

Developing Data-Intensive Cloud

Applications with Iterative Quality

Enhancements

DICE Methodology

Deliverable 2.5

Copyright © 2017, DICE consortium ς All rights reserved 2

Deliverable: D2.5

Title: DICE Methodology

Editor(s): Youssef RIDENE (NETF)

Contributor(s): Joas Yannick KNOUANI, Damian A. Tamburri (PMI), Matej Artac (XLAB),

Diego Perez (ZAR), Giuliano Casale (IMP), Jose-Ignacio Requeno (ZAR),

Danilo Ardagna (PMI), Marcello Bersani (PMI), Marc Gil (PRO), Gabriel

Iuhasz (IEAT), Pooyan Jamshidi (IMP), José Merseguer (ZAR), Darren

Whigham (FLEXI), Chen Li (IMP), Ismael Torres (PRO)

Reviewers: Chen Li (IMP), Vasilis Papanikolaou (ATC)

Type (R/DEM/DEC): Report

Version: 1.0

Date: 31-July-2017

Status: Final version

Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright © 2017, DICE consortium ς All rights reserved

DICE partners

ATC: Athens Technology Centre

FLEXI: Flexiant Limited

IEAT: Institutul e-Austria Timisoara

IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA

PMI: Politecnico di Milano

PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.

ZAR: Universidad de Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European Unionôs

Horizon 2020 research and innovation programme under grant agreement No. 644869

http://www.dice-h2020.eu/deliverables/

Copyright © 2017, DICE consortium ς All rights reserved 3

EXECUTIVE SUMMARY 4

1. ACTORS OF BIG DATA PROJECTS 5

A.1. NIST Taxonomy 5

A.2. The DICE Methodology 6

2. OVERVIEW OF DICE TOO LS 8

3. SCENARIO-DRIVEN METH ODOLOGY 12

3.1. Big Data Applications Modeling 13

3.1.1. DICE UML Modeling 13

3.1.1.1. Description 13

3.1.1.2. DICE UML Modelling in Action: A Sample Scenario 14

3.1.2. DICE Deployment Modelling 16

3.2. Standalone 17

3.3. Architecture Verification, Simulation and Optimization 25

3.3.1. Step 1: Architecture Design 25

3.3.2. Step 2: Verification 26

3.3.3. Step 3: Design of the DIA Behavior 27

3.3.4. Step 4: Simulation 27

3.3.5. Step 5: Optimization 28

3.4. DevOps Delivery Lifecycle 30

3.4.1. Step 1: Deployment Design 30

3.4.2. Step 2: Delivery 31

3.4.3. Step 3: Fault Tolerance & Quality Testing 31

3.4.4. Step 4: Monitoring 32

3.4.5. Step 5: Configuration Optimization 33

3.4.6. Step 6: Trace Checking, Anomaly Detection and Enhancement 33

4. THE DICE METHODOLOGY IN THE IDE 35

4.1. DICE Tools Menu 35

4.2. Cheat Sheets 36

5. ANNEX 1 - PRIVACY -BY-DESIGN SUB-METHODOL OGY 38

5.1. Outline 39

5.2. Research Solution 39

5.2.1. Modeling DIAs with Granular Access Control Policies 40

5.2.2. What Happens at Runtime? 41

5.2.3. DICE Continuous Architecting for Privacy-by-design: Example Scenario 42

5.2.4. Conclusion and Research Roadmap 43

ANNEX 2 - ADDRESSING CONTAINERISATION IN THE DICE PROFILE AN D DICER TOOLS 45

Copyright © 2017, DICE consortium ς All rights reserved 4

Executive Summary

The objective of DICE is to reduce time to market of business-critical Data-Intensive Applications

(DIAs). DICE provides a bench of off-the-shelf tools that, if employed methodologically, enable users

to build Big Data software efficiently. For that purpose, DICE proposes and recommends scenario-

driven workflows depending on the user needs. These scenarios constitute the DICE Methodology.

In the following sections, we will first start by identifying typical actors found in Big Data software

development projects. Next, we will overview DICE tools. Finally, we will present the DICE

methodology that shows, in a scenario-driven way, how the tools can be beneficial to the actors.

Copyright © 2017, DICE consortium ς All rights reserved 5

1. Actors of Big Data Projects

A.1. NIST Taxonomy
The National Institute of Standards and Technology (NIST) published a valuable Big Data taxonomy

depicted on Figure 1. Actor symbols represent functional roles, while component boxes denote software

or hardware they create or employ. Roles are played by actors who can perform multiple roles while a

role can be played by multiple actors. From left to right Fig. 1 shows the information flow chain:

information is provided by Data Providers, digitized by Data Producers, processed by a Big Data

Application and the output of the computation is presented by Data Consumers to Data Viewers. From

top to bottom is pictured the service use chain: System Orchestrators expect some services from the Big

Data Application, which is implemented by Big Data Application Providers, with the help of Big Data

Frameworks designed by Big Data Framework Providers. The different activities of these five roles are

encompassed by security and privacy issues. Table 1 gives examples of actors for each role.

Figure 1. NIST Big Data Taxonomy

Table 1. Roles in a Big Data ecosystem according to the NIST

Role Description Example of actors

Data Provider Introduces new data into the

ecosystem.

