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Executive Summary 

The objective of DICE is to reduce time to market of business-critical Data-Intensive Applications 

(DIAs). DICE provides a bench of off-the-shelf tools that, if employed methodologically, enable users 

to build Big Data software efficiently. For that purpose, DICE proposes and recommends scenario-

driven workflows depending on the user needs. These scenarios constitute the DICE Methodology. 

 

In the following sections, we will first start by identifying typical actors found in Big Data software 

development projects. Next, we will overview DICE tools. Finally, we will present the DICE 

methodology that shows, in a scenario-driven way, how the tools can be beneficial to the actors. 
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1. Actors of Big Data Projects 

A.1. NIST Taxonomy 
The National Institute of Standards and Technology (NIST) published a valuable Big Data taxonomy 

depicted on Figure 1. Actor symbols represent functional roles, while component boxes denote software 

or hardware they create or employ. Roles are played by actors who can perform multiple roles while a 

role can be played by multiple actors. From left to right Fig. 1 shows the information flow chain: 

information is provided by Data Providers, digitized by Data Producers, processed by a Big Data 

Application and the output of the computation is presented by Data Consumers to Data Viewers. From 

top to bottom is pictured the service use chain: System Orchestrators expect some services from the Big 

Data Application, which is implemented by Big Data Application Providers, with the help of Big Data 

Frameworks designed by Big Data Framework Providers. The different activities of these five roles are 

encompassed by security and privacy issues. Table 1 gives examples of actors for each role. 

 

 

Figure 1. NIST Big Data Taxonomy 

 

Table 1. Roles in a Big Data ecosystem according to the NIST 

Role Description Example of actors 

Data Provider Introduces new data into the 

ecosystem. 

Companies, public agencies, researchers, 

scientists, internauts. 

Data Viewer Utilizes the results of the Big 

Data application. 

Companies, public agencies, researchers, 

scientists, software agents. 

System Orchestrator Specifies requirements and/or 

monitors their realization. 

Clients, business stakeholders, project 

managers, consultants, requirements 

engineers. 

Big Data Application 

Provider 

Implements requirements. Software engineers, network engineers, 

security and privacy engineers, 

developers. 
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Big Data Framework 

Provider 

Provides infrastructures, 

computational resources, 

networks, operating systems, 

development platforms, and/or 

scalable storage or processing 

frameworks. 

Cloud providers, companies, open source 

communities, system administrators, 

operators. 

 

Three Big Data components interact with the Big Data application: Data Producers, Big Data 

Frameworks and Data Consumers. Table 2 displays some examples for each category. 

 

Table 2. Big Data components 

Component Description Examples 

Data Producer Converts information provided by 

Data Providers into digital data that 

can be processed by computers. 

Sensors, cameras, Web browsers, 

graphical user interfaces. 

Big Data Framework A specific technology stack 

providing abstractions to store query 

and/or analyse data.   

 

Apache Cassandra, Apache Hadoop, 

Apache Spark, Apache Storm. 

Data Consumer Presents data computed by the Big 

Data Application to Data Viewers in 

a form that is understandable and 

usable by them. 

Graphical user interfaces, Web sites. 

 

Hereafter, the roles of Big Data Application Provider and Developer are considered to be the same. The 

appellation ñBig Dataò implicates that data produced by Data Producers is too big, too diverse and 

arrives too fast to be efficiently handled by traditional non-scalable database management systems. 

A.2. The DICE Methodology 
The DICE Methodology mixes three fruitful and influential approaches to software development: 

DevOps, Service Orientation and Model-Driven Engineering. 

In a DevOps process, Developers build and test software in an isolated, so-called, development 

environment, while Operators are in charge of the targeted, final, runtime environment. The latter 

comprises entities planned to interact with the program: operating systems, servers, software agents, 

persons and so forth. Operators are responsible for, amongst other things, preparing the runtime 

environment, controlling it and monitoring its behavior, especially once the application is deployed into 

it. For instance, operators have to ensure the presence in the runtime environment of every Big Data 

Framework necessary for the application to work. Nowadays, the trend is to wrap frameworks into 

services available at definite combinations of an IP address and a port number. To use a service, the 

application generally has to uphold a specific communication protocol (e.g., HTTP) on top of which an 

application programming interface (API) enables it to trigger well-specified service actions. The Big 
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Data Application can itself be implemented as a service to be included in the runtime environment of 

another application. Figure 2 is an adjustment of the NIST Big Data taxonomy to DevOps. 

