Developing Datalntensive Cloud $
Applications with Iterative Quality
Enhancements

DICE Methodology

Deliverable 2.5

Deliverable:
Title:
Editor(s):
Contributor(s):

Reviewers:

Type (R'DEM/DEC)
Version:

Date:

Status:
Dissemination level:
Download page:
Copyright:

D2.5

DICE Methodology

Youssef RIDENE (NETF)

Joas Yannick KNOUANI, Damian A. Tamburri (PMI), Matej Artac (XL#
Diego Perez (ZAR), Giuliano Casale (IMP);Igonseio Requeno (ZAF
Danilo Ardagna (PMI), Marcello Bersani (PMI), Marc Gil (PRO), C
luhasz (IEAT), Pooyan Jamshidi (IMP), José Merseguer (ZAR),
Whigham (FLEX]I), Chen Li (IMP), Ismael Torres (PRO)

Chen Li (IMP), Vasilis Papanikolaou (ATC)

Report

1.0

31-July2017

Final version

Public

http://www.dice-h2020.eu/deliverables/

Copyright © 2017, DICE consortigmwll rights reserved

DICE partners

ATC:

FLEXI:

IEAT:
IMP:
NETF:
PMI:
PRO:
XLAB:
ZAR:

Athens Technology Centre

Flexiant Limited

Institutul e-Austria Timisoara

Imperial College of Science, Technology & Medicine
Netfective Technology SA

Politecnico di Milano

Prodevelop SL

XLAB razvoj programske opreme in svetovanje d.o.o.
Universidad de Zaragoza

TheDICE project (February20t%anuary 2018) has received
Horizon 2020 research and innovation programme under grant agreement No. 644869

Copyright © 2017, DICE consortigwll rights reserved 2

http://www.dice-h2020.eu/deliverables/

EXECUTIVE SUMMARY
1. ACTORS OF BIG DATA PROJECTS

A.1l. NIST Taxonomy
A.2. The DCE Methodology

2. OVERVIEW OF DICE TOO LS
3. SCENARIO-DRIVEN METH ODOLOGY

3.1. Big Data Applications Modeling

3.1.1. DICE UML Modeling

3.11.1. Description

3.1.1.2. DICE UML Modelling in Action: A Sample Scenario
3.1.2. DICE Deployment Modelling

3.2. Standalone

3.3. Architecture Verification, Simulation and Optimization
3.3.1. Step 1: Architecture Design

3.3.2. Step 2: Verification

3.3.3. Step 3: Design of the DIA Behavior

3.3.4. Step 4: Simulation

3.3.5. Step 5: Optimization

3.4. DevOps Delivery Lifecycle

3.4.1. Step 1: Deployment Design

3.4.2. Step 2: Delivery

3.4.3. Step 3: Fault Tolerance & Quality Testing

3.4.4. Step 4: Monitoring

3.4.5. Step 5: Configuration Optimization

3.4.6. Step 6: Trace Checking, Anomaly Detection and Enhancement

4. THE DICE METHODOLOGY IN THE IDE
41. DICE Tools Menu
4.2. Cheat Sheets
5. ANNEX 1 - PRIVACY -BY-DESIGN SUB-METHODOL OGY

5.1. Ouitline

5.2. Research Sation

5.2.1. Modeling DIAs with Granular Access Control Policies

5.2.2. What Happens at Runtime?

5.2.3. DICE Continuous Architecting for Privagydesign: Example Scenario
5.2.4. Conclusion and Research Roadmap

ANNEX 2 - ADDRESSING CONTAINERISATION IN THE DICE PROFILE AN D DICER TOOLS

Copyright © 2017, DICE consortigwll rights reserved

co O 01 o »

12

13
13
13
14
16
17
25
25
26
27
27
28
30
30
31
31
32
33
33

35

35
36

38

39
39
40
41
42
43

45

Executive Summary

The objective of DICE is to reduce time to market of busheesisal Datalntensive Applications
(DIAs). DICE provides a bench of effie-shelftools that if employed methodologically, enable users

to build Big Data software efficiently. For that purpose, DICE proposes and recommends scenario
driven workflows depending on the user needs. These scenarios cotisitiM€E Methodology.

In the following setions, we will first start by identifying typical actors found in Big Data software
development projects. Next, we will overview DICE tools. Finally, we will present the DICE
methodology thashows, in a scenardriven way, how the tools can be benefittathe actors.

Copyright © 2017, DICE consortigwll rights reserved 4

1. Actors of Big Data Projects

Al NIST Taxonomy

The National Institute of Standards and Technology (NIST) published a valuable Big Data taxonomy
depicted on Figure 1. Actor symbols represent functional roles, while component boxes denote softwar
or hardware they create or employ. Roles are played by actors who can perform multiple roles while a
role can be played by multiple actors. From left to right Fig. 1 shows the information flow chain:
information is provided bypata Providers digitized ty Data Producers processed by Big Data
Applicationand the output of the computation is presenteBdta Consumerto Data Viewers From

top to bottom is pictured the service use ch8ystem Orchestratoexpect some services from tBig

Data Appliation, which is implemented bBig Data Application Providetswith the help oBig Data
Frameworkgesigned byig Data Framework Providerd he different activities of these five roles are
encompassed by security and privacy issues. Table 1 gives egarhplgors for each role.

o
@ System Orchestrators
Data Providers Data Viewers
«service » § | | o O
- Data Producers .= Big Data e ===y DataConsumers LR L
Appllcatlun

Big Data
Application Providers
- -) Information Flow

=—fp Service Use
=l Scrvice Provision wservice » § |

Big Data Big Data Framework Providers
Frameworks

Security and Privacy Issues

Figure 1. NIST Big Data Taxonomy

Table 1. Roles in a Big Data ecosystem according to the NIST

Role Description Example of actors
Data Provider Introduces new data into the| Companies, public agencies, researchg
ecosystem. scientists, internauts.
Data Viewer Utilizes the results of the Big| Companies, public agencies, research
Data application. scientists, software agents.

