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Executive summary

Data-intensive applications (DIAs) and the Big Data assets these manipulate are key to industrial
innovation. However going data-intensive requires much effort not only in design, but also in system/in-
frastructure configuration and deployment - these still happen via heavy manual fine-tuning and trial-
and-error.

In the scope of this deliverable, we outline abstractions and automations that support data-intensive
deployment and operation in an automated DevOps fashion, The sum of these abstractions and automa-
tions are realised in the form of DICER, which stands for “Data-Intensive Continuous Engineering and
Rollout". DICER is an automated tool enabling fast prototyping of DIAs and their deployment in a
production-like environment via model-driven Infrastructure-as-Code. DICER is a result of the joined
WP2-WP5 effort over task T2.3 whose goals are to provide, on one hand, complete and coherent deploy-
ment abstractions to support precise and rigorous infrastructure design and, on the other hand, automa-
tions to build fully deployable Infrastructure-as-code blueprints expressed in TOSCA.

To address these objectives, DICER allows to: (a) express the deployment of DIAs on the Cloud, us-
ing Unified Modelling Language (UML); (b) automatically generate DIA-specific infrastructure blueprints
conforming to the TOSCA (Topology and Orchestration Specification for Cloud Applications) standard
and (c) 1-click deploy them in the cloud using a DICER-customised fork of the Cloudify open-source
orchestration engine. Evaluating DICER in 3 medium real-life industries we conclude that it does hasten
up to 70% the work of prototyping DIAs in the cloud.
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Glossary

DICE Data-Intensive Cloud Applications with iterative quality enhancements
IDE Integrated Development Environment
MDE Model-Driven Engineering
UML Unified Modelling Language
OCL Object-Constraint Language
DICER Data-Intensive Continuous End-to-end Rollout
TOSCA Topology and Orchestration Specification for Cloud Applications
DPIM DICE Platform Independent Model
DTSM DICE Technology Specific Model
DDSM DICE Deployment Specific Model
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1 Introduction

According to the “Worldwide Big Data Technology and Services, 2012-2015 Forecast" by IDC [1],
Big Data or Data-Intensive applications (i.e., applications acquiring, manipulating and/or generating Big
Data), are expected to grow worldwide at an annual growth rate of 40% — about 7 times that of the ICT
market as a whole. However, Data-Intensive expertise is scarce, expensive - designing, developing and
deploying DIAs is more and more difficult [surveyBD].

In this technical report for the scope of the work we conducted in WP2 - T2.3, we focus on the prob-
lem of continuously architecting [2] & deploying DIAs on the Cloud. In so doing, this technical report
outlines the final version of: (a) the deployment and automation abstractions that provide for DICER
notations and automations; (b) the evaluation of DICE abstractions and automations in action. In the
previous version of this report (see D2.3) we provided a general overview of three DICE WP2::T2.3
assets: (a) a core set of meta-models we inherited to prepare the production of T2.3 abstractions and au-
tomations; (b) the preliminary design of T2.3 automations; (3) the preliminary design of the multi-model
perspective for the DDSM abstraction layer. This technical report concludes our work with the above
assets, providing for the technical explanations, design choices, and insights over their final version, as
integrated in the DICE IDE.

As previously stated, the contents of this deliverable rotate heavily around DICER, a tool to speed
up the trial-and-error process that DIA developers have to go through to find optimal deployment config-
urations when it comes to moving applications into production. DICER is the implementation of DICE
DDSM abstraction and automation support worked as part of T2.3 jointly with WP5 to provide auto-
mated continuous architecting for DIAs. To this aim, DICER allows design of complex data-intensive
infrastructures using UML models customised with DDSM profile notations and abstractions, which are
used to automatically generate so called Infrastructure-as-Code. Along this path, DICER brings both
DIA design and operations concerns within the same environment, in a typical DevOps fashion. DICER
automations use the DDSM abstractions in action to prepare an actionable TOSCA blueprint. DICER is
designed combining Infrastructure-as-Code [toscayaml] (IasC) and Model-Driven Engineering (MDE)
[3].

On one hand, IasC is a typical DevOps tactic that offers standard ways to specify the deployment in-
frastructure and support operations concerns using human-readable notations [morris2016infrastructure].
The IasC paradigm features: (a) domain-specific languages (DSLs) for Cloud application specification
such as TOSCA, i.e., the “Topology and Orchestration Specification for Cloud Applications" standard,
to program the way a Cloud application should be deployed; (b) specific executors, called orchestra-
tors, that consume IasC blueprints and automate the deployment based on those IasC blueprints. DICER
comes with our own augmented version of the Cloudify orchestration engine, which supports many of the
most popular DIA technologies and is completely transparent to DICER users. Nevertheless, DICER’s
automation architecture is independent of any TOSCA-specific orchestrator.

On the other hand, Model-Driven Engineering (MDE) predicates the usage of models to design and
semi-automatically develop software systems. DICER allows to create a IasC blueprint from a sim-
ple UML deployment model by offering a new UML profile. Also, DICER offers assisted modelling
employing OCL constraints: users can model the desired DIA components, using continuous OCL val-
idation to improve their model by adding/editing modelling elements until all constraints are satisfied.
DICER’s automation approach is implemented using the Eclipse modelling framework and supports all
of the Big Data technologies supported by our underlying Cloud orchestrator, such as Hadoop, Storm,
Spark, Cassandra and, soon, MongoDB (unplanned but support is 80% complete).

All of the above happens within the same IDE, an Eclipse installation provided with DICER’s plug-
ins, which are freely available for download1, soon also on the Eclipse Marketplace.

Evaluating DICE deployment abstractions and automations in action in three medium-sized indus-
trial case-studies as part of the DICE scope, we observed that they do indeed speed up the iterative
trial-and-error process developers and operators usually perform, letting them gain back over 70% of

1https://github.com/dice-project/DICER & https://github.com/dice-project/
DICE-Deployment-Service
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their time. We observed that although DICE deployment abstractions have their own learning curve for
practitioners with no prior DIA experience, DICER-assisted design and deployment times grow linearly
with the complexity of a DIA, since times reflect a fixed and iterative model-driven procedure. This is a
considerable gain against the observed exponential increase of design and deployment times in manual
configuration and installation scenarios.

In summary, this technical report outlines 4 novel contributions: (a) a UML profile enabling for
designing the deployment of DIAs on the Cloud, (b) a new DIA-enabled implementation of TOSCA,
(c) the elaboration of the DICER tool as an automated, model-driven solution and (d) its evaluation over
3 industrial case-studies featuring action research [ares], ethnography [4], technology acceptance [tat],
and design science principles [hevner2004design].

Copyright c© 2017, DICE consortium – All rights reserved 8
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1.1 Objectives

This deliverable has the following objectives:

Objective Description

DDSM Meta-Models
elaborate on the final meta-modelling and UML DICE profile
foundations with which we support automated continuous
end-to-end rollout of DIAs.

DICER Tool elaborate the final DICER logic and IasC automations.

1.2 Structure of the deliverable

The rest of this deliverable is structured as follows.
First, Section 2 outlines the main DICE achievements addressed in this deliverable. Second, Section

3 outlines a state of the art overview for us to contextualise the DICE results addressed in this deliverable.
Further on, Sections 4, 5 and 6 outline our research solution, namely the DDSM DICE meta-model layer
with its refined counterpart the UML DDSM profile, now integrally part of the DICE profile solution.
Also, we showcase the final version of the DICER tool and the methods in which the contributions were
obtained, while Section 7 evaluates our solution by means of mixed-methods research. Finally, Section
8 concludes the deliverable by elaborating on the future work we intend on the DDSM layer and DICER
tool, respectively.

The technical report is accompanied by appendices that provide a complete reference over the DDSM
meta-modelling and profile notations, the DICER tool automations, and the accompanying IDE logic be-
hind.

Copyright c© 2017, DICE consortium – All rights reserved 9
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2 Achievements

This section briefly describes the main achievements of this deliverable.

2.1 Achievement 1

We have achieved a final version of the DICE Deployment Modelling abstractions (DDSM) by com-
bining our previously edited and updated version of the MODACloudsML language grammar (called
MODAClouds4DICE) with the TOSCA standard v 1.1 YAML profile grammar. Also, The DDSM layer
now features a complete outset of UML profiling facilities which terminate the technical specification of
the DICER tool. These modelling abstractions have been augmented and tested to support 100% of the
technologies required in the DICE technical space; as a result, our notations now contain the necessary
concepts required for the full technical support originally claimed by DICE deployment modelling and
automation task T2.3 (see the DoW).

In their final version, the above abstractions allow designers to quickly produce a deployable map
for the implementable view of the big data application design realised and refined within the DTSM
component. Said map essentially relies on core-constructs that are common to any cloud-based appli-
cation (of which big data is a subset). Similarly to the related DTSM abstraction layer (see Deliverable
D2.1), DDSM abstractions come with ad-hoc deployment configuration packages which are specific
per every technology specified in the DTSM component library. Designers that are satisfied with their
DTSM model may use this abstraction layer to evaluate several deployment alternatives, e.g., match-
ing ad-hoc infrastructure needs. For example, the MapReduce framework typically consists of a single
master JobTracker and one slave TaskTracker per cluster-node. Besides configuring details needed to
actually deploy the MapReduce job, designers may change the default operational configurations behind
the MapReduce framework. Also, the designer and infrastructure engineers may define how additional
Hadoop Map Reduce components such as Apache Yarn may actively affect the deployment.