 

Figure 2. A DevOps Big Data Taxonomy 

A contract is an artefact on which two parties agree after a comprehensive discussion. There is a contract 

among System Orchestrators, namely between clients and project managers. There is also a contract 

between System Orchestrators and Developers, because the latter has to implement what the former, 

after a careful requirement analysis, has established as software specifications. These specifications may 

be written in a textual document or, better, given as UML or mathematical formal models. In Model-

Driven Software Engineering (MDSE), Developers iteratively refine these contracts/models with 

implementation details until they can generate a source code. The DICE Methodology proposes to 

extend this approach between Developers and Operators. In that context, from Operatorsô point of view, 

contracts/models set down the frameworks they must make available in their runtime environment to 

the application of Developers. For instance, a contract/model may ask them to install a Cassandra server. 

On the other hand, from Developersô point of view, contracts/models formulate the effects; they 

guarantee their application shall have on the runtime environment of Operators. For instance, they may 

ensure that their application streams to Cassandra a data flow that does not exceed a certain velocity. 

Contracts/models between System Orchestrators and Developers, and contracts/models between 

Developers and Operators, are iteratively synchronously refined until both the program and its matching 

runtime environment can be simultaneously generated. This workflow, where Developers and Operators 

collaborate and cooperate to reach an agreement on the runtime environment, complies fully with the 

DevOps culture. 

 

Before detailing further the DICE Methodology, the next section overviews the DICE tools for Big Data 

software development. 
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2. Overview of DICE Tools 
This section is a summary of Deliverable D1.4 (http://www.dice-h2020.eu/deliverables/) in which DICE 

tools are described in detail. 

The DICE project is based on 14 tools: the DICE IDE, the DICE/UML profile, the DICE Rollout tool 

and the remaining 11 tools respectively for simulation, optimization, verification, monitoring, anomaly 

detection, trace checking, enhancement, quality testing, configuration optimization, fault injection, 

repository management and delivery.  

Some of the tools are design-focused while some are runtime-oriented. Finally, some have both design 

and runtime aspects. Table 3 outlines the tools mapping them to this categorization scheme. All of the 

tools relate to the runtime environment. In other words, there is no tool that supports the model-driven 

development of application logic behind a Big Data job, e.g., a streaming job for Apache Storm such as 

the one reported in the ñBig Data Applications Modellingò Section.  

Table 3. DICE tools 

 DICE tools 

Design ǒ DICE/UML Profile 

ǒ DICER 

ǒ Simulation 

ǒ Optimization 

ǒ Verification 

Runtime ǒ Monitoring 

ǒ Quality Testing 

ǒ Fault injection 

Design-to-runtime ǒ Delivery 

Runtime-to-design ǒ Configuration optimization 

ǒ Anomaly detection 

ǒ Trace checking 

ǒ Enhancement 

General ǒ DICE IDE 

 

Design tools operate on models only, these either being software engineering models based on UML or 

quantitative models for performance/reliability assessment or verification. The DICE/UML profile is a 

UML-based modeling language allowing its users to create models of the data-intensive application 

arranged across three levels of abstraction: Platform-Independent, Technology-Specific and 

Deployment-Specific.  

The DICE Platform-Independent Models (DPIM) specify, in a technology-agnostic way, the types of 

services a Big Data software depends on. For example: data sources, communication channels, 

processing frameworks and storage systems. Designers can add quality of service expectations such as 

performance goals that a service must meet in order to be useful for the application. More details can be 

found in http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-

quality-abstractions-Final-version.pdf.  

http://www.dice-h2020.eu/deliverables/
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-abstractions-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-abstractions-Final-version.pdf
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DICE Technology-Specific Models (DTSM) are refinements of DPIMs where every possible 

technological alternatives are evaluated until a specific technological design choice is made and 

rationalised. For instance, Apache Kafka can be selected as a communication channel, Apache Spark as 

a processing framework, and Apache Cassandra as both a data source and a storage system. DTSMs do 

not settle infrastructure and platform options. These are resolved in DICE Deployment-Specific Models 

(DDSM).  

DDSMs elucidate deployments of technologies onto infrastructures and platforms. For instance, how 

Cassandra will be deployed onto any private/public Cloud.  

Let us now describe the tools.  

ǒ The verification tool allows the DICE developers to automatically verify whether a temporal 

model of a DIA satisfies certain properties representing the desired behavior of the final 

deployed application. The formal model, that is obtained from the DTSM diagram, is an 

abstraction of the running application implemented with a specific technology. For each 

technology considered in DICE, there is a suitable (class of) temporal models allowing for the 

assessment of specific aspects of the applications which are captured by the temporal properties 

that the developer can verify. 

ǒ The simulation tool allows to simulate the behaviour of a data intensive application during the 

early stages of development, based on the DPIM specification. It relies on high-level 

abstractions that are not yet specific to the technology under consideration. 

ǒ Differently from the simulation tool, the optimization tool focuses on the DTSM, and relies on 

separate simulation capabilities to determined an optimized deployment plan in order to 

minimize cost subject to quality-of-service constraints (e.g., identifying the public cloud 

provider target for the deployment and the detailed configuration in terms of virtual machine 

instance type and their number).  

