
Developing Data-Intensive Cloud
Applications with Iterative Quality

Enhancements

DICE Verification Tools - Intermediate
Version

Deliverable 3.6

Ref. Ares(2017)531483 - 31/01/2017

Deliverable 3.6. DICE verification tools – Intermediate version

Deliverable: D3.6
Title: Verification Tools - Intermediate Version

Editor(s): Marcello M. Bersani
Contributor(s): Madalina Erascu, Francesco Marconi, Matteo Rossi

Reviewers:
Type (R/P/DEC): Report

Version: 1.0
Date: 31-Jan-2017

Status: Final
Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/
Copyright: Copyright © 2017, DICE consortium – All rights reserved

The DICE project (February 2015-January 2018) has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

Copyright © 2017, DICE consortium – All rights reserved 2

Deliverable 3.6. DICE verification tools – Intermediate version

Executive summary

This document presents the status of the activities related to task T3.3, which concerns safety veri-
fication of data-intensive applications (DIA). The temporal aspects of the runtime behavior of DIAs are
the focus of verification in DICE, which, therefore, is founded on temporal formalisms allowing analysis
of properties over time. To this end, temporal logics are extensively adopted in this context, modeling
both the DIAs and the properties to verify. Further details on Task3.3 can be found in D1.1 - State of the
art analysis, and D1.2 - Requirements specifications.

Deliverable D3.6 is the second of three deliverables (D3.5, D3.6, and D3.7) reporting the status of
the development activities of the DICE Verification Tool (D-VerT). D-VerT allows application designers
to evaluate their design against safety properties, such as reachability of undesired configurations of the
system, meeting of deadlines, and so on.

Deliverable D3.6 describes the extension of D-VerT that allows developers to carry out verification
of Spark applications. The document briefly reports on the integration of D-VerT in the DICE IDE and
details the temporal logic model devised for Spark applications, presented in deliverable D3.2 – Trans-
formations to Analysis models. The verification approach adopted for Spark applications is the same as
the one used for the analysis of Storm topologies although the class of formulae that we use to represent
Spark job is different from the class previously used for Storm. However, in both the cases, verification
is based on satisfiability checking of temporal formulae. D-VerT relies on a unique verification engine
solving the satisfiability problem, that is the Zot1 tool. The novelty of the contribution, described in
this document, consists of the modeling of the executions of a Spark job and the definition of a safety
property of interest for Spark developers.

Moreover, deliverable D3.6 shows the results of the research activity related to the study of verifi-
cation approaches and models that are different from those based on temporal logic verification. The
analysis proposed in this document is the conclusion of the preliminary results that are reported in D3.5
and that were obtained from the first investigation on the verification of systems specified in a first-order
logic (FOL) ended with the theory of arrays.

1https://github.com/fm-polimi/zot

Copyright © 2017, DICE consortium – All rights reserved 3

https://github.com/fm-polimi/zot

Deliverable 3.6. DICE verification tools – Intermediate version

Glossary

CLTLoc Constraint Linear Temporal Logic over clocks
DIA Data-Intensive Application
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DPIM DICE Platform Independent Model
DTSM DICE Platform and Technology Specific Model
FOL First-order Logic
IDE Integrated Development Environment
JSON JavaScript Object Notation
M2M Model to Model transformation
QA Quality Assurance
TL Temporal Logic
UML Unified Modelling Language

Copyright © 2017, DICE consortium – All rights reserved 4

Deliverable 3.6. DICE verification tools – Intermediate version

Contents

Executive summary . 3

Glossary . 4

Table of Contents . 5

List of Figures . 6

List of Tables . 6

List of Listings . 6

1 Introduction . 7
1.1 Objectives . 7
1.2 Motivation . 8
1.3 Structure of the deliverable . 9

2 Requirements and usage scenarios . 10
2.1 Tools and actors . 10
2.2 Use cases and requirements . 10

3 Verification tool overview . 13

4 Modeling Spark applications . 14
4.1 Terminology . 15
4.2 Modeling assumptions and Job model . 15
4.3 Temporal Logic Model of Spark Jobs . 16

4.3.1 Stage-specific Atomic Propositions . 16
4.3.2 Task-specific Atomic Propositions . 17

4.4 Temporal logic model . 17
4.4.1 Stage formulae . 17
4.4.2 Tasks formulae . 18
4.4.3 Resource Constraints . 18
4.4.4 Counters Formulae . 18
4.4.5 Initialization . 19
4.4.6 Clocks Formulae . 19

5 Temporal analysis of Spark applications . 20

6 Support for Spark in the Verification Tool . 22

7 Validation . 24

8 Modeling and Verifying Storm Applications . 27

9 Conclusion and future works . 33
9.1 Further work . 33

References . 35

A Details of the Formal Models . 36
A.1 First Order Logic Model. Example 1 . 36
A.2 First Order Logic Model. Example 2 . 37

Copyright © 2017, DICE consortium – All rights reserved 5

Deliverable 3.6. DICE verification tools – Intermediate version

List of Figures

1 Sequence diagram of the interaction between the user and the components in the DICE
framework. 13

2 Simplified Component Diagram showing the main modules of D-VerT. 22
3 Activity Diagram representing the workflow from the UML design of the DIA to the

execution of the verification task. 23
4 Execution DAG generated to run the application. 24
5 Graphical representation of the output trace produced by D-VerT. 26
6 Finite automata describing the states of a spout/bolt . 27
7 Topology Example . 28

List of Tables

1 Requirement coverage at month 24. 33

List of Listings

1 Python code representing the toy Spark application. 24
2 Simplified JSON file describing the execution DAG for the example application. 25

Copyright © 2017, DICE consortium – All rights reserved 6

Deliverable 3.6. DICE verification tools – Intermediate version

1 Introduction

The tool for verification of safety aspects of data-intensive application is the DICE Verification Tool (D-
VerT). The definition of the tool requirements and the functionality were already presented in the first
document – Deliverable D3.5 – related to verification and Task 3.3.

D-VerT allows application designers to evaluate their design against relevant temporal properties, in
particular safety ones (such as reachability of undesired configurations of the system, meeting of dead-
lines, and so on). The outcome of the verification is used for refining the model of the application at
design time, in case anomalies are detected by D-VerT. In its initial version, D-VerT already supported
verification of Storm topologies. Deliverable D3.5 presents the verification workflow and the intermedi-
ate input format for the tool that allows for decoupling the DICE platform from the verification engine.
Deliverable D3.1 describes the integration of D-VerT in the DICE IDE and shows how the DICE de-
veloper can define the Storm application undergoing verification in the DICE framework, at the DTSM
level of the design workflow. In short, D-VerT reads a DTSM diagram defining the application under-
going verification and translates it into a JSON file which is then elaborated by the verification engine
along with the property to be checked. In case a counterexample is found, the tool shows to the user the
execution trace that violates the property.

This document describes the intermediate version of D-VerT, which is extended with new function-
alities tackling the verification problem for Spark applications. To this end, we devise a temporal logic
model of the execution of a Spark job that can be suitable for verifying the overall time span of the com-
putation. The model considers that jobs run on a cluster with a finite number of computational resources
and that all the computations terminate (i.e., the number of loop iterations is limited). In particular, the
verification problem consists in determining the existence of executions that violate specific temporal
properties. For example, two complementary analysis can be performed: feasibility analysis and bound-
edness analysis. The former aims at checking if there exist an execution of the system whose duration
is lower than a specific deadline, witnessing the feasibility of such execution, while the latter checks—
making strong assumptions on the idle time of the application—whether all the possible executions of
the system are below a certain threshold (this corresponds to verifying if exists one execution which takes
longer than the deadline).

D-VerT is published as an open source tool in the DICE-Verification repository of the project
Github2.

1.1 Objectives
The main achievement of Work Package 3 (WP3) is the development of a quality analysis tool-chain

that supports the following analysis:
(i) simulation-based assessment for reliability and efficiency,

(ii) formal verification of safety properties, and

(iii) numerical optimization techniques for the search of optimal architecture designs.

Task T3.3 is related to point (ii) and concerns the following issues.

• Task3.3 intends to develop a verification framework that enables the automatic evaluation of safety
properties of DIAs, limited to Storm topologies and Spark jobs. DIA models are validated by
means of model checking with the aim of verifying temporal aspects of the application behavior.

• Verification is carried out through satisfiability checking of Constraint LTL over-clocks (CLTLoc)
formulae, that represent (an abstraction of) the DIA behavior over time. By means of a graph-based
representation of the DIA and a set of user-defined non-functional parameters, the DICE designer
can perform the safety analysis at the DTSM level of the DICE design workflow. To verify the

2https://github.com/dice-project/DICE-Verification

Copyright © 2017, DICE consortium – All rights reserved 7

https://github.com/dice-project/DICE-Verification

Deliverable 3.6. DICE verification tools – Intermediate version

application, the DTSM diagram is then translated by D-VerT into a CLTLoc formula and verified
by the model checker.

• The analyses (i), (ii) and (iii) above can be performed separately or together. In the second case,
typically one runs verification first and gets feedback if the safety property holds or not. Depend-
ing on the result, verification is ran again with new input or simulation and then optimization is
performed.

• The outcome of the verification task allows us to draw conclusions whether the properties are
satisfied, and not where the problem occurred and how to fix it. However, in the case that the
property is not satisfied the output trace gives a hint to the designer on what should be fixed.

The work undertaken in the last year has been focused on the following activities, all fitting the goal
of Task T3.3.

1. Definition and implementation of a temporal model for Spark jobs. The activity provided D-VerT
with a new functionality that enables the temporal assessment of Spark jobs. The result of this
work constitutes the main argument of the document and it is described in Section 4.

2. Integration of D-VerT in the DICE framework. The activity fulfills the requirements R3.1, R3.2,
R3.7, R3.12, R3.15, R3IDE.4.1, R3IDE.4.2, R3IDE.5 and R3IDE.5.1. D-VerT can be used
through the DICE Eclipse environment as it has been fully integrated in the DICE framework
since month 18. Some preliminary results on the integration of D-VerT in the DICE framework
were reported in deliverable D3.1 - Transformation to Analysis Models [d3.1].

3. Modeling and verification of Storm applications with First-Order Logic with arrays. This activity
investigated the use of infinite-state verification techniques for the safety assessment of DIAs,
to complement the main temporal logic-based approach. The result of this work is described in
Section 8.