Appendix A contains an overview of all concepts and relations captured within the DDSM-specific
meta-models and augments these with their UML DDSM counterparts. Meta-models are outlined in
tabular form.

2.2 Achievement 2

We have achieved a fully-integrated and fully-working implementation of the above-mentioned de-
ployment abstractions into the rich automations tool we call DICER, which blends: (a) Model-To-Model
transformations that transmute models from a DTSM specification stereotyped with UML DDSM con-
structs into a TOSCA intermediate and editable format (e.g., for experienced and ad-hoc fine-tuning) as
well as (b) a Model-2-Text transformation to produce an actionable TOSCA blueprint profiled with the
TOSCA YAML 1.2 TOSCA version. These results constitute the DICER tool - evaluating DICER, we
observe that it does in fact speed up the work of our DICE case-study owners by over 70%.

Our evaluation also shows that DICER has reached the stage of a successful final implementation of
MDE applied to continuous modelling and continuous deployment of Data-Intensive Applications to be
supported in the DICE project.

Appendix B contains a general overview of the DICER tool and its internal logic using snippets of
commented code.

Copyright c© 2017, DICE consortium – All rights reserved 10
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3 DDSM and deployment modelling: State of the art overview

There are several works that offer foundational approaches we considered in developing the meta-
modelling and domain-specific notations required to support the DDSM meta-modelling layer and the
supporting DICER tool. Said works mainly reside in model-driven engineering as well as deployment
modelling & automation domains.

A number of works leverage Model-Driven Engineering (MDE) for Big Data. For example, [5] offers
facilities for MDE of Hadoop applications. After defining a metamodel for Hadoop the same can be used
to define a model of the application; the approach proceeds with automatic code generation. The end
result is a complete code scaffold to be complemented by DIA developers with actual implementation
of Hadoop MR components (e.g., Map and Reduce functions) instead of placeholders in generated code.
The main goal is to show how MDE can reduce the accidental complexity of developing Hadoop MR
DIAs. Similar support is offered by Stormgen [6], a DSL for Storm-based topologies.

While the above approaches provide a first evidence of the usefulness of MDE in the context of DIAs,
both focus on a single technology, while the key challenge in Big Data is the necessity of assembling
many technologies at the same time. Moreover, the focus is on development phases with no target to
deployment, which is indeed a cost- and time-consuming activity for DIAs. Also, various works explore
how to apply model-driven for configuration & deployment but never previously for DIAs.

For example in [autosar1] authors elaborate on automated deployment featuring AUTOSAR where
the target are complex embedded software systems from the automotive domain. Similarly, in the Cloud
domain, Ferry et al. [7], argue for the need for MDE techniques and methods facilitating the specification
of provisioning, deployment, monitoring, and adaptation concerns of multi-Cloud systems at design-time
and their enactment at run-time. This last work acts as a baseline for our approach, but while in [7] the
focus is on general Cloud-applications, we argue that data-intensive applications, although Cloud-based,
deserve their own room and there is currently no prior effort to specifically target the configuration and
deployment issues of such kind of applications via Model-Driven DevOps.

Moreover, from the UML perspective, there are few initial works which investigate on the usage of
UML for designing modern data-intensive applications [gomez]. Along this direction, in this work we
discuss how we exploited UML in the particular context of designing and automating DIAs deployment.

Finally, from the TOSCA side, being TOSCA an emerging standard, there are several works con-
nected to previous and current research projects both in EU and abroad [SeaClouds], [wettinger] that
discuss how to seamlessly enable the model-based orchestration of application topologies by automat-
ically transforming them into TOSCA and by adopting suitable TOSCA-enabled Cloud orchestrators.
Again these works focus on general Cloud-based applications, while it is well recognized by the TOSCA
community (e.g., in the recent standard draft examples2) that the TOSCA support for DIAs may need
further research [toscapaper]. Moreover, although there has been some initial effor towards trying to de-
fine a connection between UML and TOSCA [bergmayr14] [bergmayr16], further investigation needs
to be done to better address interoperability concerns between these two standards.

2http://tinyurl.com/z3e9x9z
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4 DICE Approach for Deployment Modelling

This section highlights how the DICE DDSM abstractions can combine with the DICER tool to
provide modelling foundations for automated IasC production and operation. From an outsider’s per-
spective, the DICE DDSM and DICER abstractions and tools look fairly straightforward to any generic
end-user new to DIAs, for example, to Mr. Ben Andjerrys, a senior QA engineer at Icecream Software
Inc. Let’s assume Ben needs to evaluate various quality aspects of his DIA in a production-like envi-
ronment, with little to no experience over Big Data technologies and Cloud computing concepts. From
Ben’s outsider perspective, DICER offers the possibility to do 3 things: a) create the deployment model
representation of a DIA, b) automatically generate the TOSCA blueprint corresponding to that deploy-
ment model, with the possibility to, c) executing 1-click deployment of that blueprint in a matter minutes.
In particular, Ben can go through the following:

1. After installing Eclipse UML Papyrus and the DICER Eclipse plugins, Ben starts by designing the
UML Deployment Diagram of its DIA using the DICER UML profile to enrich the model with
DIA-specific deployment concepts by applying standard UML stereotypes.

2. Using the DICER UML profile Ben can model his target Cloud infrastructure and map the deploy-
ment diagram contents to their respective execution platform, adapting appropriate configurations,
along with setting the various Big Data platforms and DIAs that will run on top of it.

3. Using the available UML stereotypes Ben can configure various properties of his model, both at
the infrastructural level (e.g. the number of available virtual machines and their sizes, required
firewalls, etc) and at the platform level (e.g. the many configuration parameters of the deployed
DIA technologies).

4. DICER assists Ben during this model refinement phase by providing modelling constraints (de-
fined in OCL) to be checked continuously until the model is valid. A key aspect captured by
the OCL constraints are the technological dependencies; for instance the Apache Storm runtime
environment often needs a Zookeeper cluster in order to operate.

5. Using an Eclipse launch configuration, Ben can generate a deployable TOSCA blueprint which
can be sent to DICER’s own deployment engine.

In this Section we focus the automation ingredients of DICER, that are, (a) its UML profile and (b)
the model-driven automations DICER uses to generate deployable TOSCA blueprints. Further on, Sec-
tion 5 outlines the DICER orchestration service and the TOSCA technology library (for further details
see D5.2) at the core of DICER’s IasC strategy.

4.1 DICER Explained: Design Principles and Core Elements

To introduce the DICER UML profile we first outline the key design principles behind it as follows:

1. UML-Based Modelling: DICER modelling features UML, a well-known general purpose mod-
elling language offering solid support for the extensions we designed. DICER proposes to tailor UML
models towards the specific domain of DIAs through the UML profiling mechanism. The DICER UML
profile implementation is an extension of the UML metamodel with DIA-specific stereotypes, i.e. tags
that can be applied on standard UML elements to capture domain-specific features and constraints. Along
this path, DICER models are defined by stereotyping elements in standard, familiar UML models. In par-
ticular the DICER profile extends the UML Deployment Diagrams metamodel 3, as the natural choice
when dealing with applications’ deployment.
2. DIA Runtime Environments: DIA runtime environments feature multiple distributed platforms (e.g.

3http://www.uml-diagrams.org/deployment-diagrams.html
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execution engines, databases, messaging systems) that are used by running DIAs; each platform runs on
a (typically homogeneous) cluster of virtual machines (VMs); from the DIA point of view, the resulting
cluster appears as a single logical unit. In other words, the actual distribution of the underlying runtime
environment is abstracted, resulting in a set of services that developers can combine within a DIA. Most
of these distributed platforms simplistically adopt two major styles: (1) peer-to-peer (each node has the
same role and privileges) or (2) master-slave (slaves communicate with the master, which in turn coor-
dinates all). The purpose of each DIA platform varies (e.g., processing engines, databases, messaging
layers). A complex DIA potentially needs many of them to fully operate. Distributed execution engines
(e.g. Hadoop, Spark, Storm) cover a particular role - they are in charge of executing DIAs in a parallel
and distributed fashion. DICER modelling offers support for this entire meta-design, to cover for all
DIAs and DIA technologies following the above pattern.
3. Composite DIAs: A complex DIA can be composed of multiple sub-DIAs, or “jobs", potentially ex-
ecuted on different platforms. For instance, according to the so-called “Lambda" architecture, a widely
adopted architecture style for DIAs, a DIA needs: a) a messaging system to decouple the application
from the various data sources, b) a stream processing engine, for executing streaming applications over
real time data, c) a batch processing engine for periodically executing batch jobs, d) at least a database
for storing data processing results. More in general, a complex DIA can be seen as a set of different Big
Data jobs, whose execution is adequately orchestrated. DICER is designed to support deployment in
these scenarios.
4. DIA Cloud Infrastructure Design: As DIAs typically run on top of Cloud infrastructures, it fol-
lows that we need a way to model Cloud infrastructures. DICER draws from MODACloudsML [7], a
modelling language for multi-Cloud applications, enabling designers to model the way their applications
exploit Cloud resources from different providers. From the MODACloudsML’s perspective, DIAs are
Cloud applications organised in various components running on virtual machines (VMs). The key dif-
ference with general Cloud applications is that some of these components may operate in cluster mode,
meaning that they run on a cluster of VMs in a distributed fashion, but externally they appear as a single
component.