ǒ The DDSM model construction and its TOSCA blueprint counterpart is aided and automated 

by means of an additional tool called DICE Deployment Modelling. DICE Deployment 

Modelling in particular carries out the necessary automation to build an appropriate and well-

formed TOSCA blueprint out of its DTSM modelling counterparts. 

 

In contrast to the design tools, the runtime tools examine or modify the runtime environment directlyð

not its models.  

ǒ The monitoring tool collects runtime metrics about the components present in a runtime 

environment.  

ǒ The quality testing tool and the fault injection tool respectively inject workloads and force 

failures into the runtime environment; for instance, the fault injection tool shutdowns some 

computational resources in order to test the application resilience. 

 

Some tools cannot be unambiguously classified as design or runtime tools because they have both design 

and runtime facets.  

ǒ The delivery tool is a model-to-runtime (M2R) tool that generates a runtime environment from 

a DDSM.  

ǒ The configuration optimization, anomaly detection, trace checking and enhancement tools are 

all runtime-to-model (R2M) tools that suggest revisions of models of the runtime environment 

according to data gathered by the monitoring tool. As opposed to the optimisation tool which is 

entrusted with optimising cost and resource consumption based on mathematical abstractions, 
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the configuration optimization tool analyses the infrastructure configuration parameters given a 

certain time horizon and returns optimal values for said infrastructural elements in a DDSM 

through experimentation on the deployed instance of the application.  

ǒ Finally, the anomaly detection, trace checking and enhancement tools analyse monitoring data. 

The first detects anomalous changes of performance across executions of different versions of 

a Big Data application. The second checks that some logical properties expressed in a DTSM 

are maintained when the program runs. The third searches anti-patterns at all DICE abstraction 

levels (DPIM, DTSM or DDSM). 

 

Application codes, models and monitoring data are saved in a sharable repository, and most tools can 

be invoked directly through the DICE IDE (Figure 3). 

 

Figure 3. DICE ecosystem 

 

Table 4 below summarises the UML/DICE diagrams each tool operates on. 

Table 4. UML diagrams handled by the DICE tools. 

DICE tool Input UML diagram  Profile level 

Simulation Activity  

 

DPIM, DTSM 

 

Sequence 

Deployment 
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Verification  Class DTSM 

Trace checking Deployment DDSM 

 

Enhancement 

Activity  

DTSM, DDSM 
Deployment 

Optimization Activity  

DTSM, DDSM 
Deployment 

Monitoring Deployment DDSM 

Deployment Modelling 

(DICER) 

Deployment DTSM, DDSM 

Delivery tool Deployment DDSM 

Quality testing Deployment DDSM 

Configuration optimization Deployment DDSM 

Anomaly detection Deployment (indirect) DTSM (indirect) 

Fault injection Deployment DDSM 

 

The DICE Knowledge Repository provides further information about each tool, including tutorials, 

installation guidelines, videos and getting-started documentation: https://github.com/dice-

project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository.  

 

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
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3. Scenario-Driven Methodology 
The DICE methodology adapts to the purpose of the user. Although DICE supports and advocates a 

holistic and integrated Model-Driven approach to Big Data software development, it also acknowledges 

that some users do not, and are not willing to practice refinement of technology-independent models 

into technology-specific and deployment-specific models. Particularly those looking for rapid 

prototyping functionalities. Therefore, in the following, we consider the use of DICE tools in four use 

case scenarios that illustrate alternative ways to exploit the DICE framework:  

1) Big Data Application Modeling. The user of DICE can simply design his/her Big Data 

Application and s/he is willing to use an arbitrary subset of tools of the DICE framework, as 

long as it fulfills the needs. This modeling can be made for various purposes: (re-) 

documentation, architecture validation, etc. 

 

2) Standalone.  The user has identified a specific need which can be managed using a specific 

DICE tool. For example, if the user has a running Big Data application and needs to gather 

runtime metrics, then s/he is primarily interested to use the monitoring tool. In this scenario, the 

user will only have to follow a tutorial or read the documentation of this tool. 

 

3) Architecture Verification, Simulation and Optimization.  A development team has to 

implement a software that fulfills a list of requirements. Before starting the implementation, the 

team wants to use the performance and reliability engineering tools available in DICE to predict 

behaviors and cost for different implementation plans. 

 

4) DevOps.  A team of Developers has built a software and wants to automate (1) the creation of 

a matching runtime environment, (2) the deployment of their program into it and (3) the 

monitoring of its behavior in reaction to the actions performed by their application in a tight 

collaboration with Operators. 
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3.1. Big Data Applications Modeling 
Nowadays Modelling has become a standard in software engineering. In fact, for architecture decision 

documentation, code generation or even simply for (re-)documentation purposes, Software 

Architects/Engineers build models using their favorite modeling environment and consistently with their 

specific industrial notations.  