Companies, public agencies, researchers,

scientists, internauts.

Data Viewer Utilizes the results of the Big

Data application.

Companies, public agencies, researchers,

scientists, software agents.

System Orchestrator Specifies requirements and/or

monitors their realization.

Clients, business stakeholders, project

managers, consultants, requirements

engineers.

Big Data Application

Provider

Implements requirements. Software engineers, network engineers,

security and privacy engineers,

developers.

Copyright © 2017, DICE consortium ς All rights reserved 6

Big Data Framework

Provider

Provides infrastructures,

computational resources,

networks, operating systems,

development platforms, and/or

scalable storage or processing

frameworks.

Cloud providers, companies, open source

communities, system administrators,

operators.

Three Big Data components interact with the Big Data application: Data Producers, Big Data

Frameworks and Data Consumers. Table 2 displays some examples for each category.

Table 2. Big Data components

Component Description Examples

Data Producer Converts information provided by

Data Providers into digital data that

can be processed by computers.

Sensors, cameras, Web browsers,

graphical user interfaces.

Big Data Framework A specific technology stack

providing abstractions to store query

and/or analyse data.

Apache Cassandra, Apache Hadoop,

Apache Spark, Apache Storm.

Data Consumer Presents data computed by the Big

Data Application to Data Viewers in

a form that is understandable and

usable by them.

Graphical user interfaces, Web sites.

Hereafter, the roles of Big Data Application Provider and Developer are considered to be the same. The

appellation ñBig Dataò implicates that data produced by Data Producers is too big, too diverse and

arrives too fast to be efficiently handled by traditional non-scalable database management systems.

A.2. The DICE Methodology
The DICE Methodology mixes three fruitful and influential approaches to software development:

DevOps, Service Orientation and Model-Driven Engineering.

In a DevOps process, Developers build and test software in an isolated, so-called, development

environment, while Operators are in charge of the targeted, final, runtime environment. The latter

comprises entities planned to interact with the program: operating systems, servers, software agents,

persons and so forth. Operators are responsible for, amongst other things, preparing the runtime

environment, controlling it and monitoring its behavior, especially once the application is deployed into

it. For instance, operators have to ensure the presence in the runtime environment of every Big Data

Framework necessary for the application to work. Nowadays, the trend is to wrap frameworks into

services available at definite combinations of an IP address and a port number. To use a service, the

application generally has to uphold a specific communication protocol (e.g., HTTP) on top of which an

application programming interface (API) enables it to trigger well-specified service actions. The Big

Copyright © 2017, DICE consortium ς All rights reserved 7

Data Application can itself be implemented as a service to be included in the runtime environment of

another application. Figure 2 is an adjustment of the NIST Big Data taxonomy to DevOps.

Figure 2. A DevOps Big Data Taxonomy

A contract is an artefact on which two parties agree after a comprehensive discussion. There is a contract

among System Orchestrators, namely between clients and project managers. There is also a contract

between System Orchestrators and Developers, because the latter has to implement what the former,

after a careful requirement analysis, has established as software specifications. These specifications may

be written in a textual document or, better, given as UML or mathematical formal models. In Model-

Driven Software Engineering (MDSE), Developers iteratively refine these contracts/models with

implementation details until they can generate a source code. The DICE Methodology proposes to

extend this approach between Developers and Operators. In that context, from Operatorsô point of view,

contracts/models set down the frameworks they must make available in their runtime environment to

the application of Developers. For instance, a contract/model may ask them to install a Cassandra server.

On the other hand, from Developersô point of view, contracts/models formulate the effects; they

guarantee their application shall have on the runtime environment of Operators. For instance, they may

ensure that their application streams to Cassandra a data flow that does not exceed a certain velocity.

Contracts/models between System Orchestrators and Developers, and contracts/models between

Developers and Operators, are iteratively synchronously refined until both the program and its matching

runtime environment can be simultaneously generated. This workflow, where Developers and Operators

collaborate and cooperate to reach an agreement on the runtime environment, complies fully with the

DevOps culture.

Before detailing further the DICE Methodology, the next section overviews the DICE tools for Big Data

software development.

Copyright © 2017, DICE consortium ς All rights reserved 8

2. Overview of DICE Tools
This section is a summary of Deliverable D1.4 (http://www.dice-h2020.eu/deliverables/) in which DICE

tools are described in detail.

The DICE project is based on 14 tools: the DICE IDE, the DICE/UML profile, the DICE Rollout tool

and the remaining 11 tools respectively for simulation, optimization, verification, monitoring, anomaly

detection, trace checking, enhancement, quality testing, configuration optimization, fault injection,

repository management and delivery.

Some of the tools are design-focused while some are runtime-oriented. Finally, some have both design

and runtime aspects. Table 3 outlines the tools mapping them to this categorization scheme. All of the

tools relate to the runtime environment. In other words, there is no tool that supports the model-driven

development of application logic behind a Big Data job, e.g., a streaming job for Apache Storm such as

the one reported in the ñBig Data Applications Modellingò Section.