Given the above considerations, the relevant part of the DICER UML profile implemented in Eclipse
UML Papyrus is shown in Figure 1. In the following we elaborate on essential DICER stereotypes;
further fine-grained detail can be found in Appendix A.

First, DICER distinguishes between InternalNode, or services that are managed and deployed by
the application owner, and ExternalNode that are owned and managed by a third-party provider ( see
the providerType property of the ExternalNode stereotype). Both the InternalNode and ExternalNode
stereotypes extend the the UML meta-class Node.

The VMsCluster stereotype is defined as a specialisation of ExternalNode, as renting computational
resources such as virtual machines is one of the main services (so called Infrastructure-as-a-Service)
offered by Cloud providers.

VMsCluster also extends the Device UML meta-class, since a cluster of VMs logically represents a
single computational resource with processing capabilities, upon which applications and services may
be deployed for execution.

A VMsCluster has an instances property representing its replication factor, i.e., the number of VMs
composing the cluster.

VMs in a cluster are all of the same size (in terms of amount of memory, number of cores, clock
frequency), which can be defined by means of the VMSize enumeration. Alternatively the user can spec-
ify lower and upper bounds for the VMs’ characteristics (e.g. minCore/maxCore, minRam/maxRam),
assuming the employed Cloud orchestrator is then able to decide the optimal Cloud offer, according to
some criteria, that matches the specified bounds.

The VMsCluster stereotype is fundamental towards providing DICER users with the right level of
abstraction, so that they can model the deployment of DIAs, without having to deal with the complex-
ity exposed by the underlying distributed computing infrastructure. In fact, an user just has model her
clusters of VMs as stereotyped Devices that can have nested InternalNodes representing the hosted dis-
tributed platforms.
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Furthermore, a specific OCL constraint imposes that each InternalNode must be contained into a
Device holding the VMsCluster stereotype, since by definition an InternalNode have to be deployed and
managed by the application provider, which thus has to dispose the necessary hosting resources.

We then define DIA-specific deployment abstractions, i.e. the PeerToPeerPlatform, MasterSlave-
Platform stereotypes, as further specialisations of InternalNode. These two stereotypes basically allow
the modelling language to capture the key differences between the two general type of distributed ar-
chitectures. For instance the MasterSlavePlatform stereotype allows to indicate a dedicated host for the
master node, since it might require more computational resources.

By extending our deplyoment abstractions, we implemented a set of technology modelling elements
(StormCluster, CassandraCluster, etc.), one for each technology we support. DIA execution engines
(e.g. Spark or Storm) also extend UML ExecutionEnvironment, so to distinguish those platforms DIA
jobs can be submitted to. Each technology element allows to model deployment aspects that are specific
to a given technology, such as platform specific configuration parameters (that have been omitted from
Figure 1 for the sake of space) or dependencies on other technologies, that are enforced by means of
OCL constraints in the case they are mandatory - see the constraint on the StormCluster stereotype in
Figure 1.

The BigDataJob stereotype represents the actual application that can be submitted for execution to
any of the available execution engine. It is defined as a specialisation of UML Artefact, since it actually
corresponds to the DIA executable artefact. It allows to specify job-specific information, for instance the
artifactUrl from which the application executable can be retrieved.

The JobSubmission stereotype, which extends UML Deployment, is used to specify additional de-
ployment options of a DIA. For instance, it allows to specify job scheduling options, such as how many
times it has to be submitted and the time interval between two subsequent submissions. In this way the
same DIA job can be deployed in multiple instances using different deployment options. An additional
OCL constraint requires each BigDataJob to be connected by mean of JobSubmission to a UML Ex-
ecutionEnvironment which holds a stereotype extending one between the MasterSlavePlatform or the
PeerToPeerPlatform stereotypes.

4.2 A UML Profile for DIAs’ Deployment

We showcase the defined profile by applying it to model the deployment of a simple DIA that we
called Wikistats, a streaming application which processes Wikimedia articles to elicit statistics on their
contents and structure. The application features Apache Storm as a stream processing engine and uses
Apache Cassandra as storage technology.

Wikistats is a simple example of a DIA needing multiple, heterogeneous, distributed platforms such
as Storm and Cassandra, Moreover Storm depends on Apache Zookeeper. The Wikistats application
itself is a Storm application (a streaming job) packaged in a deployable artefact. The resulting UML
Deployment Diagram is shown in Figure 2. In this specific example scenario, all the necessary platforms
are deployed within the same cluster of medium-sized VMs from an Openstack installation.

Each of the required platform elements is modelled as a Node annotated with a corresponding tech-
nology specific stereotype. In particular Storm is modelled as an ExecutionEnvironment, as it is the
application engine that executes the actual Wikistats application code. At this point, fine tuning of the
Cloud infrastructure and of the various platforms is the key aspect supported by DICER. The technology
stereotypes allow to configure each platform in such a way to easily and quickly test different configura-
tions over multiple deployments and enabling the continuous architecting of DIAs.

The dependency of Storm on Zookeeper is enforced via the previously discussed OCL constraints
library which comes automatically installed within the DICER tool. Finally the deployment of the Wik-
istats application is modelled as an Artefact annotated with the BigDataJob stereotype and linked with
the StormCluster element using a Deployment dependency stereotyped as a JobSubmission. Finally
BigDataJob and JobSubmission can be used to elaborate details about the Wikistats job and how it is
scheduled.
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Figure 2: Deployment Diagram for the Wikistats DIA.

4.3 DICER Automations

The automations behind DICER feature model transformations as ways to make DIA models come
to life in an automated fashion. We use model transformations to generate declarative code that describes
the deployment of DIAs on the Cloud, fully embracing the Infrastructure-as-Code paradigm. We selected
TOSCA[toscayaml, toscapaper] as target IasC specification language as it is an OASIS4 standard and it
is supported by a variety of deployment engines. Our key original contribution to TOSCA and TOSCA-
enabled orchestrators is a TOSCA implementation which provides general support for Big Data platforms
and DIAs. For this contribution, we designed a DIA specific TOSCA Technology Library (see Section 5)
implemented in our own extensions for the Cloudify orchestrator engine. We then implemented a model
transformation which targets such TOSCA implementation. The transformation automates the translation
of DICER UML models into TOSCA-compliant equivalents that comply to out DIA-specific TOSCA
implementation, i.e. the transformation instantiates the TOSCA types defined in our TOSCA Technology
Library. Finally the transformation serializes the TOSCA model into YAML formatted IasC, according
to the TOSCA YAML profile5. In the following we elaborate on the main rules of our transformation
engine, instantiating them on our running example, i.e. the Wikistats application. In our scenario we
want to deploy Wikistats on a single cluster of VMs. The VMsCluster is transformed into a TOSCA
node template whose type depends on the size of the VMs, if the case the genericSize attribute of the
VMsCluster stereotype is set, otherwise a dice.hosts.Custom node template is generated, which can be
fully configured. In particular it is possible to specify the desired number of VM instances (see listing 1
).

For each technology that the cluster will host that the user wants to deploy in secure mode (i.e. by
enabling a pre-defined set of firewalls), the transformation generates a node template from the package
dice.firewallrules and adds on the host nodes the dice.relationships.ProtectedBy relationship with the
generated node template. listing 1 shows the generated TOSCA code for the VMsCluster used in the
Wikistats example:

Each Node annotated with a technology stereotype is transformed into the corresponding set of
TOSCA constructs. Depending on how much the employed TOSCA implementation fits the DICER
modelling language, the transformation can exploit the generality of the MasterSlavePlatform and Peer-

4http://oasis-open.org/
5http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/cs01/

TOSCA-Simple-Profile-YAML-v1.0-cs01.pdf
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Listing 1: Sample TOSCA Properties
vm1:

instances : { deploy : 1}
type: dice.hosts.Large
relationships :

- {type: dice. relationships . ProtectedBy , target :
↪→ cassandra_vm1_seed_firewall }

- {type: dice. relationships . ProtectedBy , target : storm_nimbus_firewall }
// MISSING NODES FIREWALL

ToPeerPlatform stereotypes, processing all the corresponding sub-stereotypes in the same way. Our
TOSCA library has been design along this direction. The TOSCA library provides specific relation-
ships to configure connections between nodes of a platform, as well as between different platforms. For
instance the Storm package of our library provides the ConnectedToNimbus relationship to specify the
connection between slaves nodes and the master node, while the ConnectedToZookeeperQuorum rela-
tionship allows to specify the connection of a Storm cluster to a Zookeeper cluster. Essentially, the
Zookeeper Quorum node is a logical node template, which serves in the orchestrator as a configuration
coordinator (and it is also a workaround for certain Cloudify’s limitations). Zookeeper needs to have
each of its nodes in a cluster set up first, then all of them need to know about the addresses about all
of the other ones. The Zookeeper Qorum helps gather information about all Zookeepers’ dynamic ad-
dresses, then via an appropriate relationship, it also configures each one of them so that they know of
each other. The transformation also properly set into the TOSCA blueprint all the technology specific
configuration parameters. Finally, all the dice.relationships.ContainedIn relationships between technol-
ogy nodes and their hosting clusters of VMs are properly instantiated. The TOSCA snippet in listing
2 is the DICER-generated blueprint for the the StormCluster and the ZookeeperCluster elements in the
Wikistats deployment.

Concluding the WikiStats modelling toy example, the generated blueprint is now automatically sent
to the DICER Deployment and Orchestration Service (further details are available on D5.2) for actual
deployment (see Section 5). Evidence of orchestration of this very same blueprint is available online6.

