling transition t [28].
When a Transition station is enabled, its enabling degree is taken into account.

Different meanings are possible when multiple enabling sets of tokens form in the input places of
a transition. Thus, special attention must be paid to the timing semantics of a transition with enabling
degree greater than 1. Similar to a queue, a transition can have three different timing semantics [28]:

• Single-server Semantics: There is a single server in the transition. Multiple enabling sets of
tokens are processed serially.

• Multiple-server Semantics: There are multiple servers in the transition. Multiple enabling sets
of tokens can be processed in parallel, but the degree of parallelism is limited by the number of
servers.

• Infinite-server Semantics: There are infinite number of servers in the transition. Multiple en-
abling sets of tokens are processed in parallel regardless of the degree of parallelism.

All the three timing semantics are supported by the Transition station. Notably, the single-server and
multiple-server semantics are combined together into the finite-server semantics.

Simultaneous Firings of Transitions
JSIM is equipped with a discrete-event simulation engine called JSIMengine. The core component of
JSIMengine is an event calendar, which works as a message dispatcher between simulation entities.
Messages scheduled for the same simulation time are dispatched in the order that they are created on the
event calendar. This simple mechanism can result in disruption to the simulation when events completed
by sequences of messages are dependent and simultaneous, because messages belonging to different
sequences are interleaved arbitrarily so that dependencies between the events are likely to be broken. The
firing of a Transition station is an event that must be completed by a sequence of messages. If multiple
Transition stations that share some Place stations as their inputs happen to fire at the same simulation
time, communication between the Place and Transition stations may probably fail to coordinate the
simulation.

In order to solve the above problem, a reordering mechanism has been implemented for dispatching
the messages. Particularly, this mechanism gives two properties to the firing event:

• Atomicity: The sequence of messages completing each firing event is dispatched as if it is atomic.

• Certainty: Any firing event is processed only when no other types of events are left at the same
simulation time.

Besides, the reordering mechanism also determines the processing order of simultaneous firing events
according to their priorities and weights.

Multiple Colors of Tokens and Multiple Modes of a Transition
Multiple classes of jobs can be defined for PN models. The classes of jobs in QNs conceptually corre-
spond to the colors of tokens in CPNs. However, critical distinctions between these two concepts must
be pointed out. Jobs waiting in a queue may be sorted by the priorities of their classes, while tokens
stored in a place are usually treated equally notwithstanding their colors. QNs allow servers in a queue
to process jobs separately or simultaneously, and the service time distributions are associated with the
classes of the jobs. By contrast, CPNs allow a transition to work in different modes, and each mode
determines an enabling condition, an inhibiting condition, a timing strategy and a firing outcome.

To meet these distinctions, only the Non-preemptive discipline is applicable to the input section of
the Place station, i.e., the Storage section. Further, the Transition station is designed as a multi-mode
transition that can process multiple colors of tokens. Therefore, any GSPN model is compressible into a
CPN model with a single pair of Place and Transition stations by applying the following correspondence:

Copyright c© 2017, DICE consortium – All rights reserved 57

Deliverable 3.4. DICE simulation tools - Final version

• Tokens at different Place stations in the GSPN model are associated with tokens of different colors
at a Place station in the CPN model.

• Different Transition stations in the GSPN model are associated with different modes of a Transition
station in the CPN model.

Compatibility between PN and QN Stations
QPNs are a hybrid formalism that reconciles PNs with QNs by introducing the queueing place [9]. As
illustrated in Figure 44, a queueing place is composed of two parts: a queue and a depository. Any token
released to the queueing place by the input transitions, enters the queue. Tokens in the queue are invisible
to the output transitions. After completion of its service, a token immediately moves to the depository,
where it becomes available to the output transitions.

Figure 44: Structure of a queueing place.

With compatibility between PN and QN stations, a queueing place is equivalent to a Queue station
connecting to a Place station. Other hybrid structures can also be easily obtained by combining different
PN and QN stations together. However, the following constraints are imposed on the connections of PN
stations:

• A Place station can only be connected to Transition stations.