Beyond quality assessment, deployment automation, simulation, etc., DICE provides, first and foremost, 

a modeling environment for Big Data applications. These modeling capabilities are possible thanks to 

two different and complementary approaches: UML Profiles and a DSML (Domain Specific Modeling 

Language), that is, the modelling language embedded in DICEôs own deployment modelling and 

automation tool, DICE Deployment Modelling . The following sections elaborate both approaches and 

highlight the characteristics of the modelling perspective, pointing the reader to further details in the 

knowledge repository. 

3.1.1. DICE UML Modeli ng 

3.1.1.1. Description 
As aforementioned, the DICE ecosystem offers a plethora of ready-to-use tools to address a variety of 

quality issues (performance, reliability, correctness, privacy-by-design, etc.). In order to make profit of 

these tools, the user has to build specific UML diagrams enriched with stereotypes and tagged values 

brought by the DICE Profiles. The DICE profiles tailor the UML meta-model to the domain of DIAs. 

For example, the generic concept of Class can become more specific, i.e., to have more semantics, by 

mapping it to one or many concrete Big Data notions. Besides the consistency of the model remains 

guaranteed thanks to the meta-models behind the UML standard. In essence, the role of these profiles is 

twofold:  

1. Provide a high level of abstraction of concepts specific to the Big Data domain (e.g., clusters, 

nodesé) and to Big Data technologies (e.g., Cassandra, Sparké); 

2. Define a set of technical (low level) properties to be checked/evaluated by tools. 

 

The methodological steps entailed by the activities above encompass at least the following activities: 

a. Elaborate a component-based representation of a high-level structural architecture view of the 

data intensive application (i.e., a DPIM Component Diagram) - in the scope of DICE, this is 

done using the simple and familiar notations of a UML profile whence the user draws the 

stereotypes and constructs necessary to specify his/her Data-Intensive Applications nodes 

(source node, compute node, storage node, etc.); 

b. Augment the component-based representation with the property and non-functional 

specifications concerning that representation; 

c. Refine that very same component-based representation with technological decisions - the 

decisions themselves represent the choice of which technology shall realise which data-

intensive application node. For example, a <<CassandraDataStore>> conceptual stereotype is 

associated with a <<StorageNode>> in the DPIM architecture view; 

d. Associate several data-intensive technology-specific diagrams representing the technological 

structure and properties of each of the data-intensive nodes. These diagrams essentially 

ñexplodeò the technological nodes and contain information specific to those technological 

nodes. For example, a <<StorageNode>> in the DPIM architecture representation can become 

a <<CassandraDataStore>> in its DTSM counterpart ; finally, the DTSM layer will feature yet 

another diagram, more specifically, a data-model for the Cassandra Cluster. These separate 

technology-specific ñimagesò serve the purpose of allowing data-intensive application analysis 

and verification; 
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e. Elaborate a deployment-specific component deployment diagram where the several technology 

specific diagrams fall into place with respect to their infrastructure needs. This diagram belongs 

to the DDSM layer and contains all necessary abstractions and properties to build a deployable 

and analysable TOSCA blueprint. Following our <<CassandraDataStore>> example, at this 

level, the DTSM <<CassandraDataStore>> node (refined from the previous DPIM 

<<StorageNode>> construct) is finally associated with a DDSM diagram where the 

configuration of the cluster is fully specified (i.e., VMs type and number, allocation of software 

components to VMs, etc.); 

f. Finally, once the data-intensive deployment-specific component diagram is available, DICE 

deployment modelling and connected generative technology (DICE Deployment Modelling ) 

can be used to realise a TOSCA blueprint for that diagram. 

 

In summary, Designers exploiting DICE UML modelling for their Data-Intensive applications will be 

required to produce (at least) one component diagram for their architectural structure view (DPIM) and 

two (or more) diagrams for their technology-specific structure and behavior view (DTSM), taking the 

care of producing exactly two diagrams (a structural and a behavioral view) for every technological 

node in their architectural structure view (DPIM) as long as that requires analysis. DICE UML 

modelling does not encourage the proliferation of many diagrams, e.g., for the purpose of re-

documentation - DICE focus is on quality-aware design and analysis of Data-Intensive applications. 

Therefore, DICE UML modelling promotes the modelling of all and only the technological nodes that 

require specific analytical attention and quality-awareness. Finally, Designers will be required to 

refine their architectural structure view with deployment-specific constructs and decisions. 

 

For example, for a simple WordCount application featuring a single Source Node, a single Compute 

Node and a single Storage Node, all three requiring specific analysis and quality improvement. 