System Orchestrator | Specifies requirements and/q Clients, businessakeholders, project
monitors their realization. managers, consultants, requirements
engineers.

Big Data Application | Implements requirements. | Software engineers, network engineers
Provider security and privacy engineers,
developers.

Copyright © 2017, DICE consortigwll rights reserved 5

Big Data Framework
Provider

Provides infrastrucres,
computational resources,
networks, operating systems
development platforms, and/
scalable storage or processif
frameworks.

Cloud providers, companies, open sou
communities, system administrators,
operators.

Three Big Data components interact with the Big Data applicaata Producers Big Data
FrameworksandData ConsumetsTable 2 displays some examples for each category.

Table 2. Big Data components

Component

Description

Examples

Data Producer

Convertsanformation provided by
Data Providers into digital data that
can be processed by computers.

Sensors, cameras, Web browsers
graphical user interfaces.

Big Data Framework

A specific technology stack
providing abstractions to store quef
and/or analyse data.

Apache Cassandra, Apache Hado
Apache Spark, Apache Storm.

Data Consumer

Presents data computed by the Big
Data Application to Data Viewers in
a form that is undstandable and
usable by them.

Graphical user interfaces, Web sit

Hereafter, the roles @ig Data Application ProvideandDeveloperare considered to be the same. The
iDaep Prdducerds ¢oe bigttdo aliversel and a
arrives too fast to be efficiently handled by traditional-soalable database management systems.

appellation

A.2. TheDICEM

The DICE Methodology mixes three fruitful and influential approaches to software development:

AiBi g Dat ao

ethodology

DevOps, Servic®rientation and ModeDriven Engineering.

In a DevOps procesdevelopersbuild and test software in an isolated-catled, development
environment, whileOperatorsare in charge of the targeted, final, runtime environment. The latter

pro

comprises entitieslgnned to interact with the program: operating systems, servers, software agents,
persons and so forth. Operators are responsible for, amongst other things, preparing the runtime

environment, controlling it and monitoring its behavior, especially oncapplcation is deployed into

it. For instance, operators have to ensure the presence in the runtime environment BfgelZeta

Frameworknecessary for the application to work. Nowadays, the trend is to wrap frameworks into
services available at definitmmbinations of an IP address and a port number. To use a service, the

application generally has to uphold a specific communication protocol (e.g., HTTP) on top of which an
application programming interface (API) enables it to trigger-gjgdicified sernge actions. Théig

Copyright © 2017, DICE ¢

onsortigll rights reserved

Data Applicationcan itself be implemented as a service to be included in the runtime environment of
another application. Figure 2 is an adjustment of the NIST Big Data taxonomy to DevOps.

—f) Service Provision

« service »

Big Data Big Data Framework Praviders
Frameworks

r-r—-r————"FF7"T—>"—F"=="=""—""""""™">""""™""~""">"""~""™"""™>"""™"™""™">"=—/"+=— 1
| |
| System Orchestrators
|
I
| Data Providers Data Viewers :
I
| O O g wservice » § | g o 0O |
| === Data Producers -= -) Big Data == ==) DataConsumers - |
| Application |
I I
I 0 :
I Developers
I I
I I
I
l ---) Information Flow O O |
I Service U :'rc-:i..lctimE Operatars |
I P Service Use Environment perators
I |
I |
I I
I |
I |
I I
I |

Security and Privacy lssues
Figure 2. A DevOps Big Data Taxonomy

A contract is an artefact on which two parties agree after a comprehensive discussion. There is a contract
amongSystem Orchestratarsamely between clients and project managers. There is also a contract
betweenSystem Orchestratorand Developers becaus the latter has to implement what the former,

after a careful requirement analysis, has established as software specifications. These specifications may
be written in a textual document or, better, given as UML or mathematical formal models. In Model
Driven Software Engineering (MDSERevelopersiteratively refine these contracts/models with
implementation details until they can generate a source code. The DICE Methodology proposes to
extend this approach betwdeaveloperandOperators In that contextiromO p e r apoiot bf siéw,
contracts/models set down the frameworks they must make available in their runtime environment to
the application oDevelopersFor instance, a contract/model may ask them to install a Cassandra server.
On the other hand,rdm Developer6 poi nt of Vi ew, c o ndffects;théeys / mo d e |
guarantee their application shall have on the runtime environm@mgasators For instance, they may

ensure that their application streams to Cassandra a data flow that degsewat a certain velocity.
Contracts/models betweeBystem Orchestratorand Developers and contracts/models between
DevelopersandOperators are iteratively synchronously refined until both the program and its matching
runtime environment can be simuigously generated. This workflow, whé&eveloperandOperators
collaborate and cooperate to reach an agreement on the runtime environment, complies fully with the
DevOps culture.

Before detailing further the DICE Methodology, the next section oventleev®ICE tools for Big Data
software development.

Copyright © 2017, DICE consortigwll rights reserved 7

2. Overview of DICE Tools

This section is a summary of Deliverable Dh#(://www.diceh2020.eu/deliverablésh which DICE

tools are described irethil.

The DICE project is based on 14 tools: the DICE IDE, the DICE/UML profile, the DICE Rollout tool
and the remaining 11 tools respectively for simulation, optimization, verification, monitoring, anomaly
detection, trace checking, enhancement, quadisging, configuration optimization, fault injection,

repository management and delivery.