5 DICER Orchestration Service

An orchestration service is a persistent service for handling the parts of the application life-cycle
which are concerned with deploying and dismantling a software system. DICER orchestration service7

was worked out as part of the technical outputs of WP5 and consists of:

1. A front-end service, that exposes a RESTful interface. It receives the TOSCA blueprints by the
DICER modelling tool and provides handling of commands for deployment and un-deployment of the
applications. Moreover, the front-end service allows system administrators to assign parameters de-
scribing the infrastructure context (e.g., virtual machine images, Cloudify credentials) - these details are
necessary for all application deployment scenarios, but should not be into DICER users’ role, therefore
use editable defaults.

2. A cloud orchestrator engine, which is the active element consuming the TOSCA blueprint. In the
scope of DICER, we augmented an existing orchestrator called Cloudify8 with DIA specific handling and
monitoring features while also providing a previously inexistent Eclipse IDE integration plugin. Cloudify
itself, however, comes with a set of platform plug-ins to enable provisioning of the Cloud resources such
as computation, networking and storage in a platform such as OpenStack or Amazon EC2.

6https://github.com/dice-project/DICE-Wikistats
7https://github.com/dice-project/DICE-Deployment-Service
8http://getcloudify.org/
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Listing 2: A TOSCA Blueprint for WikiStats
storm_nimbus :
properties :
configuration : { monitorFrequency : 10, queueSize : 100000 , retryInterval : 2000 ,
retryTimes : 5, supervisorTimeout : 60, taskTimeout : 30}
relationships :
- { target : vm1 , type: dice. relationships . ContainedIn }
- { target : zookeeper_quorum , type: dice. relationships .storm.

↪→ ConnectedToZookeeperQuorum }
type: dice. components .storm. Nimbus
storm_nimbus_firewall :
type: dice. firewall_rules .storm. Nimbus
storm_vm2_supervisor :
properties :
configuration : { cpuCapacity : 400, heartbeatFrequency : 5, memoryCapacity : 4096 ,
workerStartTimeout : 120}
relationships :
- { target : vm2 , type: dice. relationships . ContainedIn }
- { target : storm_nimbus , type: dice. relationships .storm. ConnectedToNimbus }
- { target : zookeeper_quorum , type: dice. relationships .storm.

↪→ ConnectedToZookeeperQuorum }
type: dice. components .storm. Worker
zookeeper_quorum :
relationships :
- { target : vm2 , type: dice. relationships . zookeeper . QuorumContains }
type: dice. components . zookeeper . Quorum
zookeeper_vm2_server :
properties :
configuration : { initLimit : 10, syncLimit : 5, tickTime : 1500}
relationships :
- { target : vm2 , type: dice. relationships . ContainedIn }
- { target : zookeeper_quorum , type: dice. relationships . zookeeper . MemberOfQuorum

↪→ }
type: dice. components . zookeeper . Server
zookeeper_vm2_server_firewall :
type: dice. firewall_rules . zookeeper . Server

5.1 DICE TOSCA Technology Library

The DICE TOSCA Technology Library9 is a collection of (1) node type definitions for modelling
DIAs and (2) TOSCA interface implementations to bring up the modelled DIAs.

The node type definitions of all the technologies that we support serve as an abstraction for the
concepts that are understandable to the application orchestration engine. A presentation of the DIA
using TOSCA and our technology library is equivalent to the one using the DICER metamodel. The two
presentations therefore contain the same level of intent and granularity. As a result, the DICER model
transformation can produce TOSCA blueprints agnostic to orchestrators.

The type definitions consist of all the concepts that are needed in modelling a DIA, e.g., virtual
machines or hosts, specific services, their relationships, etc. For example, Listing 2 shows a blueprint
for a Storm application, which employs inheritance hierarchy as shown on Fig. 3: subfigure (a) shows a
hierarchy of the node types, and subfigure (b) shows inheritance for relationships. Boxes in blue (right-
hand side) highlight types and relationships from the library.

A major limitation behind our library is that our TOSCA definitions inherit Cloudify’s own TOSCA
definitions for the platform concepts which slightly deviate from the Standard but is consistent with
TOSCA notations used in major TOSCA-enabled orchestrators such as ARIA TOSCA10, Indigo11,

9https://github.com/dice-project/DICE-Deployment-Cloudify
10http://ariatosca.org/
11https://www.indigo-datacloud.eu/

Copyright c© 2017, DICE consortium – All rights reserved 18



Deliverable 2.4. Deployment abstractions - Final Version.

dice.components.storm.Worker

dice.components.storm.Base

cloudify.nodes.VirtualIP

cloudify.nodes.Root

cloudify.nodes.Compute

cloudify.nodes.SecurityGroup

dice.VirtualIPcloudify.openstack.nodes.FloatingIP

dice.chef.SoftwareComponentcloudify.chef.nodes.SoftwareComponent

dice.hosts.Customcloudify.openstack.nodes.Server

dice.firewall_rules.zookeeper.Server

dice.firewall_rules.Base

dice.components.zookeeper.Server

dice.firewall_rules.storm.Workerdice.components.zookeeper.Quorum

dice.components.storm.Topologydice.LogicalNode

cloudify.nodes.SoftwareComponent

cloudify.openstack.nodes.SecurityGroup

dice.hosts.Medium

dice.firewall_rules.storm.Nimbus

dice.components.storm.Nimbus

(a)

dice.relationships.storm.SubmittedBy

cloudify.relationships.contained_in

dice.relationships.storm.ConnectedToZookeeperQuorumdice.relationships.zookeeper.ConnectedToZookeeperQuorum

cloudify.relationships.depends_on

dice.relationships.zookeeper.MemberOfQuorum

dice.relationships.ProtectedBycloudify.openstack.server_connected_to_security_group

cloudify.relationships.connected_to

dice.relationships.Needs

dice.relationships.IPAvailableFromcloudify.openstack.server_connected_to_floating_ip

dice.relationships.ContainedIn

dice.relationships.zookeeper.QuorumContains

dice.relationships.storm.ConnectedToNimbus

(b)

Figure 3: the DICER TOSCA Technology Library, a sample for Apache Storm featuring node types (a)
and relationship types (b);

Apache Brooklyn12 or ECoWare [ecoware, ecoware1]. Cloudify offers a solid basis for DIAs orchestra-
tion, including a complete implementation of the cloud orchestration and working plug-ins for popular
cloud platforms. Moreover, Cloudify was (and still is) the most advanced stable solution compatible with
TOSCA at the time of our project’s initiation.

The interface section of the node types and relationships declare what steps and logic need to be
applied by orchestration engine during execution of orchestration workflows. This consists of (1) defini-
tion of intermediate steps that need to occur during the deployment to gather dynamic parameters (e.g.,
host names and addresses that might be different with each deployment) of the related nodes; and (2)
configuration of the individual hosts (virtual machines). Implementation of (1) is specific to Cloudify
and takes form as its plug-in. To implement (2), we followed the best practice and used an engine, which
enables expressing an intent of a host-level configuration and takes the necessary steps to apply them. For
our technology library, we employ the Chef configuration manager. The decision to use Chef was due
to our past experiences and an existing repository of cookbooks13. Conversely, any other configuration
management engine such as Ansible14 could equally apply for the task. We built or refined Chef cook-
books to support all major stages in DIA orchestration (initialisation, configuration, installation, starting,
stopping). Normally, the cookbooks from the Chef marketplace are built to configure each individual
host in a single step. Orchestration of a cluster requires configuration to take multiple stages to address
dependencies in the cluster. For example, services like Apache Zookeeper require that all peer services
are installed in the first stage, then in the second stage each node is configured with a list of all peers’
addresses. Only then a functioning Zookeeper cluster is bootstrapped.

From Fig. 3 we can see that our approach in defining our technology library is to make a clean
abstraction for the end user from the underlying technology. Replacing Cloudify would require updating

12https://brooklyn.apache.org/learnmore/
13a sample of the cookbooks we elaborated is available online: https://github.com/dice-project/

DICE-Chef-Repository
14https://www.ansible.com/
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the technology library, but the DICER transformation tool would not need to change. Also, any existing
blueprints would remain compatible. In our technology library’s Chef recipes, there is only a minimal
amount of dependency on the Cloudify implementation. With a relatively small effort, they may be
ported to other orchestrators.

Finally, at the time of writing this article, from an infrastructure provisioning point of view, the
DICER orchestrator supports the OpenStack and FCO15 cloud infrastructures, soon to be extended to
Amazon EC2.

5.2 WikiStats: 1-Click Deployment

Listing 2) shows the blueprint generated from the WikiStats model ready for submission. DICER
launch configurations allow to access the RESTful API of the DICER deployment service directly from
the Eclipse launch-configurations console. The Deployment Service receives and parses the blueprint
and constructs a directed acyclic graph of the TOSCA topology. Relationships between nodes define
the order in which the individual nodes get provisioned, deployed and configured. Topology con-
struction typically starts from building network firewalls (labelled zookeeper_vm2_server_firewall,
cassandra_vm1_seed_firewall, cassandra_vm2_worker_firewall and storm_nimbus_firewall
in the Listing) and virtual machines (vm1 and vm2). These steps happen concurrently Next, the virtual
node zookeeper_quorum is instantiated, being in charge of proper propagation of interdependent ser-
vices in the cluster. The main cluster services follow, first the management services zookeeper_vm2_server,
storm_nimbus and cassandra_vm1_seed, then the storm_vm2_supervisor and cassandra_vm2_worker
services. The last to run is wikistats_application, the user’s application being submitted to the run-
ning Storm cluster; this step wraps the DICER process, returning a working application as modelled. Ac-
cording to our experiments (as showcased in a recent Webinar hosted by the GigaSpaces Foundation16)
application deployment times fluctuate around 20—45 min depending on an application complexity be-
tween 5 and 10 DIAs (see more in Section 6.2.2).