Table 3. DICE tools

 DICE tools

Design ǒ DICE/UML Profile

ǒ DICER

ǒ Simulation

ǒ Optimization

ǒ Verification

Runtime ǒ Monitoring

ǒ Quality Testing

ǒ Fault injection

Design-to-runtime ǒ Delivery

Runtime-to-design ǒ Configuration optimization

ǒ Anomaly detection

ǒ Trace checking

ǒ Enhancement

General ǒ DICE IDE

Design tools operate on models only, these either being software engineering models based on UML or

quantitative models for performance/reliability assessment or verification. The DICE/UML profile is a

UML-based modeling language allowing its users to create models of the data-intensive application

arranged across three levels of abstraction: Platform-Independent, Technology-Specific and

Deployment-Specific.

The DICE Platform-Independent Models (DPIM) specify, in a technology-agnostic way, the types of

services a Big Data software depends on. For example: data sources, communication channels,

processing frameworks and storage systems. Designers can add quality of service expectations such as

performance goals that a service must meet in order to be useful for the application. More details can be

found in http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-

quality-abstractions-Final-version.pdf.

http://www.dice-h2020.eu/deliverables/
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-abstractions-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/02/D2.2_Design-and-quality-abstractions-Final-version.pdf

Copyright © 2017, DICE consortium ς All rights reserved 9

DICE Technology-Specific Models (DTSM) are refinements of DPIMs where every possible

technological alternatives are evaluated until a specific technological design choice is made and

rationalised. For instance, Apache Kafka can be selected as a communication channel, Apache Spark as

a processing framework, and Apache Cassandra as both a data source and a storage system. DTSMs do

not settle infrastructure and platform options. These are resolved in DICE Deployment-Specific Models

(DDSM).

DDSMs elucidate deployments of technologies onto infrastructures and platforms. For instance, how

Cassandra will be deployed onto any private/public Cloud.

Let us now describe the tools.

ǒ The verification tool allows the DICE developers to automatically verify whether a temporal

model of a DIA satisfies certain properties representing the desired behavior of the final

deployed application. The formal model, that is obtained from the DTSM diagram, is an

abstraction of the running application implemented with a specific technology. For each

technology considered in DICE, there is a suitable (class of) temporal models allowing for the

assessment of specific aspects of the applications which are captured by the temporal properties

that the developer can verify.

ǒ The simulation tool allows to simulate the behaviour of a data intensive application during the

early stages of development, based on the DPIM specification. It relies on high-level

abstractions that are not yet specific to the technology under consideration.

ǒ Differently from the simulation tool, the optimization tool focuses on the DTSM, and relies on

separate simulation capabilities to determined an optimized deployment plan in order to

minimize cost subject to quality-of-service constraints (e.g., identifying the public cloud

provider target for the deployment and the detailed configuration in terms of virtual machine

instance type and their number).

ǒ The DDSM model construction and its TOSCA blueprint counterpart is aided and automated

by means of an additional tool called DICE Deployment Modelling. DICE Deployment

Modelling in particular carries out the necessary automation to build an appropriate and well-

formed TOSCA blueprint out of its DTSM modelling counterparts.

In contrast to the design tools, the runtime tools examine or modify the runtime environment directlyð

not its models.

ǒ The monitoring tool collects runtime metrics about the components present in a runtime

environment.

ǒ The quality testing tool and the fault injection tool respectively inject workloads and force

failures into the runtime environment; for instance, the fault injection tool shutdowns some

computational resources in order to test the application resilience.

Some tools cannot be unambiguously classified as design or runtime tools because they have both design

and runtime facets.

ǒ The delivery tool is a model-to-runtime (M2R) tool that generates a runtime environment from

a DDSM.

ǒ The configuration optimization, anomaly detection, trace checking and enhancement tools are

all runtime-to-model (R2M) tools that suggest revisions of models of the runtime environment

according to data gathered by the monitoring tool. As opposed to the optimisation tool which is

entrusted with optimising cost and resource consumption based on mathematical abstractions,

Copyright © 2017, DICE consortium ς All rights reserved 10

the configuration optimization tool analyses the infrastructure configuration parameters given a

certain time horizon and returns optimal values for said infrastructural elements in a DDSM

through experimentation on the deployed instance of the application.

ǒ Finally, the anomaly detection, trace checking and enhancement tools analyse monitoring data.

The first detects anomalous changes of performance across executions of different versions of

a Big Data application. The second checks that some logical properties expressed in a DTSM

are maintained when the program runs. The third searches anti-patterns at all DICE abstraction

levels (DPIM, DTSM or DDSM).

Application codes, models and monitoring data are saved in a sharable repository, and most tools can

be invoked directly through the DICE IDE (Figure 3).

Figure 3. DICE ecosystem

Table 4 below summarises the UML/DICE diagrams each tool operates on.

Table 4. UML diagrams handled by the DICE tools.