• A Transition station can only be connected from Place stations.

These constraints imply that any station is connectable to a Place station or from a Transition station.
Full compatibility between PN and QN stations has not been achieved in terms of certain strategies

and performance indices. Since BAS blocking can easily cause deadlocks in PN models, PN stations are
unblockable in the current implementation. The utilisation of PN stations is also not available at present,
as an agreement on its definition has not been reached yet.

Import/Export of PNML models
PNML (Petri Net Markup Language3) is a proposal of an XML-based interchange format for Petri
nets [23, 23]. ISO/IEC 15909 (Systems and software engineering—High-level Petri nets) is dedicated to
standardising the PNML format. This standard consists of two parts: ISO/IEC 15909-1:2004+A1:2010
Part 1 formulates the concepts, definitions and graphical notation of Petri nets; ISO/IEC 15909-2:2011
Part 2 elaborates the specification of the transfer format on the basis of Part 1.

Four types of PNML models are defined by the standard, namely core models, Place/Transition nets,
symmetric nets and high-level Petri nets. In the current implementation, JSIM only supports import/-
export of core models and Place/Transition nets. The former are used to convey the topologies of PN
models, while the later have been extended to represent GSPN models. Users can import/export a PNML
model by simply opening/saving the model from/into a file suffixed with ‘.pnml’. The type of PNML
model to be exported depends on the number of closed classes in the model, i.e., 0 for core models and

3URL: http://www.pnml.org/

Copyright c© 2017, DICE consortium – All rights reserved 58

Deliverable 3.4. DICE simulation tools - Final version

1 for Place/Transition nets. However, exporting a PNML model with open classes or PN stations is not
allowed.

As illustrated in Listings 1–5, tool specific parameters are applicable to the Net, Place, Transition
and Arc elements of a PNML model. These parameters enable the model to cover the extra PN features
provided by JSIM. An exported PNML model will contain a complete set of tool specific parameters for
every element. As for an imported PNML model, this is not necessary and a default value will be set for
each absent parameter.

Listing 1: Tool specific parameters for the Net element.
<toolspecific tool="Java␣Modelling␣Tools␣-␣JSIM" version="1.0.1">

<tokens >
<!-- Data Type: String ,

Valid Values: all the valid strings ,
Default Value: "Token" -->

<className >Token</className >
<!-- Data Type: String ,

Valid Values: all the node names ,
Default Value: N/A -->

<referenceNode >Place 1</referenceNode >
<graphics >

<!-- Data Type: Long(hex),
Valid Values: [#00000000 ,# FFFFFFFF],
Default Value: #FF0000FF -->

<color>#FF0000FF </color >
</graphics >

</tokens >
</toolspecific >

Listing 2: Tool specific parameters for the Place element.
<toolspecific tool="Java␣Modelling␣Tools␣-␣JSIM" version="1.0.1">

<!-- Data Type: Integer ,
Valid Values: {-1}U[1,Integer.MAX_VALUE](-1= infinity),
Default Value: -1 -->

<capacity >-1</capacity >
<graphics >

<!-- Data Type: Boolean ,
Valid Values: {false ,true},
Default Value: false -->

<rotate >false </rotate >
</graphics >

</toolspecific >

Listing 3: Tool specific parameters for the Timed Transition element.
<toolspecific tool="Java␣Modelling␣Tools␣-␣JSIM" version="1.0.1">

<!-- Data Type: Integer ,
Valid Values: {-1}U[1,Integer.MAX_VALUE](-1= infinity),
Default Value: -1 -->

<numberOfServers >-1</numberOfServers >
<!-- Data Type: String ,

Valid Values: {"Timed"," Immediate "},
Default Value: "Timed" -->

<timingStrategy >Timed</timingStrategy >
<!-- Data Type: Distribution ,

Valid Values: all the available distributions ,
Default Value: Exponential (1.0) -->