15https://www.flexiant.com/flexiant-cloud-orchestrator/
16http://getcloudify.org/webinars/devops-data-intensive-app-preso.html
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6 DDSM and DICER in Action: Evaluation

DICER evaluation features a 1-year action-research initiative involving a total of 12 practitioners in 3
medium-sized companies involved in the DICE project, namely, Prodevelop17, NetFective18 and ATC19.

6.1 Evaluation Setting and Industrial Objectives

First, Prodevelop’s (PRO) challenge is to quickly redeploy their trademark geo-fencing and maritime
operations control software called PosidoniaOperations in multiple sea-port authorities. The software in
question was already existing and comprises a total of 9 DIA components for which current deployment
times are in the range of 1-3 days involving up to 2 technicians working full-time - Prodevelop expected
to improve its deployment productivity times by at least 50% (see page 8 of D6.1 online: http://
tinyurl.com/jx33rbo). In other words, Prodevelop expects to reduce its deployment times from 21
to 10 working hours at most (i.e., 600 minutes).

Second, NetFective (NETF) technology is completely new to the Big Data domain - their interest
is in developing and deploying BigBlu, a tax-fraud detection eGovernment software that processes huge
amounts of privacy-sensitive financial transactions; their challenge is that their application (which needs
to involve 10 DIA components by design) needs to be prototyped (without any prior learning curve)
and re-configured/experimented upon as quickly as possible, such that privacy, security and performance
requirements are all met at once. When we started to experiment with them, NETF managed to deploy
a preliminary prototype in a canary infrastructure environment investing around 5 days with a junior
engineer, with later (re-)deployment times settling around to 400 minutes with ad-hoc scripts - NETF
expected to improve its technological learning curve and deployment productivity by at least 50% (see
page 8 of D6.1 onlinehttp://tinyurl.com/jx33rbo). NETF expects to reduce deployment times
from 400 to 200 minutes at most.

Finally, the Athens Technology Center (ATC) owns News-Asset a trademark information discovery
application, processing big data from several sources online, including a big data social sensing DIA. The
application counts 5 DIA components in total and ATC’s main challenge is that this application needs
to be experimented upon iteratively and re-configured for a specific performance requirement every time
the application is changed/refined. ATC currently experiments with their application using ad-hoc scripts
that take up to 180 mins and expects to improve their DIA experimentation times by at least 50%20.

6.2 Evaluation Methods

Our evaluation conjecture was that DICER helps all three industrial practitioners by speeding up
their deployment times.

To address the above evaluation conjecture, our action research initiative followed a “Living-Lab" ap-
proach [HigginsK14] whereby we directly involved our industrial practitioners who played the part of ac-
tive co-innovators in designing and refining the DICER tool by directly trying out over 12 versions of the
DICER tool; after each trial the tool was incrementally refined following bi-monthly tool-improvement
reports. Industrial DICER trials required practitioners to model, deploy and change/improve their own
application model after a sample deployment, reporting their observations and experiences in free-form
through weekly open-ended interviews.

After the above action research, a final technology acceptance testing and evaluation assessment for
DICER was gathered by means of: (a) chronometric assessment ethnographic self-reports [4] - this was
done to understand the amount of time saved by using the last version of the DICER tool in action, against
original deployment and operations tasks and consequent improvement expectations (see Sec. 6.2.1); (b)
self-assessment questionnaires structured according to design science principles [hevner2004design] -
this was done to understand the end-status of the DICER tool, along with venues for further research

17https://www.prodevelop.es/
18https://www.bluage.com/company/netfective-technology-group
19http://www.atc.gr/default.aspx?page=home
20More details on these industries, their case-study, and their objectives is available online: http://tinyurl.com/jx33rbo
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compared to DICER itself (red line) being used for modelling and deployment in the same scenarios.

and refinement (see Sec. 6.2.3). A complete sample of the reports are available online21 to encourage
verifiability.

6.2.1 Chronometric Assessment

Ethnography is the qualitative empirical evaluation of personal direct experience concerning the elab-
oration of a treatment [4]. In our case, the final DICER tool (i.e., the treatment) was deployed indoor
to all 3 industrial partners for them to evaluate by means of junior developers without prior knowledge
or experience with DIAs and DIA middleware. As an evaluation sample to encourage verifiability of
our ethnographic reports, we offer online22 the timesheet reports generated in 2 of our industrial partner
premises, ATC and NETF - the reports show that DICER automation reaches as high as 74%, aver-
aging out around 72% - a considerable gain against expectations from all partners23. Moreover, Fig.
4 plots the increase in infrastructure design and operations script development times as the number of
DIA components involved increases, as observed in 2 of our experiments. Both case 1 (NETF, 10 DIA
components) and case 2 (ATC, 4 DIA components) show a super-linear nature which our practitioners
explained as being connected to the hand-coding, trial-and-error infrastructure design and deployment
exercises. Conversely, Fig. 4 also outlines the modelling times at the increase of DIA components using
DICER: linearity of the DICER curve is reportedly connected to its well-structured, model-driven fea-
ture allowing reiteration of the same modelling procedure briefly outlined in the previous sections24. In
conclusion, these times indicate strongly that DICER shows promise in bridging the gap between DIAs
(re-)design, their (re-)configuration, and operations using DevOps.

6.2.2 Deployment Time Evaluation

An important validation criterion for the DICER is that the deployments need to succeed in a reason-
able time. The automated nature of the DICE’s deployment service allowed for measuring the times that

21http://tinyurl.com/gtprpwp
22http://tinyurl.com/gtprpwp
23Chrono assessment for PosidoniaOps is omitted at our partners’ request.
24more details on the DICER modelling procedure are available online: http://tinyurl.com/zatsf6t
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Figure 5: Wikistats application deployment timeline.

the service (and the orchestrator) need to carry out a required operation.
To quantify the time needed to deploy a blueprint, we ran repeatedly (ten times) our WikiStats

blueprint deployment and timed its duration from submission until the DICE deployment service de-
clared that the deployment has succeeded. We measured the time required for complete teardown of a
blueprint in similar manner: we took a fully deployed blueprint, started teardown procedure and mea-
sured the time until the DICER deployment service reported termination. We ran the experiments on
XLAB’s internal OpenStack Mitaka infrastructure.

The results show that the deployment takes approximately 7.4 minutes, with the slowest time being
less than a minute slower from the fastest one. The teardown takes around 1.2 minutes.

Figure 5 shows a typical sequence of node types being deployed for the WikiStats application. The
chart also shows that this application runs on top of a stack with up to 3 tiers of dependence, and the
WikiStats application itself makes the 4th tier. The node templates named *securitygroup*, *ip* and
zookeeperquorum* are all virtual resource instantiations, such as floating IPs and firewalls, which take
a minimal time to perform. Then the *vm* nodes follow, bringing up the virtual machines. Then the
service configuration can follow, according to the derived dependency graph, and WikiStats can run.
6.2.3 Final Acceptance Evaluation

To further confirm the validity of our results, we applied design science principles [hevner2004design]
and distilled a technology-acceptance questionnaire for our industrial partners25. The goal of our evalua-
tion here was to understand the industrial impact of the final DICER prototype along with its automations
in terms of continuous architecting. For the purpose of this evaluation, the models and blueprints pro-
duced in the scope of our ethnomethodological evaluation (see Sec. 6.2.1) of DICER were discussed in 3
rounds of interviews and 7 focus-groups structured according to a clear-cut design science questionnaire.
The results of this exercise can be summarised in 2 key evaluation points:

• a. DICER does in fact speed-up (re-)deployment for savings around 70% of the time, even more
than our original estimates [8]. However, for scenarios where interoperation with previous deploy-

25questionnaire and sample responses are available online: http://tinyurl.com/zocnogu
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ment technologies is critical, DICER slows down considerably the deployment process due to the
difficult contiguity with previously existing deployment technologies. For example, Prodevelop of-
ten faces the need of blending pre-existing infrastructures (e.g., Drools configuration scripts) and
legacy assets - using DICER regardless of previously existing formats and notations may dilute
deployment times. Further research should be invested in procuring more fine-grained identifica-
tion of improvement “hotspots" on produced TOSCA blueprints — this is reportedly needed for
several reasons but especially since migrating from a previous deployment solution to DICER re-
quires comparing the benefits of DICER blueprints with previous scripts — this comparison needs
more automation.