Some of the tools are desifmcused while some are runtiroeiented. Finally, some have both design

and runtime aspects. Table 3 outlines the tools mapping th#his toategorization scheme. All of the

tools relate to the runtime environment. In other words, there is no tool that supports thelnnedel
development of application logic behind a Big Data job, e.g., a streaming job for Apache Storm such as

theoneeported in the ABIg

Data Applications Model

Table 3. DICE tools

DICE tools

Design
DICER
Simulation
Optimization
Verification

O¢ O¢ O¢ O¢ O«

DICE/UML Profile

Runtime Monitoring
Quality Testing

Fault injection

O¢ O¢ O«

O«

Designto-runtime Delivery

Runtime-to-design

Trace checking
Enhancement

O« O¢ O¢ O«

Configuration optimization
Anomaly detection

DICE IDE

(@]

General

Design tools operate on models only, these either being software engineering models based on UML or
guantitative models for performance/reliability assessment or verification. The DICE/UML profile is a
UML -based modeling language allowing its users totere@dels of the datatensive application

arranged across three levels of abstraction:

DeploymentSpecific.

Platfodapendent, Technologypecific and

The DICE Platforrindependent Models (DPIM) specify, in a technolegyostic way, the types of
services a Big Data software depends on. For example: data sources, communication channels,

processing frameworks and storage systems. Designers can add quality of service expectations such as

performance goals that a service must meet in order to be useth fapplication. More details can be

found

in http://wp.doc.ic.ac.uk/dicB2020/wpcontent/uploads/sites/7®27/02/D2.2 Desigiand

quality-abstractiong=inakversion.pdf

Copyright © 2017, DICE consortigwll rights reserved

http://www.dice-h2020.eu/deliverables/
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-abstractions-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-abstractions-Final-version.pdf

DICE TechnologySpecific Models (DTSM) are refinements of DPIMs where every possible
technological alternatives are evaluated until a specific technological design choice is made and
rationalsed. For instance, Apache Kafka can be selected as a communication channel, Apache Spark as
a processing framework, and Apache Cassandra as both a data source and a storage system. DTSMs do
not settle infrastructure and platform options. These are reso\RICE DeploymenSpecific Models

(DDSM).

DDSMs elucidate deployments of technologies onto infrastructures and platforms. For instance, how
Cassandra will be deployed onto any private/public Cloud.

Let us now describe the tools.

~

0 The verification toolallows the DICE developers to automatically verify whether a temporal
model of a DIA satisfies certain properties representing the desired behavior of the final
deployed application. The formal model, that is obtained from the DTSM diagram, is an
abstradbn of the running application implemented with a specific technology. For each
technology considered in DICE, there is a suitable (class of) temporal models allowing for the
assessment of specific aspects of the applications which are captured by tiraltproperties
that the developer can verify.

0 The simulation tool allows to simulate the behaviour of a data intensive application during the
early stages of development, based on the DPIM specification. It relies odewigh
abstractions that are nagtyspecific to the technology under consideration.

0 Differently from the simulation tool, the optimization tool focuses on the DTSM, and relies on

separate simulation capabilities to determined an optimized deployment plan in order to

minimize cost subjecto qualityof-service constraints (e.g., identifying the public cloud
provider target for the deployment and the detailed configuration in terms of virtual machine
instance type and their number).

The DDSM model construction and its TOSCA bluepdotinterpart is aided and automated

by means of an additional tool called DICE Deployment Modelling. DICE Deployment

Modelling in particular carries out the necessary automation to build an appropriate and well

formed TOSCA blueprint out of its DTSM modelj counterparts.

(@]

In contrast to the design tools, the runtime tools examine or modify the runtime environmenidirectly
not its models.

0 The monitoring tool collects runtime metrics about the components present in a runtime
environment.

0 The quality testig tool and the fault injection tool respectively inject workloads and force
failures into the runtime environment; for instance, the fault injection tool shutdowns some
computational resources in order to test the application resilience.

Some tools canndie unambiguously classified as design or runtime tools because they have both design
and runtime facets.

0 The delivery tool is a modeb-runtime (M2R) tool that generates a runtime environment from
a DDSM.

0 The configuration optimization, anomaly deteati trace checking and enhancement tools are
all runtimeto-model (R2M) tools that suggest revisions of models of the runtime environment
according to data gathered by the monitoring tool. As opposed to the optimisation tool which is
entrusted with optimiag cost and resource consumption based on mathematical abstractions,

Copyright © 2017, DICE consortigwll rights reserved 9

the configuration optimization tool analyses the infrastructure configuration parameters given a
certain time horizon and returns optimal values for said infrastructural elements i&M DD
through experimentation on the deployed instance of the application.

0 Finally, the anomaly detection, trace checking and enhancement tools analyse monitoring data.
The first detects anomalous changes of performance across executions of differend wérsion
a Big Data application. The second checks that some logical properties expressed in a DTSM
are maintained when the program runs. The third searchgsadtatins at all DICE abstraction
levels (DPIM, DTSM or DDSM).

Application codes, models and manihg data are saved in a sharable repository, and most tools can
be invoked directly through the DICE IDE (Figure 3).

=% @

DICE IDE

Repository

()
!
!

DIA DPIM DTSM DDSM

Figure 3. DICE ecosystem

Table 4 below summarises the UML/DICE diagrams each tool operates on.

Table 4. UML diagrams handled by theDICE tools.

DICE tool Input UML diagram Profile level
Simulation Activity
Sequence DPIM, DTSM
Deployment

Copyright © 2017, DICE consortigwll rights reserved 10

Verification Class DTSM
Trace checking Deployment DDSM
Activity
Enhancement DTSM, DDSM
Deployment
Optimization Activity
DTSM, DDSM
Deployment
Monitoring Deployment DDSM
Deployment Modelling Deployment DTSM, DDSM
(DICER)
Delivery tool Deployment DDSM
Quiality testing Deployment DDSM
Configuration optimization | Deployment DDSM
Anomaly detection Deployment (indirect) DTSM (indirect)
Fault injection Deployment DDSM

The DICE Knowledge Repository provides further information about each tool, including tutorials,

installation guidelines, videos and gettistgrted documentation:https://github.com/dice

project/DICEKnowledgeRepository/wiki/DICEKnowledgeRepository

Copyright © 2017, DICE consortigwll rights reserved

11

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository

3. ScenaricDriven Methodology

The DICE methodology adapts to the purpose of the user. Although DICEr&ppd advocates a
holistic and integrated Mod@&riven approach to Big Data software development, it also acknowledges
that some users do not, and are not willing to practice refinement of techirudiegendent models

into technologyspecific and deplimentspecific models. Particularly those looking for rapid
prototyping functionalities. Therefore, in the following, we consider the use of DICE tools in four use
case scenarios that illustrate alternative ways to exploit the DICE framework:

1)

2)

3)

4)

Big Data Application Modeling. The user of DICE can simply design his/her Big Data
Application and s/he is willing to use an arbitrary subset of tools of the DICE framework, as
long as it fulfils the needs. This modeling can be made for various purp@ses:
documentation, architecture validation, etc.