Therefore, Designers are required to produce (in the DICE IDE) a total of 7 diagrams: (1) an architectural 

structure view of the general application, containing three nodes (Storage, Compute and Source) along 

with their properties and QoS/QoD annotations; (2) a structural and behavioral technology-specific view 

for every technology that requires analysis - let us assume a class diagram and an activity diagram for 

Storage, Compute and Source Node technologies respectively. Finally, the diagram produced in (1) is 

required to be refined with appropriate deployment-specific constructs, mappings and annotations. 

The next section provides a realistic usage scenario of the above modelling procedure for the purpose 

of clarifying the DICE modelling process. 

For more details (tutorials, documentation, examples, etc.), on the DICE profile and the connected 

technologies the reader may find additional elaborations on the DICE Knowledge Repository at:  

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-

Repository#profile.  

3.1.1.2. DICE UML Modelling in Action: A Sample Scenario 
As a toy example, we refer to a simple Storm application of our own device called WikiStats which takes 

as input a compressed stream of 20GB web pages in XML containing snapshots of all the articles in 

Wikipedia. The application then processes the stream to derive article statistics. Letôs assume we are 

interested initially in deploying our application as soon as possible rather than analyse its behavior;  

 

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#profile
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#profile
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Step a: DPIM Model - the DPIM model for our toy example is a component-based aggregation of two 

nodes: a compute node (entrusted with processing wiki pages) and a storage node (entrusted with storing 

and presenting results). For the sake of space we do not present this simplistic DPIM layer. 

Step b and c: DPIM Model Refinement - at this point the DPIM model is used as a basis to refine DIA 

modelling with appropriate technological decisions; in our case, the DPIM component diagram 

components representing DIA nodes are stereotyped with additional technology-specific stereotypes, in 

our case that is the <<StormApplication>> stereotype for the only compute node in the DPIM; this 

signifies that the component is established to be a Storm Compute Node. Similarly, the DPIM 

component diagram component representing the storage node is stereotyped with an additional 

stereotype, that is, the <<CassandraDataStore>> stereotype; this signifies that the component is 

established to be a Cassandra cluster. 

Step d: DTSM Model Creation - at this point, we need to ñexplodeò the two nodes in our DPIM refined 

with technological decisions - all we need to do is to create a new class diagram and elaborate further 

on the technical-detail internals for both nodes (e.g., Storm topology details for the 

<<StormApplication>> and schemas for the <<CassandraDataStore>>). As a consequence, we prepare 

a new class diagram where a new class is created with the <<StormApplication>> stereotype and is 

immediately associated with bolts and spouts required in WikiStats; similarly, data schemas are prepared 

for bolts and linked to a <<CassandraDataStore>> class of which we assume no need for further internal 

details. The resulting diagram should look similar to the following figure.  

 

Step e: DDSM Model Creation - at this point, the technologies used in the DTSM are mapped to 

physical resources and automated rollout is applied to obtain a deployable TOSCA blueprint (see DICE 

Delivery Service for additional deployment features). DDSM creation at this step involves creating or 

refining a UML Deployment Diagram with DDSM Profile Stereotypes. Continuous OCL-assisted 

modelling can be used to refine the UML Deployment diagram in a semi-automated fashion. In a typical 

scenario, the DICE user randomly selects a technology from the DTSM diagram and instantiates a 

Deployment Node to apply that technology stereotype on it. Subsequently, the DICE user can check the 

diagram for satisfaction of DICE-DDSM OCL constraints, addressing any missing dependencies for that 

technology as well as any missing deployment specifications (e.g., additional nodes, firewalls, missing 

characteristics and attributes, etc.). The same process shall be replicated by the DICE user until all the 

technologies in the DTSM are modelled at the DDSM level as well. Finally, a deployment artifact 

representing the DIA runnable instance itself shall conclude the modelling at the DICE DDSM layer. 

The subsequent section, elaborates on how to prepare a deployment model independently and regardless 

of the DICE DPIM and DTSM diagrams if the DICE user is so inclined or required. DICE Deployment 

modelling after this point relies on a domain-specific language (DSL) specifically designed for 

independent DDSM modelling. 



Copyright © 2017, DICE consortium ς All rights reserved                               16  

3.1.2. DICE Deployment Modelling  
DICE Deployment Modelling is a complete environment (editor, palette, properties view, etc.) built 

upon an extensible set of Big Data specific-modeling languages (Storm, Hadoop, Cassandra, Zookeeper 

and Spark). Each such language captures the necessary deployment software nodes, concepts and 

restrictions that every big data technology addressed in DICE is composed of, along with their 

configuration characteristics (e.g., dependencies) and parameters (e.g., required and provided 

properties) as well as any dependencies on other nodes and technologies. This package structure is 

adopted to achieve modularity and ease DICE Deployment Modelling extension with new technologies. 