DICE tool Input UML diagram Profile level

Simulation Activity

DPIM, DTSM

Sequence

Deployment

Copyright © 2017, DICE consortium ς All rights reserved 11

Verification Class DTSM

Trace checking Deployment DDSM

Enhancement

Activity

DTSM, DDSM
Deployment

Optimization Activity

DTSM, DDSM
Deployment

Monitoring Deployment DDSM

Deployment Modelling

(DICER)

Deployment DTSM, DDSM

Delivery tool Deployment DDSM

Quality testing Deployment DDSM

Configuration optimization Deployment DDSM

Anomaly detection Deployment (indirect) DTSM (indirect)

Fault injection Deployment DDSM

The DICE Knowledge Repository provides further information about each tool, including tutorials,

installation guidelines, videos and getting-started documentation: https://github.com/dice-

project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository.

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository

Copyright © 2017, DICE consortium ς All rights reserved 12

3. Scenario-Driven Methodology
The DICE methodology adapts to the purpose of the user. Although DICE supports and advocates a

holistic and integrated Model-Driven approach to Big Data software development, it also acknowledges

that some users do not, and are not willing to practice refinement of technology-independent models

into technology-specific and deployment-specific models. Particularly those looking for rapid

prototyping functionalities. Therefore, in the following, we consider the use of DICE tools in four use

case scenarios that illustrate alternative ways to exploit the DICE framework:

1) Big Data Application Modeling. The user of DICE can simply design his/her Big Data

Application and s/he is willing to use an arbitrary subset of tools of the DICE framework, as

long as it fulfills the needs. This modeling can be made for various purposes: (re-)

documentation, architecture validation, etc.

2) Standalone. The user has identified a specific need which can be managed using a specific

DICE tool. For example, if the user has a running Big Data application and needs to gather

runtime metrics, then s/he is primarily interested to use the monitoring tool. In this scenario, the

user will only have to follow a tutorial or read the documentation of this tool.

3) Architecture Verification, Simulation and Optimization. A development team has to

implement a software that fulfills a list of requirements. Before starting the implementation, the

team wants to use the performance and reliability engineering tools available in DICE to predict

behaviors and cost for different implementation plans.

4) DevOps. A team of Developers has built a software and wants to automate (1) the creation of

a matching runtime environment, (2) the deployment of their program into it and (3) the

monitoring of its behavior in reaction to the actions performed by their application in a tight

collaboration with Operators.

Copyright © 2017, DICE consortium ς All rights reserved 13

3.1. Big Data Applications Modeling
Nowadays Modelling has become a standard in software engineering. In fact, for architecture decision

documentation, code generation or even simply for (re-)documentation purposes, Software

Architects/Engineers build models using their favorite modeling environment and consistently with their

specific industrial notations.

Beyond quality assessment, deployment automation, simulation, etc., DICE provides, first and foremost,

a modeling environment for Big Data applications. These modeling capabilities are possible thanks to

two different and complementary approaches: UML Profiles and a DSML (Domain Specific Modeling

Language), that is, the modelling language embedded in DICEôs own deployment modelling and

automation tool, DICE Deployment Modelling . The following sections elaborate both approaches and

highlight the characteristics of the modelling perspective, pointing the reader to further details in the

knowledge repository.

3.1.1. DICE UML Modeli ng

3.1.1.1. Description
As aforementioned, the DICE ecosystem offers a plethora of ready-to-use tools to address a variety of

quality issues (performance, reliability, correctness, privacy-by-design, etc.). In order to make profit of

these tools, the user has to build specific UML diagrams enriched with stereotypes and tagged values

brought by the DICE Profiles. The DICE profiles tailor the UML meta-model to the domain of DIAs.

For example, the generic concept of Class can become more specific, i.e., to have more semantics, by

mapping it to one or many concrete Big Data notions. Besides the consistency of the model remains

guaranteed thanks to the meta-models behind the UML standard. In essence, the role of these profiles is

twofold:

1. Provide a high level of abstraction of concepts specific to the Big Data domain (e.g., clusters,

nodesé) and to Big Data technologies (e.g., Cassandra, Sparké);

2. Define a set of technical (low level) properties to be checked/evaluated by tools.

The methodological steps entailed by the activities above encompass at least the following activities:

a. Elaborate a component-based representation of a high-level structural architecture view of the

data intensive application (i.e., a DPIM Component Diagram) - in the scope of DICE, this is

done using the simple and familiar notations of a UML profile whence the user draws the

stereotypes and constructs necessary to specify his/her Data-Intensive Applications nodes

(source node, compute node, storage node, etc.);

b. Augment the component-based representation with the property and non-functional

specifications concerning that representation;

c. Refine that very same component-based representation with technological decisions - the

decisions themselves represent the choice of which technology shall realise which data-

intensive application node. For example, a <<CassandraDataStore>> conceptual stereotype is

associated with a <<StorageNode>> in the DPIM architecture view;

d. Associate several data-intensive technology-specific diagrams representing the technological

structure and properties of each of the data-intensive nodes. These diagrams essentially

ñexplodeò the technological nodes and contain information specific to those technological

nodes. For example, a <<StorageNode>> in the DPIM architecture representation can become

a <<CassandraDataStore>> in its DTSM counterpart ; finally, the DTSM layer will feature yet

another diagram, more specifically, a data-model for the Cassandra Cluster. These separate

technology-specific ñimagesò serve the purpose of allowing data-intensive application analysis

and verification;

Copyright © 2017, DICE consortium ς All rights reserved 14

e. Elaborate a deployment-specific component deployment diagram where the several technology

specific diagrams fall into place with respect to their infrastructure needs. This diagram belongs

to the DDSM layer and contains all necessary abstractions and properties to build a deployable

and analysable TOSCA blueprint. Following our <<CassandraDataStore>> example, at this

level, the DTSM <<CassandraDataStore>> node (refined from the previous DPIM

<<StorageNode>> construct) is finally associated with a DDSM diagram where the

configuration of the cluster is fully specified (i.e., VMs type and number, allocation of software

components to VMs, etc.);

f. Finally, once the data-intensive deployment-specific component diagram is available, DICE

deployment modelling and connected generative technology (DICE Deployment Modelling)

can be used to realise a TOSCA blueprint for that diagram.