• b. DICER offers speed at the expense of heavy modelling which may be expensive in small-
medium enterprises (SMEs). For example NETF declared that their tax-fraud detection application
is supposed to be installed on client premises and never actually migrated. As a consequence, part
of the effort of modelling using more elaborate notations in DICER may go wasted due to lack of
further incremental and iterative use of the models themselves beyond a single first deployment.
This consideration led us to refine DICER with the possibility to exploit configuration defaults for
adopted technological packages - i.e., simplify the modelling as much as possible. Further iteration
with the company is planned to verify that our extensions fulfil their expectations.

research is needed to simplify the notation and should be invested in studying and refining model-to-
model transformations that increase the automation and convenience behind using DICER, e.g., to in-
crease interoperation between previously existing artefacts and other modelling technologies. This effort
could try to address seamless and possibly effortless migration or modelling information interchange
with DICER.
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7 Discussion and Observations

First of all, DICER was evaluated by means of qualitative, quasi-quantitative (i.e., by means of con-
tent analysis and quantifications stemming from qualitative data), and quantitative evaluation — evalua-
tion confirms DICER usefulness and technological design acceptance following rigorous design science
procedures. While the quantitative and quasi-quantitative evaluations are valid, the qualitative ones can-
not be generalised to any possible DICER application scenario for several reasons, for example: (a) they
may involve the biases intrinsic to human intervention and the usage of human subjects alone; (b) they
do not rely on accurate machine-based time-estimations but on time-sheets and connected chronometric
observations; (c) they use interviews and opinion-based observations by industry stakeholders. More
specific industrial validation, perhaps involving larger companies and larger product lines based on big
data frameworks should be invested to confirm and generalise the validity of DICER beyond the three
cases involved in this study. To strengthen this threat, we triangulated the final acceptance of the DICER
tool in industry re-iterating the technology acceptance interview with two experienced researchers from
Academia26. The outcomes confirm the validity of our solution but also point out to several venues for
improvement, discussed further in the conclusions. Moreover, the times plotted in Fig. 4 assume an up-
front fixed-cost investment for the DICER learning curve which we were recently invited to showcase
by Gigaspaces Corp27. We observed that an up-front investment of 1-3 hours is sufficient to familiarise
with DICER28.

Furthermore, both the technological acceptance rounds in industry and accademia highlighted that
DICER is limited by its own technological stack and the assumptions that entail its design. Even our own
evaluation reports on its limitations in biasing big data solutions towards the frameworks and technolo-
gies currently supported. We plan to extend the DICER technological library with Apache TEZ, HBase
and Flink. Finally, although DICER is set within a DevOps way of working, it is currently still limited
in its ability to provide direct operations feedback models. For example, it is currently not possible for
DICER to modify directly TOSCA blueprints with feedback from operations or monitoring infrastruc-
tures - closing this feedback loop needs to be done manually by designers, developers and operators.
Nevertheless, within the DICE H2020 project where DICER was born, we are currently working to re-
fine said direct DevOps continuous feedback, assisting DevOps in a more actionable way.

26Interview Guides for this side are available online:http://tinyurl.com/jjsvvg7
27Gigaspaces is the owner of the Cloudify product and the community around it - http://www.gigaspaces.com/
28our invited Gigaspaces Cloudify Webinar on DICER is available online:http://getcloudify.org/webinars/

devops-data-intensive-applications-webinar.html
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8 Conclusions

8.1 Summary

Summarising, the main achievements of this deliverable in relation to its initial objectives:

Objective Achievement

DDSM Meta-Models

We have achieved a final version of the DICE Deployment
Modelling abstractions (DDSM) by combining an edited and
updated version of the MODACloudsML language grammar (called
MODAClouds4DICE) with the TOSCA standard updated to the
latest release-draft of the YAML Simple Profile v 1.229 accessible
only to OASIS TOSCA voting members such as ourselves. Thus
distilled, the DDSM core model has been extended to support 100%
of the technologies originally committed in DICE; as a result, our
DDSM abstractions now contain the necessary concepts required for
DICE deployment modelling.

DICER Tool

We have achieved a fully-integrated implementation of (a)
Model-To-Model transformations that transmute models from a
DTSM specification stereotyped with DDSM constructs into a
TOSCA intermediate and editable format (e.g., for experienced and
ad-hoc fine-tuning) as well as (b) a Model-2-Text transformation to
produce actionable TOSCA blueprints. We conclude that DICE
WP2 Task T2.3 is successful and results are outstanding.

8.2 Mapping with DDSM-related Requirements

This section offers a full mapping between initial DICE requirements, their improvements and revis-
itations over the months in Y1 and Y2 of DICE (Columns 1,2), and the features in the current version of
the DICER tool and connected technologies (columns 4 and following). Our requirements compliance
is over 90% - requirements remaining unfulfilled are connected to: (1) design limitations of the baseline
technologies we considered (e.g., the Cloudify orchestration engine); (2) “Should-have" features which
were eventually deemed out of scope by the WP2+WP5 DICER task-force, such as support for deploy-
ment and rollout of Network-Function Virtualisation for DIAs; (3) privacy and security concerns to be
supported in DICE which were never previously foreseen as being in the scope of DICE and are currently
object of further research, development, and evaluation.
8.3 Further work beyond DICE

This deliverable concludes our efforts over providing abstractions and automations to support the
straightforward design and rollout of data-intensive applications for the cloud in a model-driven fashion.
In continuation of our efforts well beyond the scope of the DICE EU H2020 project, in the future we
are planning to: (a) refine the technical possibilities behind the DICER tool, possibly strengthening its
technological support; (b) further refine the automations behind DICER extension, possibly by means of
additional model-driven facilities; (c) enhancing DICER integration and user-experience within a more
complete deployment analysis and design toolkit (i.e., the DICE IDE); (d) extend and refine DICER to
support privacy-by-design within the scopes and intents and purposes possible at this point in the DICE
timeline.
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Table 1: DICE DDSM-related Requirements, an overview with resolution.

Req.
ID

Description Source Satisf. Rationale

PR2.0 Following the basic approaches to formal languages design, the DICE
profile will necessarily require a meta-modelling notation to cover for
the basic structure and semantics of the language intended behind the
DICE profile. Also, the DICE profile will need the implementation of
said basic structure and semantics following a commonly usable format
as best fit with respect to DICE goals and tenets.

D1.2 YES DDSM is structured to be modularised into: (a) a TOSCA-specific
level which allows straightforward rollout; (b) a complementary generic
cloud infrastructure modelling level which allows for generalisability;
(c) a concrete UML profile that allows for straigthforward concrete
modelling and design;

PR2.1 The DICE profile MUST follow the default abstraction layers known
and supported in Model-Driven Engineering, namely, Platform-
Independent Model, Platform-Specific Model and add an additional
layer specific to supporting the modelling of Deployment-ready imple-
mentations, i.e., a Deployment-Specific Model.

D1.2 YES DDSM responds to this requirement providing its specification in the
form a deployment-specific meta-modelling notation in the form of a
stand-alone DSL as well as a concrete UML syntax and its associated
OCL constraints.

PR2.11 The DICE Profile shall use packages to separately tackle the description
of targeted technologies in the respective profile abstraction layers (e.g.,
DTSM and DDSM). Said packages shall be maintained consistent.

D1.2 YES the DDSM layer addresses separation of concerns by isolating the con-
cerns connected to continuous deployment to a single UML deployment
diagram.

PR2.12b The DICE Profile shall focus on DIA-specific privacy and/or security
restrictions.

D1.2 NO the DDSM layer is connected to security-by-design addressed in DICE
but the support to secure deployment is, at this stage of its completion,
still under investigation for final inclusion in the D2.5 deliverable con-
cerning the DICE methodology overview.

PR2.18 The DICE IDE needs to be provided with a fully automated transforma-
tion that is capable of constructing an ad-hoc TOSCA blueprint stem-
ming from the deployment information that can be made available in
a DTSM and DDSM model. The usage of deployment knowledge for
each technology in the DTSM shall be used by such transformation as a
means to determine the deployment structure. Subsequently, a DDSM
model proposal shall be built from this automated understanding. Fi-
nally, a TOSCA blueprint shall be constructed from such DDSM model
using an appropriate mirroring between the DDSM model instance and
the TOSCA notation.

D1.2 YES the DICER tool allows to fully prepare and deploy in an automated fash-
ion a UML deployment diagram stereotyped with DDSM constructs;
the DICER tool includes a batch of sequential m2m transformations
that allow this requirement to be fullfilled to a whole.

PR2.20 The DICE IDE needs to be rigged with a M2M transformation that pro-
vides coherent and comparable aggregates of the elements in the DICE
technological library such as to allow for architecture trade-off analysis
specified in PR2.19.

D1.2 YES the DICER tool allows designers to explode their requirements into
multiple UML deployment diagrams and deploy them concurrently us-
ing DICER 1-click deploy. By means of this feature, comparative de-
ployment times as well as trade-off analysis may be carried off in a
semi-automated, tool-supported fashion.

MR2.2 Every abstraction layer (namely, DPIM, DTSM and DDSM) of the
DICE profile shall stem from UML, wherever possible.

D1.2 YES the DICER tool and its automations stem and rest heavily on UML - the
requriement is fully addressed by this feature.

MR2.12 The DDSM layer shall support the definition of an Actionable deploy-
ment view (TOSCA-ready): this view offers conceptual mappings be-
tween the technological layer defined in the DTSM and concepts in the
TOSCA metamodeling infrastructure such that one-way transformation
between the technological layer and the actionable deployment view is
possible.

D1.2 YES the UML DICER tool and the DICER technology library addressed in
WP5 fully address this requriement by providing a solid and state-of-
the-art TOSCA baseline for deployment with Cloudify.

MR2.13 The DDSM layer shall support the definition of framework overrides.
This allows designers to provide ad-hoc tweaks to framework settings
based on specific constraints or design concerns.

