

Developing Data-Intensive Cloud

Applications with Iterative Quality

Enhancements

DICE Methodology

Deliverable 2.5

Copyright © 2017, DICE consortium – All rights reserved 2

Deliverable: D2.5

Title: DICE Methodology

Editor(s): Youssef RIDENE (NETF)

Contributor(s): Joas Yannick KNOUANI, Damian A. Tamburri (PMI), Matej Artac (XLAB),

Diego Perez (ZAR), Giuliano Casale (IMP), Jose-Ignacio Requeno (ZAR),

Danilo Ardagna (PMI), Marcello Bersani (PMI), Marc Gil (PRO), Gabriel

Iuhasz (IEAT), Pooyan Jamshidi (IMP), José Merseguer (ZAR), Darren

Whigham (FLEXI), Chen Li (IMP), Ismael Torres (PRO)

Reviewers: Chen Li (IMP), Vasilis Papanikolaou (ATC)

Type (R/DEM/DEC): Report

Version: 1.0

Date: 31-July-2017

Status: Final version

Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright © 2017, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre

FLEXI: Flexiant Limited

IEAT: Institutul e-Austria Timisoara

IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA

PMI: Politecnico di Milano

PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.

ZAR: Universidad de Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreement No. 644869

http://www.dice-h2020.eu/deliverables/

Copyright © 2017, DICE consortium – All rights reserved 3

EXECUTIVE SUMMARY 4

1. ACTORS OF BIG DATA PROJECTS 5

A.1. NIST Taxonomy 5

A.2. The DICE Methodology 6

2. OVERVIEW OF DICE TOOLS 8

3. SCENARIO-DRIVEN METHODOLOGY 12

3.1. Big Data Applications Modeling 13

3.1.1. DICE UML Modeling 13

3.1.1.1. Description 13

3.1.1.2. DICE UML Modelling in Action: A Sample Scenario 14

3.1.2. DICE Deployment Modelling 16

3.2. Standalone 17

3.3. Architecture Verification, Simulation and Optimization 25

3.3.1. Step 1: Architecture Design 25

3.3.2. Step 2: Verification 26

3.3.3. Step 3: Design of the DIA Behavior 27

3.3.4. Step 4: Simulation 27

3.3.5. Step 5: Optimization 28

3.4. DevOps Delivery Lifecycle 30

3.4.1. Step 1: Deployment Design 30

3.4.2. Step 2: Delivery 31

3.4.3. Step 3: Fault Tolerance & Quality Testing 31

3.4.4. Step 4: Monitoring 32

3.4.5. Step 5: Configuration Optimization 33

3.4.6. Step 6: Trace Checking, Anomaly Detection and Enhancement 33

4. THE DICE METHODOLOGY IN THE IDE 35

4.1. DICE Tools Menu 35

4.2. Cheat Sheets 36

5. ANNEX 1 - PRIVACY-BY-DESIGN SUB-METHODOLOGY 38

5.1. Outline 39

5.2. Research Solution 39

5.2.1. Modeling DIAs with Granular Access Control Policies 40

5.2.2. What Happens at Runtime? 41

5.2.3. DICE Continuous Architecting for Privacy-by-design: Example Scenario 42

5.2.4. Conclusion and Research Roadmap 43

ANNEX 2 - ADDRESSING CONTAINERISATION IN THE DICE PROFILE AND DICER TOOLS 45

Copyright © 2017, DICE consortium – All rights reserved 4

Executive Summary

The objective of DICE is to reduce time to market of business-critical Data-Intensive Applications

(DIAs). DICE provides a bench of off-the-shelf tools that, if employed methodologically, enable users

to build Big Data software efficiently. For that purpose, DICE proposes and recommends scenario-

driven workflows depending on the user needs. These scenarios constitute the DICE Methodology.

In the following sections, we will first start by identifying typical actors found in Big Data software

development projects. Next, we will overview DICE tools. Finally, we will present the DICE

methodology that shows, in a scenario-driven way, how the tools can be beneficial to the actors.

Copyright © 2017, DICE consortium – All rights reserved 5

1. Actors of Big Data Projects

A.1. NIST Taxonomy
The National Institute of Standards and Technology (NIST) published a valuable Big Data taxonomy

depicted on Figure 1. Actor symbols represent functional roles, while component boxes denote software

or hardware they create or employ. Roles are played by actors who can perform multiple roles while a

role can be played by multiple actors. From left to right Fig. 1 shows the information flow chain:

information is provided by Data Providers, digitized by Data Producers, processed by a Big Data

Application and the output of the computation is presented by Data Consumers to Data Viewers. From

top to bottom is pictured the service use chain: System Orchestrators expect some services from the Big

Data Application, which is implemented by Big Data Application Providers, with the help of Big Data

Frameworks designed by Big Data Framework Providers. The different activities of these five roles are

encompassed by security and privacy issues. Table 1 gives examples of actors for each role.

Figure 1. NIST Big Data Taxonomy

Table 1. Roles in a Big Data ecosystem according to the NIST

Role Description Example of actors

Data Provider Introduces new data into the

ecosystem.

Companies, public agencies, researchers,

scientists, internauts.

Data Viewer Utilizes the results of the Big

Data application.

Companies, public agencies, researchers,

scientists, software agents.

System Orchestrator Specifies requirements and/or

monitors their realization.

Clients, business stakeholders, project

managers, consultants, requirements

engineers.

Big Data Application

Provider

Implements requirements. Software engineers, network engineers,

security and privacy engineers,

developers.

Copyright © 2017, DICE consortium – All rights reserved 6

Big Data Framework

Provider

Provides infrastructures,

computational resources,

networks, operating systems,

development platforms, and/or

scalable storage or processing

frameworks.

Cloud providers, companies, open source

communities, system administrators,

operators.

Three Big Data components interact with the Big Data application: Data Producers, Big Data

Frameworks and Data Consumers. Table 2 displays some examples for each category.

Table 2. Big Data components

Component Description Examples

Data Producer Converts information provided by

Data Providers into digital data that

can be processed by computers.

Sensors, cameras, Web browsers,

graphical user interfaces.

Big Data Framework A specific technology stack

providing abstractions to store query

and/or analyse data.

Apache Cassandra, Apache Hadoop,

Apache Spark, Apache Storm.

Data Consumer Presents data computed by the Big

Data Application to Data Viewers in

a form that is understandable and

usable by them.

Graphical user interfaces, Web sites.

Hereafter, the roles of Big Data Application Provider and Developer are considered to be the same. The

appellation “Big Data” implicates that data produced by Data Producers is too big, too diverse and

arrives too fast to be efficiently handled by traditional non-scalable database management systems.

A.2. The DICE Methodology
The DICE Methodology mixes three fruitful and influential approaches to software development:

DevOps, Service Orientation and Model-Driven Engineering.

In a DevOps process, Developers build and test software in an isolated, so-called, development

environment, while Operators are in charge of the targeted, final, runtime environment. The latter

comprises entities planned to interact with the program: operating systems, servers, software agents,

persons and so forth. Operators are responsible for, amongst other things, preparing the runtime

environment, controlling it and monitoring its behavior, especially once the application is deployed into

it. For instance, operators have to ensure the presence in the runtime environment of every Big Data

Framework necessary for the application to work. Nowadays, the trend is to wrap frameworks into

services available at definite combinations of an IP address and a port number. To use a service, the

application generally has to uphold a specific communication protocol (e.g., HTTP) on top of which an

application programming interface (API) enables it to trigger well-specified service actions. The Big

Copyright © 2017, DICE consortium – All rights reserved 7

Data Application can itself be implemented as a service to be included in the runtime environment of

another application. Figure 2 is an adjustment of the NIST Big Data taxonomy to DevOps.

Figure 2. A DevOps Big Data Taxonomy

A contract is an artefact on which two parties agree after a comprehensive discussion. There is a contract

among System Orchestrators, namely between clients and project managers. There is also a contract

between System Orchestrators and Developers, because the latter has to implement what the former,

after a careful requirement analysis, has established as software specifications. These specifications may

be written in a textual document or, better, given as UML or mathematical formal models. In Model-

Driven Software Engineering (MDSE), Developers iteratively refine these contracts/models with

implementation details until they can generate a source code. The DICE Methodology proposes to

extend this approach between Developers and Operators. In that context, from Operators’ point of view,

contracts/models set down the frameworks they must make available in their runtime environment to

the application of Developers. For instance, a contract/model may ask them to install a Cassandra server.

On the other hand, from Developers’ point of view, contracts/models formulate the effects; they

guarantee their application shall have on the runtime environment of Operators. For instance, they may

ensure that their application streams to Cassandra a data flow that does not exceed a certain velocity.

Contracts/models between System Orchestrators and Developers, and contracts/models between

Developers and Operators, are iteratively synchronously refined until both the program and its matching

runtime environment can be simultaneously generated. This workflow, where Developers and Operators

collaborate and cooperate to reach an agreement on the runtime environment, complies fully with the

DevOps culture.

Before detailing further the DICE Methodology, the next section overviews the DICE tools for Big Data

software development.

Copyright © 2017, DICE consortium – All rights reserved 8

2. Overview of DICE Tools
This section is a summary of Deliverable D1.4 (http://www.dice-h2020.eu/deliverables/) in which DICE

tools are described in detail.

The DICE project is based on 14 tools: the DICE IDE, the DICE/UML profile, the DICE Rollout tool

and the remaining 11 tools respectively for simulation, optimization, verification, monitoring, anomaly

detection, trace checking, enhancement, quality testing, configuration optimization, fault injection,

repository management and delivery.

Some of the tools are design-focused while some are runtime-oriented. Finally, some have both design

and runtime aspects. Table 3 outlines the tools mapping them to this categorization scheme. All of the

tools relate to the runtime environment. In other words, there is no tool that supports the model-driven

development of application logic behind a Big Data job, e.g., a streaming job for Apache Storm such as

the one reported in the “Big Data Applications Modelling” Section.

Table 3. DICE tools

 DICE tools

Design ● DICE/UML Profile

● DICER

● Simulation

● Optimization

● Verification

Runtime ● Monitoring

● Quality Testing

● Fault injection

Design-to-runtime ● Delivery

Runtime-to-design ● Configuration optimization

● Anomaly detection

● Trace checking

● Enhancement

General ● DICE IDE

Design tools operate on models only, these either being software engineering models based on UML or

quantitative models for performance/reliability assessment or verification. The DICE/UML profile is a

UML-based modeling language allowing its users to create models of the data-intensive application

arranged across three levels of abstraction: Platform-Independent, Technology-Specific and

Deployment-Specific.