The main benefits of using the DICE Deployment Modelling are related to the rapid design of an 

execution environment using concrete concepts. In a user-friendly approach, the users can employ the 

Eclipse Ecore modelling tool to create a deployment model (DDSM), taking advantage of the DICE 

profile. 

For example, in the scope of re-documentation scenarios, software Architects or infrastructure Engineers 

may need to focus on re-documenting their architecture views - similarly, Architects may want to use 

DICE Deployment Modelling to elaborate on those architecture views using concepts and relations from 

well-known and established big data technologies (or many other concepts typical in infrastructure 

design for that matter, such as virtual machines, execution bindings, etc.). 

DICE Deployment Modelling Modelling takes up at step d of the procedure highlighted above and 

allows to design a DDSM in a completely reserved environment specific for deployment details which 

can easily be extended to desired deployment-specific technologies and packages. DICE Deployment 

Modelling DDSM models are equivalent to DICE DDSM UML Profiles. For example, a diagram for 

the WikiStats application would look something like the following figure. 

 

 

 

In turn, this DICE Deployment Modelling DDSM model can immediately be produced into a fully 

deployable TOSCA blueprint at the click of a button and sent for deployment, at the same time, using 

the built-in deployment service and delivery tool part of DICE. 

DICE Deployment Modelling usage is encouraged when stakeholders and roles require quick and 

painless deployment of their own DIA (e.g., to evaluate initial performance figures and/or execution 

traces for further analysis). This notwithstanding, DICE Deployment Modelling may also be used in 

combination with the aforementioned modelling procedure, where step d is executed directly within the 

DICE Deployment Modelling instead of the DICE UML profile. 
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3.2. Standalone 
The standalone usage mode is straightforward and is closely related to the built-in tools of the DICE 

IDE. For such scenario, the user is guided through some steps using Eclipse dialog windows. Since 

many DICE tools use the same input models, the user may run on the same model more than one tool 

and analysis. For example, the Configuration Optimization tool may be used automatically with the 

same input that the Deployment tool uses. 

Some tools can be used outside the DICE IDE without using the modeling features (e.g. using command 

line). For such usage, the user may go through the guides available at: https://github.com/dice-

project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository.  

The rest of this section is devoted to explaining the necessary details to run the DICE analysis tools in 

standalone mode. The use of tools, which are intrinsically and inherently linked to the use of the DICE 

IDE (i.e., the design tools such as the UML profile, or the DICE Deployment Modelling tool), do not 

appear as standalone tools since their use as standalone in the scope of DICE only makes sense in 

continuity with the use of some other analysis tools - however, for further details on these the reader 

may refer to the DICE knowledge repository in the link above. 

ǒ Simulation 

The Simulation Tool is able to simulate the behavior of a DIA to assess its performance and reliability. 

This tool uses Petri net models for prediction. The DIA is defined with behavioral UML diagrams, in 

particular Sequence or Activity diagrams that are complemented with the Deployment diagram. These 

diagrams are enhanced within the DICE profile. The DIA can be defined both at DPIM level or at DTSM 

level using a particular technology (e.g., Storm, Spark). The internal utilization of Petri net models is 

transparent to the DICE user, thus releasing his/her from any knowledge of the formal model.  

The output of the simulation is the evaluation of a set of performance and reliability metrics for early-

stage quality assessment. For example, the users can obtain, as performance results, the expected mean 

response time or throughput of the DIA, or the utilization of the resources assigned to the application. 

As reliability results, users can obtain failure probabilities for the application execution, or the mean 

time to failure of DIAs that execute continuously along time.   

 

A simulation is performed considering a performance scenario. A performance scenario can be modelled 

by either a sequence (SD) or an activity diagram (AD). While the SD focuses on the message exchange 

between components (lifelines), the AD focuses on the actions performed by the components 

(partitions). The deployment (DD) is used to specify both the availability of resources in the system, 

e.g., number of cores, and how the interacting components (lifelines in the SD, partitions in the AD) are 

mapped onto physical nodes. 

More details are available at : https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-

Knowledge-Repository#simulation.  