<firingTimeDistribution >
<distribution >

<type>Exponential </type>
<parameter >

<name>lambda </name>
<value>1.0</value>

</parameter >
</distribution >

</firingTimeDistribution >
<graphics >

<!-- Data Type: Boolean ,
Valid Values: {false ,true},
Default Value: false -->

Copyright c© 2017, DICE consortium – All rights reserved 59

Deliverable 3.4. DICE simulation tools - Final version

<rotate >false </rotate >
</graphics >

</toolspecific >

Listing 4: Tool specific parameters for the Immediate Transition element.
<toolspecific tool="Java␣Modelling␣Tools␣-␣JSIM" version="1.0.1">

<!-- Data Type: Integer ,
Valid Values: {-1}U[1,Integer.MAX_VALUE](-1= infinity),
Default Value: -1 -->

<numberOfServers >-1</numberOfServers >
<!-- Data Type: String ,

Valid Values: {"Timed"," Immediate "},
Default Value: "Timed" -->

<timingStrategy >Immediate </timingStrategy >
<!-- Data Type: Integer ,

Valid Values: [0,Integer.MAX_VALUE],
Default Value: 0 -->

<firingPriority >0</firingPriority >
<!-- Data Type: Double ,

Valid Values: (0.0, Double.MAX_VALUE],
Default Value: 1.0 -->

<firingWeight >1.0</firingWeight >
<graphics >

<!-- Data Type: Boolean ,
Valid Values: {false ,true},
Default Value: false -->

<rotate >false </rotate >
</graphics >

</toolspecific >

Listing 5: Tool specific parameters for the Arc element.
<toolspecific tool="Java␣Modelling␣Tools␣-␣JSIM" version="1.0.1">

<!-- Data Type: String ,
Valid Values: {" Normal"," Inhibitor "},
Default Value: "Normal" -->

<type>Normal </type>
</toolspecific >

Copyright c© 2017, DICE consortium – All rights reserved 60

Deliverable 3.4. DICE simulation tools - Final version

Appendix D. Validation of Apache Spark

The objective of this appendix is a) to validate the transformation patterns we have proposed and
implemented using QVT, and b) to show the performance metrics that can be computed for analyzing the
quality of the Spark applications. To this aim, we firstly execute the tool to transform the UML Spark-
profiled model and automatically obtain the GSPN. Then, the simulation tool automatically analyses the
GSPN and get results. Finally, we compare such estimated results to the results measured by deploying,
in our cloud testbed, the corresponding Spark application.

In order to validate our approach, we have worked with the SparkPrimes example presented in this
deliverable. The test suite is run with different job configurations. Mainly, we have varied a) the number
of assigned cores to each job and b) the number of tasks per operation. The execution times associated to
the initialization of a RDD (SparkWorkloadEvent→sparkExtDelay) and a Spark operation (SparkOp-
eration→hostDemand) are required for the calculation of the rest of performance metrics. These values
are estimated through the reading of Log4j files and the Spark monitoring platform.

The execution environment where the real Spark applications are launched consists of a Spark Master
(coordinator) and a set of six workstations for running the computations. The workstations are virtual
machines deployed on the Flexiant cloud [3]. All the workstations were characterized by virtual AMD
CPUs (4x2.60GHz) with 4GBytes of RAM, a Gigabit ethernet and Ubuntu Linux (version 14.04) OS.

Concerning the performance analysis of the GSPN model, we have used the event-driven simulator
of the GreatSPN tool [18] (confidence of 99% and accuracy of 3%). The performance metrics that can
be analysed are: a) the response time of the Spark application; b) the throughput and c) the utilization of
the hardware resources.

In the GSPN model, the response time (see pattern P1, Table 5) is the mean throughput of transition
tActivity2 divided by the initial marking of place pActivity1. The throughput of the Spark application is
equal to the mean throughput of transition tActivity2.

The utilization of the device (see pattern P12, Table 7) is the mean number of tokens in the place
pA2 divided by the initial marking of the place pR. In particular, the utilization of the computational
cores assigned to the Spark application is the mean number of tokens in the place pA2 divided by the
initial marking of the place pActivity2. The utilization of the computational cores assigned to the Spark
application is proportional to the utilization of the whole device.

Table 8 compares the performance metrics predicted by the simulation of the GSPN and real perfor-
mance metrics obtained by running the Spark applications in our Flexiant cluster. From the experiments,
we get the following insight. The simulation of the Petri net with GreatSPN returns a good prediction
of the response time when the modeled Spark application has a high number of tasks and assigned cores
(e.g., more than 12 cores and 200 tasks). For the rest of configurations, the relative error is greater
than 15%; although relative errors fewer than 30% are still in line with the expected accuracy in the
performance prediction field [27].

Particular cases such as (6,200), (12,100), (18,200) and (24,100) have excessively high errors, rang-
ing between 32.2% and 41.19%. These errors seem to be caused by the selected statistical distribution
that simulates the mean execution time of the map/reduce tasks in the timed transition tA3 of the transfor-
mation P3. When the number of map/reduce tasks is high, the errors introduced by an incorrect statistical
distribution are faded out. Otherwise, the errors become relevant when the number of map/reduce tasks
is small.

By default, the temporal transitions of the Petri net follow an infinite server semantics; and the exe-
cution of tasks is modeled by an exponential distribution. The use of alternative probability distributions
such as a Phase-type or Erlang may provide a better accuracy for the cases where the simulations give
big deviations. The selection of the right probability distribution requires a deep and exhaustive analysis
of the behavior of the tasks in the Spark cluster (i.e., the probability of arriving multiple tasks at time t,
the mean execution and arrival times, and variances). The UML-to-Petri net transformation is currently
being extended in order to support Erlang distributions and deterministic transitions.

In any case, the current version of our UML-to-Petri net transformation offers a good prediction of
the application response time. An iterative refinement of the transformation process will provide even an
increased prediction accuracy of the Petri net.

Copyright c© 2017, DICE consortium – All rights reserved 61

Deliverable 3.4. DICE simulation tools - Final version

Table 8: Results of the SparkPrimes experiment

Number of Cores
($nAssignedCores)

Number of Tasks
($nC1)

Response Time
(real, s)

Response Time
(simulation, s)

Relative error
(%)

6 100 49,82 59,96 20,35

6 200 85,61 54,27 36,60

6 400 78,16 75,38 3,55

6 800 141,14 139,12 1,44

12 100 27,99 39,52 41,19

12 200 43,27 51,58 19,21

12 400 55,50 57,40 3,42

12 800 104,63 105,70 1,02

18 100 36,51 36,02 1,35

18 200 45,22 59,79 32,20

18 400 56,17 59,98 6,79

18 800 99,97 102,90 2,94

24 100 30,21 40,96 35,56

24 200 46,69 43,35 7,14

24 400 58,21 63,77 9,54

24 800 106,07 113,09 6,62

Copyright c© 2017, DICE consortium – All rights reserved 62

Deliverable 3.4. DICE simulation tools - Final version

Appendix E. GSPN

A GSPN is a Petri net with a stochastic time interpretation, therefore it is a modelling formalism
suitable for performance analysis purposes. A GSPN model is a bipartite graph, consisting of two types
of vertices: places and transitions.

Places are graphically depicted as circles and may contain tokens. A token distribution in the places
of a GSPN, namely a marking, represents a state of the modelled system. The dynamic of the system is
governed by the transition enabling and firing rules, where places represent pre- and post-conditions for
transitions. In particular, the firing of a transition removes (adds) as many tokens from its input (output)
places as the weights of the corresponding input (output) arcs. Transitions can be immediate, those that
fire in zero time; or timed, those that fire after a delay which is sampled from a (negative) exponentially
distributed random variable. Immediate transitions are graphically depicted as black thin bars while
timed ones are depicted as white thick bars.

In our Spark performance model, places represent the intermediate steps of the processing. Transi-
tions represent the execution of Spark tasks and fire when certain conditions are met (e.g., a number of
tasks are created or accomplished) or the associated time delay has elapsed (e.g., the execution of a task
by the cluster has finished). Besides, tokens represent either the Spark application workflow or the tasks
executed by a Spark operation.

Copyright c© 2017, DICE consortium – All rights reserved 63