The DICE Platform-Independent Models (DPIM) specify, in a technology-agnostic way, the types of

services a Big Data software depends on. For example: data sources, communication channels,

processing frameworks and storage systems. Designers can add quality of service expectations such as

performance goals that a service must meet in order to be useful for the application. More details can be

found in http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-

quality-abstractions-Final-version.pdf.

http://www.dice-h2020.eu/deliverables/
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-abstractions-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-abstractions-Final-version.pdf

Copyright © 2017, DICE consortium – All rights reserved 9

DICE Technology-Specific Models (DTSM) are refinements of DPIMs where every possible

technological alternatives are evaluated until a specific technological design choice is made and

rationalised. For instance, Apache Kafka can be selected as a communication channel, Apache Spark as

a processing framework, and Apache Cassandra as both a data source and a storage system. DTSMs do

not settle infrastructure and platform options. These are resolved in DICE Deployment-Specific Models

(DDSM).

DDSMs elucidate deployments of technologies onto infrastructures and platforms. For instance, how

Cassandra will be deployed onto any private/public Cloud.

Let us now describe the tools.

● The verification tool allows the DICE developers to automatically verify whether a temporal

model of a DIA satisfies certain properties representing the desired behavior of the final

deployed application. The formal model, that is obtained from the DTSM diagram, is an

abstraction of the running application implemented with a specific technology. For each

technology considered in DICE, there is a suitable (class of) temporal models allowing for the

assessment of specific aspects of the applications which are captured by the temporal properties

that the developer can verify.

● The simulation tool allows to simulate the behaviour of a data intensive application during the

early stages of development, based on the DPIM specification. It relies on high-level

abstractions that are not yet specific to the technology under consideration.

● Differently from the simulation tool, the optimization tool focuses on the DTSM, and relies on

separate simulation capabilities to determined an optimized deployment plan in order to

minimize cost subject to quality-of-service constraints (e.g., identifying the public cloud

provider target for the deployment and the detailed configuration in terms of virtual machine

instance type and their number).

● The DDSM model construction and its TOSCA blueprint counterpart is aided and automated

by means of an additional tool called DICE Deployment Modelling. DICE Deployment

Modelling in particular carries out the necessary automation to build an appropriate and well-

formed TOSCA blueprint out of its DTSM modelling counterparts.

In contrast to the design tools, the runtime tools examine or modify the runtime environment directly—

not its models.

● The monitoring tool collects runtime metrics about the components present in a runtime

environment.

● The quality testing tool and the fault injection tool respectively inject workloads and force

failures into the runtime environment; for instance, the fault injection tool shutdowns some

computational resources in order to test the application resilience.

Some tools cannot be unambiguously classified as design or runtime tools because they have both design

and runtime facets.

● The delivery tool is a model-to-runtime (M2R) tool that generates a runtime environment from

a DDSM.

● The configuration optimization, anomaly detection, trace checking and enhancement tools are

all runtime-to-model (R2M) tools that suggest revisions of models of the runtime environment

according to data gathered by the monitoring tool. As opposed to the optimisation tool which is

entrusted with optimising cost and resource consumption based on mathematical abstractions,

Copyright © 2017, DICE consortium – All rights reserved 10

the configuration optimization tool analyses the infrastructure configuration parameters given a

certain time horizon and returns optimal values for said infrastructural elements in a DDSM

through experimentation on the deployed instance of the application.

● Finally, the anomaly detection, trace checking and enhancement tools analyse monitoring data.

The first detects anomalous changes of performance across executions of different versions of

a Big Data application. The second checks that some logical properties expressed in a DTSM

are maintained when the program runs. The third searches anti-patterns at all DICE abstraction

levels (DPIM, DTSM or DDSM).

Application codes, models and monitoring data are saved in a sharable repository, and most tools can

be invoked directly through the DICE IDE (Figure 3).

Figure 3. DICE ecosystem

Table 4 below summarises the UML/DICE diagrams each tool operates on.

Table 4. UML diagrams handled by the DICE tools.

DICE tool Input UML diagram Profile level

Simulation Activity

DPIM, DTSM

Sequence

Deployment

Copyright © 2017, DICE consortium – All rights reserved 11

Verification Class DTSM

Trace checking Deployment DDSM

Enhancement

Activity

DTSM, DDSM
Deployment

Optimization Activity

DTSM, DDSM
Deployment

Monitoring Deployment DDSM

Deployment Modelling

(DICER)

Deployment DTSM, DDSM

Delivery tool Deployment DDSM

Quality testing Deployment DDSM

Configuration optimization Deployment DDSM

Anomaly detection Deployment (indirect) DTSM (indirect)

Fault injection Deployment DDSM

The DICE Knowledge Repository provides further information about each tool, including tutorials,

installation guidelines, videos and getting-started documentation: https://github.com/dice-

project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository.

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository

Copyright © 2017, DICE consortium – All rights reserved 12

3. Scenario-Driven Methodology
The DICE methodology adapts to the purpose of the user. Although DICE supports and advocates a

holistic and integrated Model-Driven approach to Big Data software development, it also acknowledges

that some users do not, and are not willing to practice refinement of technology-independent models

into technology-specific and deployment-specific models. Particularly those looking for rapid

prototyping functionalities. Therefore, in the following, we consider the use of DICE tools in four use

case scenarios that illustrate alternative ways to exploit the DICE framework:

1) Big Data Application Modeling. The user of DICE can simply design his/her Big Data

Application and s/he is willing to use an arbitrary subset of tools of the DICE framework, as

long as it fulfills the needs. This modeling can be made for various purposes: (re-)

documentation, architecture validation, etc.

2) Standalone. The user has identified a specific need which can be managed using a specific

DICE tool. For example, if the user has a running Big Data application and needs to gather

runtime metrics, then s/he is primarily interested to use the monitoring tool. In this scenario, the

user will only have to follow a tutorial or read the documentation of this tool.

3) Architecture Verification, Simulation and Optimization. A development team has to

implement a software that fulfills a list of requirements. Before starting the implementation, the

team wants to use the performance and reliability engineering tools available in DICE to predict

behaviors and cost for different implementation plans.

4) DevOps. A team of Developers has built a software and wants to automate (1) the creation of

a matching runtime environment, (2) the deployment of their program into it and (3) the

monitoring of its behavior in reaction to the actions performed by their application in a tight

collaboration with Operators.

Copyright © 2017, DICE consortium – All rights reserved 13

3.1. Big Data Applications Modeling
Nowadays Modelling has become a standard in software engineering. In fact, for architecture decision

documentation, code generation or even simply for (re-)documentation purposes, Software

Architects/Engineers build models using their favorite modeling environment and consistently with their

specific industrial notations.

Beyond quality assessment, deployment automation, simulation, etc., DICE provides, first and foremost,

a modeling environment for Big Data applications. These modeling capabilities are possible thanks to

two different and complementary approaches: UML Profiles and a DSML (Domain Specific Modeling

Language), that is, the modelling language embedded in DICE’s own deployment modelling and

automation tool, DICE Deployment Modelling . The following sections elaborate both approaches and

highlight the characteristics of the modelling perspective, pointing the reader to further details in the

knowledge repository.

3.1.1. DICE UML Modeling

3.1.1.1. Description
As aforementioned, the DICE ecosystem offers a plethora of ready-to-use tools to address a variety of

quality issues (performance, reliability, correctness, privacy-by-design, etc.). In order to make profit of

these tools, the user has to build specific UML diagrams enriched with stereotypes and tagged values

brought by the DICE Profiles. The DICE profiles tailor the UML meta-model to the domain of DIAs.

For example, the generic concept of Class can become more specific, i.e., to have more semantics, by

mapping it to one or many concrete Big Data notions. Besides the consistency of the model remains

guaranteed thanks to the meta-models behind the UML standard. In essence, the role of these profiles is

twofold:

1. Provide a high level of abstraction of concepts specific to the Big Data domain (e.g., clusters,

nodes…) and to Big Data technologies (e.g., Cassandra, Spark…);

2. Define a set of technical (low level) properties to be checked/evaluated by tools.

The methodological steps entailed by the activities above encompass at least the following activities:

a. Elaborate a component-based representation of a high-level structural architecture view of the

data intensive application (i.e., a DPIM Component Diagram) - in the scope of DICE, this is

done using the simple and familiar notations of a UML profile whence the user draws the

stereotypes and constructs necessary to specify his/her Data-Intensive Applications nodes

(source node, compute node, storage node, etc.);

b. Augment the component-based representation with the property and non-functional

specifications concerning that representation;

c. Refine that very same component-based representation with technological decisions - the

decisions themselves represent the choice of which technology shall realise which data-

intensive application node. For example, a <<CassandraDataStore>> conceptual stereotype is

associated with a <<StorageNode>> in the DPIM architecture view;

d. Associate several data-intensive technology-specific diagrams representing the technological

structure and properties of each of the data-intensive nodes. These diagrams essentially

“explode” the technological nodes and contain information specific to those technological

nodes. For example, a <<StorageNode>> in the DPIM architecture representation can become

a <<CassandraDataStore>> in its DTSM counterpart ; finally, the DTSM layer will feature yet

another diagram, more specifically, a data-model for the Cassandra Cluster. These separate

technology-specific “images” serve the purpose of allowing data-intensive application analysis

and verification;

Copyright © 2017, DICE consortium – All rights reserved 14

e. Elaborate a deployment-specific component deployment diagram where the several technology

specific diagrams fall into place with respect to their infrastructure needs. This diagram belongs

to the DDSM layer and contains all necessary abstractions and properties to build a deployable

and analysable TOSCA blueprint. Following our <<CassandraDataStore>> example, at this

level, the DTSM <<CassandraDataStore>> node (refined from the previous DPIM

<<StorageNode>> construct) is finally associated with a DDSM diagram where the

configuration of the cluster is fully specified (i.e., VMs type and number, allocation of software

components to VMs, etc.);

f. Finally, once the data-intensive deployment-specific component diagram is available, DICE

deployment modelling and connected generative technology (DICE Deployment Modelling)

can be used to realise a TOSCA blueprint for that diagram.

In summary, Designers exploiting DICE UML modelling for their Data-Intensive applications will be

required to produce (at least) one component diagram for their architectural structure view (DPIM) and

two (or more) diagrams for their technology-specific structure and behavior view (DTSM), taking the

care of producing exactly two diagrams (a structural and a behavioral view) for every technological

node in their architectural structure view (DPIM) as long as that requires analysis. DICE UML

modelling does not encourage the proliferation of many diagrams, e.g., for the purpose of re-

documentation - DICE focus is on quality-aware design and analysis of Data-Intensive applications.

Therefore, DICE UML modelling promotes the modelling of all and only the technological nodes that

require specific analytical attention and quality-awareness. Finally, Designers will be required to

refine their architectural structure view with deployment-specific constructs and decisions.

For example, for a simple WordCount application featuring a single Source Node, a single Compute

Node and a single Storage Node, all three requiring specific analysis and quality improvement.