Standalone. The user has identified a specific need which can be managed using a specific
DICE tool. For example, if the user has a running Big Data application and needs to gather
runtime metrics, thes/he is primarily interested to use the monitoring tool. In this scenario, the
user will only have to follow a tutorial or read the documentation of this tool.

Architecture Verification, Simulation and Optimization. A development team has to
implement asoftware that fulfills a list of requirements. Before starting the implementation, the
team wants to use the performance and reliability engineering tools available in DICE to predict
behaviors and cost for different implementation plans.

DevOps. A teamof Developersas built a software and wants to automate (1) the creation of
a matching runtime environment, (2) the deployment of their program into it and (3) the
monitoring of its behavior in reaction to the actions performed by their applicatiorighta t
collaboration withOperators

Copyright © 2017, DICE consortigwll rights reserved 12

3.1. Big Data Applications Modeling

Nowadays Modelling has become a standard in software engineering. In fact, for architecture decision
documentation, code generation or even simply for)dogumentation purposes, Softwar
Architects/Engineers build models using their favorite modeling environment and consistently with their
specific industrial notations.

Beyond quality assessment, deployment automation, simulation, etc., DICE provides, first and foremost,

a modeling envbnment for Big Data applications. These modeling capabilities are possible thanks to

two different and complementary approaches: UML Profiles and a DSML (Domain Specific Modeling
Language), t hat i s, the modell ing Imadelingande e mb e
automation tool, DICE Deployment Modelling . The following sections elaborate both approaches and
highlight the characteristics of the modelling perspective, pointing the reader to further details in the
knowledge repository.

3.1.1. DICE UML Modeli ng

3.1.1.1. Description

As aforementioned, the DICE ecosystem offers a plethora of-teagse tools to address a variety of
guality issues (performance, reliability, correctness, prilaegesign, etc.). In order to make profit of
these tools, the user has tdlspecific UML diagrams enriched with stereotypes and tagged values
brought by the DICE Profiles. The DICE profiles tailor the UML mmtadel to the domain of DIAs.

For example, the generic concept of Class can become more specific, i.e., to havenmantieseoy
mapping it to one or many concrete Big Data notions. Besides the consistency of the model remains
guaranteed thanks to the metadels behind the UML standard. In essence, the role of these profiles is
twofold:

1. Provide a high level of abstréam of concepts specific to the Big Data domain (e.g., clusters,
nodesé) and to Big Data technologies (e.g., (
2. Define a set of technical (low level) properties to be checked/evaluated by tools.

The methodological steps entailed by #utivities above encompass at least the following activities:

a. Elaborate a componebtsed representation of a hilglvel structural architecture view of the
data intensive application (i.e., a DPIM Component Diagraim)the scope of DICE, this is
done uig the simple and familiar notations of a UML profile whence the user draws the
stereotypes and constructs necessary to specify his/herlrDataive Applications nodes
(source node, compute node, storage node, etc.);

b. Augment the componeilased repres#ation with the property and nduanctional
specifications concerning that representation;

c. Refine that very same compondrased representation with technological decisiorise
decisions themselves represent the choice of which technology shall rehide data
intensive application node. For example, a <<CassandraDataStore>> conceptual stereotype is
associated with a <<StorageNode>> in the DPIM architecture view;

d. Associate several datatensive technologgpecific diagrams representing the technolalgic
structure and properties of each of the datansive nodes. These diagrams essentially
Afexploded the technological nodes and cont ai
nodes. For example, a <<StorageNode>> in the DPIM architecture repriesecdat become
a <<CassandraDataStore>> in its DTSM counterpart ; finally, the DTSM layer will feature yet
another diagram, more specifically, a datadel for the Cassandra Cluster. These separate
technologys peci fi ¢ fAi mages o0 s aatainensivdhappligatiom gnalysie of a
and verification;

Copyright © 2017, DICE consortigwll rights reserved 13

e. Elaborate a deploymespecific component deployment diagram where the several technology
specific diagrams fall into place with respect to their infrastructure needs. This diagram belongs
to the DDSMlayer and contains all necessary abstractions and properties to build a deployable
and analysable TOSCA blueprint. Following our <<CassandraDataStore>> example, at this
level, the DTSM <<CassandraDataStore>> node (refined from the previous DPIM
<<StorageNde>> construct) is finally associated with a DDSM diagram where the
configuration of the cluster is fully specified (i.e., VMs type and number, allocation of software
components to VMs, etc.);

f. Finally, once the datmtensive deploymerdpecific componentdiagram is available, DICE
deployment modelling and connected generative technology (DICE Deployment Modelling)
can be used to realise a TOSCA blueprint for that diagram.

In summary, Designers exploiting DICE UML modelling for their Disiizznsive appliations will be
required to produce (at least) one component diagram for their architectural structure view (DPIM) and
two (or more) diagrams for their technolegpecific structure and behavior view (DTSM), taking the
care of producing exactly two diagrarfes structural and a behavioral view) for every technological
node in their architectural structure view (DPI& long as that requires analysisDICE UML
modelling does not encourage the proliferation of many diagrams, e.g., for the purpose of re
documetmation - DICE focus is on qualitaware design and analysis of Digensive applications.
Therefore, DICE UML modelling promotes the modellof@ll and only the technological nodes that
require specific analytical attention and quality-awareness Finaly, Designers will be required to
refine their architectural structure view with deploymspécific constructs and decisions.