1.2 Motivation
The analysis of correctness is fundamental to produce systems whose behavior at runtime is guaran-

teed to be correct. However, the notion of correctness is general and needs to be refined to suit a given
scenario. Appropriate criteria have to be considered, according to the kind of system that is taken into
account and to the user requirements that the implemented system should exhibit at runtime. Verifica-
tion in DICE aims to define the meaning of correctness for DIAs and provides implementation of tools
supporting formal analysis of DIAs. Task3.3 is motivated by this need and promotes safety verification
of DIAs through the use of D-VerT.

Safety verification in DICE is performed to check, in the DIA model, the reachability of bad con-
figurations, i.e., a malfunction which consists of behaviors that do not conform to some non-functional
requirements specified by the QA ENGINEER. Task T3.3 focuses on the analysis of the effect of an
incorrect design of timing constraints which might cause a latency in the processing of data. This aspect
is quite relevant in applications such as those considered in DICE. The unforeseen delay can actually
lead the system to incorrect behaviors that might appear at runtime in various form depending on the
kind of application under development. For instance, in a streaming application, the delay might cause
accumulation of messages in the node queues and lead possibly to memory saturation, if no procedures
dealing with the anomaly take action. In a batch application, an unpredicted delay might affect the total
processing time and alter the application behavior which, in turn, violates the SLA with the clients.

The verification process in DICE relies on a fully automatic procedure that is based on dense-time
temporal logic and it is realized in accordance with the bounded model-checking approach. It is designed
to be carried out in an agile way: the DIA designer performs verification by using a lightweight approach.
More precisely, D-VerT fosters an approach whereby formal verification of DIAs is launched through
interfaces that hide the complexity of the underlying models and engines. These interfaces allow the user

Copyright © 2017, DICE consortium – All rights reserved 8

Deliverable 3.6. DICE verification tools – Intermediate version

to easily produce the formal model to be verified along with the properties to be checked and eliminates
the need for experts of the formal verification techniques.

1.3 Structure of the deliverable
Section 1 provides an overview on the objectives and the motivation of Task3.3; Section 2 summarizes
the fundamental requirements that Task3.3 has to fulfill. Section 3 outlines the verification workflow that
D-VerT employs. Section 4 elaborates on the behavior of Spark at runtime, shows the assumptions that
allowed the definition of the temporal logic model of Spark jobs and details all the formulae that model
an execution of a job. Section 6 describes how the verification is carried out in D-VerT and shows the
interaction between its components. Section 7 shows an example of verification of a Spark job. Section 8
elaborates on the advancements in the Storm model based on First-order logic and provides an analysis
of the achievements. Section 9 draws some conclusions on the deliverable. Appendix A provides all
details of the First-order logic model of Storm topologies.

Copyright © 2017, DICE consortium – All rights reserved 9

Deliverable 3.6. DICE verification tools – Intermediate version

2 Requirements and usage scenarios

Deliverable D1.2 [1, 2] presents the requirements analysis for the DICE project. The outcome of the
analysis is a consolidated list of requirements and the list of use cases that define the project’s goals.

This section summarizes, for Task T3.3, these requirements and use case scenarios and explains how
they have been fulfilled in the current D-VerT prototype.

2.1 Tools and actors
As specified in D1.2, the data-aware quality analysis aims at assessing quality requirements for DIAs and
at offering an optimized deployment configuration for the application. The assessment elaborates DIA
UML diagrams, which include the definition of the application functionalities and suitable annotations,
including those for verification, and employs the following tools:

• Transformation Tools
• Simulation Tools
• Verification Tools — D-VerT, which takes the UML models produced by the application designers,

and verifies the safety and privacy requirements of the DIA.
• Optimization Tools
In the rest of this document, we focus on the tools related to Task T3.3, i.e., D-VerT. According to

deliverable D1.2 the relevant stakeholders are the following:
• QA ENGINEER — The application quality engineer uses D-VerT through the DICE IDE.
• Verification Tool (D-VerT) — The tool invokes suitable transformations to produce, from the

high-level UML description of the DIA, the formal model to be evaluated. It is built on top of two
distinct engines that are capable of performing verification activities for temporal logic-based mod-
els and FOL-based models, respectively. Such tools are invoked according to the QA ENGINEER
needs. We later refer to them as TL-solver and FOL-solver, respectively.

2.2 Use cases and requirements
The requirements elicitation of D1.2 considers a single use case that concerns D-VerT, namely UC3.2.
This use case can be summarized as follows [1, p.104]:

ID: UC3.2
Title: Verification of safety and privacy properties from a DICE UML model
Priority: REQUIRED
Actors: QA ENGINEER, IDE, TRANSFORMATION TOOLS, VERIFICA-

TION TOOLS
Pre-conditions: There exists a UML model built using the DICE profile. A property to be checked

has been defined through the DICE profile, or at least through the DICE IDE, by
instantiating some pattern.

Post-conditions: The QA ENGINEER gets information about whether the property holds for the
modelled system or not

The requirements listed in [1] are the following:

Copyright © 2017, DICE consortium – All rights reserved 10

Deliverable 3.6. DICE verification tools – Intermediate version

ID: R3.1
Title: M2M Transformation
Priority of accomplishment: Must have
Description: The TRANSFORMATION TOOLS MUST perform a model-to-

model transformation, [...] from DPIM or DTSM DICE annotated
UML model to formal model.

ID: R3.2
Title: Taking into account relevant annotations
Priority of accomplishment: Must have
Description: The TRANSFORMATION TOOLS MUST take into account the rel-

evant annotations [...] and transform them into the corresponding
artifact [...]

ID: R3.3
Title: Transformation rules
Priority of accomplishment: Could have
Description: The TRANSFORMATION TOOLS MAY be able to extract, inter-

pret and apply the transformation rules from an external source.

ID: R3.7
Title: Generation of traces from the system model
Priority of accomplishment: Must have
Description: The VERIFICATION TOOLS MUST be able [...] to show possible

execution traces of the system [...]

ID: R3.10
Title: SLA specification and compliance
Priority of accomplishment: Must have
Description: VERIFICATION TOOLS [...] MUST permit users to check their

outputs against SLA’s [...]

ID: R3.12
Title: Modelling abstraction level
Priority of accomplishment: Must have
Description: Depending on the abstraction level of the UML models (detail of

the information gathered, e.g., about components, algorithms or any
kind of elements of the system we are reasoning about), the TRANS-
FORMATION TOOLS will create the formal model accordingly,
i.e., at that same level that the original UML model

Copyright © 2017, DICE consortium – All rights reserved 11

Deliverable 3.6. DICE verification tools – Intermediate version

ID: R3.15
Title: Verification of temporal safety/privacy properties
Priority of accomplishment: Must have
Description: [...] the VERIFICATION TOOLS MUST be able to answer [...]

whether the property holds for the modeled system or not.

ID: R3IDE.2
Title: Timeout specification
Priority of accomplishment: Should have
Description: The IDE SHOULD allow [..] to set a timeout and a maximum

amount of memory [...] when running [...] the VERIFICA-
TION TOOLS. [...]

ID: R3IDE.4
Title: Loading the annotated UML model
Priority of accomplishment: Must have
Description: The DICE IDE MUST include a command to launch the [...] VERI-

FICATION TOOLS [...]

ID: R3IDE.4.1
Title: Usability of the IDE-VERIFICATION TOOLS interaction
Priority of accomplishment: Should have
Description: The QA ENGINEER SHOULD not perceive a difference between

the IDE and the VERIFICATION TOOL [...]

ID: R3IDE.4.2
Title: Loading of the property to be verified
Priority of accomplishment: Must have
Description: The VERIFICATION TOOLS MUST be able to handle [...] proper-

ties [...] defined through the IDE and the DICE profile

ID: R3IDE.5
Title: Graphical output
Priority of accomplishment: Should have
Description: [...] the IDE SHOULD be able to take the output generated by the

VERIFICATION TOOLS [...]

ID: R3IDE.5.1
Title: Graphical output of erroneous behaviors
Priority of accomplishment: Could have
Description: [...] the VERIFICATION TOOLS COULD provide [...] an indica-

tion of where in the trace lies the problem

Copyright © 2017, DICE consortium – All rights reserved 12

Deliverable 3.6. DICE verification tools – Intermediate version

3 Verification tool overview

D-VerT (DICE Verification Tool) is the verification tool integrated in the DICE framework. Verification
is performed on annotated DTSM models of Storm or Spark applications that contain suitable infor-
mation about the timing features of the application undergoing analysis. The tool has a client server
architecture, in which the client component is an Eclipse plugin that is fully integrated with the DICE
IDE and the server component is a RESTful web server. The current version of D-VerT supports queue
saturation analysis for Storm topologies (already presented in [d3.5]) and partially supports two kind
of timing analyses (feasibility and boundedness) for Spark jobs, which are presented in this document.
With partial support we mean that currently only the server component supports the verification of Spark
applications (as described in Section 6), while the extension of the client component is still under devel-
opment.
The verification process consists of the following steps. The DICE designer draws a class diagram in
the DICE IDE representing the DTSM model of the DIA and, afterwards, provides all the annotations
required for the analysis, based on the selected technology that he/she employs to implement the appli-
cation. When the user starts the analysis, the annotated DTSM model is converted into a formal model
that represents the abstracted behavior of the application at runtime. Based on the kind of system to im-
plement (i.e., Storm or Spark), the tool selects the class of properties to verify and performs the analysis.
Finally, when the outcome is available, the user requests D-VerT to show the result in the DICE IDE to
see if the property is fulfilled or not and, in the negative case, the trace of the system that violates it.
The client component manages the transformation from the DTSM model defined by the user to an inter-
mediate JSON object which is then used to invoke the server. The server component, based on the content
of the JSON file generates the formal model which is then fed to the core satisfiability/model checking
tool. This tool is in charge of verifying if the property holds for provided set of formulae (formal model
of the system).

The sequence diagram in Figure 1 shows the set of interactions taking place among the different
components whenever the user creates a DTSM model, launches the verification of a specific model and
asks for the results of the verification. More details about the D-VerT components and the integration of
the plugin in the DICE framework can be found in [d3.1] and [d3.5].

Figure 1: Sequence diagram of the interaction between the user and the components in the DICE frame-
work.

Copyright © 2017, DICE consortium – All rights reserved 13

Deliverable 3.6. DICE verification tools – Intermediate version

4 Modeling Spark applications

This section is related to the work that was done on the verification of Spark applications and focuses on
the results that were obtained during the second year of DICE.