Therefore, Designers are required to produce (in the DICE IDE) a total of 7 diagrams: (1) an architectural

structure view of the general application, containing three nodes (Storage, Compute and Source) along

with their properties and QoS/QoD annotations; (2) a structural and behavioral technology-specific view

for every technology that requires analysis - let us assume a class diagram and an activity diagram for

Storage, Compute and Source Node technologies respectively. Finally, the diagram produced in (1) is

required to be refined with appropriate deployment-specific constructs, mappings and annotations.

The next section provides a realistic usage scenario of the above modelling procedure for the purpose

of clarifying the DICE modelling process.

For more details (tutorials, documentation, examples, etc.), on the DICE profile and the connected

technologies the reader may find additional elaborations on the DICE Knowledge Repository at:

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-

Repository#profile.

3.1.1.2. DICE UML Modelling in Action: A Sample Scenario
As a toy example, we refer to a simple Storm application of our own device called WikiStats which takes

as input a compressed stream of 20GB web pages in XML containing snapshots of all the articles in

Wikipedia. The application then processes the stream to derive article statistics. Let’s assume we are

interested initially in deploying our application as soon as possible rather than analyse its behavior;

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#profile
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#profile

Copyright © 2017, DICE consortium – All rights reserved 15

Step a: DPIM Model - the DPIM model for our toy example is a component-based aggregation of two

nodes: a compute node (entrusted with processing wiki pages) and a storage node (entrusted with storing

and presenting results). For the sake of space we do not present this simplistic DPIM layer.

Step b and c: DPIM Model Refinement - at this point the DPIM model is used as a basis to refine DIA

modelling with appropriate technological decisions; in our case, the DPIM component diagram

components representing DIA nodes are stereotyped with additional technology-specific stereotypes, in

our case that is the <<StormApplication>> stereotype for the only compute node in the DPIM; this

signifies that the component is established to be a Storm Compute Node. Similarly, the DPIM

component diagram component representing the storage node is stereotyped with an additional

stereotype, that is, the <<CassandraDataStore>> stereotype; this signifies that the component is

established to be a Cassandra cluster.

Step d: DTSM Model Creation - at this point, we need to “explode” the two nodes in our DPIM refined

with technological decisions - all we need to do is to create a new class diagram and elaborate further

on the technical-detail internals for both nodes (e.g., Storm topology details for the

<<StormApplication>> and schemas for the <<CassandraDataStore>>). As a consequence, we prepare

a new class diagram where a new class is created with the <<StormApplication>> stereotype and is

immediately associated with bolts and spouts required in WikiStats; similarly, data schemas are prepared

for bolts and linked to a <<CassandraDataStore>> class of which we assume no need for further internal

details. The resulting diagram should look similar to the following figure.

Step e: DDSM Model Creation - at this point, the technologies used in the DTSM are mapped to

physical resources and automated rollout is applied to obtain a deployable TOSCA blueprint (see DICE

Delivery Service for additional deployment features). DDSM creation at this step involves creating or

refining a UML Deployment Diagram with DDSM Profile Stereotypes. Continuous OCL-assisted

modelling can be used to refine the UML Deployment diagram in a semi-automated fashion. In a typical

scenario, the DICE user randomly selects a technology from the DTSM diagram and instantiates a

Deployment Node to apply that technology stereotype on it. Subsequently, the DICE user can check the

diagram for satisfaction of DICE-DDSM OCL constraints, addressing any missing dependencies for that

technology as well as any missing deployment specifications (e.g., additional nodes, firewalls, missing

characteristics and attributes, etc.). The same process shall be replicated by the DICE user until all the

technologies in the DTSM are modelled at the DDSM level as well. Finally, a deployment artifact

representing the DIA runnable instance itself shall conclude the modelling at the DICE DDSM layer.

The subsequent section, elaborates on how to prepare a deployment model independently and regardless

of the DICE DPIM and DTSM diagrams if the DICE user is so inclined or required. DICE Deployment

modelling after this point relies on a domain-specific language (DSL) specifically designed for

independent DDSM modelling.

Copyright © 2017, DICE consortium – All rights reserved 16

3.1.2. DICE Deployment Modelling
DICE Deployment Modelling is a complete environment (editor, palette, properties view, etc.) built

upon an extensible set of Big Data specific-modeling languages (Storm, Hadoop, Cassandra, Zookeeper

and Spark). Each such language captures the necessary deployment software nodes, concepts and

restrictions that every big data technology addressed in DICE is composed of, along with their

configuration characteristics (e.g., dependencies) and parameters (e.g., required and provided

properties) as well as any dependencies on other nodes and technologies. This package structure is

adopted to achieve modularity and ease DICE Deployment Modelling extension with new technologies.

The main benefits of using the DICE Deployment Modelling are related to the rapid design of an

execution environment using concrete concepts. In a user-friendly approach, the users can employ the

Eclipse Ecore modelling tool to create a deployment model (DDSM), taking advantage of the DICE

profile.

For example, in the scope of re-documentation scenarios, software Architects or infrastructure Engineers

may need to focus on re-documenting their architecture views - similarly, Architects may want to use

DICE Deployment Modelling to elaborate on those architecture views using concepts and relations from

well-known and established big data technologies (or many other concepts typical in infrastructure

design for that matter, such as virtual machines, execution bindings, etc.).

DICE Deployment Modelling Modelling takes up at step d of the procedure highlighted above and

allows to design a DDSM in a completely reserved environment specific for deployment details which

can easily be extended to desired deployment-specific technologies and packages. DICE Deployment

Modelling DDSM models are equivalent to DICE DDSM UML Profiles. For example, a diagram for

the WikiStats application would look something like the following figure.

In turn, this DICE Deployment Modelling DDSM model can immediately be produced into a fully

deployable TOSCA blueprint at the click of a button and sent for deployment, at the same time, using

the built-in deployment service and delivery tool part of DICE.

DICE Deployment Modelling usage is encouraged when stakeholders and roles require quick and

painless deployment of their own DIA (e.g., to evaluate initial performance figures and/or execution

traces for further analysis). This notwithstanding, DICE Deployment Modelling may also be used in

combination with the aforementioned modelling procedure, where step d is executed directly within the

DICE Deployment Modelling instead of the DICE UML profile.

Copyright © 2017, DICE consortium – All rights reserved 17

3.2. Standalone
The standalone usage mode is straightforward and is closely related to the built-in tools of the DICE

IDE. For such scenario, the user is guided through some steps using Eclipse dialog windows. Since

many DICE tools use the same input models, the user may run on the same model more than one tool

and analysis. For example, the Configuration Optimization tool may be used automatically with the

same input that the Deployment tool uses.

Some tools can be used outside the DICE IDE without using the modeling features (e.g. using command

line). For such usage, the user may go through the guides available at: https://github.com/dice-

project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository.

The rest of this section is devoted to explaining the necessary details to run the DICE analysis tools in

standalone mode. The use of tools, which are intrinsically and inherently linked to the use of the DICE

IDE (i.e., the design tools such as the UML profile, or the DICE Deployment Modelling tool), do not

appear as standalone tools since their use as standalone in the scope of DICE only makes sense in

continuity with the use of some other analysis tools - however, for further details on these the reader

may refer to the DICE knowledge repository in the link above.

● Simulation

The Simulation Tool is able to simulate the behavior of a DIA to assess its performance and reliability.

This tool uses Petri net models for prediction. The DIA is defined with behavioral UML diagrams, in

particular Sequence or Activity diagrams that are complemented with the Deployment diagram. These

diagrams are enhanced within the DICE profile. The DIA can be defined both at DPIM level or at DTSM

level using a particular technology (e.g., Storm, Spark). The internal utilization of Petri net models is

transparent to the DICE user, thus releasing his/her from any knowledge of the formal model.

The output of the simulation is the evaluation of a set of performance and reliability metrics for early-

stage quality assessment. For example, the users can obtain, as performance results, the expected mean

response time or throughput of the DIA, or the utilization of the resources assigned to the application.

As reliability results, users can obtain failure probabilities for the application execution, or the mean

time to failure of DIAs that execute continuously along time.

A simulation is performed considering a performance scenario. A performance scenario can be modelled

by either a sequence (SD) or an activity diagram (AD). While the SD focuses on the message exchange

between components (lifelines), the AD focuses on the actions performed by the components

(partitions). The deployment (DD) is used to specify both the availability of resources in the system,

e.g., number of cores, and how the interacting components (lifelines in the SD, partitions in the AD) are

mapped onto physical nodes.

More details are available at : https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-

Knowledge-Repository#simulation.

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#simulation
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#simulation

Copyright © 2017, DICE consortium – All rights reserved 18

● Optimization

The optimization tool allows the DICE Architect to assess the performance and minimize the

deployment cost of data-intensive applications against user-defined properties, in particular meeting of

service-level agreements (SLAs). The input is: (i) a set of DICE DTSM models (one for every candidate

target environment, i.e., virtual machine type at a given of provider), (ii) a partially specified DICE

DDSM Deployment model and the SLAs to be achieved . The optimization consists in finding the less

expensive cluster configuration able to guarantee the application jobs to be executed before a user

defined deadline (for MapReduce or Spark applications) or such that the cluster utilization is below a

given threshold (for Storm). The Architect can analyze the application behavior under different

conditions. For example, he/she can study the pros and the cons of public clouds versus private cloud in

terms of execution costs. The output of the optimization tool is a DICE Deployment model that

corresponds to the optimal solution found and which can then automatically deployed by the DICE

Deployment tool. The usage flow of the tool is reported in the figure below. Given the set of candidate

solutions and SLAs, if a feasible solution cannot be found or the cost is not within a budget constraint,

the architecture or SLAs need to be revised. Vice versa, the the DIA can be deployed to the target

execution environment specified by the minimum cost deployment model identified by the optimization

tool.

For more details, please visit :

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-

tool.

● Verification

DICE Verification Tool allows Designers to evaluate their design against user-defined properties, in

particular safety ones, such as reachability of undesired configurations of the system which might be

caused by the effect of node failures or by the incorrect design of timing constraints. The verification

process allows the DIA Designer to perform verification tasks using a lightweight approach. DICE

Verification Tool fosters an approach whereby formal verification is launched through interfaces that

hide the complexity of the underlying models and engines. These interfaces allow the user to easily

produce the formal model to be verified and the properties to be checked without the need of high

technical expertise. To promote verification, the user annotates the DPIM elements undergoing

verification with the (class of) property that must be validated. For example, if the property is “queue

boundedness” then the user annotates with a label “safety-queue boundedness” all the computational

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-tool

Copyright © 2017, DICE consortium – All rights reserved 19

nodes that require the validation of that property. In the DTSM, the generic annotations stated at the

DPIM, requiring the verification of a property, can then be further enriched with more specific

annotations that are related to the class of property to assess and to the technology employed to

implement the node. Those specific annotations provide a value to all the necessary parameters that are

needed to carry out the verification (for instance, the time required by tasks to process a message).