For example, for a simple WordCount application featuring a single Source Node, a single Compute
Node and a single Storage Nodd| three requiring specific analysis and quality improvement.
Therefore, Designers are required to produce (in the DICE IDE) a total of 7 diagrams: (1) an architectural
structure view of the general application, containing three nodes (Storage, CongpSieuace) along

with their properties and QoS/QoD annotations; (2) a structural and behavioral tecksp®otic view

for every technology that requires analysist us assume a class diagram and an activity diagram for
Storage, Compute and Source Wddchnologies respectively. Finally, the diagram produced in (1) is
required to be refined with appropriate deployrsuecific constructs, mappings and annotations.

The next section provides a realistic usage scenario of the above modelling procethagfwpose
of clarifying the DICE modelling process.

For more details (tutorials, documentation, examples, etc.), on the DICE profile and the connected
technologies the reader may find additional elaborations on the DICE Knowledge Repository at:

https://github.com/dic@roject/DICEKnowledgeRepository/wiki/DICEKnowledge
Repository#profile

3.1.1.2. DICE UML Modelling in Action: A Sample Scenario

As a toy example, we refer to a simple Storm application of our own device\8AKEtatavhich takes

as input a compressed stream of 20GB web pages in XML containing snapshots of all the articles in
Wikipedia. The application then processestheatrm t o deri ve article stati:
interested initially in deploying our application as soon as possible rather than analyse its behavior;

Copyright © 2017, DICE consortigwll rights reserved 14

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#profile
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#profile

Step a: DPIM Model - the DPIM model for our toy example is a compoHreased aggregation of two
nodes: a compute node (entrusted with processing wiki pages) and a storage node (entrusted with storing
and presenting results). For the sake of space we do not present this simplistic DPIM layer.

Step b and c: DPIM Model Refinement at this point the DM model is used as a basis to refine DIA
modelling with appropriate technological decisions; in our case, the DPIM component diagram
components representing DIA nodes are stereotyped with additional techeptagfyc stereotypes, in

our case that is the<StormApplication>> stereotype for the only compute node in the DPIM; this
signifies that the component is established to be a Storm Compute Node. Similarly, the DPIM
component diagram component representing the storage node is stereotyped with analadditio
stereotype, that is, the <<CassandraDataStore>> stereotype; this signifies that the component is
established to be a Cassandra cluster.

Step d: DTSM Model Creation-at t his point, we need to Aexpl ode
with technologial decisions all we need to do is to create a new class diagram and elaborate further

on the technicafletail internals for both nodes (e.g., Storm topology details for the
<<StormApplication>> and schemas for the <<CassandraDataStore>>). As a consgyeguepare

a new class diagram where a new class is created with the <<StormApplication>> stereotype and is
immediately associated with bolts and spouts requirédkiStats similarly, data schemas are prepared

for bolts and linked to a <<Cassandra&®tore>> class of which we assume no need for further internal

details. The resulting diagram should look similar to the following figure.

<<StormApplication>> <<StormTopology>> <<Spouts> <<WebDataSources> STORM
id: 'wikimedia_application’ mainClass: org.apache.storm.starter. WikimediaTopology name: "wiki" url: "http/Awikimedia.com" COMPUTE
processingType: 'stream! T type: "WikiAr weadeFrom . ‘farticle/pag NODE
hasSourceNode " i1 type: REST

realizeWorkflow method: GET

l’ hasNext hashext hasNext l

<<Bolt>>
name: "count_links" <<Data>>
type: "LinkCi schema: "<title, categories>"

<<Bolt>>
name: "split_categories”
type: "CategoriesSplitBolt"

Y

<<Bolt>>

name: "extract_categories” schema: "<category, title>"
type: "CategoriesExtractBolt"

[<<Data>>
[schema: “<title, int_links_ext_links>"

replicationFactor: 2 replicationFactor: 1

replicationFactor: 2

T
lhaANut ‘L hasMext ghashext
I>>
[o < <<oliz> — <ol | s < =<0
" name: "store_link" .. ias" . . name:
schema: "<title, int_links_ext_links>" - et - name: "store_page_categories’ schema: "<name, no_pages>’ N .
l type: "C. oitr | | Schema: "<title, categories> type: "C terBolt type: "CategoryAggBolt
replicationFactor: 1 replicationFactor: 1 replicationFactor: 5

storedin

name: "store_categories"
type: °C:

1
<<Bolt>> I
]
]

Step e: DDSM Model Creation- at this point, the technologies used in the DTSM are mapped to
physical resources drautomated rollout is applied to obtain a deployable TOSCA blueprint (see DICE
Delivery Service for additional deployment features). DDSM creation at this step involves creating or
refining a UML Deployment Diagram with DDSM Profile Stereotypes. ContisuOCL-assisted
modelling can be used to refine the UML Deployment diagram in aaaiminated fashion. In a typical
scenario, the DICE user randomly selects a technology from the DTSM diagram and instantiates a
Deployment Node to apply that technology stgype on it. Subsequently, the DICE user can check the
diagram for satisfaction of DIGEDSM OCL constraints, addressing any missing dependencies for that
technology as well as any missing deployment specifications (e.g., additional nodes, firewallg, miss
characteristics and attributes, etc.). The same process shall be replicated by the DICE user until all the
technologies in the DTSM are modelled at the DDSM level as well. Finally, a deployment artifact
representing the DIA runnable instance itselfllst@nclude the modelling at the DICE DDSM layer.

The subsequent section, elaborates on how to prepare a deployment model independently and regardless
of the DICE DPIM and DTSM diagrams if the DICE user is so inclined or required. DICE Deployment
modelling after this point relies on a domadpecific language (DSL) specifically designed for
independent DDSM modelling.