Spark is a framework that allows developers to implement DIAs that process data streams or batches
and run on clusters of independent computational resources. The physical infrastructure which executes
a Spark application can vary from one virtual machine to clusters of thousands of nodes that are managed
transparently by the Spark manager. Spark offers a lightweight development environment consisting of a
rich set of APIs. This includes a variety of high-level operators for in-memory parallel data manipulation,
such as map, reduce or filtering functions, as well as operators for data persistence. The computational
model of Spark is specifically designed to guarantee data parallelism and fault-tolerant executions. Data
are uniformly partitioned across different nodes, and multiple partitions can be concurrently processed
by applying the same operations in parallel. Partial results are then combined to obtain more complex
data through aggregating functions. The fundamental data structure in Spark is the so-called Resilient
Distributed Dataset (RDD) that is a read-only multiset of data items distributed over a cluster of machines
and maintained in a fault-tolerant way. An RDD can contain any object type and is created by loading
an external dataset or by distributing a collection of objects generated by the application. RDDs support
two types of operations:

• Transformations are operations (such as map, filter, join, union, and so on) that are performed on
an RDD and which yield a new RDD.

• Actions are operations (such as reduce, count, first, and so on) that return a value obtained by
executing a computation on an RDD.

Transformations in Spark are “lazy” as they do not compute their results immediately upon a function
call. Spark arranges the transformations to maximize the number of operations executed in parallel by
scheduling their operations in a proper way. It keeps track of the dataset that the transformation operates
and computes the transformations only when an action is called. Fault-tolerance is achieved by caching
the sequence of operations that produced each RDD so that any RDD can be reconstructed in the case of
data loss.

Spark computations can be represented with a directed acyclic graph (DAG) whose nodes are stages.
A stage is a sequence of transformations that are performed in parallel over many partitions of the data
and that are generally concluded by a shuffle operation. Each stage is a computational entity that pro-
duces a result as soon as all its constituting operations are completed. Each stage consists of many tasks
that carry out the transformations of the stage; a task is a unit of computation that is executed on a single
partition of data. The computation realized by a DAG is called Spark job, i.e., an application which
reads some input, performs some computation and returns some output data. A DAG defines the func-
tionality of a Spark job by means of an operational workflow that specifies the dependencies among the
stages manipulating RDDs. The dependency between two stages is a precedence relation. A stage can
be executed only if all its predecessors have finished their computation.

Jobs and stages are logical notions representing the computation of Spark applications. At runtime,
the actual computation is realized through workers, executors and tasks over a cluster of nodes. A worker
is a node that can run application code in the cluster and that contains some executors, i.e., processes that
run tasks and possibly store data on a worker node. The Driver program is the process running the main()
function of the application and that creates the Spark Context, that is the object representing a running
instance of a Spark application. The Driver contains the DAG scheduler and the application code and
manages the execution of the processes in the cluster with the aid of a cluster manager, which allocates
resources across the running applications. To run a Spark job, the Driver first acquires the executors
on nodes in the cluster by means of the cluster manager. Then, Spark distributes the application code
(passed to SparkContext) to the executors and, finally, Spark Context sends the tasks to the executors,
activating the computation.

Spark execution is done as follows:

• Spark first creates the operator graph based on the code submitted to the Spark intepreter.

Copyright © 2017, DICE consortium – All rights reserved 14

Deliverable 3.6. DICE verification tools – Intermediate version

• When an action has to be executed, the operator graph is submitted to a DAG Scheduler, which
identifies the stages. The DAG scheduler arranges the operators and produces the stage graph.

• The stages are then passed to the Task Scheduler which launches tasks via the cluster manager.

• The workers execute the tasks defining the stages of the job.

4.1 Terminology
The main concepts that are involved in the logical model shown in the next Sect. 4.2 are the following.

Job : The Spark user application.

Stage : sequence of operations on data that can be executed in parallel and that produces a result which
enables the execution of operations belonging to following stages.

Task : Unit of computation contributing to the definition of a stage. A task only operates on a single
data partition and its execution is managed by one executor.

DAG : Directed Acyclic Graph of stages manipulating RDDs. This graph can be derived from the
application code by examining the dependencies among the operations on the RDDs.

Executor : The process executing a task.

Driver : The process running the Job over the Spark Engine.

4.2 Modeling assumptions and Job model
As already pointed out in the introduction, D-VerT helps the DIA designer in doing timed analysis of
Spark jobs. The analysis is carried out on the DAG underlying the application and it is based on an ab-
straction of the temporal behavior of the tasks implementing the stages. The logical model characterizes
each task with a latency, that is an estimation of the duration of the task per data partition, and with the
number of CPU cores executing the task. The number of cores associated with a task depends on the
number of data partitions that the task elaborates. The data partitions are obtained by the Spark engine
when the Spark job is launched and it is based on the dimension of the input data, as the partition size
is a parameter that can be set through the Spark Context. For this reason, the DAG of the Spark job, the
number of tasks per stage and number of cores are required parameters to instantiate the analysis. Ver-
ification is performed by means of a logical model written in CLTLoc. The CLTLoc model represents
the execution of a DAG of stages over time. In particular, it describes their activation, execution and
termination with respect to the precedence relation among the stages, that is entailed by the DAG of the
application. The prerequisite for the analysis is the availability of the task latency required to perform
the Spark operators occurring in the DAG, as each task carries out the operation of a Storm operator. The
task latencies are supposed to be obtained by application profiling and must be known before performing
the analysis. The functional aspects implemented in the source code are not taken into account. Verifica-
tion concerns non-functional properties of the DIAs and the task functionalities are modeled with their
timing requirements.

This section describes in detail the CLTLoc formulae that models the runtime behavior of a Spark job
given its DAG of stages and tasks. However, it does not focus on the procedure that one can use to extract
the RDD dependency graph from the user code or to derive the DAG of stages from the dependencies
among the RDD implemented in the source code. This functionality will be integrated in the forthcoming
releases of D-VerT and it will be described in the final deliverable of Task3.3. The assumptions that are
considered in the modeling are described in the following.

• The runtime environment that Spark instruments to run a job is not considered in the modeling. In
particular, the cluster manager, the Spark Context, the workers and the executors are not taken into
account in the formulae.

Copyright © 2017, DICE consortium – All rights reserved 15

Deliverable 3.6. DICE verification tools – Intermediate version

• The latency generated by the execution of services managing the jobs is considered negligible with
respect to the total time for executing the application.

The next two assumptions concern the cluster environment encompassing the Spark job that the
formulae represent. They limit the effects that are induced by executing several jobs in the cluster and
allows us to devise a logical model which can ignore potential latencies that are caused by concurrent
applications.

• The workload of the cluster executing the application is not subject to oscillations that might alter
the execution of the running jobs.

• The cluster performance is stable and does not vary over time.

In addition, the following assumptions are specifically related to the Spark job and to the computa-
tional resources that are assigned to the processes executing the tasks.

• The number of CPU cores that are available for computing the Spark job is known before starting
the execution of the job and does not vary over the computation.

• All the stages include a finite number of identical tasks, i.e., the temporal abstraction that models
their functionalities is the same; therefore, all the tasks constituting a stage have durations that can
vary non-deterministically by at most a fraction of the nominal stage duration.

4.3 Temporal Logic Model of Spark Jobs
The CLTLoc model makes use of a finite set of atomic propositions and discrete counters to represent
a set of feasible job executions. The atomic propositions are used to model the starting, the execution
and the termination of the stages in a job; whereas counters are positive integer variables that keep
track of the number of CPU cores that are allocated to run the active tasks. The evolution of the atoms
and counters over time describes one, among many, possible computation of the job that fulfills the
constraints expressed by the CLTLoc formulae. In particular, the CLTLoc model specifies the duration
of the tasks, the total number of CPU cores that the application can use and the precedence relation among
the tasks and the stages in order to model job executions that conform to the following requirements.

• The total number of cores that are assigned to the active tasks, at any moment, is less than, or equal
to, the total number of cores that are allocated for executing the job.

• The total duration of any task is bounded.

• A stage can start only if:

– all its predecessors (determined by the DAG) have already completed their execution;

– there is at least one free core that can be assigned to execute a task of the stage.

A trace satisfying the CLTLoc model is actually a possible schedule, over the time, of the tasks compos-
ing the stages of the job; i.e., it represents a possible task ordering which can be executed by means of a
finite set of cores.

The atomic propositions and counters that are used in the CLTLoc model are described hereafter.

4.3.1 Stage-specific Atomic Propositions
runSi: stage i is running. This phase includes the starting and the termination time instances.

startSi: stage i is starting the execution.

endSi: stage i has terminated the execution.

Copyright © 2017, DICE consortium – All rights reserved 16

Deliverable 3.6. DICE verification tools – Intermediate version

completedSi: stage i terminated the execution. It holds after endSi.

enabledSi ∶ stage i can be executed as soon as there are available CPU cores. Atom enabledSi holds
if all the stages that precede i in the DAG have been completed, even if no cores can be allocated
to execute the tasks of i.

4.3.2 Task-specific Atomic Propositions
The atoms runTi, startTi and endTi are used to model the behavior of tasks, similarly to runSi,
startSi and endSi for the stages. For instance, runTi holds when there are some tasks of stage i
currently running in the cluster. However, the tasks composing a stage are not individually represented
in the CLTLoc model: no atomic propositions express that task j of stage i is running. The model
represents the execution of a batch of tasks with no possibility of distinguishing one task from the other.

Each task is executed by one CPU core; therefore, the number of running tasks depends on the
number of available cores. Modeling the execution of tasks requires the following counters that are used
in the formulae to express that the sum of the number of running tasks in any moment does not exceed
the number of cores for the job.

• runTCi - (runningTasksCounter): Number of tasks currently running for stage i;

• remTCi - (remainingTasksCounter): Number of tasks that still have to be executed for stage i;

• avaCC - (availableCoresCounter): Number of cores currently available to execute the job.

Finally, the two constant parameters that are specified by the designer to define the verification in-
stance are:

• TOT TASKSi - Total number of tasks needed to complete job i

• TOT CORES - Total number of cores available in the cluster

4.4 Temporal logic model
A Spark execution DAG is a directed acyclic graph G = {S,Depi,j}, whose nodes s1, s2, ...sn ∈ S are
the stages of the Spark job, while the edges Depi,j ∣i, j ∈ S define dependencies and precedence between
stages. Depi,j means that stage i depends on stage j, that is, in order for stage i to be executed, stage j
must be completed.