D1.2 YES the DDSM layer provides features and facilities such that designers may
configure in their own desired configuration every parameter - this fea-
ture set is made transparent for those who may not wish to see these
configurations or wish to assume defaults. DICER rollout technology
assumes default rollout any time no ad-hoc configuration is provided.

MR2.14 The DDSM layer shall support the management of VMs and similar
resources as well as the necessary environmental setup connected to the
application of specific frameworks (e.g., Hadoop/MapReduce).

D1.2 YES The modelling and configuration of physical resources is addressed in
DICER by means of the MODACloudsML language we extended as
part of the work in DICE.

MR2.15 The DDSM layer shall allow the support for linking ad-hoc config.
scripts or default config. scripts within the DIA.

D1.2 YES We addressed this feature extending the MODACloudsML notation as
well as the TOSCA library baseline to support the modelling of generic
nodes with which users can model: (a) ad-hoc scripts or artefacts nec-
essary for deployment; (b) generic user nodes such as the application
node itself.

MR2.16 The Actionable Deployment View within the DDSM layer shall support
DIA application bundling, e.g., using the CSAR formalism adopted by
the TOSCA notation.

D1.2 NO the CSAR file archive format is not supported yet by Cloudify Deploy-
ment technology - by inheritance, we had to constrain our DICER tech-
nology to address this limitation.

PRD2.1 The DICE Profile shall define deployment-specific construct contigu-
ously to TOSCA-specific constructs and their relations.

D1.2 YES the DICE profile now includes a concrete sub-area to address DDSM
modelling. This has been detailed in the scope of the technical content
of this deliverable.

PRD2.2 The DICE Profile shall define technology-specific properties in terms
of required- and provided-properties.

D1.2 NO the DICER tool and connected modelling technologies cannot support
the TOSCA-based provided- and required-properties semantics since
Cloudify orchestration does not reason in such terms. Consequently,
our tool-support was designed to override these limitations with a more
generic approach.

PRD2.3 The DICE Profile shall define annotations support the specification
of required- and provided-execution platforms for the deployment of
DIAs.

D1.2 YES the DICER tool and its core modelling abstractions do provide the abil-
ity to model multiple execution platforms onto the same deployment
diagram. However, for the scope of rollout each (micro-)service in the
diagram will need to be rigged for execution by means of a single plat-
form for consistency with Cloudify automated-deployment constraints.

PRD2.4 The DICE Profile shall provide facilities to model virtualized network-
functions and their respective relations in an NFV topology.

D1.2 NO Although an intriguing extension, we workout of DICER-based NFV
facilities was judged out of scope for EU H2020 DICE.
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Appendix A.1 DDSM Metamodels

A.1 The DiceDomainModel::DDSM metamodel

Table 2: ddsm data types

Name Kind Values or Description
VMSize Enumeration Small, Medium, Large
ProviderType DataType fco, Allows to set provider-specific information,

such as the access token or the provided ssh key.
LanguageType Enumeration bash, python, R java, scala
Scheduling Enumeration capacity, fair, fifo
FirewallRule DataType Allows to configure firewall rules of a

DdsmInternalComponent

Table 3: The ddsm package

DICE ddsm Metamodel Element Description Attributes DDSM Profile Mapping
CloudElement Abstract class, inherit from MODA-

CloudsML which capture common con-
cepts shared by most of the classes spec-
ified in metamodel. For example a class
extending CloudElement can have Proper-
ties and Resouces associated.

1. Attributes:
• cloudElementId: String

2. Compositions:
• resource: Resource
• property: Property

No mapping needed as the standard
UML modeling infrastructure
provides enough abstractions to
cover the role of the CloudElement
class.

Property Represents a generic property, specified
by a pair of <id,value> and owned by a
CloudElement.

1. Attributes:
• value: String
• propertyId: String

UML::Property

Resource Represents a resource associated to an el-
ement which might be used to support the
deployment and configuration of the such
element. For instance a Resource may de-
tail the deployment script of a CloudEle-
ment (e.g. an InternalComponent or an Ex-
ecutionBinding).

1. Attributes:
• name: String
• resourceId: String
• value: String

UML::Artifact
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Component inherits from:
ddsm::CloudElement

Inherit from MODACloudsML, it repre-
sents a reusable type of cloud component
(e.g. a virtual machine or an application).

1. Compositions:
• providedport: ProvidedPort
• providedexecutionplatform:

ProvidedExecutionPlatform

DdsmComponent streotype;
extends UML::Node metaclass.

InternalComponent inherits
from:
ddsm::CloudElement,
ddsm::Component

Inherit from MODACloudsML, this repre-
sents a component that is managed by the
application provider, or the developer (e.g.
a Big Data application).

1. Compositions:
• requiredport: RequiredPort
• internalcomponent: InternalComponent
• requiredexecutionplatform:

RequiredExecutionPlatform

DdsmInternalComponent
stereotype; inherits from:
DdsmComponent

ExecutionPlatform inherits
from:
ddsm::CloudElement

Inherited from MODACloudsML, it rep-
resents an generic hosting interface of a
Component.

See the
ProvidedExecutionPlatform and
RequiredExecutionPlatform
subclasses.

Port inherits from:
ddsm::CloudElement

Represents an interface (provided or re-
quired) of a Component. It is tipically used
to link components in order to enable com-
munication.

See the ProvidedPort and
RequiredPort subclasses.

RequiredPort inherits from:
ddsm::CloudElement,
ddsm::Port

A specific type of Port which specify
that a Component requires to communi-
cate and consume a features (e.g.access to
a database) provided by another Compo-
nent.

Squashed into the mapping of the
Relationship class

ProvidedPort inherits from:
ddsm::CloudElement,
ddsm::Port

A specific type of Port which specify that
a Component provides features (e.g.access
to a database) which can be accessed by
another Component.

Squashed into the mapping of the
Relationship class

RequiredExecutionPlatform
inherits from:
ddsm::CloudElement,
ddsm::ExecutionPlatform

A specific type of ExecutionPlatform pro-
viding hosting facilities (e.g. an execution
environment, like a VM or a web server) to
a Component.

Squashed into the mapping of the
ExecutionPlatform class

ProvidedExecutionPlatform
inherits from:
ddsm::CloudElement,
ddsm::ExecutionPlatform

A specific type of ExecutionPlatform
which requires hosting (e.g. a Big Data
application requires a Big Data platform)
from a Component.

Squashed into the mapping of the
ExecutionPlatform class
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Relationship inherits from:
ddsm::CloudElement

Represents a generic relationship that
binds a RequiredPort of a Component
with a ProvidedPort of another Compo-
nent. Specializations, contextual proper-
ties or constraints are supposed to provide
specific semantics to a Relationship.

1. Attributes:
• name: String
• relationshipId: String

2. Associations:
• providedport: ProvidedPort
• requiredport: RequiredPort

Depending on the specific
semantics Relationship is mapped
to various types of
UML::Association, such as
UML::Dependency,
UML::Deployment or
UML::ComunicationPath.

ExecutionBinding inherits from:
ddsm::CloudElement

Represents a binding between a Re-
quiredExecutionPlatform and a Provid-
edExecutionPlatform of two components,
meaning that the first component will be
hosted on the second one according to the
specified binding.

1. Attributes:
• name: String
• bindingId: String

2. Associations:
• requiredexecutionplatform:

RequiredExecutionPlatform
• providedexecutionplatform:

ProvidedExecutionPlatform

Mapped to the nestedNode
association on
UML::ExecutionEnvironment.

ExternalComponent inherits
from:
ddsm::CloudElement,
ddsm::Component

Inherit from MODACloudsML, this repre-
sents a component that is managed by an
external provider, for instance a AWS EC2
virtual machine.

1. Associations:
• provider: Provider

DdsmExternalComponent
stereotype; inherits from:
DdsmComponent

Provider inherits from:
ddsm::CloudElement

Represents a generic provider of Clouds
services.

1. Attributes:
• credentialsPath: String

Mapped to the ProviderType
enumeration to be set on
DdsmExternalComponent.
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VM inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::ExternalComponent

It is an specific ExternalComponent rep-
resenting the well know concept of vir-
tual machine. It is possible to the size of
the VM in terms of RAM and CPU and
Storage size ranges, the preferred operat-
ing system, the enabled ports, the desired
public address and the number of execut-
ing instances, or the replication factor. It
as been customized in the context of DICE
to be able to specify DICE specific type of
VM.

1. Attributes:
• is64os: String
• imageId: String
• maxCores: String
• maxRam: String
• maxStorage: String
• minCores: String
• minRam: String
• minStorage: String
• os: String
• privateKey: String
• providerSpecificTypeName: String
• securityGroup: String
• sshKey: String
• publicAddress: String
• instances: String
• genericSize: VMSize
• location: String

Mapped to the VMsCluster
stereotype; inheriths from:
DdsmExternalComponent,
DdsmComponent; extends
UML::Device metaclass.

DDSM Represents the root of a DDSM model. 1. Attributes:
• name: String
• modelId: String

2. Compositions:
• cloudelement: CloudElement

Mapped to UML::Model with
applied the DICE::DDSM profile.

MasterSlavePlatform inherits
from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Abstract class representing a generic
master-slave architecture which is em-
ployed by many distributed platforms for
data-intensive computing.

1. Attributes:
• name: String
• modelId: String

2. Compositions:
• cloudelement: CloudElement

Mapped to the
DdsmMasterSlavePlatform
stereotype; inherits from
DdsmInternalComponent.