In summary, Designers exploiting DICE UML modelling for their Data-Intensive applications will be

required to produce (at least) one component diagram for their architectural structure view (DPIM) and

two (or more) diagrams for their technology-specific structure and behavior view (DTSM), taking the

care of producing exactly two diagrams (a structural and a behavioral view) for every technological

node in their architectural structure view (DPIM) as long as that requires analysis. DICE UML

modelling does not encourage the proliferation of many diagrams, e.g., for the purpose of re-

documentation - DICE focus is on quality-aware design and analysis of Data-Intensive applications.

Therefore, DICE UML modelling promotes the modelling of all and only the technological nodes that

require specific analytical attention and quality-awareness. Finally, Designers will be required to

refine their architectural structure view with deployment-specific constructs and decisions.

For example, for a simple WordCount application featuring a single Source Node, a single Compute

Node and a single Storage Node, all three requiring specific analysis and quality improvement.

Therefore, Designers are required to produce (in the DICE IDE) a total of 7 diagrams: (1) an architectural

structure view of the general application, containing three nodes (Storage, Compute and Source) along

with their properties and QoS/QoD annotations; (2) a structural and behavioral technology-specific view

for every technology that requires analysis - let us assume a class diagram and an activity diagram for

Storage, Compute and Source Node technologies respectively. Finally, the diagram produced in (1) is

required to be refined with appropriate deployment-specific constructs, mappings and annotations.

The next section provides a realistic usage scenario of the above modelling procedure for the purpose

of clarifying the DICE modelling process.

For more details (tutorials, documentation, examples, etc.), on the DICE profile and the connected

technologies the reader may find additional elaborations on the DICE Knowledge Repository at:

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-

Repository#profile.

3.1.1.2. DICE UML Modelling in Action: A Sample Scenario
As a toy example, we refer to a simple Storm application of our own device called WikiStats which takes

as input a compressed stream of 20GB web pages in XML containing snapshots of all the articles in

Wikipedia. The application then processes the stream to derive article statistics. Letôs assume we are

interested initially in deploying our application as soon as possible rather than analyse its behavior;

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#profile
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#profile

Copyright © 2017, DICE consortium ς All rights reserved 15

Step a: DPIM Model - the DPIM model for our toy example is a component-based aggregation of two

nodes: a compute node (entrusted with processing wiki pages) and a storage node (entrusted with storing

and presenting results). For the sake of space we do not present this simplistic DPIM layer.

Step b and c: DPIM Model Refinement - at this point the DPIM model is used as a basis to refine DIA

modelling with appropriate technological decisions; in our case, the DPIM component diagram

components representing DIA nodes are stereotyped with additional technology-specific stereotypes, in

our case that is the <<StormApplication>> stereotype for the only compute node in the DPIM; this

signifies that the component is established to be a Storm Compute Node. Similarly, the DPIM

component diagram component representing the storage node is stereotyped with an additional

stereotype, that is, the <<CassandraDataStore>> stereotype; this signifies that the component is

established to be a Cassandra cluster.

Step d: DTSM Model Creation - at this point, we need to ñexplodeò the two nodes in our DPIM refined

with technological decisions - all we need to do is to create a new class diagram and elaborate further

on the technical-detail internals for both nodes (e.g., Storm topology details for the

<<StormApplication>> and schemas for the <<CassandraDataStore>>). As a consequence, we prepare

a new class diagram where a new class is created with the <<StormApplication>> stereotype and is

immediately associated with bolts and spouts required in WikiStats; similarly, data schemas are prepared

for bolts and linked to a <<CassandraDataStore>> class of which we assume no need for further internal

details. The resulting diagram should look similar to the following figure.

Step e: DDSM Model Creation - at this point, the technologies used in the DTSM are mapped to

physical resources and automated rollout is applied to obtain a deployable TOSCA blueprint (see DICE

Delivery Service for additional deployment features). DDSM creation at this step involves creating or

refining a UML Deployment Diagram with DDSM Profile Stereotypes. Continuous OCL-assisted

modelling can be used to refine the UML Deployment diagram in a semi-automated fashion. In a typical

scenario, the DICE user randomly selects a technology from the DTSM diagram and instantiates a

Deployment Node to apply that technology stereotype on it. Subsequently, the DICE user can check the

diagram for satisfaction of DICE-DDSM OCL constraints, addressing any missing dependencies for that

technology as well as any missing deployment specifications (e.g., additional nodes, firewalls, missing

characteristics and attributes, etc.). The same process shall be replicated by the DICE user until all the

technologies in the DTSM are modelled at the DDSM level as well. Finally, a deployment artifact

representing the DIA runnable instance itself shall conclude the modelling at the DICE DDSM layer.