The discrete variable runTCi (“running tasks counter”) represents the number of tasks currently
executed for the stage i. remTCi (“remaining tasks counter”) keeps track of the quantity of tasks that still
have to run. remTCi is initialized as TOT TASKSi and is decremented by runTCi every time a batch of
runTCi tasks is completed.

Let orig be a shorthand for ¬Y (⊺) which mark the origin of the trace as it is true only at the first
position of the trace.

4.4.1 Stage formulae
A stage i can be either running (runSi holds) or not running; the latter case happens either when the
stage has been already executed or as soon as it will start the computation, namely, when its predecessors
complete their tasks and there are available CPU cores. A stage is activated, i.e., startSi holds, when
there is at least one task that starts the execution and no task has been executed so far. If no tasks were
executed then the number of the tasks to be processed, represented by variable remTCi, is equal to the
number of tasks that the stage has to elaborate (TOT TASKSi). This situation is modeled through the
following Formula 1.

⋀
i∈S

(startTi ∧Y (remTCi = TOT TASKSi) ⇐⇒ startSi) (1)

Copyright © 2017, DICE consortium – All rights reserved 17

Deliverable 3.6. DICE verification tools – Intermediate version

A stage terminates, i.e., endSi holds, when there are no more tasks to be processed, i.e., when remTCi is
equal to 0. Next Formula 2 defines endSi.

⋀
i∈S

(endTi ∧ remTCi = 0 ⇐⇒ endSi) (2)

The following formulae define the meaning of enabledSi and completedSi. A stage is completed
(i.e., completedSi holds) when it has been terminated in the past (there is a position before the current
one where endSi held) and a stage i is enabled (i.e., enabledSi holds) when all the predecessor stages
j, such that Dep(i, j) is defined, have been completed.

⋀
i∈S

(completedSi ⇐⇒ P (endSi)) (3)

⋀
i∈S

(enabledSi ⇐⇒ ⋀
j∈S∶

Dep(i,j)

completedSj) (4)

4.4.2 Tasks formulae
The behaviour of each batch of tasks is defined by the following formulae. Formula 5 specifies the
necessary conditions that must be true when a batch of tasks starts. When startTi holds then (i) the
execution cannot be finished at the same time (i.e., ¬endTi must hold), (ii) in the previous time position,
the stage was enabled to run and (iii) a new batch cannot start ¬startTi until the termination of the
current one.

⋀
i∈S

(startTi ⇒ runTi ∧ ¬endTi ∧Y (enabledSi) ∧X (endTiR¬startTi)) (5)

Formula 6 imposes that any execution of a batch of tasks is started with startTi and ended with endTi,
respectively; and that if a batch is running then, at the same time, the corresponding stage is running.

⋀
i∈S

(runTi ⇒ runSi ∧ (runTi SstartTi) ∧ (runTiUendTi)) (6)

Similarly to Formula 5, Formula 7 defines the necessary conditions so that endTi holds. The termination
of a batch of tasks imposes that ¬endTi holds since the position where the current batch was started.

⋀
i∈S

(endTi ⇒ runTi ∧Y (¬endTi S (orig ∨ startTi)) (7)

4.4.3 Resource Constraints
The following formula enforces the consistency constraints limiting the number of cores that are allocated
to execute the active tasks. In particular, the sum of the number of idle and allocated cores is always equal
to TOT CORES, the number of cores that is assigned to the job.

∑
i∈S

(runTCi) + avaCC = TOT CORES (8)

4.4.4 Counters Formulae
Counter values determine the evolution of the tasks that are executed within the stage. Therefore, their
value is always non-negative as they represent positive quantities and the number of the remaining tasks
of a stage decreases during its execution. Formula 9 enforces non-negativeness of counters and For-
mula 10 imposes that the next value of remTCi (written XremTCi) is less than the value of remTCi in the
current position.

avaCC ≥ 0 ∧⋀
i∈S

(runTCi ≥ 0 ∧ runTCi ≥ 0) (9)

⋀
i∈S

(remTCi ≥ XremTCi) (10)

Copyright © 2017, DICE consortium – All rights reserved 18

Deliverable 3.6. DICE verification tools – Intermediate version

The following formulae link the truth value of the events startTi and endTi with the value of counters
runTCi and remTCi. Formula 11 correlates variable runTCi with proposition runT by imposing that a
batch is running (i.e., runT holds) when the value of runTCi of active tasks is strictly positive. The two
formulae (12) and (13) determine the value of runTCi and remTCi during the execution of the batch.
Since the model is not designed to represent core re-balancing operations, the formulae enforce a varia-
tion of runTCi or remTCi to occur when a batch starts or terminates. In particular, Formula (12) imposes
that a variation of the value of runTCi, between two adjacent positions, is the sufficient condition to
make startTi or endTi true. Therefore, between startTi and endTi, runTCi cannot vary. Similarly,
Formula (13) imposes that a variation of the value of remTCi is the sufficient condition to activate the
execution of a batch (i.e., startTi holds). Finally, Formula 14 defines the relation between the variables
runTCi and remTCi. It states that, if the execution of a batch of tasks is starting, the number runTCi of
the running tasks in the batch is the difference of the (number of) remaining tasks at the beginning of the
batch (i.e., value remTCi) and the remaining tasks in its preceding position (i.e., value YremTCi).

⋀
i∈S

(runTi⇔ runTCi > 0) (11)

⋀
i∈S

((runTCi ≠ XrunTCi)⇒ (X (startTi) ∨ endTi)) (12)

⋀
i∈S

(remTCi ≠ XremTCi ⇒X (startTi)) (13)

⋀
i∈S

(startTi ⇒ (runTCi = YremTCi − remTCi)) (14)

4.4.5 Initialization
The initial condition of any Spark job is determined by the following formulae (15)-(17):

• no tasks are running in the origin (Formula 15),

• for all the stages, the number of the remaining tasks is TOT TASKSi, that is the total number of
tasks to be processed by stage i (Formula 16),

• the number of available cores avaCC is the total number of the cores TOT CORES (Formula 17).

⋀
i∈S

(¬runTi) (15)

⋀
i∈S

(remTCi = TOT TASKSi) ∧ (runTCi = 0)) (16)

(avaCC = TOT CORES) (17)

4.4.6 Clocks Formulae
To represent the duration of the various processing phases undertaken by the tasks, different clocks are
considered in the model:

• tphasej measures the duration of the runTj phases for each task j.

• clockidleCores measures the duration of the idleCores global state, i.e. the state in which some
cores are not used while there are runnable tasks.

The following formulae define the reset conditions for the clocks.

• tphasej for tasks - clock resets every time a new batch of tasks starts running.

⋀
j∈S

((tphasej = 0) ⇐⇒ (orig ∨ startTj)) (18)

(19)

Copyright © 2017, DICE consortium – All rights reserved 19

Deliverable 3.6. DICE verification tools – Intermediate version

• clockidleCores - resets every time some cores become idle.

((clockidleCores = 0) ⇐⇒ (idleCores ∧ ¬Y (idleCores)) ∨⋁
i∈S

(startTi)) (20)

Formula 21 limits the duration of the execution of a batch of tasks by imposing that the termination
of the batch occurs when the value of clock tphasei is between αi ± ε, where αi is the latency that is
obtained by the application profiling and ε is a constant defining the delay for processing a data partition
by means of tasks of stage i. If there is a batch currently running (i.e., runTi holds) then runTi holds
until a time position when the value of clock tphasei is between αi ± ε and endTi is true.

⋀
i∈S

(
(runTi ⇒

(runTi ∧ ¬endTi)U((tphasei ≥ αi − ε) ∧ (tphasei ≤ αi + ε) ∧ endTi)
) (21)

Formula 21 limits the duration of the idleness phases occurring during the execution of the jobs,
which happens when no cores are active. This way, the model represents realistic executions of Spark.
The Spark engine, in fact, attempts to reduce the number of inactive cores so that the number of running
tasks is maximized. To reduce latencies that are caused by inactivity, Formula 21 limits the duration of
the idleness phase by imposing that clock clockidleCores, that keeps the elapsed time when idleCores

is true, is less or at most equal to MAX IDLE TIMEj.

(
idleCores⇒

(idleCoresU ((clockidleCores ≤ MAX IDLE TIMEj) ∧⋁i∈S(startTi))
) (22)

5 Temporal analysis of Spark applications

Two complementary properties are considered in this deliverable for the temporal analysis of Spark jobs.
Before describing them, let S be the set of the stages of the job undergoing verification and Φjob be the
formula defined as the conjunction of all the formulae in Section 4, instantiated with respect to the given
values of the parameters TOT CORES, TOT TASKSi for all the stages i ∈ S; and let DEADLINE be a constant
value defining the time bound for the job.

• Feasibility analysis aims to check whether there exists an execution of the system whose duration
is lower than a given user-defined deadline. The CLTLoc formula corresponding to the property
requires that all the stages completed their execution and the total elapsed time totaltime from the
origin is less than the given deadline. The property ϕf is:

totaltime = 0 ∧F(⋀
i∈S

completedSj ∧ (totaltime < DEADLINE)) .

The formula that is verified is Φjob ∧ ϕf . If the outcome of the satisfiability analysis is SAT then
there exists an execution (witness) of the job that terminates earlier than DEADLINE time units from
the start. Conversely, if the result is UNSAT, there are no executions shorter than DEADLINE or,
equivalently, all the executions are longer than DEADLINE. Feasibility analysis does not require
assumptions on the idle time of the CPU cores that is constrained by Formula 22, that can be
omitted from the model.

• boundedness analysis aims to check whether the duration of all the executions of the system are
shorter than a certain threshold. The CLTLoc formula corresponding to the property requires that
if all the stages completed their execution then the total elapsed time totaltime from the origin is
lower than the given deadline. The property ϕb is:

totaltime = 0⇒G(⋀
i∈S

completedSj ⇒ (totaltime < DEADLINE)) .

Copyright © 2017, DICE consortium – All rights reserved 20

Deliverable 3.6. DICE verification tools – Intermediate version

The formula that is verified is Φjob ∧ ¬ϕb. If the outcome of the satisfiability analysis is SAT then
there exists an execution (counterexample) of the job that terminates after DEADLINE time units
from the start. Conversely, if the result is UNSAT, formula ϕb is a property of the modeled job;
i.e., there are no executions longer than DEADLINE or, equivalently, all the executions are shorter
than DEADLINE.