PeerToPeerPlatform inherits
from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Abstract class representing a generic peer-
to-peer architecture which is employed
by many distributed platforms for data-
intensive computing.

1. Attributes:
• name: String
• modelId: String

2. Compositions:
• cloudelement: CloudElement

Mapped to the
DdsmPeerToPeerPlatform
stereotype; inherits from
DdsmInternalComponent.
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StormCluster inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Represents a Storm cluster, composed of a
master node (nimbus) and multiple worker
nodes (supervisor). Allows to define and
edit the structure and the configuration of
the cluster.

1. Attributes:
• taskTimeout: Integer
• supervisorFrequency: Integer
• queueSize: Integer
• monitorFrequency: Integer
• retryTimes: Integer
• retryInterval: Integer
• workerStartTimeout: Integer
• minStorage: Integer
• cpuCapacity: Integer
• memoryCapacity: Integer
• heartbeatFrequency: Integer

Mapped to the DdsmStormCluster
stereotype; inherits from
DdsmMasterSlavePlatform;
extends the
UML::ExecutionEnvironment
metaclass.
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SparkCluster inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Represents a Spark cluster, composed of
a master node and multiple worker nodes.
Allows to define and edit the structure and
the configuration of the cluster.

1. Attributes:
• executorLogsMaxRetained: Integer
•

executorLogsRollingEnableCompression:
Integer

• executorLogsRollingMaxSize: Integer
• reducerMaxSizeInFlight: Integer
• reducerMaxReqsInFlight: String
• shuffleCompress: Boolean
• ioEncryptionEnabled: Boolean
• eventLogEnabled: Boolean
• uiEnabled: Boolean
• uiKillEnabled: Boolean
• uiPort: Integer
• executorCores: Integer
• defaultParallelism: Integer
• executorHeartbeatInterval: Integer
• defaultParallelism: Integer
• filesMaxPartitionBytes: Integer
• maxRequestedCores: Integer
• schedulerMode: Scheduling
• dynamicAllocationEnabled: Boolean
• aclsEnabled: Boolean
• authenticateEnabled: Boolean
• sslEnabled: Boolean

Mapped to the DdsmSparkCluster
stereotype; inherits from
DdsmMasterSlavePlatform;
extends the
UML::ExecutionEnvironment
metaclass.

ZookeeperCluster inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Represents a Zookeeper cluster, composed
of a number of peer nodes. Allows to de-
fine and edit the structure and the configu-
ration of the cluster.

1. Attributes:
• tickTime: Integer
• synchLimit: Integer
• initiLimit: Integer

Mapped to the
DdsmZookeeperCluster stereotype;
inherits from
DdsmPeerToPeerPlatform;
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KafkaCluster inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Represents a Kafka cluster, composed of a
number of broker nodes. Allows to define
and edit the structure and the configuration
of the cluster.

1. Attributes:
• enableTopicDeletion: Boolean
• numNetworkThreads: Integer
• numIoThreads: Integer
• numLogPartitionPerTopic: Integer
• numRecoveryThreadsPerDataDir:

Integer
• numMessagesForFlushToDisk: Integer
• maxMessageSittimebeforeflushms:

Integer
• enableTopicAutoCreation: Boolean
• enableLeaderRebalancing: Boolean
• logRetentionHours: Integer
• queuedMaxRequests: Integer

Mapped to the KafkaCluster
stereotype; inherits from
DdsmPeerToPeerPlatform; extends
the UML::ExecutionEnvironment
metaclass.

ClientNode inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Plays the role of a client submitting a data-
intensive job to the running Big Data in-
frastructure. It specifies properties on how
to submit the job, along with details about
the job itself by means of the association
with JobSubmission.

1. Attributes:
• skipRunningJob: String
• numberOfSubmissions: String
• schedule: Crontab

2. Associations:
• submits: JobSumission

Mapped to the
DdsmJobSubmission stereotype;
extends the UML::Deployment
metaclass.

JobSubmission inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Models a data-intensive job and allows to
specify its deployment-specific informa-
tion, such as the location of the executable
artifact or required enviroment variables.

1. Attributes:
• arguments: List<String>
• artifactUrl: String
• mainClass: String

Mapped to the BigDataJob
stereotype; extends the
UML::aRTIFACT metaclass.

YarnCluster inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Represents a Hadoop YARN cluster, com-
posed of a master node (ResourceMan-
ager) and multiple slave nodes (NodeMan-
ager). Allows to define and edit the struc-
ture and the configuration of the cluster.

1. Attributes:
• enableAcl: Boolean
• schedulerType: Scheduling
• schedulerMinContainerMemMb: Integer
• schedulerMaxContainerMemMb: Integer
• schedulerminContainerCoreNum:

Integer
• schedulerMaxContainerCoreNum:

Integer
• nodemanagerAvailableMem: Integer

Mapped to the DdsmYarnCluster
stereotype; inherits from
DdsmMasterSlavePlatform;
extends the
UML::ExecutionEnvironment
metaclass.
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HdfsCluster inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Represents a HDFS cluster, composed of
a master node (NameNode) and multiple
slave nodes (DataNode). Allows to define
and edit the structure and the configuration
of the cluster.

1. Attributes:
• dfsBlocksize: Integer
• namenodeHandlerCount: Integer
• datanodeHandlerCount: Integer
• namenodeHeartbeatRecheckIntervalMs:

Integer
• permissionEnabled: Boolean
• blockReplication: Integer
• blocksizeBytes: Integer
• blockWriteRetries: Integer
• resourceNanagerRecoveryEnabled:

Boolean

Mapped to the DdsmHdfsCluster
stereotype; inherits from
DdsmMasterSlavePlatform.
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Appendix A.2 TOSCA Metamodels

A.1 The DiceDomainModel::TOSCA metamodel

Table 4: The tosca package

DICE tosca Metamodel Element Description Attributes
NodeTemplate A Node Template specifies the occurrence of a manage-

able software component as part of an application’s topology
model. A Node template is an instance of a specified Node
Type and can provide customized properties, constraints or
operations which override the defaults provided by its Node
Type and its implementations. For the accurate description
refer to the TOSCA standard document [toscayaml]

1. Attributes:
• node_template_name: String
• type: String
• description: String

2. Compositions:
• interfaces: Interface
• properties: Property
• attributes: Attribute
• requirements: Requirement
• relationships: Relationship
• capabilities: Capability

3. Associations:
• interfaces: Interface
• properties: Property
• attributes: Attribute
• requirements: Requirement
• relationships: Relationship
• capabilities: Capability

Interface An interface defines a named interface that can be associated
with a Node or Relationship Type. For the accurate descrip-
tion refer to the TOSCA standard document [toscayaml]

1. Attributes:
• name: String

2. Compositions:
• operations: Operation
• inputs: Input

Relationship A Relationship Template specifies the occurrence of a man-
ageable relationship between node templates as part of an
application’s topology model. A Relationship template is
an instance of a specified Relationship Type . For the ac-
curate description refer to the TOSCA standard document
[toscayaml].

1. Attributes:
• type: CloudifyRelationshipType

2. Associations:
• interfaces: Interface
• properties: Property
• attributes: Attribute
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Requirement A Requirement describes a dependency of a TOSCA Node
Type or Node template which needs to be fulfilled by a
matching Capability declared by another TOSCA modelable
entity. For the accurate description refer to the TOSCA stan-
dard document [toscayaml]

1. Attributes:
• name: String
• node: String
• capabiity:

CloudifyCapabilityType

Operation An operation defines a named function or procedure that can
be bound to an implementation artifact (e.g., a script). For the
accurate description refer to the TOSCA standard document
[toscayaml].

1. Attributes:
• operation_name: String
• description: String
• script: String
• executor: String

2. Compositions:
• operation_hasInput: Input

TopologyTemplate A Topology Template defines the topology of a cloud ap-
plication. The main ingredients of the topology template
are node templates representing components of the applica-
tion and relationship templates representing links between
the components. For the accurate description refer to the
TOSCA standard document [toscayaml]

1. Attributes:
• tosca_definitions_version:

String
2. Compositions:
• imports: Import
• outputs: Output
• inputs: Input
• nodeTemplates: NodeTemplate
• realtionships: Relationship
• groups: Group
• policies: Policy

3. Associations:
• imports: Import
• outputs: Output
• inputs: Input
• nodeTemplates: NodeTemplate
• realtionships: Relationship
• groups: Group
• policies: Policy
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Import An import is used to locate and uniquely name another
TOSCA file which has type and template definitions to be im-
ported (included) and referenced. For the accurate descrip-
tion refer to the TOSCA standard document [toscayaml]

1. Attributes:
• import_name: String
• file: String
• repository: String
• namespace_uri: String
• namespace_prefix: String

Group A group definition defines a logical grouping of node tem-
plates, typically for management purposes. For the ac-
curate description refer to the TOSCA standard document
[toscayaml]

1. Attributes:
• name: String
• type: CloudifyGroupType
• description: String
• targets: String

2. Associations:
• properties: Property
• interfaces: Interface

Policy A policy definition defines a policy that can be associated
with a TOSCA topology. For the accurate description refer
to the TOSCA standard document [toscayaml]

Capability A Capability defines a named, typed set of data that can be
associated with Node Type or Node Template to describe a
transparent capability or feature of the software component
the node describes. For the accurate description refer to the
TOSCA standard document [toscayaml]

1. Attributes:
• type: CloudifyCapabilityType
• description: String

2. Associations:
• properties: Property
• attributes: Attribute
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