The subsequent section, elaborates on how to prepare a deployment model independently and regardless

of the DICE DPIM and DTSM diagrams if the DICE user is so inclined or required. DICE Deployment

modelling after this point relies on a domain-specific language (DSL) specifically designed for

independent DDSM modelling.

Copyright © 2017, DICE consortium ς All rights reserved 16

3.1.2. DICE Deployment Modelling
DICE Deployment Modelling is a complete environment (editor, palette, properties view, etc.) built

upon an extensible set of Big Data specific-modeling languages (Storm, Hadoop, Cassandra, Zookeeper

and Spark). Each such language captures the necessary deployment software nodes, concepts and

restrictions that every big data technology addressed in DICE is composed of, along with their

configuration characteristics (e.g., dependencies) and parameters (e.g., required and provided

properties) as well as any dependencies on other nodes and technologies. This package structure is

adopted to achieve modularity and ease DICE Deployment Modelling extension with new technologies.

The main benefits of using the DICE Deployment Modelling are related to the rapid design of an

execution environment using concrete concepts. In a user-friendly approach, the users can employ the

Eclipse Ecore modelling tool to create a deployment model (DDSM), taking advantage of the DICE

profile.

For example, in the scope of re-documentation scenarios, software Architects or infrastructure Engineers

may need to focus on re-documenting their architecture views - similarly, Architects may want to use

DICE Deployment Modelling to elaborate on those architecture views using concepts and relations from

well-known and established big data technologies (or many other concepts typical in infrastructure

design for that matter, such as virtual machines, execution bindings, etc.).

DICE Deployment Modelling Modelling takes up at step d of the procedure highlighted above and

allows to design a DDSM in a completely reserved environment specific for deployment details which

can easily be extended to desired deployment-specific technologies and packages. DICE Deployment

Modelling DDSM models are equivalent to DICE DDSM UML Profiles. For example, a diagram for

the WikiStats application would look something like the following figure.

In turn, this DICE Deployment Modelling DDSM model can immediately be produced into a fully

deployable TOSCA blueprint at the click of a button and sent for deployment, at the same time, using

the built-in deployment service and delivery tool part of DICE.

DICE Deployment Modelling usage is encouraged when stakeholders and roles require quick and

painless deployment of their own DIA (e.g., to evaluate initial performance figures and/or execution

traces for further analysis). This notwithstanding, DICE Deployment Modelling may also be used in

combination with the aforementioned modelling procedure, where step d is executed directly within the

DICE Deployment Modelling instead of the DICE UML profile.

Copyright © 2017, DICE consortium ς All rights reserved 17

3.2. Standalone
The standalone usage mode is straightforward and is closely related to the built-in tools of the DICE

IDE. For such scenario, the user is guided through some steps using Eclipse dialog windows. Since

many DICE tools use the same input models, the user may run on the same model more than one tool

and analysis. For example, the Configuration Optimization tool may be used automatically with the

same input that the Deployment tool uses.

Some tools can be used outside the DICE IDE without using the modeling features (e.g. using command

line). For such usage, the user may go through the guides available at: https://github.com/dice-

project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository.

The rest of this section is devoted to explaining the necessary details to run the DICE analysis tools in

standalone mode. The use of tools, which are intrinsically and inherently linked to the use of the DICE

IDE (i.e., the design tools such as the UML profile, or the DICE Deployment Modelling tool), do not

appear as standalone tools since their use as standalone in the scope of DICE only makes sense in

continuity with the use of some other analysis tools - however, for further details on these the reader

may refer to the DICE knowledge repository in the link above.

ǒ Simulation

The Simulation Tool is able to simulate the behavior of a DIA to assess its performance and reliability.

This tool uses Petri net models for prediction. The DIA is defined with behavioral UML diagrams, in

particular Sequence or Activity diagrams that are complemented with the Deployment diagram. These

diagrams are enhanced within the DICE profile. The DIA can be defined both at DPIM level or at DTSM

level using a particular technology (e.g., Storm, Spark). The internal utilization of Petri net models is

transparent to the DICE user, thus releasing his/her from any knowledge of the formal model.

The output of the simulation is the evaluation of a set of performance and reliability metrics for early-

stage quality assessment. For example, the users can obtain, as performance results, the expected mean

response time or throughput of the DIA, or the utilization of the resources assigned to the application.

As reliability results, users can obtain failure probabilities for the application execution, or the mean

time to failure of DIAs that execute continuously along time.

A simulation is performed considering a performance scenario. A performance scenario can be modelled

by either a sequence (SD) or an activity diagram (AD). While the SD focuses on the message exchange

between components (lifelines), the AD focuses on the actions performed by the components

(partitions). The deployment (DD) is used to specify both the availability of resources in the system,

e.g., number of cores, and how the interacting components (lifelines in the SD, partitions in the AD) are

mapped onto physical nodes.