It is worthy to remark that boundedness analysis requires stronger assumptions on the idle time of
the computational resources. Formula 22 limits the duration of the idleness of the CPU cores and,
therefore, cannot be omitted from the model.

Copyright © 2017, DICE consortium – All rights reserved 21

Deliverable 3.6. DICE verification tools – Intermediate version

6 Support for Spark in the Verification Tool

This section describes how the verification of Spark applications has been enabled in D-VerT by ex-
tending the Json2MC component in the D-VerT server. Given the modular nature of Json2MC, this
extension involves the addition of a dedicated Spark module, as depicted in Figure 2. The module im-
plements all the technology-specific aspects maintaining the same interface and is seamlessly integrated
with the main component. In the current version, however, the support for Spark applications is still un-
der development; in particular, DTSM2Json does not implement yet the model-to-model transformation
of UML models representing Spark jobs.

Figure 2: Simplified Component Diagram showing the main modules of D-VerT.

As shown in Figure 3, the module allows for the verification of temporal properties over Spark
applications following the same workflow defined for Storm applications in deliverable D3.5 [3]. The
user specifies first the UML design of the application from the Papyrus perspective of the DICE IDE.
Next, he/she configures and launches the verification of the DIA directly from the DICE IDE by means of
the D-VerT plugin. The DTSM2Json module, depending on the reference technology specified, extracts
all the relevant features from the UML diagram and produces the corresponding JSON object containing
all the information needed to run the verification. The JSON object is then used to invoke the D-VerT
server, which, by means of the Json2MC module, will generate the technology-specific temporal logic
model. The temporal logic model, consisting in a Lisp script, is then fed to Zot, the core bounded
satisfiability/model checking tool that carries out the verification task. The outcome of the verification
is processed back by Json2MC, which creates a graphical output and stores all the relevant input and
output data. All of these statistics are then accessible by the client via the REST APIs that are exposed
by the server.

Since the transformation from a UML model of the application is under development, currently the
input for the tool consists of a Spark execution DAG, which can be obtained by profiling the application or
be inferred from the code. In the next section, we will provide a simple use case to show the verification
workflow on a toy application.

Copyright © 2017, DICE consortium – All rights reserved 22

Deliverable 3.6. DICE verification tools – Intermediate version

Figure 3: Activity Diagram representing the workflow from the UML design of the DIA to the execution
of the verification task.

Copyright © 2017, DICE consortium – All rights reserved 23

Deliverable 3.6. DICE verification tools – Intermediate version

7 Validation

This section presents the results of the validation activity of the D-VerT tool that was performed through
a simple use case.

The Spark application in Listing 1 performs a set of simple operations over a text file where all the
lines have the format: type:name. The final output is the list of all the name words having type
different from ‘verb’ and having the first letter equal to last letter.

Listing 1: Python code representing the toy Spark application.

from pyspark import SparkContext
sc = SparkContext(’local’, ’example’)
x = sc.textFile("dataset.txt").map(lambda v: v.split(":"))

.map(lambda v: (v[0], [v[1]]))

.reduceByKey(lambda v1, v2: v1 + v2)

.filter(lambda (k,v): k != "verb")

.flatMap(lambda (k, v): v)

y = x.map(lambda x: (x[0], x))
.aggregateByKey(list(),

lambda k,v: k+[v],
lambda v1, v2: v1+v2)

z = x.map(lambda x: (x[−1], x))
.aggregateByKey(list(),

lambda k,v: k+[v],
lambda v1, v2: v1+v2)

result = y.cartesian(z)
.map(lambda ((k1,v1), (k2, v2)):

((k1+k2), list(set(v1) & set(v2))))
.filter(lambda (k,v): len(v) > 1).collect()

print(result)

When the Spark engine runs the code, it first generates the DAG entailed by the application code
and then starts the processes to execute the stages. Figure 4 depicts the DAG that is associated with
the code of Listing 1, in which each node corresponds to a stage. In general, any Spark application
entails a DAG that can be obtained by analyzing the code (specifically, the dependencies among different
RDDs and the transformations/actions performed over each RDD) without the need of running Spark.

Figure 4: Execution DAG generated to run the application.

Copyright © 2017, DICE consortium – All rights reserved 24

Deliverable 3.6. DICE verification tools – Intermediate version

An automatic procedure generating the DAG from the application code is currently under development.
The DAG in Figure 4 has been generated by post-processing the log of Spark, but it can also be derived
by an intuitive analysis of code in Listing 1. Stage S0 includes the first set of transformations performed
to define RDD x, that are concluded by the shuffle operation reduceByKey(). The latter implies data
synchronization among all the partitions, therefore the computation cannot proceed without creating new
stages. The results of reduceByKey() are then used to calculate the RDDs y and z with independent
computations. These operations entail two more stages (S1 and S2), both depending on the result of
S0. These stages are symmetric and consist in applying filter(), flatMap(), map() and, finally,
the shuffle operation aggregateByKey(). Finally, stage S3 contain the set of operations to calculate
result: cartesian(), map(), filter() and, finally, collect(). Being collect() an
action, it determines the completion of the whole job.

As discussed in Section 4.2, each stage consists of a set of operations that can be executed in parallel
on all the partitions of the input RDD and is performed by means of a number of tasks (each task applies
the set of operations over a partition). We remark that the number of tasks that can be run in parallel
depends on the number of cores available in the underlying homogeneous cluster. A stage can start only
when all its predecessor stages are completed, and a stage can be defined as completed only when all its
tasks terminated.

Listing 2 provides a simplified version of the JSON file—corresponding to the application DAG
previously described—that is given as input to Json2MC in order to run the verification.

Listing 2: Simplified JSON file describing the execution DAG for the example application.
1 {
2 "app_name": "simple_app_example",
3 "verification_params": {
4 "plugin": "ae2sbvzot",
5 "time_bound": 30
6 },
7 "tot_cores": 600,
8 "analysis_type": "feasibility",
9 "deadline": 8.0,

10 "stages": {
11 "S0": {
12 "duration": 0.58,
13 "name": "reduceByKey at /test.py:6",
14 "numtask": 1000,
15 "parentsIds": []
16 },
17 "S1": {
18 "duration": 2.16,
19 "name": "aggregateByKey at /test.py:8",
20 "numtask": 500,
21 "parentsIds": ["S0"]
22 },
23 "S2": {
24 "duration": 1.9,
25 "name": "aggregateByKey at /test.py:10",
26 "numtask": 500,
27 "parentsIds": ["S0"]
28 },
29 "S3": {
30 "duration": 5.14,
31 "name": "collect at /test.py:12",
32 "nominalrate": 7.782101167315175,
33 "numtask": 500,
34 "parentsIds": ["S1","S2"]
35 }}}
36 }

Copyright © 2017, DICE consortium – All rights reserved 25

Deliverable 3.6. DICE verification tools – Intermediate version

Figure 5: Graphical representation of the output trace produced by D-VerT.

Each stage is characterized by a number of tasks to be executed, the list of the parent stages (whose
completion is needed to start the computation of the given stage), and the duration of each task. The
other parameters contained in the JSON file are needed to configure the verification tool and set the
verification problem. In the case of Listing 2, the JSON instructs Json2MC to verify if, having 600 cores
available, there exists an execution of the application (feasibility analysis) which takes less than
8 milliseconds (deadline parameter) to complete. The check is performed by the ae2sbvzot plugin,
whose verification approach is based on bounded satisfiability checking. Therefore, the tool requires a
positive constant that specifies the number of the possible events that can occur in the executions modeled
by the logical formulae. This value is often defined as a trade-off between the time needed to solve the
satisfiability of the model and the number of events that one wants to consider in the executions. In this
experiment, the bound was set to 30 as it allowed us to obtain meaningful results in a reasonable amount
of time. The instantiated logical model turns out to be unsatisfiable (the tool outcome is UNSAT) when
the deadline is 8ms, meaning that the job is not feasible as there does not exist an execution of the system
taking less than 8ms (the specified deadline). However, if the deadline is set to 10 ms, the problem
is satisfiable, and Zot produces an output trace describing a possible execution of the system whose
duration is lower than the deadline. Since the output trace returned by Zot is in the text format, D-VerT
produces a more user-friendly graphical representation that offers a visual hint of the execution. Figure 5
shows the output trace returned for the feasibility analysis of the application with the deadline set to 10.0
ms. The X-axis reports the timestamps of the different events occurring in the system, while the Y-axis
represents either the number of cores that are used by each stage (colored solid line) or the number of
available cores (black dotted line). Colored solid lines represent the execution status of the different
stages, while the black dotted line plots the number of available cores at each time instant. It can be
noticed that the last stage (S3) finishes its execution in the time instant 9.97, right below 10 milliseconds.

Copyright © 2017, DICE consortium – All rights reserved 26

Deliverable 3.6. DICE verification tools – Intermediate version

8 Modeling and Verification of Storm Applications through First-Order
Logic

This section describes a research activity whose preliminary results were presented in Deliverable D3.5,
and which focuses on the application to DIAs of novel formal verification techniques able to handle
systems with arbitrary numbers of objects. The research included two main activities. The first one was
related to the practical aspects of verification, hence, to the study and examination of the tools for solving
safety verification of systems defined with FOL and arrays. The second and more demanding one had
the purpose of defining the FOL model capturing Storm applications for formal verification purposes.
This second activity required (i) a study of the formalisms involved and of the verification algorithms
implemented by the corresponding tools and (ii) a careful design of the model, which was achieved
through an extensive testing campaign.

More precisely, the FOL model, which describes nodes running an unbounded number of threads,
was used to carry out experiments with the MCMT[mcmt] and Cubicle[cubicle] tools, to evaluate the
applicability of the approach. The trial-and-error experimental campaign showed the latter tool to be
the best choice in terms of usability, but it required some bug fixing and extensions that needed various
exchanges with the developers. The work improved the knowledge on the modeling capabilities of FOL
specifications extended with arrays. It also helped to understand that the lack of a proper abstraction of
Storm applications impedes the identification of a meaningful verification problem that can be defined
in terms of safety verification of a FOL specification. In particular, the final FOL model was obtained
after many steps of refinement that were needed to understand the resolution algorithm implemented by
the tools and also to refine the way of modeling, with FOL and arrays, a given behavioral abstraction of
DIAs.