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#simulation
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#simulation
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ǒ Optimization 

The optimization tool allows the DICE Architect to assess the performance and minimize the 

deployment cost of data-intensive applications against user-defined properties, in particular meeting of 

service-level agreements (SLAs). The input is: (i) a set of DICE DTSM models (one for every candidate 

target environment, i.e., virtual machine type at a given of provider), (ii) a partially specified DICE 

DDSM Deployment model and the SLAs to be achieved . The optimization consists in finding the less 

expensive cluster configuration able to guarantee the application jobs to be executed before a user 

defined deadline (for MapReduce or Spark applications) or such that the cluster utilization is below a 

given threshold (for Storm). The Architect can analyze the application behavior under different 

conditions. For example, he/she can study the pros and the cons of public clouds versus private cloud in 

terms of execution costs. The output of the optimization tool is a DICE Deployment model that 

corresponds to the optimal solution found and which can then automatically deployed by the DICE 

Deployment tool. The usage flow of the tool is reported in the figure below. Given the set of candidate 

solutions and SLAs, if a feasible solution cannot be found or the cost is not within a budget constraint, 

the architecture or SLAs need to be revised. Vice versa, the the DIA can be deployed to the target 

execution environment specified by the minimum cost deployment model identified by the optimization 

tool.  

 

For more details, please visit : 

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-

tool.  

ǒ Verification  

DICE Verification Tool allows Designers to evaluate their design against user-defined properties, in 

particular safety ones, such as reachability of undesired configurations of the system which might be 

caused by the effect of node failures or by the incorrect design of timing constraints. The verification 

process allows the DIA Designer to perform verification tasks using a lightweight approach. DICE 

Verification Tool fosters an approach whereby formal verification is launched through interfaces that 

hide the complexity of the underlying models and engines. These interfaces allow the user to easily 

produce the formal model to be verified and the properties to be checked without the need of high 

technical expertise. To promote verification, the user annotates the DPIM elements undergoing 

verification with the (class of) property that must be validated. For example, if the property is ñqueue 

boundednessò then the user annotates with a label ñsafety-queue boundednessò all the computational 

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-tool
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nodes that require the validation of that property. In the DTSM, the generic annotations stated at the 

DPIM, requiring the verification of a property, can then be further enriched with more specific 

annotations that are related to the class of property to assess and to the technology employed to 

implement the node. Those specific annotations provide a value to all the necessary parameters that are 

needed to carry out the verification (for instance, the time required by tasks to process a message).  

If the verification task fails then the Designer can refactor the design of the DIA. The outcome of the 

verification phase is a counterexample, i.e., an execution violating the property in analysis, that can help 

the designer in identifying the cause that originates the undesired behavior. 

 

 

A more detailed description is available at the following link: https://github.com/dice-project/DICE-

Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification.  

ǒ Monitoring  

DICE monitoring platform (DMon) collects, stores, indexes and visualizes monitoring data in real-time 

from applications running on Big Data frameworks. DMon is able to monitor both the infrastructure 

(memory, CPU, disk, network etc.) and multiple Big Data frameworks currently supported being Apache 

HDFS, YARN, Spark, Storm and MongoDB. The core components of the platform (Elasticsearch, 

Logstash, Kibana) and the node components running on the monitored cluster are easily controlled 

thanks to a Web-based user interface that backs up the DMon controller RESTful service. Visualization 

of collected data is fully customizable and can be structured in multiple dashboards based on the user 

needs, or tailored to specific roles in your organization, such as Administrator, Quality Assurance 

Engineer or Software Architect. 

 

For more details, please visit : https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#monitoring-tool.  

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#monitoring-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#monitoring-tool
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ǒ Quality Testing 

This is a suite of tools to help stress testing Data-Intensive Applications based on technologies such as 

Storm, Kafka and Spark. The tool allows Developer to run basic load tests on the application throughout 

the development cycle in order to support the activities of configuration optimization and anomaly 

detection across software versions.  

The Quality Testing tool takes as an input initial dataset provided by the user and test scenario 

characteristics (e.g. load injection rate, volume and duration) from which it generates the application 

load and injects it into the application. The workload generation is handled by a module called QT-GEN, 

whereas the injection of the workload is enacted by a module called QT-LIB. The tool output is a 

measure of the application behaviour (e.g., throughput) that is visualized by the Continuous Integration 

tool. These dependencies are presented as diagrams (and traces) that can be obtained and visualised in 

DICE Monitoring tool. 

 

The tool requires a running DIA, which in a standalone scenario needs to be set up using the Delivery 

tools. This, in turn, uses DDSM as an input. The QT-LIB code is added to the application itself since it 

is provided as a Java library part of the DICE IDE. The input trace needs to be packaged within the DIA 

jar and it is assumed to be in JSON format. When using a realistic trace is not relevant for the test, an 

alternatively instantiation of QT-LIB consists in requiring the tool to generate random data of the 

appropriate size, which does not require to package within the DIA jar the data to be played. QT-LIB 

offers example templates to automatically halt the test experiment based on monitoring data obtained 

by the DICE Monitoring Platform. 

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool.  

ǒ Fault Injection  

The DICE Fault Injection Tool (FIT) has been developed to generate faults within Virtual Machines. 