More details are available at : https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-

Knowledge-Repository#simulation.

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#simulation
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#simulation

Copyright © 2017, DICE consortium ς All rights reserved 18

ǒ Optimization

The optimization tool allows the DICE Architect to assess the performance and minimize the

deployment cost of data-intensive applications against user-defined properties, in particular meeting of

service-level agreements (SLAs). The input is: (i) a set of DICE DTSM models (one for every candidate

target environment, i.e., virtual machine type at a given of provider), (ii) a partially specified DICE

DDSM Deployment model and the SLAs to be achieved . The optimization consists in finding the less

expensive cluster configuration able to guarantee the application jobs to be executed before a user

defined deadline (for MapReduce or Spark applications) or such that the cluster utilization is below a

given threshold (for Storm). The Architect can analyze the application behavior under different

conditions. For example, he/she can study the pros and the cons of public clouds versus private cloud in

terms of execution costs. The output of the optimization tool is a DICE Deployment model that

corresponds to the optimal solution found and which can then automatically deployed by the DICE

Deployment tool. The usage flow of the tool is reported in the figure below. Given the set of candidate

solutions and SLAs, if a feasible solution cannot be found or the cost is not within a budget constraint,

the architecture or SLAs need to be revised. Vice versa, the the DIA can be deployed to the target

execution environment specified by the minimum cost deployment model identified by the optimization

tool.

For more details, please visit :

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-

tool.

ǒ Verification

DICE Verification Tool allows Designers to evaluate their design against user-defined properties, in

particular safety ones, such as reachability of undesired configurations of the system which might be

caused by the effect of node failures or by the incorrect design of timing constraints. The verification

process allows the DIA Designer to perform verification tasks using a lightweight approach. DICE

Verification Tool fosters an approach whereby formal verification is launched through interfaces that

hide the complexity of the underlying models and engines. These interfaces allow the user to easily

produce the formal model to be verified and the properties to be checked without the need of high

technical expertise. To promote verification, the user annotates the DPIM elements undergoing

verification with the (class of) property that must be validated. For example, if the property is ñqueue

boundednessò then the user annotates with a label ñsafety-queue boundednessò all the computational

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#optimization-tool

Copyright © 2017, DICE consortium ς All rights reserved 19

nodes that require the validation of that property. In the DTSM, the generic annotations stated at the

DPIM, requiring the verification of a property, can then be further enriched with more specific

annotations that are related to the class of property to assess and to the technology employed to

implement the node. Those specific annotations provide a value to all the necessary parameters that are

needed to carry out the verification (for instance, the time required by tasks to process a message).

If the verification task fails then the Designer can refactor the design of the DIA. The outcome of the

verification phase is a counterexample, i.e., an execution violating the property in analysis, that can help

the designer in identifying the cause that originates the undesired behavior.

A more detailed description is available at the following link: https://github.com/dice-project/DICE-

Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification.

ǒ Monitoring

DICE monitoring platform (DMon) collects, stores, indexes and visualizes monitoring data in real-time

from applications running on Big Data frameworks. DMon is able to monitor both the infrastructure

(memory, CPU, disk, network etc.) and multiple Big Data frameworks currently supported being Apache

HDFS, YARN, Spark, Storm and MongoDB. The core components of the platform (Elasticsearch,

Logstash, Kibana) and the node components running on the monitored cluster are easily controlled

thanks to a Web-based user interface that backs up the DMon controller RESTful service. Visualization

of collected data is fully customizable and can be structured in multiple dashboards based on the user

needs, or tailored to specific roles in your organization, such as Administrator, Quality Assurance

Engineer or Software Architect.

For more details, please visit : https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#monitoring-tool.

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#verification
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#monitoring-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#monitoring-tool

Copyright © 2017, DICE consortium ς All rights reserved 20

ǒ Quality Testing

This is a suite of tools to help stress testing Data-Intensive Applications based on technologies such as

Storm, Kafka and Spark. The tool allows Developer to run basic load tests on the application throughout

the development cycle in order to support the activities of configuration optimization and anomaly

detection across software versions.

The Quality Testing tool takes as an input initial dataset provided by the user and test scenario

characteristics (e.g. load injection rate, volume and duration) from which it generates the application

load and injects it into the application. The workload generation is handled by a module called QT-GEN,

whereas the injection of the workload is enacted by a module called QT-LIB. The tool output is a

measure of the application behaviour (e.g., throughput) that is visualized by the Continuous Integration

tool. These dependencies are presented as diagrams (and traces) that can be obtained and visualised in

DICE Monitoring tool.

The tool requires a running DIA, which in a standalone scenario needs to be set up using the Delivery

tools. This, in turn, uses DDSM as an input. The QT-LIB code is added to the application itself since it

is provided as a Java library part of the DICE IDE. The input trace needs to be packaged within the DIA

jar and it is assumed to be in JSON format. When using a realistic trace is not relevant for the test, an

alternatively instantiation of QT-LIB consists in requiring the tool to generate random data of the

appropriate size, which does not require to package within the DIA jar the data to be played. QT-LIB

offers example templates to automatically halt the test experiment based on monitoring data obtained

by the DICE Monitoring Platform.

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool.