If the verification task fails then the Designer can refactor the design of the DIA. The outcome of the

verification phase is a counterexample, i.e., an execution violating the property in analysis, that can help

the designer in identifying the cause that originates the undesired behavior.

A more detailed description is available at the following link: https://github.com/dice-project/DICE-

Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification.

● Monitoring

DICE monitoring platform (DMon) collects, stores, indexes and visualizes monitoring data in real-time

from applications running on Big Data frameworks. DMon is able to monitor both the infrastructure

(memory, CPU, disk, network etc.) and multiple Big Data frameworks currently supported being Apache

HDFS, YARN, Spark, Storm and MongoDB. The core components of the platform (Elasticsearch,

Logstash, Kibana) and the node components running on the monitored cluster are easily controlled

thanks to a Web-based user interface that backs up the DMon controller RESTful service. Visualization

of collected data is fully customizable and can be structured in multiple dashboards based on the user

needs, or tailored to specific roles in your organization, such as Administrator, Quality Assurance

Engineer or Software Architect.

For more details, please visit : https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#monitoring-tool.

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#monitoring-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#monitoring-tool

Copyright © 2017, DICE consortium – All rights reserved 20

● Quality Testing

This is a suite of tools to help stress testing Data-Intensive Applications based on technologies such as

Storm, Kafka and Spark. The tool allows Developer to run basic load tests on the application throughout

the development cycle in order to support the activities of configuration optimization and anomaly

detection across software versions.

The Quality Testing tool takes as an input initial dataset provided by the user and test scenario

characteristics (e.g. load injection rate, volume and duration) from which it generates the application

load and injects it into the application. The workload generation is handled by a module called QT-GEN,

whereas the injection of the workload is enacted by a module called QT-LIB. The tool output is a

measure of the application behaviour (e.g., throughput) that is visualized by the Continuous Integration

tool. These dependencies are presented as diagrams (and traces) that can be obtained and visualised in

DICE Monitoring tool.

The tool requires a running DIA, which in a standalone scenario needs to be set up using the Delivery

tools. This, in turn, uses DDSM as an input. The QT-LIB code is added to the application itself since it

is provided as a Java library part of the DICE IDE. The input trace needs to be packaged within the DIA

jar and it is assumed to be in JSON format. When using a realistic trace is not relevant for the test, an

alternatively instantiation of QT-LIB consists in requiring the tool to generate random data of the

appropriate size, which does not require to package within the DIA jar the data to be played. QT-LIB

offers example templates to automatically halt the test experiment based on monitoring data obtained

by the DICE Monitoring Platform.

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool.

● Fault Injection

The DICE Fault Injection Tool (FIT) has been developed to generate faults within Virtual Machines.

The FIT provides the ability for a user to generate faults at the VM level. The purpose of the FIT is to

provide VM owners with a means to test the resiliency of an application target. With this approach, the

Designers can use robust testing, showing where to harden the application before it reaches a commercial

environment and allows a user/application owner to test and understand their application design/

deployment in the event of a cloud failure or outage. Thus allowing for the mitigation of risk in advance

of a cloud based application deployment. This tool will assist Developers and Cloud Operators in

offering their best services to all customers and simplify testing within the DevOps paradigm.

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool

Copyright © 2017, DICE consortium – All rights reserved 21

1. User selects fault by GUI/command line;

2. Fault is started on VM;

3. Required tools installed and configured;

4. Fault Starts and is logged;

5. Fault Completes and status of run is recorded in log.

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool.

● Delivery

DICE delivery tools enable a simple way to continuously deploy Data-Intensive Applications on a

testbed. Starting up Big Data clusters for running applications such as Storm topologies or Spark jobs is

a matter of executing a TOSCA YAML document. The tools consist of a deployment modelling tool

and a deployment service tool in cascade to the TOSCA-based deployment modelling tool. The

deployment service is complete with a web user interface and command line interface. As a part of the

delivery tools we also provide the DICE technology library that contains the configuration and

deployment recipes for the supported Big Data services.

In their standalone usage mode, the tools can be used for experimenting with various setups of Big Data

technologies without the need to spend effort on manually installing and configuring the cluster. The

users can create throw-away clusters for fast prototyping, or persist the ones that prove useful in the

form of a DDSM or its equivalent, the TOSCA blueprint, which works as a versionable description of

the configuration. We have also designed the tools to work well in a Continuous Integration workflow.

The DICE delivery tools have a setup and configuration phase, when Administrator first boot-straps the

DICE Deployment Service (along with Cloudify) as the support service for the test-bed. This phase also

includes assigning input parameters that are specific to the platform hosting the test-bed. The

configuration phase is a one-time (or at worst a very rare) operation.

A more frequent operation is creation of the deployment model of the DIAs. The users use the IDE to

create a DDSM either using Eclipse Ecore modelling tool to create UML profiled-Deployment Diagram

via the DICE Profile, or a specific TOSCA infrastructure diagram created directly within DICE

Deployment Modelling. Subsequently, the DICE Deployment Modelling tool transforms DDSM into

OASIS TOSCA blueprints represented as YAML documents.

The main and certainly the most frequent interaction with the DICE delivery tool is deploying the DIAs

according to their deployment diagrams. The users first choose or create a virtual deployment container

as a destination of a deployment at the DICE Deployment Service. In the DICE IDE, they select the

virtual deployment container and the YAML blueprint, and then submit the deployment. In the IDE,

they can then monitor the status of the deployment (e.g., preparing to install, installing, and error).

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool

Copyright © 2017, DICE consortium – All rights reserved 22

An expected outcome is a new runtime of the DIA in the test bed. Depending on the blueprint, the

dynamic (output) parameters for the DIA then become available (e.g., URLs of the deployed service).

The users can then proceed to using, testing or experimenting with the DIA runtime.

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#delivery-tool.

● Configuration Optimization

The Configuration optimization (CO) tool automatically tunes the configuration parameters of Data-

Intensive Applications. These are developed with several technologies (e.g., Apache Storm, Hadoop,

Spark, Cassandra) each of which has typically dozens of configurable parameters that should be

carefully tuned in order to perform optimally. CO tool enables end-users of such application to auto-

tune their application in order to get the best performance. CO is integrated with DICE delivery tools

(including deployment service and continuous integration) as well as DICE monitoring platform.

The deployment diagram (DDSM) for CO is a source of the initial configuration values, which are the

starting point for the optimization. In other respects, the CO passes the deployment diagram (actually

its transformation, the TOSCA blueprint) to the Delivery tool. The outcome is a new set of configuration

values (as a collection of “parameter name: value” pairs or an updated TOSCA blueprint), which could

be used in an enhanced DDSM.

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool.

● Anomaly Detection

The anomaly detection (AD) tool reasons on the base of black box and machine learning models

constructed from the monitoring data. In order for models to be able to detect not only point anomalies

but also contextual anomalies, the tool will select a subset of data features from the Monitoring Platform

to train and validate a predictive model, which is later stored in Monitoring Platform itself. The

predictive models are then used to detect contextual anomalies in real-time monitoring data streams. A

second use case supported by the anomaly detection tool is the analysis of monitoring data based on two

different versions of DICE application, thus detecting anomalies introduced by latest code changes.

In essence, during supervised anomaly detection, the user has to define a training set with labelled data.

This means that the query issued by the AD tool to the monitoring platform will automatically generate

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#delivery-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#delivery-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool

Copyright © 2017, DICE consortium – All rights reserved 23

the training and validation set. In the case of unsupervised methods, this is not required. No user

interaction is required.

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#anomaly-detection-tool.

● Trace Checking

Trace checking is an approach for the analysis of system executions that are recorded as sequences of

timestamped events, to establish whether a certain property (usually expressed in temporal logic) is

satisfied.

Trace checking tool is employed to extract information that is not available from standard monitoring

platforms whereas this information is specific of the modeling used for verification in DICE. The

collected data is used to assess the validity of the results obtained at design time with the verification

tool. Trace checking is carried out first by selecting the names of the nodes whose logs are going to be

analyzed with trace checking. The property to assess is specified by the user who chooses it, in the

plugin user interface, from a list of predefined properties. The properties are specific for the technology

adopted in the DTSM and might also depend on the class of verification properties specified through

suitable annotations on nodes in the DPIM. The user then specifies the time duration of the portion of

the logs to be extracted from the monitoring platform and, finally, runs the trace checking. In case of

negative response, i.e., the property is violated by the logs, the user might redo a trace checking analysis

with a longer log trace or run the verification again by considering an updated model of the application

where the parameter values are determined from the collected logs.

Privacy constraints on the use of resources can be assessed through trace checking at DPIM level. The

user specifies the accessing relations among the components of the system through SecureUML profile

and annotates the nodes that undergo specific accessing restriction with a time window, composed of

two time bounds expressing the beginning and the end of the period of time under analysis. Throughout

the time window, the accessing constraints that must be enforced by the system, can be verified via

trace-checking analysis. The designer selects the privacy property for the previously annotated

components in the trace checking user interface and then runs the tool. Based on the technology used to

implement the node, that the user specifies in the DDSM, the log retrieval can be carried out

automatically and the trace-checking executed on the collected execution trace.

More details are vailable at: https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-

Knowledge-Repository#trace-checking-tool.

● Enhancement

The Enhancement tools are the core DICE solution to close the gap between runtime (monitoring data)

and design time (models and tools). They feature the correlation between monitoring data to find the

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#anomaly-detection-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#anomaly-detection-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#trace-checking-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#trace-checking-tool

Copyright © 2017, DICE consortium – All rights reserved 24

existence of different abstractions between design concepts and runtime measurements, that is, feeding

results back into the design models to provide guidance to the developer on the quality offered by the

DIA at runtime. They also provide the initial parameters for the Simulation tools and Optimization tools

from monitoring data and detect the anti-patterns in the application design.

An extended description is available at: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#enhancement-tool.

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#enhancement-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#enhancement-tool

Copyright © 2017, DICE consortium – All rights reserved 25

3.3. Architecture Verification, Simulation and Optimization

Workflow for quality analysis at DPIM and DTSM

Workflow for quality analysis at DDSM

In the architecture simulation and verification scenario, Developers get from System Orchestrators a list

of requirements about the system to construct, and want to study models of possible runtime

environments in order to predict behaviors and performance for different implementation strategies.

This work is similar to the one done by engineering or consultancy offices for civil or aeronautical

projects, such as the construction of a building or the manufacturing of an aircraft. However, in these

disciplines, the characteristics of the environment are imposed by natural physical conditions; whereas

in software development, the characteristics of the runtime environment are negotiated with Operators.