In D3.5, the formalization and verification of DIAs based on the Apache Storm technology was pro-
posed. Applications based on such technology can be abstracted by means of topologies, i.e., graphs
representing the particularities of the application. The application topology, specified at DTSM level
during the design phase, is transformed into the formal model to be verified through model checking
techniques. Two classes of nodes define a topology. Input nodes (called spouts) are sources of infor-
mation. Computational nodes (called bolts) process input data and produce results which, in turn, are
emitted towards other bolts of the topology. Nodes in the topology can have also nonfunctional prop-
erties such as the size of data they produce, the emitting rate of data, etc. A topology also defines the
connections among the nodes which allow the communication based on message exchange. Hence, any
node is statically defined at design time by both the list of nodes subscribed to it and the list to which it
subscribes.

The following paragraphs briefly recap the rationale for the abstraction modeling of the runtime
behavior of Storm topologies.

The behavior of both spouts and bolts can be illustrated by finite state automata (see Figure 6). For
more details on the terminology and modeling assumptions, the reader is directed to D3.5 (Section 4). A
spout can be in one of the following states: (I)dle (no tuples3 are emitted.) or (E)mit (the spout emits
tuples to the bolts subscribed to it). A bolt can be in one of the following states: (I)dle (no tuples are
currently processed in the bolt), E(X)ecute (at least one, and at most Takemax tuples are processed
at a certain time instance in the bolt), ta(K)e (the bolt takes at least one, and at most Takemax , tuples
from the queue and initializes a suitable number of concurrent threads to process them all), (E)mit (the
bolt emits tuples towards all the bolts that are subscribed).

Two modeling approaches have been proposed previously: a temporal logic model and a first-order
logic (FOL) model. Here, the focus is on the second one. The FOL model was introduced as a comple-
ment to the temporal model given its ability to deal with an arbitrary number of processes, a feature that
can be used to capture the parallelism in DIA components such as Apache Storm spouts and bolts. In
the FOL model, DIAs are modeled as array-based systems. The specification of an array-based system
composed of one array variable a and one transition τ consists of:

3Atomic data emitted or received by spouts and bolts

Copyright © 2017, DICE consortium – All rights reserved 27

Deliverable 3.6. DICE verification tools – Intermediate version

idle emit

(a) Finite automaton describing the states of a bolt

take execute emit

idle

(b) Finite automaton describing the states of a bolt

Figure 6: Finite automata describing the states of a spout/bolt

• a formula Init(a) describing the initial sets of states, and

• a transition formula τ(a, a′) relating a with an updated (modified) array variable a′.

A safety or reachability problem for the array-based system S = (a, Init, τ) is a formulaU(a) specifying
the set of states the system should not be able to reach starting from a state in Init and firing τ finitely
many times. Therefore, in order to check the behavior of an array-based system, the set of initial states
of the system and the action ordering in the system by a set of transitions are characterized. Both the
initial state and the transitions introduce timing constraints for the time spent in each state.

In D3.5, as an example, the model of a simple Storm application composed of n replicas of a topology
consisting of one spout and one bolt was proposed. The model should ensure that, for all processes,
the length of the queue associated with a bolt does not exceed the maximum length Lenmax . For
experiments, state-of-the-art model checkers MCMT4 and Cubicle5 were used. The outcome was that
both can be used for our purposes, however Cubicle allows for the definition of matrices, which can be a
suitable abstraction6 for modeling systems with m spouts and n bolts.
Modeling assumptions. The models of the Storm applications presented in this section are compliant
with the terminology and the assumptions introduced in D3.5, Sections 4.1.1 and Section 4.2, respec-
tively, however they do not capture the failures of spouts and bolts.
Topology model. In the description of the topology model, we will introduce all the ingredients that are
needed for the specification and verification of Storm applications using model checkers for infinite state
systems as first introduced in [4].

The state of the spout with index i and process number x is indicated by the array variable Spout(i, x).
A spout can be in one of the two states: (E)mit or (I)dle . Similarly, the state of the bolt with index
i and process number x is indicated by a variable Bolt(i, x). A bolt can be in one of the four states:
(I)dle , (E)mit , Ta(K)e, E(X)ecute. Some other variables are maintained:

• P (j, x) - number of tuples that are currently processed by process x in bolt j;

• L(j, x) - the length of the bolt j in the process x;

• stime(j, x) - time units the spout j emits in the process x; a spout emits at least T spout
min time units

and at most T spout
max . After the deadline T spout

max another process can operate on the spout.

• bEmitTakeT ime(j, x) - time elapse between P (j, x) = 0 (which can happen in the states Emit
or Execute) and an Emit;

• Taken(i, x) - the number of tuples taken by process x of bolt i;

Predicates SubscribedBS(j, i) and SubscribedBB(j, i) are used to describe the topology of the appli-
cation.

• SubscribedBS(j, i) - bolt with index j is subscribed to the spout with index i

4http://users.mat.unimi.it/users/ghilardi/mcmt/
5http://cubicle.lri.fr/
6The model is called counter networks, was introduced in D3.5 and further developed in [Marconi˙Storm˙2016]

Copyright © 2017, DICE consortium – All rights reserved 28

Deliverable 3.6. DICE verification tools – Intermediate version

Figure 7: Topology Example

Spout S1 Bolt B1

Bolt B2

 Bolt B3

Spout S2

• SubscribedBB(j, i) - bolt with index j is subscribed to the bolt with index i.

Finally, the model includes a boolean variable statechange . If statechange is true then either a spout
or a bolt has to perform a state change; otherwise, when statechange is false, components cannot vary
the state and only time elapsing is allowed. This flag is used to enforce strict alternation between state
changes and time elapsing so that topologies executions are realized by means of pairs of actions.

As an example, a topology consisting of 2 spouts and 3 bolts (like in the temporal logic model from
D3.5) is considered (see Figure 7):

• B1 is subscribed to S1

• B2 is subscribed to S1 and S2

• B3 is subscribed to B1 and B2

In matrix form, that is:

SubscribedBS

B1 B2 B3

S1 1 1 0
S2 0 1 0

SubscribedBB

B1 B2 B3

B1 0 0 1
B2 0 1 0
B3 0 0 0

The topology configuration above can be expressed as a set of invariants.

∀
i,j

i = 0 ∧ j = 0 ⇒ SubscribedBS[i, j] = True

∀
i,j

i = 1 ∧ j ≥ 2 ⇒ SubscribedBB[i, j] = False

...

The first formula states that the first bolt B(0, x) is subscribed to the first spout S(0, y). The second
formula precisely states that the first bolt B(0, x) is not connected to any other spout with index greater
than or equal to 2.
The Init state of the system is described by the formula:

t = 0.0 ∧
∀
i,j

(S(i, j) = I ∧B(i, j) = I ∧L(i, j) = 0 ∧ P (i, j) = 0 ∧ stime(i, j) = 0 ∧ bEmitTakeT ime(i, j) = 0)

meaning that initially the clock is set to 0, all spouts and bolts are in the (I)dle state, the length of all
queues associated to the bolts and the number of tuples processed are 0, the value of stime for all spouts
is 0, time elapsed since P (j, x) = 0 and an (E)mit of P (j, x) = 0 is 0.

In our experiments, the formal description of the topology composed of 2 spouts and 3 bolts is
considered. Each transition is described by a logical formula that corresponds to the guarded assignment

Copyright © 2017, DICE consortium – All rights reserved 29

Deliverable 3.6. DICE verification tools – Intermediate version

systems, correlating the values of state variables before and after the transition. We denote by X ′ the
value of the variable X after the execution of the transition. For example, in the transition

∃
x,y,i,j,c,d

c > 0 ∧ B(i, x) = E ∧ L(j, y) + d ≤ Lenmax(j)∧

∀
l,z

(
t′ = t + c ∧

L′(l, z) = if (z = y ∧ l = j) then L(l, z) + d else L(l, z) ∧
)

x, y, i, j are index variables, c, d are constants for elements of an array and of variables, respectively,
B,L are tuples of array state variables, B(i, x), L(l, z), Lenmax(j) (in B, L, respectively Lenmax)
are the current values of a state variables and B′(i, x), L′(l, z) their values after the execution of the
transition. Formula c > 0 ∧ B(i, x) = E ∧ L(j, y) + d ≤ Lenmax(j) is a conjunction of literals called
guard, and the conjunctions of literals after ∀

l,z
is the update of the transition. t is a global variable, E is

a value of the enumeration type state representing the possible state of a spout/bolt.
Given the abstraction of the Storm application (topology in which a bolt node i has associated an

information queue of maximum dimension Lenmax(i)), a suitable safety property to hold in the model
is checking that states that satisfy the following formula are not reachable, where the formula is the
negation of the property one wants to check and describes the sets of unsafe states:

∃
x
L(i, x) > Lenmax(i). (23)

Note that (23) generalizes over the number i of processes (unbounded parallelism), distinct to the tem-
poral logic model where the number of parallel processes active is specified.
Example 1. The first model7 considered (Appendix A, Example 1 presents the transitions) consists of
the following state variables: t, statechange , S, B, P , L, stime, bEmitTakeT ime with the meaning
give in Section 8. Additional, auxiliary, variables are canT imeElapse, wasBTaking. The set of
6 transitions8, defining the model, is informally described bellow. Transitions σ1a, σ1b, σ4, σ5 allow
statechange according to Figure 6. For example, due to σ1a, spouts (E)mit or be (I)dle , bolts can be
(I)dle or perform ta(K)e if previously were into (E)mit , or just in ta(K)e if previously were (I)dle .
In σ1b, a process in a bolt can (E)mit if, previously, it was processing tuples (e(X)ecute) and the
number of tuples that are currently being processed by it is 0. Transition σ4 and σ5 capture the case when
a bolt takes tuples. Two situations are possible: (1) if Taken(j, y) ≤ L(j, y), L(j, y) decreases by the
value of Taken(j, y) and P (j, y) becomes Taken(j, y) (transition σ4), (2) if 0 < L(j, y) < Taken(j, y)
then L(j, y) becomes 0 and P (j, y) becomes L(j, y) (transition σ5).

Transition σ2 captures the case when a spout emits. In the precondition of the transition, three
conditions are checked: (1) if SubscribedBS[j, i] = True, case in which the length L of the queue
associated to the bolt j is increased accordingly, (2) if the emitting time of the spouts is bounded by
T spout
min and T spout

max , and (3) if the number of tuples added to the queue does not exceed Lenmax(j).
Transition σ3 captures the case when a bolt emits; if bolt B(i, x) emits (1) there should be another

bolt subscribed to it (SubscribedBB(j, i) = 1) and (2) the emitted information should not exceed the
maximum length of the queue (L(j, y)+d ≤ Lenmax(j)) case in which L(j, y) is updated accordingly.