ǒ Fault Injection

The DICE Fault Injection Tool (FIT) has been developed to generate faults within Virtual Machines.

The FIT provides the ability for a user to generate faults at the VM level. The purpose of the FIT is to

provide VM owners with a means to test the resiliency of an application target. With this approach, the

Designers can use robust testing, showing where to harden the application before it reaches a commercial

environment and allows a user/application owner to test and understand their application design/

deployment in the event of a cloud failure or outage. Thus allowing for the mitigation of risk in advance

of a cloud based application deployment. This tool will assist Developers and Cloud Operators in

offering their best services to all customers and simplify testing within the DevOps paradigm.

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#quality-testing-tool

Copyright © 2017, DICE consortium ς All rights reserved 21

1. User selects fault by GUI/command line;

2. Fault is started on VM;

3. Required tools installed and configured;

4. Fault Starts and is logged;

5. Fault Completes and status of run is recorded in log.

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool.

ǒ Delivery

DICE delivery tools enable a simple way to continuously deploy Data-Intensive Applications on a

testbed. Starting up Big Data clusters for running applications such as Storm topologies or Spark jobs is

a matter of executing a TOSCA YAML document. The tools consist of a deployment modelling tool

and a deployment service tool in cascade to the TOSCA-based deployment modelling tool. The

deployment service is complete with a web user interface and command line interface. As a part of the

delivery tools we also provide the DICE technology library that contains the configuration and

deployment recipes for the supported Big Data services.

In their standalone usage mode, the tools can be used for experimenting with various setups of Big Data

technologies without the need to spend effort on manually installing and configuring the cluster. The

users can create throw-away clusters for fast prototyping, or persist the ones that prove useful in the

form of a DDSM or its equivalent, the TOSCA blueprint, which works as a versionable description of

the configuration. We have also designed the tools to work well in a Continuous Integration workflow.

The DICE delivery tools have a setup and configuration phase, when Administrator first boot-straps the

DICE Deployment Service (along with Cloudify) as the support service for the test-bed. This phase also

includes assigning input parameters that are specific to the platform hosting the test-bed. The

configuration phase is a one-time (or at worst a very rare) operation.

A more frequent operation is creation of the deployment model of the DIAs. The users use the IDE to

create a DDSM either using Eclipse Ecore modelling tool to create UML profiled-Deployment Diagram

via the DICE Profile, or a specific TOSCA infrastructure diagram created directly within DICE

Deployment Modelling. Subsequently, the DICE Deployment Modelling tool transforms DDSM into

OASIS TOSCA blueprints represented as YAML documents.

The main and certainly the most frequent interaction with the DICE delivery tool is deploying the DIAs

according to their deployment diagrams. The users first choose or create a virtual deployment container

as a destination of a deployment at the DICE Deployment Service. In the DICE IDE, they select the

virtual deployment container and the YAML blueprint, and then submit the deployment. In the IDE,

they can then monitor the status of the deployment (e.g., preparing to install, installing, and error).

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#fault-injection-tool

Copyright © 2017, DICE consortium ς All rights reserved 22

An expected outcome is a new runtime of the DIA in the test bed. Depending on the blueprint, the

dynamic (output) parameters for the DIA then become available (e.g., URLs of the deployed service).

The users can then proceed to using, testing or experimenting with the DIA runtime.

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#delivery-tool.

ǒ Configuration Optimization

The Configuration optimization (CO) tool automatically tunes the configuration parameters of Data-

Intensive Applications. These are developed with several technologies (e.g., Apache Storm, Hadoop,

Spark, Cassandra) each of which has typically dozens of configurable parameters that should be

carefully tuned in order to perform optimally. CO tool enables end-users of such application to auto-

tune their application in order to get the best performance. CO is integrated with DICE delivery tools

(including deployment service and continuous integration) as well as DICE monitoring platform.

The deployment diagram (DDSM) for CO is a source of the initial configuration values, which are the

starting point for the optimization. In other respects, the CO passes the deployment diagram (actually

its transformation, the TOSCA blueprint) to the Delivery tool. The outcome is a new set of configuration

values (as a collection of ñparameter name: valueò pairs or an updated TOSCA blueprint), which could

be used in an enhanced DDSM.

For more details, please visit: https://github.com/dice-project/DICE-Knowledge-

Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool.

ǒ Anomaly Detection

The anomaly detection (AD) tool reasons on the base of black box and machine learning models

constructed from the monitoring data. In order for models to be able to detect not only point anomalies

but also contextual anomalies, the tool will select a subset of data features from the Monitoring Platform

to train and validate a predictive model, which is later stored in Monitoring Platform itself. The

predictive models are then used to detect contextual anomalies in real-time monitoring data streams. A

second use case supported by the anomaly detection tool is the analysis of monitoring data based on two

different versions of DICE application, thus detecting anomalies introduced by latest code changes.

In essence, during supervised anomaly detection, the user has to define a training set with labelled data.

This means that the query issued by the AD tool to the monitoring platform will automatically generate

https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#delivery-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#delivery-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool
https://github.com/dice-project/DICE-Knowledge-Repository/wiki/DICE-Knowledge-Repository#configuration-optimization-tool