The FIT provides the ability for a user to generate faults at the VM level. The purpose of the FIT is to 

provide VM owners with a means to test the resiliency of an application target. With this approach, the 

Designers can use robust testing, showing where to harden the application before it reaches a commercial 

environment and allows a user/application owner to test and understand their application design/ 

deployment in the event of a cloud failure or outage. Thus allowing for the mitigation of risk in advance 

of a cloud based application deployment. This tool will assist Developers and Cloud Operators in 

offering their best services to all customers and simplify testing within the DevOps paradigm. 

 

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool
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1. User selects fault by GUI/command line; 

2. Fault is started on VM; 

3. Required tools installed and configured; 

4. Fault Starts and is logged; 

5. Fault Completes and status of run is recorded in log. 

 

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool.  

ǒ Delivery  

DICE delivery tools enable a simple way to continuously deploy Data-Intensive Applications on a 

testbed. Starting up Big Data clusters for running applications such as Storm topologies or Spark jobs is 

a matter of executing a TOSCA YAML document. The tools consist of a deployment modelling tool 

and a deployment service tool in cascade to the TOSCA-based deployment modelling tool. The 

deployment service is complete with a web user interface and command line interface. As a part of the 

delivery tools we also provide the DICE technology library that contains the configuration and 

deployment recipes for the supported Big Data services. 

In their standalone usage mode, the tools can be used for experimenting with various setups of Big Data 

technologies without the need to spend effort on manually installing and configuring the cluster. The 

users can create throw-away clusters for fast prototyping, or persist the ones that prove useful in the 

form of a DDSM or its equivalent, the TOSCA blueprint, which works as a versionable description of 

the configuration. We have also designed the tools to work well in a Continuous Integration workflow. 

The DICE delivery tools have a setup and configuration phase, when Administrator first boot-straps the 

DICE Deployment Service (along with Cloudify) as the support service for the test-bed. This phase also 

includes assigning input parameters that are specific to the platform hosting the test-bed. The 

configuration phase is a one-time (or at worst a very rare) operation. 

 

A more frequent operation is creation of the deployment model of the DIAs. The users use the IDE to 

create a DDSM either using Eclipse Ecore modelling tool to create UML profiled-Deployment Diagram 

via the DICE Profile, or a specific TOSCA infrastructure diagram created directly within DICE 

Deployment Modelling. Subsequently, the DICE Deployment Modelling tool transforms DDSM into 

OASIS TOSCA blueprints represented as YAML documents. 

The main and certainly the most frequent interaction with the DICE delivery tool is deploying the DIAs 

according to their deployment diagrams. The users first choose or create a virtual deployment container 

as a destination of a deployment at the DICE Deployment Service. In the DICE IDE, they select the 

virtual deployment container and the YAML blueprint, and then submit the deployment. In the IDE, 

they can then monitor the status of the deployment (e.g., preparing to install, installing, and error).  

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool
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An expected outcome is a new runtime of the DIA in the test bed. Depending on the blueprint, the 

dynamic (output) parameters for the DIA then become available (e.g., URLs of the deployed service). 

The users can then proceed to using, testing or experimenting with the DIA runtime. 

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#delivery-tool.  

ǒ Configuration Optimization  

The Configuration optimization (CO) tool automatically tunes the configuration parameters of Data-

Intensive Applications. These are developed with several technologies (e.g., Apache Storm, Hadoop, 

Spark, Cassandra) each of which has typically dozens of configurable parameters that should be 

carefully tuned in order to perform optimally. CO tool enables end-users of such application to auto-

tune their application in order to get the best performance. CO is integrated with DICE delivery tools 

(including deployment service and continuous integration) as well as DICE monitoring platform. 

 

The deployment diagram (DDSM) for CO is a source of the initial configuration values, which are the 

starting point for the optimization. In other respects, the CO passes the deployment diagram (actually 

its transformation, the TOSCA blueprint) to the Delivery tool. The outcome is a new set of configuration 

values (as a collection of ñparameter name: valueò pairs or an updated TOSCA blueprint), which could 

be used in an enhanced DDSM. 

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool.  

ǒ Anomaly Detection 

The anomaly detection (AD) tool reasons on the base of black box and machine learning models 

constructed from the monitoring data. In order for models to be able to detect not only point anomalies 

but also contextual anomalies, the tool will select a subset of data features from the Monitoring Platform 

to train and validate a predictive model, which is later stored in Monitoring Platform itself. The 

predictive models are then used to detect contextual anomalies in real-time monitoring data streams. A 

second use case supported by the anomaly detection tool is the analysis of monitoring data based on two 

different versions of DICE application, thus detecting anomalies introduced by latest code changes. 

 

In essence, during supervised anomaly detection, the user has to define a training set with labelled data. 

This means that the query issued by the AD tool to the monitoring platform will automatically generate 

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#delivery-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#delivery-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool















