Transition σ6 captures the behavior of the topology when the time simply passes: time is increased
with c time units, the emitting time of a spout is increased with c and the number of tuples that are
currently processed (state variable P) is decreased.

The verification of the safety property took about 1 second and the result was Safe meaning that the
system satisfies the property. However, this model is simplistic: in transition 3 (see Appendix A), tuples
are added to the queue as long as we are below Lenmax , hence it can not happen that the safety property
does not hold.

We refined the model above in many aspects because (1) the models were too weak or (2) the property
was trivially either true or false or (3) the state space exploration that the backward reachability algorithm

7In all our experiments, we used Cubicle both for the formalization and verification. The Cubicle file for this examples is at
https://github.com/merascu/DICE-StormModellingFOL/blob/master/Example1.cub

8The Cubicle file contains more transitions since we had to tune the model to system capabilities. For example capturing
that S′(k, z) = E or I led to two distinct transitions.

Copyright © 2017, DICE consortium – All rights reserved 30

https://github.com/merascu/DICE-StormModellingFOL/blob/master/Example1.cub

Deliverable 3.6. DICE verification tools – Intermediate version

implemented in the tool Cubicle has to perform is infeasible. By trial-and-error we found a model (see
Example 2 below) which is useful to prove the safety property above.

Example 2. After many refinements of the initial model, a model9 (see Appendix A, Example 2) in
which the safety property (23) holds is obtained only for one bolt, that is B(1, x), is obtained. For
simplifications, we made the following assumptions:

1. Lenmax(i) = 3.5, Takemax[i] > 3, Tsmin = 9.2, Tsmax = 9.8;

2. one process processes one tuple

3. the number of tuples taken represent the number of active threads/processes in a bolt at a certain
time.

4. queues have only one dimension, i.e., there is one queue for each bolt meaning that processes in a
bolt share the same queue;

5. different possible states for the spouts are left out; one keeps track of the time elapsing to enable
spout emit (stime);

6. (E)mit of a bolt is enforced if a bolt is ready to emit;

7. statechange from (I)dle to ta(K)e is enforced if a bolt has non-empty queue and some processes
are (I)dle .

In the model, there are 3 transitions defining the behavior of the topology: spoutemit, boltemit and
bolttake; each of them can fire only if the associated flag, that is DoEmit - for bolt/spout emit, DoTake
- for bolt take, is true. In order to set correctly the flags we used three transitions per flag setDoTakeT ,
setDoTakeF1 and setDoTakeF2, one transition defining DoTake = True and two for DoTake =

False. A careful reader might wonder why did we need such a complicated way of triggering actions.
The answer lies in the backward reachability algorithm which is implemented in Cubicle and it is not
devised for verifying systems where some transitions must occur. In timed automata verification, for
instance, some tools implement this kind of must transition; namely, if a “must” transition is enabled
then only that transition is fired first and all the other that are enabled are fired later. In our experiments
we could not force the firing of a transition even if its guard was satisfied. This is the reason why we
had to implement these “must” transitions, i.e. 6 “auxiliary” transitions setting the two flags correctly.
Moreover, to keep the state space amenable, we limited the executions to a single bolt to make them
compliant with this alternating mechanisms, which sets DoTake and DoEmit .

An example of “auxiliary” transition setting DoTake to True is as follows.

setDoTakeT ∶ ∃
i,x

i = 1 ∧ 0 ≤ x ∧ x < Takemax[i] ∧L[i] > 0 ∧B[i, x] = I ∧

SetF lags =DT ∧ DoTake = True ∧ SetF lags =DE

The remaining 4 transitions, 3 defining the behavior of the topology and 1 time elapse.

• spout emit (transition spoutemit): the queue of the bolts subscribed to the spout increases and the
emit time of the spout is reset,

• bolt emit (transition boltemit): changes the state of the bolts to (I)dle and the bolts subscribed to
it increase their queue,

• bolt take (transition bolttake): the length of the corresponding queue is decreased,

• time elapse (transition timeelapse: if the bolt is in state e(X)ecute it changes either to (E)mit or
(I)dle , the number P of processed tuples decreases and the emitting time of the spout increases
(by c).

9Cubicle file at https://github.com/merascu/DICE-StormModellingFOL/blob/master/Example2.
cub.

Copyright © 2017, DICE consortium – All rights reserved 31

https://github.com/merascu/DICE-StormModellingFOL/blob/master/Example2.cub
https://github.com/merascu/DICE-StormModellingFOL/blob/master/Example2.cub

Deliverable 3.6. DICE verification tools – Intermediate version

We ran this model for around 12 hours obtaining Safe , meaning that the system satisfies the property.
This version of the model captures some of the features of a Storm application, but it can only be applied
to very simple applications. Some of the assumptions made above were imposed by the tools we used:
restrictions of the backward reachability algorithm and also restrictions of the input language of the tools,
which led to a significantly big number of transitions in the model.

By analyzing the result obtained from this modeling exercise, as well as the model per se, we con-
clude that it is worth verifying Storm applications with safety properties which generalize over the num-
ber of processes, since more processes lead to faster applications, but also to greater resource consump-
tion. Formula (23) is a particular example of such a property. However, further investigation is needed in
order to find a better abstraction for DIAs, one which does not impose too many restrictions stemming
from very limiting assumptions; in summary, an abstraction that might be able to express more realistic
applications.

Applying first-order logic techniques to the verification of DIAs is a challenge, in no small part due
to the relative lack of maturity of the supporting tools; the goal in DICE is to investigate these techniques
as a possible complement to the temporal logic-based mechanisms which are widely applied in prac-
tice. First-order logic-based techniques have been successfully applied in academic research to validate
protocols with unbounded number of concurrent threads (e.g., Fischer protocol)10 11 and can also be con-
sidered as a candidate approach for static analysis, limited to safety aspects of array-manipulating code.
Inspired by these positive results, we investigated the application of these techniques to the verification
of safety properties of DIAs. The results we obtained highlight the current limitations of the techniques,
which hamper their applicability in practice to realistic systems, and the need for suitable abstractions
that can be useful for the analysis of DIAs with FOL. Moreover, our experiments open the possibility of
creating synergies between researchers from automated reasoning and practitioners from the Big Data
community.

10http://users.mat.unimi.it/users/ghilardi/mcmt/home.html
11http://cubicle.lri.fr/#experiments

Copyright © 2017, DICE consortium – All rights reserved 32

http://users.mat.unimi.it/users/ghilardi/mcmt/home.html
http://cubicle.lri.fr/#experiments

Deliverable 3.6. DICE verification tools – Intermediate version

9 Conclusion and future works

In this section we provide a wrap-up of what has been accomplished so far with the development of
the DICE verification framework.

The main achievements of this deliverable in relation to the initial requirements for the tool are shown
in Table 1. Our activities have been focused first on the fulfillment of requirements R3.1 and R3.2 as
they were necessary to integrate D-VerT with the DICE IDE. A detailed description of the definition
and development of the model-to-model transformations can be found in deliverable D3.1[5]. Once the
transformations needed to carry out the verification of Storm applications has have been defined, we
focused on the integration with the DICE IDE by targeting all the IDE-related requirements. Moreover,
we extended our approach to the Spark technology. Advancements related to R3.12 consisted in the
definition of a formal model to support the analysis and verification of temporal properties for Spark
applications. As described in Sect. 4, the model captures the runtime behavior of the Spark framework
and can be instantiated by specifying the execution DAG corresponding to an application. In the current
stage of development, the verification can be performed by providing a JSON file containing the DAG
specification and some tool and property configurations. Future work will address the integration of the
Spark-related functionalities with the IDE and the possibility of expressing the application in a more
user-friendly way (e.g. by means of UML models).

Requirement ID Description Coverage To do

R3.1 M2M Transformation 60 % Spark transformations in DICE IDE

R3.2
Taking into account
relevant annotations

60 % New annotations for Spark.

R3.3 Transformation Rules 0 %

R3.7
Generation of traces from
system model 80 %

Integration in the DICE IDE for
Spark

R3.10
SLA specification and
compliance 30 % Highlighting violated SLA

R3.12 Modelling abstract level 90 %
Refinements to the temporal logic
models

R3.15
Verification of temporal
safety/privacy properties 70 % Support for Spark in the IDE.

R3IDE.2 Timeout Specification 50 % Integration in the DICE IDE

R3IDE.4.2
Loading the properties to
be verified

60 % Integration for Spark

R3IDE.5 Graphical output 80 %
Integration in the DICE IDE for
Spark

R3IDE.5.1
Graphical output of
erroneous behaviours

80 %
Integration in the DICE IDE for
Spark

Table 1: Requirement coverage at month 24.

9.1 Further work
Starting from the requirements listed in Table 1, the following items provide an overview of the next

issues to be addressed within Task T3.3 and of the forthcoming work that will be carried out until M30.
IDE : In order to meet the requirements related to the IDE, most of the effort will be addressed to

the development of the functionalities enabling the analysis and verification of Spark applications

Copyright © 2017, DICE consortium – All rights reserved 33

Deliverable 3.6. DICE verification tools – Intermediate version

(R3IDE.4.2, R3IDE.5 and R3IDE.5.1). We plan to fulfill R3IDE.2 by adding to the client the
possibility to set a timeout for the verification tasks.

R3.1, R3.2, R3.7 : The same approach adopted for Storm applications will be exploited to develop the
M2M transformations from UML diagrams describing Spark application (with a specific) to the
JSON needed to perform verification.

R3.10 : Additional work is needed to support the definition of quality SLAs against which run the
verification tasks.

R3.12 Further work will address the refinement and improvement of abstract models. On one hand, in
order to decrease the verification time, we plan to review the existing models in order to reduce
their size and possibly also their complexity. O the other hand we will try to add more details in
order to carry out a finer-grained analysis of the systems.

R3.15 : beyond the efforts in extending the functionalities in the IDE to support Spark applications,
furher investigations will be devoted to the possibility of modeling and verifying further properties.

Copyright © 2017, DICE consortium – All rights reserved 34

Deliverable 3.6. DICE verification tools – Intermediate version

References

[1] The DICE Consortium. Requirement Specification. Tech. rep. available from www.dice-h2020.eu.
European Union’s Horizon 2020 research and innovation programme, 2015.

[2] The DICE Consortium. Requirement Specification - Companion Document. Tech. rep. available
from www.dice-h2020.eu. European Union’s Horizon 2020 research and innovation programme,
2015.