Copyright © 2017, DICE consortigwll rights reserved 15

3.1.2. DICE Deployment Modelling

DICE Deployment Modelling is a complete environment (editor, palette, properties view, etc.) built
upon an extenble set of Big Data specifimodeling languages (Storm, Hadoop, Cassandra, Zookeeper

and Spark). Each such language captures the necessary deployment software nodes, concepts and
restrictions that every big data technology addressed in DICE is composatbrgf, with their
configuration characteristics (e.g., dependencies) and parameters (e.g., required and provided
properties) as well as any dependencies on other nodes and technologies. This package structure is
adopted to achieve modularity and ease Defaloyment Modelling extension with new technologies.

The main benefits of using the DICE Deployment Modelling are related to the rapid design of an
execution environment using concrete concepts. In afusaedly approach, the users can employ the
Eclipse Ecore modelling tool to create a deployment model (DDSM), taking advantage of the DICE
profile.

For example, in the scope ofdecumentation scenarios, software Architects or infrastructure Engineers
may need to focus on-documenting theiarchitecture views similarly, Architects may want to use

DICE Deployment Modelling to elaborate on those architecture views using concepts and relations from
well-known and established big data technologies (or many other concepts typical in infrastructu
design for that matter, such as virtual machines, execution bindings, etc.).

DICE Deployment Modelling Modelling takes up step d of the procedure highlighted above and
allows to design a DDSM in a completely reserved environment specific for depibgiatails which

can easily be extended to desired deploymestific technologies and packages. DICE Deployment
Modelling DDSM models are equivalent to DICE DDSM UML Profiles. For example, a diagram for
the WikiStatsapplication would look something likbe following figure.

i) somecmear s sonp gt | _SER APPLICATION NODE -
- IS S N N DN BN EEE BN B e B B oy
4 Paintte I whimedia_ssoicabon (Chantiode whma0a 1000y Jo0Su
@ ar W I CLOUD PROVIDER
[Nodes I & run_wwmesa Exscutiondindmg 4 Metres_toeem axseiton AsguiemEassusenParim AN D RE SOU RCES
Folatonsng I
- - TN EE s s Em =
+ ExcuticaSingiag I Plrrrry PRy & BAarEm ExsrutanBingag + wni_nsarag ProvasdEustinsalriom I
ExtemalComponent + 2osusecwr ZocsecerCiuster
4 Provider I g & Quanumtvmi ExscARABINGRg I
¢ ZOOKEEPER NODE e
4 Supervisor L I DI DI NN DN NN NN NN DN DN BNE BN NN IaE B e . ﬁ I
& bebrrvas roal feguerdlastatetation & suoervaodvm? ExscutenBeang
& Nimbus I » orovcen sor MrovidwalecytonPatie I
+ ZookeeperServer 4 Pimbt ol AegureE sttt & rmbusdvm ! | ExstutonBiegng I I
e | STORM NODE I
& YorrResou-coManager N EEEEEEEETEEEEEE 1 I & vt
YarNodehian & worker_Font Flequredtascetenation + workewdvmd Exscutionlindng
4 YarrNodeManager I ¢ cansarars CassanaraGiane I
+ HDFSNEmaNoas I
+ wd_hort PagureaascanSatior & seedim [Exscutionlingry & vm_reabng Provdedlaecutonbitiom
swrsomsee L CASSANDRA I
- T EEE BN EEE BN N DN S e e s e e e i e e o s o

In turn, this DICE Deployment Modelling DDSM model can immediately be produced into a fully
deployable TOSCA blueprint at the click of a button and sent for deployment, at the same time, using
the builtin deployment service artklivery tool part of DICE.

DICE Deployment Modelling usage is encouraged when stakeholders and roles require quick and
painless deployment of their own DIA (e.g., to evaluate initial performance figures and/or execution
traces for further analysis). Thistwithstanding, DICE Deployment Modelling may also be used in
combination with the aforementioned modelling procedure, where step d is executed directly within the
DICE Deployment Modelling instead of the DICE UML profile.

Copyright © 2017, DICE consortigwll rights reserved 16

3.2. Standalone

The standalone usagnode is straightforward and is closely related to the-toutthols of the DICE

IDE. For such scenario, the user is guided through some steps using Eclipse dialog windows. Since
many DICE tools use the same input models, the user may run on the saehenm@lthan one tool

and analysis. For example, the Configuration Optimization tool may be used automatically with the
same input that the Deployment tool uses.

Some tools can be used outside the DICE IDE without using the modeling features (e.g.msiagao
line). For such usage, the user may go through the guides availalii&pati/github.com/dice
project/DICEKnowledgeRepository/wiki/DICEKnowledgeRepository

The rest of this section is devoted to explaining the necessary details to run the DICE analysis tools in
standalone mode. The use of tools, which are intrinsically and inherently linked to the use of the DICE
IDE (i.e., the design td® such as the UML profile, or the DICE Deployment Modelling tool), do not
appear as standalone tools since their use as standalone in the scope of DICE only makes sense in
continuity with the use of some other analysis tediewever, for further detailsn these the reader

may refer to the DICE knowledge repository in the link above.

0 Simulation
The Simulation Tool is able to simulate the behavior of a DIA to assess its performance and reliability.
This tool uses Petri net models for prediction. The DAléfined with behavioral UML diagrams, in
particular Sequence or Activity diagrams that are complemented with the Deployment diagram. These
diagrams are enhanced within the DICE profile. The DIA can be defined both at DPIM level or at DTSM
level using a articular technology (e.g., Storm, Spark). The internal utilization of Petri net models is
transparent to the DICE user, thus releasing his/her from any knowledge of the formal model.

The output of the simulation is the evaluation of a set of perfornamteeliability metrics for early

stage quality assessment. For example, the users can obtain, as performance results, the expected mean
response time or throughput of the DIA, or the utilization of the resources assigned to the application.

As reliability results, users can obtain failure probabilities for the application execution, or the mean
time to failure of DIAs that execute continuously along time.