This use case is enabled thanks to the DICE/UML profile, the verification tool, the simulation tool and

the optimization tool. Here are the stages to follow:

3.3.1. Step 1: Architecture Design
The first step of The DICE Methodology for the architecture verification and simulation scenario—the

DIA architecture design (Figure 4)—consists in modeling a solution in terms of software components

(or software nodes) serving and/or being served by other software components. For this activity, the

modeling language endorsed by DICE is the UML Object diagram. The design can be accomplished

Copyright © 2017, DICE consortium – All rights reserved 26

both in a platform-independent and technology-specific manner by using respectively the DPIM and

DTSM profiles. At the DPIM level, components are stereotyped as source nodes, storage nodes,

computation nodes or channel nodes; underlying technologies and communication protocols are not yet

determined. It is only at the DTSM level that Developers can state, for instance, that a given storage

node is actually a Cassandra cluster.

Once an architecture is envisioned, it is indispensable to classify the services thereof as internal or

external. An external service must be provisioned in the runtime environment by Operators, while an

internal service must be programmed by Developers and deployed into it afterwards. An external service

can be, for example, a software open-sourced on the Internet or subcontracted to a company. This

partitioning of services takes place during exhaustive deliberations between Developers and Operators.

In other words, the DICE methodology innovates by integrating Operators into the development

lifecycle from the beginning to the end of the project.

3.3.2. Step 2: Verification
Developers can invoke the verification tool to check that the services satisfy some invariant properties

(Figure 4, verification) related to the temporal evolution of the application. Two kind of verification

analysis are available in DICE that depend on the technological framework adopted by the developers

to implement the application. Apache Storm and Apache Spark, the latter in its batch version, are the

baseline technologies considered for verification in DICE. Storm applications are generally

implemented to compute operations on streams, i.e., infinite sequences of tuples produced by a source

of data. The Storm developer can verify the presence of bottleneck nodes in the deployment that saturate

their memory. This analysis is relevant, since the presence of nodes that cannot process the input

workload through a timely computation might cause a performance drop of the entire application. The

verification is performed at the DTSM layer by checking the existence of an execution of the topology

which leads to an unbounded growth of some bolts’ queue. The inputs for the Storm verifier are:

1. A DTSM diagram;

2. The parameter values of all the spouts and bolts in the topology modeled by the DTSM (e.g.,

the throughput of the spouts and the time to process a tuple for bolts);

3. A positive discrete constant measuring the number of discrete time positions that define the

length of the executions analyzed by the verifier (the user can consider that for each discrete

time position an event in the topology can occur).

More details and all the required parameters are available in deliverable in D3.5 - Verification tool -

Initial version and the implemention of the DICE Verification Tool (D-VerT) at https://github.com/dice-

project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification.

Verification of Spark application is designed to allow the DICE Developer for verifying temporal

properties of batch applications implemented in Spark. Batch applications inherently produce finite

executions, which yield an outcome given a certain (finite) input by iteratively applying complex

transformations on data (that are stored into the so called RDDs). The Spark Developer can verify

whether a finite execution of the application can be realized at runtime in a timely manner, i.e., within

a given deadline defined at design time. The execution of Spark applications can be represented on the

basis of the operational workflow of the data (Spark RDDs) that the user designs and implements. In

Spark applications, an execution instance is represented through a Directed Acyclic Graph (DAG) that

the Spark engine computes before the execution of the application. The Spark engine first decomposes

the execution flow into various independent execution entities, called stages, that are composed of a set

of tasks on the dataset. Each stage constitutes a node in the application DAG and the edges of the graph

determine the precedence relation among the stages and, therefore, among the operations on data. The

verification is performed by checking the existence of an execution of the Spark application which meets

the deadline. The negative response entails that all the executions of the application cannot be completed

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification

Copyright © 2017, DICE consortium – All rights reserved 27

within the estimated time; otherwise, there is an appropriate scheduling of the tasks for the available

computational resources that allow a timely execution of the application.

The inputs for the verifier are:

1. The operational workflow of RDDs (activity diagram);

2. The parameter values of the infrastructure running the Spark application (e.g., estimated time to

complete a task with a certain machine);

3. A deadline which bounds the time span of the application.

Further details can be found in Deliverable 3.6 - Verification Tool - Intermediate version.

3.3.3. Step 3: Design of the DIA Behavior
In order to proceed with further evaluations of the quality of the DIA, in particular the evaluation of the

performance and the reliability of the DIA, it is necessary that the user provides a design of the system

behavior. In fact, the scenario-based performance evaluation is the way to traditionally carry the

computation of performance metrics.

The behavioral design of the DIA is represented through UML behavioral and structural diagrams. In

particular, Activity or Sequence Diagrams for the former and UML Deployment diagrams for the latter.

The behavioural design is enhanced with stereotypes from DICE DPIM or DTSM profiles.

In the Activity and Sequence diagrams, the user specifies the operations performed by the DIA, their

relative ordering, and concepts that are typical in the description of workflows, such as the execution in

parallel of a set of operations, conditional execution of operations, iterations over a set of operations,

etc. The utilization of DICE profiles allows to include information that is relevant for the performance

and reliability with which the DIA will execute. Some examples of pieces of relevant information are:

probabilities of execution failures, execution times of single operations, configuration characteristics of

the Big Data technologies used, quantity of jobs submitted to these technologies, etc.

In turn, the structural part of the DIA design is also stereotyped using DICE DPIM or DTSM profiles.

These diagrams model the assignment of the behavioural software artifacts previously defined into a

simulated environment. Here, the DICE profiles allow the user to define properties of the resources used

by the DIA, such as their quantity or the typical time to failure of the machines where the DIA executes.

With this information, the simulation tool can proceed with its execution (see Figure 4, service behavior

design).

3.3.4. Step 4: Simulation
The simulation tool is able to produce performance and reliability results for a given DIA, in fact starting

from the behavioural design of such DIA (Figure 4, simulation). In particular, the simulation tool can

compute specific metrics for performance and reliability, both at the DPIM and DTSM levels. When the

tool is launched, the user graphically interacts to specify the kind of analysis to perform, i.e.,

performance or reliability.

For performance analysis, the metrics provided refer to the service time, throughput and utilization.

Then, the user can define using the DICE profile annotations that s/he is interested in assessing the

expected response time of executions of the DIA, its throughput, or the utilization of resources used by

the DIA. With this information, the user decides whether the current design satisfies the DIA

performance requirements. The performance result regarding the utilization of resources provides the

user with information to infer the location of the bottleneck of the DIA executions, or whether there is

an under-utilization of resources and therefore DIA may waste them.

Copyright © 2017, DICE consortium – All rights reserved 28

In case that the user had left some information in the profiled UML models as variables, this is the

moment to specify their actual values. Variables in the UML models are useful for what-if performance

analysis of the design, i.e., the user wants to know the system performance under different

configurations. Some examples of these variables are: the number of computational resources that the

DIA can use -ranging for instance from 2 to 5-, the quantity jobs submitted to the DIA -ranging for

instance from 5 to 20-.

After these phases of specifying the kind of analysis and configuring the actual values for the simulation,

the user can press the Run button in the graphical interface and execute the Petri net based DIA

simulation. When the execution finishes, the user receives the performance results of the DIA

simulation. The result produced by the evaluation is processed to generate a tool-independent report

with the assessment of performance metrics. He can then proceed to the next step being informed of the

expected performance, or modify the DIA design if the results do not satisfy the DIA performance

requirements and/or expectations.

For reliability analysis, the process is analogous: first the user specifies the kind of reliability metrics -

such as probability of failure of a concrete execution or the mean time to failure of the DIA- and

configures the actual values of the information that was possibly left as variable in the design. Then

press Run, the execution starts and the reliability results of the simulation are processed provided as a

tool-independent report. Then, the user decides whether to proceed with the next step or to modify the

design in case the results do not satisfy the DIA reliability expectations.

More details are available at: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#simulation-tool.

3.3.5. Step 5: Optimization
The step “architecture optimization” (Figure 5) consists identifying an minimum cost deployment

providing a priori performance guarantees through the Optimization tool. The Optimization tool takes a

set of DTSMs and reorganizes the infrastructure and the technologies therein to find an optimal

architecture. The Optimization tool supports Storm, Hadoop and Spark applications (Spark limited to

batch jobs).

The tool complements the Simulation tool and supports an automatic exploration of the solution space

based on a wizard. This tool is invoked as follows:

1. The Designer selects a set of DTSMs (including a DICE activity diagram) one for each target

deployment annotated with the service demand of the DIA for the candidate configuration;

2. The Designer selects a DICE Deployment Diagram that will be updated with the final solution

found;

3. The Designer specifies QoS constraints (cluster maximum utilization for Storm, deadline for

job executions for Spark and Hadoop);

4. At this stage, the Optimization tool runs the Model-to-Model transformation tool (part of the

simulation tool) to derive the underlying performance models;

5. Next, the Optimization tool explores the design space and runs QN/PN simulation to evaluate

performance metrics of the candidate solutions;

6. Finally, the Optimization tool outputs the DICE Deployment Diagram of minimum cost,

specifying the type and number of VMs for target deployment. Such model can then be deployed

to the runtime environment by relying on the DICE deployment tool (see the next Section).

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#simulation-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#simulation-tool

Copyright © 2017, DICE consortium – All rights reserved 29

More details are available at: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#optimization and in Deliverable 3.9 - Optimization

Tool - Final version.

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization

Copyright © 2017, DICE consortium – All rights reserved 30

3.4. DevOps Delivery Lifecycle
Let us now consider the situation where a development team wants to automatically without the support

of Operators deploy a Big Data Application and receive feedback on the application’s behaviour in the

pre-production environment. This scenario assumes the application is ready: the Developers already

know which technologies must be present in the runtime environment.

Several of the steps in the lifecycle (Delivery, Quality testing, Fault injection, Configuration

optimization) involve manipulating the test-bed or the pre-production environment into setting up the

Developers’ DIA and performing various operations on top of the DIA. These operations can all be done

manually through the tools’ front-end. However, to make the lifecycle truly DevOps, we describe the

scenario assuming that a Continuous Integration service is in place to automate all the steps that should

be performed unattended.

DICE workflow for DevOps

3.4.1. Step 1: Deployment Design
Developers start by drawing DTSM Object Diagram describing the technological services on which the

Data-Intensive Application depends, without imposing infrastructure and platform choices. This phase

is the runtime environment design also known as Deployment design (see Figure 5 and modelling

procedure in Sec. UML Modelling). The tool supplied for the environment design is the technology-

specific part of the DICE/UML profile available in the DICE IDE. This tool is invoked as follows:

1. Create a new or open an already existing DICE project;

2. Create a new empty DTSM Object Diagram using Papyrus and DICE UML Profile;

3. Draw the model.

Once Developers are in accord on the technological point of view, they have to discuss deployment

concerns. This stage, named deployment design (Figure 5), ends with the definition of DICE

Deployment Diagram that should answer every deployment question, whether it be about

infrastructures, platforms and so on. The DICE IDE has a deployment-specific UML Profile, which is

used this way:

1. Open an already existing DICE project containing a DICE Object Diagram;

2. Create a new DICE deployment diagram. A form is displayed;

3. Select the DTSM Object Diagram to refine and fill the form;

4. Click “finish”. The technologies mentioned in the DICE Object Diagram are automatically

loaded into the new DICE Deployment Diagram - the DDSM;

5. Complete the model (if needed).

Although it is also possible to draw a DICE deployment diagram from scratch, it is nevertheless better

to begin with a DICE Object Diagram in order to benefit from trace checking - this will also allow the

Copyright © 2017, DICE consortium – All rights reserved 31

straightforward use of the DICE-Rollout tool part of the deployment service to quickly put together a

deployment blueprint for that DICE DTSM diagram.

3.4.2. Step 2: Delivery
Once the optimal architecture and configuration are produced, it is time to prepare the runtime

environment and deploy the application into it. DICE Delivery Tools enable a simple way to

continuously deploy the DIA in a testbed. The Continuous Integration (CI) component makes sure that

the subsequent steps in the methodology run automatically at prescribed times or whenever the

developers update the DIAs. Here, we assume that an Administrator has created CI projects for

triggering processes downstream: Quality Testing, Fault Injection, Configuration Optimization or just a

deployment for manual validation of the DIA.

The DICE Deployment Service creates the DIA’s runtime from a TOSCA YAML document, which is

generated from the DICE Deployment Diagram. The general sequence to perform that is as follows:

1. Open an existing DICE Deployment Diagram;

2. Use DICE Rollout (the model-to-text transformer) to transform the DICE Deployment Diagram

into a TOSCA blueprint;

3. Prepare any of the target-tool-specific configurations and resources (see steps below for details);

4. Commit the application, TOSCA blueprint and any additional files from the previous two steps

into the VCS (e.g., Git or Subversion);

5. A Continuous Integration job will pick on the update and automatically use the Deployment

service to deploy the application and set up all its execution environment (i.e., Storm,

Zookeeper, etc.). It will also get automatically registered with the DICE Monitoring Service;

6. The DIA will now be running in the testbed. Any supported services will send their metrics to

the DICE Monitoring Service;

7. Depending on the configuration of the CI project, the tools described in the subsections below

will start;

8. Open the Continuous Integration’s job to access any output information from the DIA’s

deployment, such as services’ URL, as well as any tool outcome.

Note that the CI has to have been configured by the Administrator to use a specific deployer’s container,

i.e., a virtual unit, which can take up to one deployment of the DIA. This ensures that the deployer cleans

up any previous deployments assigned to the same container.

3.4.3. Step 3: Fault Tolerance & Quality Testing
Testers want to evaluate the performance of a DIA. They also want to test its robustness when confronted

with a hostile runtime environment. In the DevOps scenario, we expect that these steps run

automatically, so in DICE this is ensured by the Delivery Tool’s process in Step 2.

The Quality Testing tools subject the deployed DIA with a varying volume and velocity of the input

data. The DICE Monitoring Tool measures DIA’s runtime metrics, which the Quality Testing tool can

use to produce a report on the application’s performance parameters such as throughput and response

times.

In the Step 2, the following tool-specific sequence needs to take place:

1. (Part of Step 2) Developer uses the Quality Testing tool’s library to prepare a test mode version

of the DIA;

2. (Part of Step 2) Developer prepares the load generation scenario input and configuration (data

volume, rate, test duration).

Copyright © 2017, DICE consortium – All rights reserved 32

When the CI executes the Quality Testing, the sequence is as follows:

1. The workload to be injected in the system is prepared using QT-Gen;

2. The QT-Lib custom spout is added to the DIA code and the workload packaged with the

application JAR file;

3. The application is deployed and QT-Lib performs the load generation;

4. Quality Testing collects the monitoring data from Monitoring Tool and stores a report;

5. Delivery Tools save the performance data report with the DIA’s test execution;

6. The user visits the Continuous Integration’s web interface to view the history of the performance

testing.The user can access individual execution run’s information as numerical results.

The Fault Injection Tools help the users create a hostile environment by triggering faults against the

DIA:

● The application is deployed via CI tools onto the target cloud;

● The Deployment information is passed to the FIT after the application has been deployed, where

the component names are set to corresponding faults;

● The FIT uses this information to determine the faults to enact across the VMs;

● The faults are enacted across the VMs and details stored within the generated logs;

● This information can be picked up by monitoring and fed back to the administrators/developers

before the next deployment to be used to determine any points of failure.

3.4.4. Step 4: Monitoring
DICE Monitoring Platform (DMon) collects, stores, indexes and visualizes monitoring data in real-time

from applications running on Big Data frameworks. It supports DevOps professionals with iterative

quality enhancements of the source code and with the optimisation of the deployment environment.

Use one tool to overview all your environments and their log entries, front to back. APM and

Troubleshooting all at once and leverage new valuable data to quickly and precisely understand areas

of improvement within the DIA. DMon requires a lot of information about the currently deployed Big

Data frameworks and the DIAs that are running on them. Because of this, the delivery service is also

responsible for deploying and configuring DMon. It is also important to note that DMon has the ability

to auto-detect what services run on each monitored node. The steps required to setup DMon are:

1. Register the nodes to be monitored (node endpoint, operating system, credentials);

2. Install monitoring agents on the nodes:

a. If the deployment service is already configured and started the monitoring agents DMon

will wait for the agent to heartbeat;

b. Agents are automatically installed and started using parallel SSH connections to all

monitored nodes.

3. Add Roles to each monitored node (YARN, Storm, Spark, Cassandra etc). Some roles can be

autodetected by DMon;

4. Detect location of key services:

a. Storm -> Nimbus, UI;

b. Spark -> History Server;

c. YARN -> History Server.

5. Set metric polling period;

6. Configure and start DMon core services (Logstash, Kibana and Elasticsearch);

7. Generate and apply configurations to agents and start monitoring. Application metrics

versioning should also happen at this step.

Copyright © 2017, DICE consortium – All rights reserved 33

It is important to note that all of these steps are done automatically within the DICE solution (using the

DS).

3.4.5. Step 5: Configuration Optimization
Part of DevOps is also to make sure that these services and the application itself are configured to

perform efficiently. The Configuration Optimization (CO) tool automatically tunes the configuration

parameters of data-intensive applications. The DIAs are developed with several technologies (e.g.,

Apache Storm, Hadoop, Spark, Cassandra), each of which has typically dozens of configurable

parameters that should be carefully tuned in order to perform optimally. CO tool enables end users of

such application to auto-tune their application in order to get the best performance. Considering that

each CO execution can run for several hours, we delegate the scheduling and running of the CO to the

Continuous Integration (CI). In Step 2 above, we therefore need to provide CO-specific settings:

1. (Part of Step 2) Select YAML file (generated at the Deployment Design step) containing the

configuration parameters with default values;

2. (Part of Step 2) Optionally, specify the parameters of interests and the possible range of values

for each parameters, also the experimental details e.g., exp. budget (i.e., number of runs), also

address of services CO is dependent on.

When the CI executes the CO, the sequence is as follows:

1. CO runs a number of iterative experiments until budget is finished;

2. Optimum values are set by the CO tool directly to the YAML file and the DICE Deployment

Diagram is updated correspondingly.

3. The developer can obtain the updated blueprint and the optimal configuration in the CI’s web

interface.

3.4.6. Step 6: Trace Checking, Anomaly Detection and Enhancement
During environment design, Infrastructure Designers and Developers can take advantage of the Trace

Checking Tool to improve the design of the previous development iteration, if any. Indeed, the Trace

Checking Tool allows them to verify whether runtime monitored data satisfies some properties. They

have to write directly in the DTSM all the properties they desire to be respected by the technologies

installed in the runtime environment. They will be notified as soon as the tool terminates its analysis.

Then, they may redesign the DTSM according to the boolean answers they receive. Here is the procedure

to perform trace checkings with the IDE:

1. Open an already existing DICE project containing a DTSM Object Diagram;

2. Open the dialog box of the trace checking tool. A form is displayed;

3. Fill the form;

4. Click the button “run”;

5. Await the notification (a yes/no result for each property) of the trace checking.

The trace checking, anomaly detection and enhancement tools are runtime-to-design tools that analyse

monitoring data and suggest improvements of models. To use the trace checking tool:

1. Load the UML Deployment Diagram (DDSM model);

2. A form is displayed where configuration arguments of TC is filled;

3. TC tool is run;

4. The user is notified whether the trace is checked (Yes/No response).

Copyright © 2017, DICE consortium – All rights reserved 34

To use the anomaly detection tool:

1. User selects AD option from DICE menu;

2. A form is displayed where arguments for AD tool are to be provided;

3. AD tool is run;

4. Model is stored on DMon platform and user is notified about success/failure and probable cause

of anomaly.

Enhancement tool aims at filling the gap between the runtime and design time by inferring the

parameters of UML models from monitoring data provided by DICE Monitoring Platform and feeding

results back into the design models to provide guidance to the developer on the quality offered by the

application at runtime. Enhancement tool mainly accesses on DICE UML model on DDSM and DTSM

levels. Enhancement tool contains two modules: DICE-FG and DICE-APR. DICE-APR contains two

sub-modules: Tulsa and APDR. Tulsa is for M2M transformation (from UML model to LQN model)

and the generated LQN model can be solved by LQN solver (e.g., LINE, lqns). APDR is for anti-patterns

detection and refactoring. Enhancement tool is integrated with DICE IDE and it also has standalone

version. To run the Enhancement tool in DICE IDE, user needs to install Matlab Compiler Runtime

(MCR) R2015a and configure the runtime environment. User also needs to download the sample

configuration files from Github page1 or create them in current project. Here is procedure to perform

Enhancement tool in DICE IDE:

1. Run DICE-FG:

a. User sets input parameters of the DICE-FG-Configuration.xml for DICE-FG;

b. Select the UML model and right click to invoke DICE-FG from a popup menu

(Enhancement Tool - > FG);

c. DICE FG parametrizes the target UML model by using statistical estimation and fitting

algorithms.

2. DICE-APR:

a. User sets input parameters of DICE-APR-Configuration.xml for anti-patterns detection

and refactoring, e.g., Anti-Patterns boundaries.

b. Select the UML model and right click to invoke DICE-APR from popup menu

(Enhancement Tool - > APR);

c. DICE-APR invokes the Tulsa to load the target DICE UML model (including Activity

diagram and Deployment Diagram) and perform the M2M transformation to generate

LQN model;

d. DICE-APR invokes APDR to solve the LQN model for APs detection and shows the

refactoring suggestions in console if AP is found.

1 https://github.com/dice-project/DICE-Enhancement-APR/tree/master/Plugin/doc/Configuration%20Files

Copyright © 2017, DICE consortium – All rights reserved 35

4. The DICE Methodology in the IDE

The DICE IDE offers the ability to specify DIAs through UML models. From these models, the

toolchain guides the Developer through the different phases of quality analysis, formal verification being

one of them.

The IDE acts as the front-end of the methodology and plays a pivotal role in integrating the DICE tools

of the framework. The DICE IDE can be used for any of the scenarios described in the methodology.

The IDE is an integrated development environment tool for MDE where a Designer can create models

at different levels (DPIM, DTSM and DDSM) to describe data-intensive applications and their

underpinning technology stack.

It initially offers the ability to specify the data-intensive application through UML models stereotyped

with DICE profiles. From these models, the tool-chain guides the developer through the different phases

of quality analysis (e.g., simulation and/or formal verification), deployment, testing and acquisition of

feedback data through monitoring data collection and successive data warehousing. Based on runtime

data, an iterative quality enhancements tool-chain detects quality incidents and design anti-patterns.

Feedbacks are then used to guide the Developer through cycles of iterative quality enhancements.

The DICE IDE is based on Eclipse, which is the de-facto standard for the creation of software

engineering models based on the MDE approach. DICE customizes the Eclipse IDE with suitable plug-

ins that integrate the execution of the different DICE tools in order to minimize learning curves and

simplify adoption.

The DICE IDE has been customized with suitable plug-ins that integrate the execution of the different

DICE tools in order to minimize learning curves and simplify adoption. Not all tools are integrated in

the same way. Several integration patterns, focusing on the Eclipse plugin architecture, have been

defined. They allow the implementation and incorporation of application features very quickly. DICE

Tools are accessible through the DICE Tools menu.

4.1. DICE Tools Menu
The IDE also provides an abstract Eclipse Preferences page that allows the user to modify these

properties. In this way, the external web server tool integration can be modified dynamically by the user

if needed.

Copyright © 2017, DICE consortium – All rights reserved 36

Example of Monitoring Tool external web service configuration.

4.2. Cheat Sheets

The IDE guides the developer through the methodology, based on tools Cheat Sheets.Cheat sheets are a

great way to guide users of your Eclipse plug-ins or Eclipse-based products through the steps they must

follow to use your software. Cheat sheets let Eclipse users view interactive tutorials from within the

Eclipse Workbench to learn how to perform complex Eclipse tasks. The DICE IDE provides cheat sheets

(https://www.eclipse.org/pde/pde-ui/articles/cheat_sheet_dev_workflow/) to guide users in using DICE

tools.

You can access to the Cheats Sheet through the Help menu, there are some generic cheat sheets for the

DICE IDE and DICE Papyrus, and specific cheat sheet for the DICE Tools.

In the figure below you can see the simulation Tool Cheat sheet as an example. The cheat sheets contain

a list of steps to follow in order to use a specific tool.

https://www.eclipse.org/pde/pde-ui/articles/cheat_sheet_dev_workflow/

Copyright © 2017, DICE consortium – All rights reserved 37

Copyright © 2017, DICE consortium – All rights reserved 38

5. Annex 1 - Privacy-By-Design Sub-Methodology
The DICE consortium advocates and supports the massive use of data-intensive technology to process

data of any source, type or structure. While, on the one hand, the DICE project did not foresee any

explicit action towards addressing the privacy-sensitive nature of considerable subsets of that data, we

are, on the other hand, aware and confident of the existence of several technologies, reference documents

and methodologies that can avail the study and support of data-intensive, private-by-design technology.

Quoting from The European Union Agency for Network and Information Security (ENISA) “Privacy

and Data Protection by Design – from policy to engineering”, privacy by design is defined as follows,

in the context of DICE:

“The explicit design decision of taking privacy into account throughout the entire engineering process

from earliest design stages to the operation and vice versa.”

For the sake of this methodological specification for privacy in DICE, we chose to focus on:

1. Supporting the design of privacy concepts and solutions at data-intensive design levels (DPIM

and DTSM, in the DICE parlance), inheriting from the state of the art;

2. Supporting the operation of privacy-by-design technology, extending the following DICE

technology:

a. DESIGN-to-DEPLOYMENT: Extending the DICE Profile and DICER tools, to Assist

privacy-policy deployment in a semi-automated fashion;

b. DEPLOYMENT-to-OPERATION: Extending the DICE DtracT and Delivery Service

tools, to Support the monitoring of said policies;

c. OPERATION-to-RUNTIME-VERIFICATION: Extending the DICE DtracT tool, to

Verify that the clauses of said policies have not been violated at runtime, and releasing

results if and only if this condition holds;

d. CLOSING-THE-LOOP: Extending the DICER and Delivery Service tools, to Reporting

privacy monitoring and verification feedback at design-time, for continuous

architecting of privacy-by-design;

In the following, we define and exemplify how the above extensions work together as a coherent whole,

and as part of the original research and practical contributions to the state of the art in privacy-by-design.

Copyright © 2017, DICE consortium – All rights reserved 39

5.1. Outline
Our approach consists of 3 continuous architecting steps:

1. allowing a developer to set ABAC access control policies on the DICE architectural models

(e.g. a UML component diagram) of a DIA;

2. propagating such policies using the DICER model-driven pipeline;

3. monitoring their validity at run-time leveraging on DICE trace-checking techniques.

Although several approaches to model-driven role-based access control exist (e.g., SecureUML, MTL

[DtracT]) we learned that a much more granular way of modeling access policies is required in the

context of Big Data. Moreover, existing approaches need to be combined with state-of-the-art trace-

checking technology (see the DICE DtracT in the previous methodology sections) to enable quick and

constant monitoring for the satisfiability of temporal-based access policies over very large system logs.

In our initial experimentations we observed that, although with several limitations and strong

assumptions, our working prototype shows promise in supporting the iterative and continuous

architecting process of offering privacy guarantees, right from the earliest phases of the software

lifecycle. Finally, discussing prototype assumptions, limitations and initial results, we conclude that the

proposed solution can serve as a starting point for future research and development. However much

more effort is still required. On these premises, we define a tentative research roadmap, by identifying

some of the key challenges to be addressed in the future.

5.2. Research Solution
Figure 1 outlines our solution architecture. The architecture comprises two main building blocks, a

modeling environment and a runtime environment.

Copyright © 2017, DICE consortium – All rights reserved 40

 Figure 1. Solution Architecture

On one hand, at design-time a user (e.g. a QA or Security engineer) defines the architectural model of a

DIA en- riched with access control policies. The automated model- driven pipeline generates from the

defined model a set of Metric Temporal Logic (MTL) formulae expressing the desired policies in terms

of temporal constraints over system events. MTL is a temporal logic with the ability to express metric,

i.e. quantitative, timing requirements.

On the other hand, the generated MTL formulae are then deployed on Trace-Checking Service, which

periodically checks over traces of events their validity, to ultimately monitor and report violations of the

defined policies. To address these periodic checks in an automated fashion, in our research solution we

leverage DICER, our DevOps tool introduced in our previous work, enabling the model-driven

continuous deployment of DIAs on the Cloud. A default DICER-specific deployment model is inferred

from the DIA architectural model using an ATL (ATLAS Transformation Language) model-to-model

transformation, to automatically deploy our runtime environment, which consists of the Trace-Checking

Service, along with all the Big Data platforms required to operate the DIA. Once the deployment is

completed, the Trace-Checking Service is initialized with the DIA architectural model along with the

generated set of MTL formulae.

Stemming from the architectural model, the Trace-Checking Service is able to identify and to locate all

the information needed for building suitable traces, so that the installed MTL formulae can be checked

over them using an appropriate trace-checker. The latter is an efficient large-scale trace-checker of MTL

formulae introduced in the DICE Trace-Checking service [DtracT], which allows us to quickly analyze

very large traces and thus to quickly monitor and report violations of granular access policies.

5.2.1. Modeling DIAs with Granular Access Control Policies
In our scenario, a QA engineer who has to perform, among the others, privacy and security analysis of

DIAs, can design, through the Modeling Environment (Top-left of Fig. 1), an architectural model of a

DIA, conforming to the underlying meta-model, whose core part is shown in Figure 2.

 Figure 2. DIA Architecture-Level Meta-model (DPIM extract).

Copyright © 2017, DICE consortium – All rights reserved 41

In this model a ComputeNode is represented as a black box containing a specific computa- tion (e.g. a

machine learning algorithm, a query, etc.) which works on a set of input Datasets to produce a set of

output Datasets. A Dataset is structured as a set of records with a number of SchemaFields. A

ComputeNode can be implemented according to different processing types (e.g. batch, streaming) and

using different Big Data middleware, e.g., Spark, Storm or Hadoop. Moreover the user can model the

DataSources providing the various Datasets. These can be SourceNodes, such as sensors or web pages,

or StorageSystems, such as Cassandra or MongoDB, which also provide a persistence service. A

ComputeNode is owned by a User, which can plays different Roles (e.g. admin, analyst, etc) within the

modeled system.

The user can then augment the obtained model with granular access control policies. All the concepts

shown in Figure 2 are specializations of the generic DIAElement concept. A Permission associates its

owner, which can be any DIAElement, with a set of ActionTypes, or operations that are accessible on a

protected element, which in turn is a DIAElement. The freedom coming from binding pairs of generic

DIAElements makes the modeling language highly flexible, since, depending on the owner and the

protected element, we can specify different types of access policies.

Permission includes two attributes for specifying its validity start and end times, giving the possibility

to set time-based access control policies, a key feature of our framework. In our solution we refer to the

specific case in which access is granted only within a certain time interval, even though the more general

MTL language can express much more elabo- rated timing requirements.

Finally by setting Properties on DIAElements, in terms of ⟨key, value⟩ pairs, we can further characterize

the owner of a Permission and its protected elements, making the policy more and more specific (i.e.

granular). For instance a ComputeNode could have the Property ⟨Location, Italy⟩, which can be used to

restrict the access based on the location of the node.

Once the modeling activities have been finished the user can activate the model-driven transformations

pipeline. First, the DICER tool can generate a default deployment model conforming to the DICER

modeling language. Essentially, DICER consumes the DIA architectural model to find all the modeling

elements that require certain platforms to be available at runtime. For instance, if there are one or more

ComputeNodes whose target technologies is Spark, an instance of the Spark execution engine has to be

available at runtime in order to execute them. The same applies for each StorageSystem containing one

or more Datasets. The output is a complete deployment model, with default configurations, representing

the runtime environment as illustrated in Figure 1. DICER can at this point automatically deploy such

model.

Second, once the runtime environment has been deployed, the next step is to initialize the Trace-

Checking Service, which takes as input the designed DIA Architectural Model and the set of generated

MTL formulae. The set of MTL formulae is generated at design time so that the user is able to validate

or even refine it before it is sent to the Trace- Checking Service. The generation of the MTL formulae

is done using a combination of a model-to-model and a model-to-text transformations, developed in

ATL and XText respectively. This second model-to-model transformation produces, from the DIA

Architectural Model, an MTLModel, i.e. a set of MTLFormulae conforming to the meta-model that we

derived from the MTL grammar.

Finally the user can send the final DIA Architectural Model and the generated set of formulae to the

running Trace-Checking Service.

5.2.2. What Happens at Runtime?

At runtime the Trace-Checking Service is responsible for monitoring and reporting back to the Modeling

Environment access control policies’ violations that might happen. By looking at the DIA Architectural

Copyright © 2017, DICE consortium – All rights reserved 42

Model, the Trace-Checking Service associates each permission (and its corresponding MTL formula) to

a Driver process.

Figure 3. DIA architectural meta-model, a sample instance.

As a black box, the role of each Driver is simply to periodically update a trace, conforming to a specific

format that can be read by the Trace-Checker, with necessary information for checking the satisfiability

of the MTL formulae (and, in turn, the access policies) assigned to the Driver. Every time the trace is

updated, the Driver also run the Trace-Checker to check if the MTL formulae are still satisfied. Finally,

if there are violations, the Driver reports them to the Modeling Environment. The periodicity of the

described process can be set by the user within the DIA Architectural Model. Each Driver conceptually

represents the ability to check specific types of permissions. For instance a Permission granting a

ComputeNode with the possibility to perform the READ action on a Dataset stored into a

StorageSystem, can be checked as long as there is a Driver installed in the Trace-Checking Service

dedicated to such kind of Permission (e.g. an application accessing a given dataset), which is able to

retrieve all the necessary information from the available information systems (e.g. system logs, database

tables, websites, etc). A different Permission could grant a User, instead of a specific application, with

privileges for reading a specific SchemaField of a Dataset, instead of the Dataset as a whole. In this

second case the Driver responsible for managing such policy at runtime will behave differently with

respect to the first one, both in gathering all the necessary pieces of information and in building the

trace. Moreover, the DIAElements involved in a given permission could be implemented using

equivalent technologies (e.g. a streaming ComputeNode could be either a Spark or a Storm application),

thus the responsible Driver should be realized in such a way as to be technology-agnostic and extensible.

If at some point the user wants to change a permission, she can re-traverse the model transformations

pipeline and re-initialize the Trace-Checking Service. In this way our solution enables continuous

architecting of DIAs in a flexible way.

5.2.3. DICE Continuous Architecting for Privacy-by-design: Example Scenario

In this section we are going to showcase our approach with a simple example, covering both the

modeling aspects and the runtime behavior. As previously stated, the proposed modeling language is

flexible enough to allow the definition of different kind of access policies, between different pairs of

modeling elements. Each type of permission need to be managed appropriately by a specific Driver

installed in the Trace-Checking Service, which also has to support the specific technologies involved in

a given permission. In particular in our scenario we wanted to check permission of the type:“applications

Copyright © 2017, DICE consortium – All rights reserved 43

running on the middleware M can execute the CRUD operation O on the table T contained in the

datastore D only during the time interval from T1 to T2”.

As previously stated, this is just one of the possible access policies that we could express. We focused

on data access since this kind of access is particularly relevant in the context of guaranteeing privacy,

that is the primary goal of our solution. Figure 3 shows the model obtained by instantiating the DIA

architectural meta-model showed in Fig. 2. In this example a single Spark ComputeNode (e.g. Spark

applications running on a Spark cluster) accesses a Dataset of web pages from a SourceNode, that is the

Wikimedia website, in order to perform various data analysis and produce aggregated data. For instance,

a DIA could produce a Dataset called LinksPerPage, containing for each webpage its external references,

that has to be stored into a StorageSystem, for instance a Cassandra cluster. The software architect

decides, by modeling an appropriate Permission, that the Spark ComputeNode is allowed to perform the

CREATE operation on the LinksPerPage Dataset only during the interval ⟨T1, T2⟩. From such a model,

the model-driven pipeline generates the following MTL formula:

Update(SparkCluster,LinksPerPage,CassandraCuster) ⇒ P[T1,T2]START

The Driver that is responsible for checking this specific type of data access permission also needs to

include Cassandra among the supported

datastores. In particular we found that

Cassandra offers the possibility to enable a

feature called Probabilistic Query Tracing,

which essentially tracks the execution of

each query. By enabling this feature we are

able to periodically ask Cassandra for a

time-ordered list of executed query, which

also reports for each query the IP address of

the VM from which the query was issued.

We can then query the DICER service to resolve the cluster such VM belongs to, e.g., our Spark cluster

rather than an- other distributed middleware available in the deployed Big Data infrastructure. By

parsing the executed queries and resolving the query sender, our Driver is finally able to write traces

like the one shown in Listing 1. By asking the Trace-Checker to verify the satisfiability of the MTL

formula over the created trace, the Trace-Checking Service can successfully evaluate and report if the

associated permission has been violated. In the provided example, assuming that (1) is instantiated with

values T1 = 15 and T2 = 20, Listing 1 violates the permission as the update event with timestamp 22

happens outside the allowed time interval.

5.2.4. Conclusion and Research Roadmap
In the previous sections we illustrated our approach to the problem of enriching the design of DIAs with

the definition of privacy policies, and we highlighted a first prototypical solution, enabling the a-

posteriori check of such policies by means of trace-checking techniques.

This section elaborates on the main challenges and possible next steps towards the improvement and

extension of the presented approach. The goal is to obtain a more complete solution to guarantee ABAC

policies for DIAs.

As highlighted in the previous sections, one of the main limitations of our approach concerns the fact

that policy violations can only be detected a posteriori by means of trace-checking. For this reason, a

key improvement would be enabling the enforcement of ABAC policies. The problem is non trivial and

needs further investigation.

Copyright © 2017, DICE consortium – All rights reserved 44

Another possible improvement in that respect consists of adding some automatic mechanisms to deal

with the detection of policy violations. For example, whenever a violation is reported by the Trace

Checking Service, the system could “react” by adopting specific countermeasures, promoting the

“continuous improvement” of the application.

One way to prevent violations is by enabling the secure deployment of DIAs. Our next step will be to

support this approach at the DICER end. On one hand we will support the deployment of access policies

at the data source level. On the other hand, we plan to support the deployment of secure datasets,

meaning that private data are stored into protected datasets, that are accessible only by high privileged

and trusted actors. The advanced version of DICER will produce deployment blueprints, that include

actionable security and privacy policies.

A next major challenge is to support the whole DIA’s development life-cycle, by extending the privacy

analysis also to the design phase, applying, for instance, a model-based formal verification approach.

Such extension would support the early detection of privacy-related design flaws and would foster the

DevOps approach, by combining design-time and runtime analysis.

Furthermore, in order to at least partially overcome a ma-or limitation of our prototype, i.e. the amount

of information from multiple sources that it has to locate and retrieve at runtime, we plan to adopt

specialised tools, such as the DICE monitoring tool (see previous sections), to collect and index some

the necessary logs and data.

In conclusion, we argue that the problem of guaranteeing data privacy in the context of Big Data

becomes critical and much more difficult to be addressed than in traditional data-intensive systems,

mainly because of a) the huge amount of sensitive data that are captured and b) the new and complex

technological landscape. This context requires new techniques to reason about data privacy, in order

improve the design of privacy-aware solutions. On one hand, it is necessary to consider privacy issues

from multiple perspective simultaneously, e.g. at the database and at the application level, and to adapt

traditional privacy techniques to the current technological context. On the other hand, data privacy needs

to be considered as a primary non-functional aspect of digital systems and privacy enhancing solutions

must become much more pervasive than in the past.

Bibliography.

[DtracT] M. M. Bersani, D. Bianculli, C. Ghezzi, S. Krsti ́c, and P. S. Pietro. Efficient large-scale trace checking using

mapreduce. In Proceedings of the 38th International Conference on Software Engineering, pages 888–898. ACM, 2016.

Copyright © 2017, DICE consortium – All rights reserved 45

ANNEX 2 - Addressing Containerisation in the DICE

Profile and DICER Tools

Containerisation technology is having a profound impact as to how software applications based on the

clouds are being architected, infrastructured, and provisioned for continued service quality. In the

context of this impact, we investigated whether the additional modelling of container technology may

further structure the infrastructure design and continuous architecting efforts sustained by the DICE

Profile and the DICER tools.

To address this challenge we operated as follows: (a) we mapped the definition of containers as concepts

to be modelled with previously existing MARTE-DAM or standard UML constructs; (b) we evaluated

the addition of transformation rules to produce the concept of containers in the context of TOSCA

infrastructure-as-code blueprint descriptions; (c) we investigated the industrial modelling and expected

usage with insight and counsel from our case-study owners in DICE.

As a result of step (a), we observed that no concept at DPIM and DTSM level can address the construct

represented by containers. Conversely, we also observed that constructs and inferences we defined and

tested in the context of PRO’s need for ad-hoc generic deployment nodes can and in fact addresses the

modelling of containers as part of DICE DDSM UML Profile. Therefore, we concluded that the DICE

DDSM profile is already able to fully support the modelling of containers as part of infrastructure

designs (DDSM).

As a result of step (b), and in continuation with our collaboration with XLAB, we structured ad-hoc

transformation rules to produce the conceptual notion of containers into full-fledged TOSCA

specifications. However, while designing such transformation rules, we observed that TOSCA YAML

CSD 1.0, upon which the current version of DICE DDSM is based, cannot support the modelling of

containers as standard concepts. Therefore we concluded that, any support to containerisation

technology in the DICE DDSM technical baseline would deviate sensibly from the DoW objective of

contributing to standards (i.e., TOSCA YAML 1.1 CSD, upcoming) with respect to Data-Intensive

Technology in the cloud. We concluded that, on one hand, transformation rules need only minor

adjustment to address containerisation at the TOSCA modelling and infrastructure-as-code level, on the

other hand, any technical extension to the DICER tool or DICE delivery pipeline would work against

our project objectives and therefore shall not be investigated further, beyond a simple proof-of-concept

experiment.

In the scope of step (b), we observed that our industrial partner PRO is exploring the usage and context

of containerisation for purposes other than data-intensive technology. Their usage is aimed at addressing

infrastructure resilience and service continuity. We conclude that further continuation down this line

should investigate the support of data-intensive resilience by means of containers in the appropriate

technical analysis WPs (WP3,WP4,WP5), hopefully with DDSM concepts and constructs.