[3] M. Bersani et al. DICE Verification Tool - Initial Version. Tech. rep. www.dice-h2020.eu. DICE
Consortium, 2016.

[4] S. Ghilardi et al. “Towards SMT Model Checking of Array-Based Systems”. In: Automated Rea-
soning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008,
Proceedings. 2008, pp. 67–82.

[5] M. Bersani M. Erascu A. Gómez C. Joubert F. Marconi J. Merseguer J. I. Requeno D. Ardagna S.
Bernardi and M. Rossi. DICE Transformations to analysis models. Tech. rep. www.dice-h2020.eu.
DICE Consortium, 2016.

Copyright © 2017, DICE consortium – All rights reserved 35

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification_Companion.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D3.5_DICE-verification-tools-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/08/D3.1_Transformations-to-analysis-models.pdf

Deliverable 3.6. DICE verification tools – Intermediate version

A Details of the Formal Models

A.1 First Order Logic Model. Example 1

σ1a ∶ ∃
x,y,i,j

statechange = 1 ∧

∀
l,k,z

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

statechange′ = 0 ∧

S′(k, z) = if (z = x ∧ k = i) then (E or I) else S(k, z) ∧

B′(l, z) = if (z = y ∧ l = j ∧B(l, z) = E) then (I or K) else B(l, z)
elseif (z = y ∧ l = j ∧B(j, z) = I) then K else B(l, z) ∧

canT imeElapse′ = 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

σ1b ∶ ∃
j,y

B(j, y) =X ∧ P (j, y) = 0 ∧

∀
l,z

⎛
⎜
⎜
⎜
⎝

statechange′ = 0 ∧

B′(l, z) = if (z = y ∧ l = j) then E else B(l, z) ∧

wasBEmitting′ = 1 ∧

canT imeElapse′ = 1

⎞
⎟
⎟
⎟
⎠

σ2 ∶ ∃
x,y,i,j,c,d

c > 0 ∧ d > 0 ∧ S(i, x) = E ∧ T spout
min < stime(i, x) + c < T

spout
max ∧

L(j, y) + d ≤ Lenmax(j) ∧ SubscribedBS(j, i) = 1∧

∀
l,k,z,t

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t′ = t + c ∧

statechange′ = 1 ∧

L′(l, z) = if (z = y ∧ l = j) then L(l, z) + d else L(l, z) ∧

P ′(l, z) = if B(l, z) =X ∧ P (l, z) −Execrate(l) ∗ c ≥ 0
then P (l, z) −Execrate(l) ∗ c else 0 ∧

s′time(k, t) = if (t = x ∧ k = i) then 0 else stime(k, t) + c ∧

canT imeElapse′ = 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

σ3 ∶ ∃
x,y,i,j,c,d

c > 0 ∧ B(i, x) = E ∧ L(j, y) + d ≤ Lenmax(j) ∧ SubscribedBB(j, i) = 1 ∧

∀
l,z

⎛
⎜
⎜
⎜
⎝

t′ = t + c ∧

statechange′ = 1 ∧

L′(l, z) = if (z = y ∧ l = j) then L(l, z) + d else L(l, z) ∧

canT imeElapse′ = 1

⎞
⎟
⎟
⎟
⎠

σ4 ∶ ∃
j,y
B(j, y) =K ∧ Taken(j, y) ≤ L(j, y) ∧

∀
l,z

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

statechange′ = 0 ∧

B′(l, z) = if (z = y ∧ l = j) then X else B(l, z) ∧

L′(l, z) = if (z = y ∧ l = j) then L(l, z) − Taken(j, y) else L(l, z) ∧

P ′(l, z) = if (z = y ∧ l = j) then Taken(j, y) else P (l, z) ∧

bEmitTakeT ime′(l, z) = 0 ∧

wasBTaking′ = 1 ∧

canT imeElapse′ = 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

σ5 ∶ ∃
j,y

B(j, y) =K ∧ 0 < L(j, y) < Taken(j, y) ∧

∀
l,z

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

statechange′ = 0 ∧

B′(l, z) = if (z = y ∧ l = j) then X else B(l, z) ∧

L′(l, z) = if (z = y ∧ l = j) then 0 else L(l, z) ∧

P ′(l, z) = if (z = y ∧ l = j) then L(l, z) else P (l, z) ∧

bEmitTakeT ime′(l, z) = 0 ∧

wasBTaking′ = 1 ∧

canT imeElapse′ = 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Copyright © 2017, DICE consortium – All rights reserved 36

Deliverable 3.6. DICE verification tools – Intermediate version

σ6 ∶ ∃
c
c > 0 ∧ canT imeElapse = 1 ∧

∀
j,z

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t′ = t + c ∧

statechange′ = 1 ∧

P ′(j, z) = if (B(j, z) =X ∧ P (j, z) −Execrate(j) ∗ c ≥ 0)
then P (j, z) −Execrate(j) ∗ c
elseif B(j, z) /=X then P (j, z) else 0 ∧

s′time(j, z) = stime(j, z) + c ∧

bEmitTakeT ime′(j, z) = bEmitTakeT ime(j, z) + c ∧

canT imeElapse′ = 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A.2 First Order Logic Model. Example 2

We use two enumeration types: for representing states (I ,E,X) and flags for signaling the states ta(K)e
(DT), (E)mit (DE), or none of these two (No).

setDoTakeT ∶ ∃
i,x
SetF lags =DT ∧ i = 1 ∧ 0 ≤ x < Takemax(i)∧ DoTake′ = True ∧ SetF lags′ =DE

setDoTakeF1 ∶ SetF lags =DT ∧ j = 1 ∧L(j) = 0 ∧DoTake′ DoTake′ = False ∧ SetF lags′ =DE

setDoTakeF2 ∶ ∃
j
SetF lags =DT ∧ j = 1 ∧L[j] > 0 ∧ 0 ≤ j < Takemax(j) ∧B(j, j) ≠ I)∧

∀
y
(y < 0 ∨ y ≥ Takemax(j) ∨B(j, y) ≠ I)∧ DoTake′ = False ∧ SetF lags′ =DE

setDoEmitT ∶ ∃
i,x
SetF lags =DE ∧ i = 1 ∧ 0 ≤ x < Takemax(i) ∧ P (i, x) = 0 ∧B(i, x) = E∧

DoEmit′ = True ∧ SetF lags′ = No

setDoEmitF1 ∶ ∃
j
SetF lags =DE ∧ j = 1 ∧ 0 ≤ j < Takemax(j) ∧B(j, j) ≠ E∧

∀
y
(y < 0 ∨ y ≥ Takemax(j) ∨B(j, y) ≠ E)∧ DoEmit′ = False ∧ SetF lags′ = No

setDoEmitF2 ∃
j
SetF lags =DE ∧ j = 1 ∧ 0 ≤ j < Takemax(j) ∧B(j, j) = E ∧ P (j, j) > 0∧

∀
y
(y < 0 ∨ y ≥ Takemax(j) ∨ (B(j, y) = E ∧ P (j, y) > 0.0))∧

∧ DoEmit′ = False ∧ SetF lags′ = No

Copyright © 2017, DICE consortium – All rights reserved 37

Deliverable 3.6. DICE verification tools – Intermediate version

spoutemit ∶ ∃
i,j
Tsmin < stime[i] ∧ SubscribedBS[j, i] = True ∧ DoTake = False ∧

DoEmit = False ∧ SetF lags = No ∧

∀
l

⎛
⎜
⎜
⎜
⎝

L′[l] = if (l = j) then L[l] + 1 else L[l] ∧

s′time[l] if (l = i) then 0 else stime[l] ∧

CanTimeElapse′ = True ∧

SetF lags′ = DT

⎞
⎟
⎟
⎟
⎠

boltemit ∶ ∃
i,j,x

B[i, x] = E ∧ SubscribedBB[j, i] = True ∧ 0 ≤ x < Takemax[i] ∧ DoEmit = True ∧

∀
l

⎛
⎜
⎜
⎜
⎝

L′[l] = if (l = j) then L[l] + 1 else L[l] ∧

B′[l, z] = if (z = x ∧ l = i) then I else B[l, z] ∧

CanTimeElapse′ = True ∧

SetF lags′ = DT

⎞
⎟
⎟
⎟
⎠

bolttake ∶ ∃
j,y

B[j, y] = I ∧ L[j] ≥ 1 ∧ 0 ≤ y < Takemax[i] ∧ DoTake = True ∧

∀
l

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

L′[l] = if (l = j) then L[l] − 1 else L[l] ∧

B′[l, z] = if (z = y ∧ l = j) then X else B[l, z] ∧

P ′[l, z] = if (z = y ∧ l = j) then 1 else P [l, z] ∧

CanTimeElapse′ = True ∧

SetF lags′ = DT

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

timeelapse ∶ ∃
j,y

0 < c ∧ CanTimeElapse = True ∧

∀
l

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P ′[l, z] = if (B[j, z] =X ∧ 0 ≤ P [j, z] − c) then P [j, z] − c else 0∧
B′[l, z] = if (B[j, z] =X ∧ j = 0 ∧ 0 ≤ z < Takemax[j] ∧ P [j, z] ≤ c) then E

elseif (B[j, z] =X ∧ j = 1 ∧ 0 ≤ z < Takemax[j] ∧ P [j, z] ≤ c) then E
elseif (B[j, z] =X ∧ j = 2 ∧ 0 ≤ z < Takemax[j] ∧ P [j, z] ≤ c) then I
else B[j, z]∧

s′time[j] stime[j] + c∧
CanTimeElapse′ = False∧
SetF lags′ = DT

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Copyright © 2017, DICE consortium – All rights reserved 38

	Executive summary
	Glossary
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Objectives
	Motivation
	Structure of the deliverable

	Requirements and usage scenarios
	Tools and actors
	Use cases and requirements

	Verification tool overview
	Modeling Spark applications
	Terminology
	Modeling assumptions and Job model
	Temporal Logic Model of Spark Jobs
	Stage-specific Atomic Propositions
	Task-specific Atomic Propositions

	Temporal logic model
	Stage formulae
	Tasks formulae
	Resource Constraints
	Counters Formulae
	Initialization
	Clocks Formulae

	Temporal analysis of Spark applications
	Support for Spark in the Verification Tool
	Validation
	Modeling and Verifying Storm Applications
	Conclusion and future works
	Further work

	References
	Details of the Formal Models
	First Order Logic Model. Example 1
	First Order Logic Model. Example 2