Service behavior and
deployment design

Simulation

[refactoring]

A simulation is performed considering a performance scenario. A performance scenario can leelmodell

by either a sequence (SD) or an activity diagram (AD). While the SD focuses on the message exchange
between components (lifelines), the AD focuses on the actions performed by the components
(partitions). The deployment (DD) is used to specify both tf@lability of resources in the system,

e.g., humber of cores, and how the interacting components (lifelines in the SD, partitions in the AD) are
mapped onto physical nodes.

More details are available atttps://github.com/dic@roject/DICEKnowledgeRepository/wiki/DICE
KnowledgeRepository#simulation

Copyright © 2017, DICE consortigwll rights reserved 17

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#simulation
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#simulation

0 Optimization

The optimization tol allows the DICE Architect to assess the performance and minimize the
deployment cost of dafatensive applications against uskfined properties, in particular meeting of
servicelevel agreements (SLAs). The inputis: (i) a set of DICE DTSM modeésf(@ every candidate
target environment, i.e., virtual machine type at a given of provider), (i) a partially specified DICE
DDSM Deployment model and the SLAs to be achieved . The optimization consists in finding the less
expensive cluster configuratiable to guarantee the application jobs to be executed before a user
defined deadline (for MapReduce or Spark applications) or such that the cluster utilization is below a

given threshold (for Storm). The Architect can

analyze the application behavior difigeent

conditions. For example, he/she can study the pros and the cons of public clouds versus private cloud in
terms of execution costs. The output of the optimization tool is a DICE Deployment model that
corresponds to the optimal solution found avtich can then automatically deployed by the DICE
Deployment tool. The usage flow of the tool is reported in the figure below. Given the set of candidate
solutions and SLAs, if a feasible solution cannot be found or the cost is not within a budgeintpnstra

the architecture or SLAs need to be revised. Vice versa, the the DIA can be deployed to the target
execution environment specified by the minimum cost deployment model identified by the optimization

tool.

Change

architecture or
SLA

Candidate
Deployments &
SLA

)

mmmd Optimization

e

Can a feasible

solution be
found?

Is cost within

budget?
uaee Yes

Deploy minimum
cost solution

O

For more details, please visit :

https://github.com/dic@roject/DICEKnowledgeRepository/wiki/DICEKnowledgeRepository#optimization

tool.

0 Verification

DICE Verification Tool allows Designers to evaluate their design againsidefieed properties, in
particular safety ones, such as reachability of undesired configurations of the system which might be
caused by the effect of node failures or by the irmirdesign of timing constraints. The verification
process allows the DIA Designer to perform verification tasks using a lightweight approach. DICE
Verification Tool fosters an approach whereby formal verification is launched through interfaces that
hide the complexity of the underlying models and engines. These interfaces allow the user to easily
produce the formal model to be verified and the properties to be checked without the need of high
technical expertise. To promote verification, the user anrsottiite DPIM elements undergoing

t he
t he

wi t h
t hen

veri ficati on
boundednesso

Copyright © 2017, DICE consortigwll rights reserved

(class of) property that 1
useue uen nlod wart ckeesd nve st shd aa llla bt

18

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-tool

nodes that require ¢hvalidation of that property. In the DTSM, the generic annotations stated at the
DPIM, requiring the verification of a property, can then be further enriched with more specific
annotations that are related to the class of property to assess and tchttwdoggc employed to
implement the node. Those specific annotations provide a value to all the necessary parameters that are
needed to carry out the verification (for instance, the time required by tasks to process a message).

If the verification task fad then the Designer can refactor the design of the DIA. The outcome of the
verification phase is a counterexample, i.e., an execution violating the property in analysis, that can help
the designer in identifying the cause that originates the undesireddreha

[Refactoring]

DIA design Verification

A more detailed description is available at the following litkps://github.com/dic@roject/DICE
KnowledgeRepository/wiki/DICEKnowledgeRepository#verification

0 Monitoring
DICE monitoring platform (DMon) collects, stores, indexes and visualizes monitoring datatimezal
from applications running on Big Dateafmeworks. DMon is able to monitor both the infrastructure
(memory, CPU, disk, network etc.) and multiple Big Data frameworks currently supported being Apache
HDFS, YARN, Spark, Storm and MongoDB. The core components of the platform (Elasticsearch,
Logstaé, Kibana) and the node components running on the monitored cluster are easily controlled
thanks to a Welbased user interface that backs up the DMon controller RESTful service. Visualization
of collected data is fully customizable and can be structurealitiple dashboards based on the user
needs, or tailored to specific roles in your organization, such as Administrator, Quality Assurance
Engineer or Software Architect.

Deployment
design

Delivery Monitoring

For more details, please visitttps://github.com/dic@roject/DICEKnowledge
Repository/wiki/DICEKnowledgeRepository#maonitoringool.

Copyright © 2017, DICE consortigwll rights reserved 19

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#monitoring-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#monitoring-tool

0 Quality Testing
This is a suite of tools to help stress testing Batansive Applications based on technologies such as
Storm, Kafka and Spark. The tool allows Developer to run basic load tests on the application throughout
the development cycle in order to support the activities of configuration optimization and anomaly
detection across software versions.

The Quality Testing tool takes as an input initial dataset provided by the user and test scenario
characteristics (e.g. load injection rate, volume and duration) from which it generates the application
load and injectd into the application. The workload generation is handled by a module cal&EQT

whereas the injection of the workload is enacted by a module calledB)TThe tool output is a

measure of the application behaviour (e.g., throughput) that is visliayzthe Continuous Integration

tool. These dependencies are presented as diagrams (and traces) that can be obtained and visualised in
DICE Monitoring tool.

Deployment
design

Quality
testing

The tool requires a running DIA, which in a standalone scenario needs to be set up usingéng Deli
tools. This, in turn, uses DDSM as an input. ThelQB code is added to the application itself since it

is provided as a Java library part of the DICE IDE. The input trace needs to be packaged within the DIA
jar and it is assumed to be in JSON fornvghen using a realistic trace is not relevant for the test, an
alternatively instantiation of QTLIB consists in requiring the tool to generate random data of the
appropriate size, which does not require to package within the DIA jar the data to be Qiayd4B

offers example templates to automatically halt the test experiment based on monitoring data obtained
by the DICE Monitoring Platform.

For more details, pleasgsit: https://github.com/dic@roject/DICEKnowledge
Repository/wiki/DICEKnowledgeRepository#qualitytestingtool.

0 Fault Injection
The DICE Fault Injection Tool (FIT) has been developed to generate ¥ethia Virtual Machines.

The FIT provides the ability for a user to generate faults at the VM level. The purpose of the FIT is to
provide VM owners with a means to test the resiliency of an application target. With this approach, the
Designers can use rodtuesting, showing where to harden the application before it reaches a commercial
environment and allows a user/application owner to test and understand their application design/
deployment in the event of a cloud failure or outage. Thus allowing fonitigation of risk in advance

of a cloud based application deployment. This tool will assist Developers and Cloud Operators in
offering their best services to all customers and simplify testing within the DevOps paradigm.

Fault
injection

Deployment
design

Delivery

Copyright © 2017, DICE consortigwll rights reserved 20

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool

User selects fault by GUl/commatine;

Fault is started on VM;

Required tools installed and configured;

Fault Starts and is logged,;

Fault Completes and status of run is recorded in log.

aprwDdPE

For more details, please vidititps://github.com/dic@roject/DICEKnowledge
Repository/wiki/DICEKnowledgeRepository#faulinjectiontool.

0 Delivery
DICE delivery tools enable a simple way to continuously deploy-D&tasive Applications on a
testbed. Starting up Big Data clusters for running applications such as Storm topologies or Spark jobs is
a matter of executing a TOSCA YAML document. The toalssist of a deployment modelling tool
and a deployment service tool in cascade to the TOB&S&d deployment modelling tool. The
deployment service is complete with a web user interface and command line interface. As a part of the
delivery tools we also pwride the DICE technology library that contains the configuration and
deployment recipes for the supported Big Data services.

In their standalone usage mode, the tools can be used for experimenting with various setups of Big Data
technologies without theeied to spend effort on manually installing and configuring the cluster. The
users can create threaway clusters for fast prototyping, or persist the ones that prove useful in the
form of a DDSM or its equivalent, the TOSCA blueprint, which works as aoweisle description of

the configuration. We have also designed the tools to work well in a Continuous Integration workflow.

The DICE delivery tools have a setup and configuration phase, Adraimistratorfirst bootstraps the
DICE Deployment Service (ahg with Cloudify) as the support service for thetsst. This phase also
includes assigning input parameters that are specific to the platform hosting thedteJthe
configuration phase is a ofiene (or at worst a very rare) operation.

Deployment

et Delivery

A more freqent operation is creation of the deployment model of the DIAs. The users use the IDE to
create a DDSM either using Eclipse Ecore modelling tool to create UML pr@fd@tbyment Diagram

via the DICE Profile, or a specific TOSCA infrastructure diagram ecealirectly within DICE
Deployment Modelling. Subsequently, the DICE Deployment Modelling tool transforms DDSM into
OASIS TOSCA blueprints represented as YAML documents.

The main and certainly the most frequent interaction with the DICE delivery toglsydey the DIAs
according to their deployment diagrams. The users first choose or create a virtual deployment container
as a destination of a deployment at the DICE Deployment Service. In the DICE IDE, they select the
virtual deployment container and tiYé&ML blueprint, and thensubmit the deployment. In the IDE,

they can then monitor the status of the deployment (e.g., preparing to install, instaliregroy.

Copyright © 2017, DICE consortigwll rights reserved 21

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool

An expected outcome is a new runtime of the DIA in the test bed. Depending blugpent, the
dynamic (output) parameters for the DIA then become available (e.g., URLs of the deployed service).
The users can then proceed to using, testing or experimenting with the DIA runtime.

For more details, pleasgsit: hitps://github.com/dic@roject/DICEKnowledge
Repository/wiki/DICEKnowledgeRepository#deliverjool.

0 Configuration Optimization
The Configuration optnization (CO) tool automatically tunes the configuration parameters of Data
Intensive Applications. These are developed with several technologies (e.g., Apache Storm, Hadoop,
Spark, Cassandra) each of which has typically dozens of configurable pararatesbauld be
carefully tuned in order to perform optimally. CO tool enablesuegats of such application to auto
tune their application in order to get the best performance. CO is integrated with DICE delivery tools
(including deployment service and ciontous integration) as well as DICE monitoring platform.

e ployment
design

C tio —_
= han Monitoring

optimization

The deployment diagram (DDSM) for CO is a source of the initial configuration values, which are the
starting point for the optimization. In other respects, the CO passes the deployment diagralhy (act

its transformation, the TOSCA blueprint) to the Delivery tool. The outcome is a new set of configuration
values (as a collection of #fAparameter name: valu
be used in an enhanced DDSM.

For more detad, please visithttps://github.com/dic@roject/DICEKnowledge
Repository/wiki/DICEKnowledgeRepository#confiuratioroptimizatiorrtool.

0 Anomaly Detection
The anomaly detection (AD) tool reasons on the base of black box and machine learning models
constructed from the monitoring data. In order for models to be able to detect not only point anomalies
but also cotextual anomalies, the tool will select a subset of data features from the Monitoring Platform
to train and validate a predictive model, which is later stored in Monitoring Platform itself. The
predictive models are then used to detect contextual anonmatesitime monitoring data streams. A
second use case supported by the anomaly detection tool is the analysis of monitoring data based on two
different versions of DICE application, thus detecting anomalies introduced by latest code changes.

In essene, during supervised anomaly detection, the user has to define a training $aieligudata.
This means that the query issued by the AD tool to the monitoring platform will automatically generate

Copyright © 2017, DICE consortigwll rights reserved 22

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#delivery-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#delivery-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool

