
Developing Data-Intensive Cloud
Applications with Iterative Quality

Enhancements

Design and quality abstractions - Final
version

Deliverable 2.2

Ref. Ares(2017)530549 - 31/01/2017

Deliverable 2.2. Design and quality abstractions - Final version.

Deliverable: D2.2
Title: Design and quality abstractions - Final version

Editor(s): José Ignacio Requeno (ZAR)
Contributor(s): Marcello Maria Bersani (PMI), Michele Guerriero (PMI), José

Merseguer (ZAR), Diego Pérez (ZAR), José Ignacio Requeno
(ZAR) and Damian A. Tamburri (PMI)

Reviewers: Matej Artač (XLAB) and Madalina Erascu (IEAT)
Type (R/P/DEC): Report

Version: 1.0
Date: 31-January-2017

Status: Final version
Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/
Copyright: Copyright c© 2017, DICE consortium – All rights reserved

The DICE project (February 2015-January 2018) has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

Copyright c© 2017, DICE consortium – All rights reserved 2

Deliverable 2.2. Design and quality abstractions - Final version.

Executive summary

This document presents the final version of the DICE design and quality abstractions. Therefore, it pro-
vides the final versions of the DICE Models and the DICE Profile, both artifacts are briefly introduced
with an executive summary and extensively described in the Appendix A of this document. This deliver-
able is an incremental update of the deliverable D2.1 (Design and quality abstractions - Initial version)
published in M12. The document exclusively focuses on the new contributions of the DICE Models
and DICE Profiles with respect to the previous deliverable. Mainly, this work covers 1) support for
quality and reliability annotations, 2) the addition of data protection and privacy constraints for privacy-
by-design modeling, and 3) the refinement of DICE Profiles for two Big Data technologies (Apache
Hadoop MapReduce and Apache Storm). The work presented in this deliverable has been carried out
within tasks T2.1 (Data-aware functional models) and T2.2 (Data-aware quality annotations). All the
artifacts described in this document are publicly available in the so-called DICE-Models Repository [1]
and DICE-Profiles Repository [2].

Copyright c© 2017, DICE consortium – All rights reserved 3

Deliverable 2.2. Design and quality abstractions - Final version.

Glossary

DAM Dependability Analysis and Modeling
DDSM DICE Deployment Specific Model
DIA Data-Intensive Application
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DPIM DICE Platform Independent Model
DTSM DICE Technology Specific Model
DDSM DICE Deployment Specific Model
DSML Domain-Specific Modelling Languages
MARTE Modelling and Analysis of Real-Time and Embedded Systems
MDD Model-Driven Development
MDE Model-Driven Engineering
M2M Model To Model
NBDRA NIST Big Data Reference Architecture
NIST National Institute of Standards and Technology
NFP Non-Functional Properties
QoS Quality of Service
RBAC Role Based Access Control
TOSCA Topology and Orchestration Specification for Cloud Applications
UML Unified Modelling Language
VSL Value Specification Language

Copyright c© 2017, DICE consortium – All rights reserved 4

Deliverable 2.2. Design and quality abstractions - Final version.

Contents

Executive summary . 3

Glossary . 4

Table of Contents . 5

List of Figures . 6

List of Tables . 6

1 Introduction and Objectives . 7
1.1 Objectives of WP2 . 7
1.2 Objectives of Task 2.1 and Task 2.2 . 7
1.3 Objectives of this document . 7
1.4 Structure of the document . 8

2 Requirements . 9
2.1 Requirements . 9

3 Research and Development Approach . 12
3.1 DICE Metamodel . 13
3.2 DICE Profile . 14

4 DPIM Logical Layer . 16
4.1 Meta-model . 16
4.2 Extending DPIM to support Privacy-By-Design of DIAs 16
4.3 Profile . 21

5 DTSM Logical Layer . 22
5.1 Metamodel . 22

5.1.1 New Technology-Specific Design Problems: Privacy-By-Design 22
5.1.2 Privacy-By-Design in DICE: A Technology-Aware and Secure Deployment Process 23

5.2 Profile . 24
5.3 Updating DTSM to support Apache Hadoop MapReduce 24
5.4 Updating DTSM to support Apache Storm . 25
5.5 Example of MARTE annotation . 27

6 Conclusions . 28
6.1 Further Work and Roadmap . 28

References . 30

Appendix A. Profile mappings . 32
A.1 DICE Profile: The DICE::DICE_UML_Extensions::DPIM package 32
A.2 DICE Profile: The DICE::DICE_UML_Extensions::DTSM::Core package 33
A.3 DICE Profile: The DICE::DICE_UML_Extensions::DTSM::Hadoop package 34
A.4 DICE Profile: The DICE::DICE_UML_Extensions::DTSM::Storm package 35
A.5 DICE model library . 37

A.5.1 The DICE::DICE_Library::Basic_DICE_Types package 37
A.5.2 The DICE::DICE_Library::Complex_DICE_Types package 38

Copyright c© 2017, DICE consortium – All rights reserved 5

Deliverable 2.2. Design and quality abstractions - Final version.

List of Figures

1 DICE Metamodel - High-level View . 13
2 DICE Metamodel - DTSM View . 13
3 DICE Profile - High-level View . 14
4 DICE Library . 15
5 DICE UML Extensions . 15
6 DICE UML Meta-Modelling Extensions: SecureUML 17
7 Diagram obtained for the DICE DPIM metamodel. 19
8 The SecureUML metamodel . 19
9 An example of a DPIM model obtained by instantiating the DPIM meta-model, which

also includes privacy related aspects. 20

List of Tables

1 Meta-Elements at DPIM level . 17
2 Meta-Element at DPIM level implemented from SecureUML 18
3 Stereotypes at DPIM level . 21
4 Stereotypes at DPIM level implemented from SecureUML 21
6 Storm concepts that impact in performance . 24
8 Storm concepts that impact in performance . 26
9 Level of compliance of the current version with the initial set of requirements 29
11 The DICE::DICE_UML_Extensions::DPIM package 32
12 The DICE::DICE_UML_Extensions::DTSM::Core package 33
13 The DICE::DICE_UML_Extensions::DTSM::Hadoop package 34
14 The DICE::DICE_UML_Extensions::DTSM::Hadoop package 35
15 The DICE::DICE_Library::Basic_DICE_Types package 37
16 The DICE::DICE_Library::Complex_DICE_Types package 38

Copyright c© 2017, DICE consortium – All rights reserved 6

Deliverable 2.2. Design and quality abstractions - Final version.

1 Introduction and Objectives

The focus of the DICE project is to define a quality-driven framework for developing data-intensive
applications that leverage Big Data technologies hosted in private or public clouds. DICE offers a novel
profile and tools for data-aware quality-driven development. This document describes the final version
of the DICE Profile and the DICE Metamodels, which update the DICE Profile and DICE Metamodels
presented in the DICE Design and quality abstractions - Initial Version deliverable [3]. The DICE
Metamodels are needed to develop the DICE Profile according to the approach described in Section 3
of this document. The DICE Metamodels and the DICE Profile, developed in the scope of WP2 as
Tasks 2.1 (Data-aware functional models) and 2.2 (Data-aware quality annotations), are published in the
DICE-Profiles [2] and DICE-Models [1] repositories.

1.1 Objectives of WP2

The goal of WP2 is to provide and evaluate the necessary design abstractions for specifying data-intensive
cloud applications. The work captured in this deliverable focuses on Tasks 2.1 and 2.2 (see below),
namely, the conceptual definition of the DICE design abstractions. These two tasks include the specifi-
cation of quality annotations, data protection and privacy constraints and introduce the DICE Platform
Independent Model (DPIM), DICE Technology Specific Model (DTSM), and DICE Deployment Spe-
cific Model (DDSM) logical layers of the DICE Profile.

1.2 Objectives of Task 2.1 and Task 2.2

Task 2.1 provides DPIM, DTSM and DDSM abstractions of the DICE Metamodel and Profile to describe
data-intensive application properties (structural or otherwise), their usage requirements (e.g., functional
decomposition of compute nodes w.r.t., visualization nodes) and transformations, among other data-
intensive architecting and design concerns [CicchettiRP06]. Both Metamodel and Profile levels of ab-
straction need to be extended with technology-specific elements each time a new supporting technology
is incorporated. Such extensions allow a data-intensive application developer to specify operations per-
formed as part of data-intensive computing (e.g., a mapping operation or applying the “reduce" operand)
while also qualifying inputs and outputs.

Task 2.2 defines DPIM, DTSM and DDSM abstractions (UML-based languages and profiles) to
specify reliability, efficiency, safety and privacy requirements for data-intensive applications along with
their application subcomponents. This task uses as baselines DAM and MARTE profiles (described in
the DICE State of the Art Analysis deliverable [4]) as well as SecureUML [17] for what concerns the
privacy part - a key innovative contribution part of this deliverable.

1.3 Objectives of this document

This document presents the final version of the DICE Metamodels and DICE Profiles at DPIM and
DTSM levels. The DICE Metamodels and Profiles presented in this deliverable update or extend the
Metamodels and Profiles published in the previous deliverable D2.1 (Design and quality abstractions -
Initial version) published at M12.

The main contributions of this deliverable with respect to the previous one can be summarized in
three points:

• The introduction of the DICE Metamodel and Profile for SecureUML;

• The introduction of reliability parameters for models at DPIM level in Metamodel and Profile;

• The extension of the DTSM profile to elaborate technological models for Apache Hadoop MapRe-
duce and Apache Storm technologies. While the corresponding Metamodels can be found in de-
liverable D2.1, the purpose of this document is to show how new technologies can be incorporated
into the DICE approach and be made available to the application designers by means of a familiar
UML profile. Other technologies part of the DICE technical space (see Pag. 8 of [6]) will be

Copyright c© 2017, DICE consortium – All rights reserved 7

Deliverable 2.2. Design and quality abstractions - Final version.

considered beyond this final version of the core Metamodels and DICE Profile, prioritising them
based on the needs of the DICE case-studies and the scope of their evaluation.

Finally, the DICE Metamodels and Profiles for the DDSM abstraction level are the focus of Task 2.3
and will be presented in their final version in the DICE Deployment abstractions - Final version deliver-
able [5] due at M27.

1.4 Structure of the document

The structure of this deliverable is as follows:
• Section 2 summarizes the requirements that Tasks 2.1 and 2.2 aim to cover.

• Section 3 presents the approach developed for constructing the Metamodels and for developing the
Profile.

• Section 4 summarizes the contribution of this deliverable at DPIM level.

• Section 5 summarizes the contribution of this deliverable at DTSM level.

• Section 6 summarizes the goals achieved, and outlines the future work.

• Appendix A details the current version of the DICE Profile at DPIM and DTSM levels.

The tables with the Profile annotations of the SecureUML Metamodel are not presented in a separated
Appendix, but they can be found in the corresponding citation reference.

Copyright c© 2017, DICE consortium – All rights reserved 8

Deliverable 2.2. Design and quality abstractions - Final version.

2 Requirements

Deliverable D1.2 [6, 7], released on month 6, presented the requirements analysis for the DICE project.
The outcome of the analysis was a consolidated list of requirements and the list of use cases that define
the project’s goals that guide the DICE technical activities. During the progression of DICE project, the
requirements and goals can be changed or adapted dynamically. For that reason, an online version of the
requirement document [8] is constantly updated in order to register all the modifications and the current
status.

In the following, we summarize the requirements concerning Tasks T2.1 and T2.2. They will be
reviewed in the Conclusions so as to evaluate the technical advances in the scope of WP2. Note that
Domain Assumptions upon which some of these requirements (e.g., R2.18 or R2.1,2.2) are based, are
omitted for the sake of brevity and can be inspected on D1.2 directly [6, 7].

2.1 Requirements

ID R2.0
Title Profile Structure
Priority Must have
Description Following the basic approaches to formal languages design, the DICE profile will nec-

essarily require a meta-modelling notation to cover for the basic structure and seman-
tics of the language intended behind the DICE profile. Also, the DICE profile will
need the implementation of said basic structure and semantics following a commonly
usable format as best fit with respect to DICE goals and tenets.

ID R2.1
Title Profile Basis
Priority Must have
Description The DICE profile MUST follow the default abstraction layers known and supported in

Model-Driven Engineering, namely, Platform-Independent Model, Platform-Specific
Model and add an additional layer specific to supporting the modelling of Deployment-
ready implementations, i.e., a Deployment-Specific Model.

ID R2.2
Title Abstraction Layer Origin
Priority Must have
Description Every abstraction layer (namely, DPIM, DTSM and DDSM) of the DICE profile

MUST stem from UML.

ID R2.3
Title Relation with MARTE UML Profile
Priority Must have
Description The DICE Profile MUST define required and provided properties of a DIA as well

as metrics (estimated, measured, calculated and requirements) to monitor them. Said
metrics will be specifed following the MARTE NFP framework.

ID R2.4
Title DICE Constraints Definition
Priority Must have
Description The DICE Profile MUST allow definition of values of constraints (e.g., maximum

cost for the DIA), properties (e.g., outgoing flow from a Storage Node) and stereotype
attributes (batch and speed DIA elements) using the MARTE VSL standard.

Copyright c© 2017, DICE consortium – All rights reserved 9

Deliverable 2.2. Design and quality abstractions - Final version.

ID R2.5
Title DICE Profile Performance Annotations
Priority Must have
Description The DICE Profile shall define annotations for performance based on the

MARTE::GQAM framework.

ID R2.6
Title DICE Profile Reliability Annotations
Priority Must have
Description The DICE Profile shall define annotations for reliability based on the DAM profile.

ID R2.7
Title DICE Profile Main DIA Concerns - Structure and Topology
Priority Must have
Description The DICE Profile shall define annotations that address structural and topological con-

cerns behind DIAs. Also, the DICE Profile shall separately define storage and compu-
tation elements to allow for fine-grained specification.

ID R2.8
Title DICE Profile Main DIA Concerns - Flow and Behavior
Priority Must have
Description The DICE Profile shall define annotations that address behavioral and flow concerns

behind DIAs. Also, the DICE Profile shall define annotations for flow-control across
DIAs.

ID R2.9
Title DICE Profile Pre- and Post-Processing
Priority Must have
Description The DICE Profile shall define constructs for pre- and post-processing of Big Data (e.g.,

for filtering input data or visualising data).

ID R2.10
Title DICE Profile Tech-Specific Constraints
Priority Must have
Description The DICE Profile MUST define structural and behavioral constraints typical in targeted

technologies (e.g., Hadoop, Storm, Spark, etc.).

ID R2.11
Title DICE Profile Separation-of-Concerns
Priority Must have
Description The DICE Profile MUST use packages to separately tackle the description of targeted

technologies in the respective profile abstraction layers (e.g., DTSM and DDSM). Said
packages shall be maintained consistently.

ID R2.12a
Title DICE Profile Supervision and Control
Priority Must have
Description The DICE Profile shall define constructs and annotations for DIA supervision and

process control.

Copyright c© 2017, DICE consortium – All rights reserved 10

Deliverable 2.2. Design and quality abstractions - Final version.

ID R2.12b
Title DICE Privacy and Security Aspects
Priority Must have
Description The DICE Profile shall focus on DIA-specific privacy and/or security restrictions.

ID R2.13
Title DICE Profile Data Structure
Priority Must have
Description The DICE Profile shall define QoS annotations for data structure and its specification.

ID R2.14
Title DICE Profile Data Communication
Priority Must have
Description The DICE Profile shall define annotations to elaborate on structural and behavioral de-

tails concerning the channeling and marshalling of information across specified DIAs.

ID R2.15
Title DICE Profile Sub-Structures
Priority Must have
Description The DICE Profile shall provide annotations for specifying node nesting and replication

across the structure of DIAs.

ID R2.18
Title DICE Deployment Transformation
Priority Must have
Description The DICE IDE needs to be provided with a fully automated transformation that is

capable of constructing an ad-hoc TOSCA blueprint stemming from the deployment
information that can be made available in a DTSM and DDSM model. The usage
of deployment knowledge for each technology in the DTSM shall be used by such
transformation as a means to determine the deployment structure. Subsequently, a
DDSM model proposal shall be built from this automated understanding. Finally, a
TOSCA blueprint shall be constructed from such DDSM model using an appropriate
mirroring between the DDSM model instance and the TOSCA notation.

ID R2.20
Title DICE Architecture Trade-Off Transformation
Priority Must have
Description The DICE IDE needs to be rigged with a M2M transformation that provides coherent

and comparable aggregates of the elements in the DICE technological library such as
to allow for architecture trade-off analysis - in so doing, the DICE IDE shall assume
that a DIA architect is compelled to evaluate several equally valuable alternatives for
technological composition of its own DIA solution; the architect shall then evaluate
the possible combinations of all technologies in a technological library (e.g., such as
the one provided by DICE). From this library the architect will need to be able to
instantiate the possible compatible compositions of technologies that match its higher-
order architectural specification (i.e., his DPIM model).

Copyright c© 2017, DICE consortium – All rights reserved 11

Deliverable 2.2. Design and quality abstractions - Final version.

3 Research and Development Approach

As recalled in the DICE State of the Art Analysis deliverable [4], MDE techniques [9] and MDA in
particular [10] define the typical abstraction layers for the purpose of engineering software systems
using a model-centric perspective. The fundamental axiom behind this engineering paradigm is that
any engineering endeavuor shall be guided by at least three compounding and interoperating perspec-
tives, namely: (a) Computational-Independent perspective; (b) a Platform-Independent perspective; (c)
a Platform-Specific perspective. Using these three perspectives, one or more models can be specified to
properly and systematically specify a system-to-be. In DICE these perspectives take the form of DPIM,
DTSM and DDSM, respectively, while the specification language adopted is UML.

UML [11] is a General Purpose Modelling Language. Therefore, it can be used to model a wide range
of systems but not all of its modelling capabilities are necessarily useful in all domains or applications.
Conversely, Domain-Specific Modelling Languages (DSML) are conceived for addressing the needs
of specific application domains. In this regard, UML offers a solution, the so-called UML profiling
mechanism [11]. Profiling opens the possibility of creating DSMLs by extending or restricting UML. A
Profile is then an adaptation of UML to fit a specific domain. In short, a UML profile is made of a set of
stereotypes, a set of tags and a set of related constraints. A stereotype is just a name that will be attached
to certain elements of a UML diagram. Stereotypes have tags, we can see them as the attributes added
by the stereotype.

UML has been extended with two Profiles of interest for DICE, namely MARTE [12] and DAM [13].
MARTE (Modelling and Analysis of Real-Time and Embedded systems) provides support for the specifi-
cation, design, quantitative evaluation, and verification & validation of software systems. DAM (Depend-
ability Analysis and Modelling Profile) provides support for the dependability modelling and analysis of
software systems. However, neither MARTE nor DAM has a direct support for expressing data location,
data properties such as volume or transfer rates or operations that move data. Hence, addressing such
lack is the main objective of the DICE Profile.

For constructing a technically correct high-quality UML profile that covers the necessary concepts
according to the DIA technologies, several steps need to be followed. First, metamodels for each ab-
straction level, i.e. DPIM, DTSM and DDSM, that define the concepts are needed. We have carried out
this step by carefully reviewing the abstract concepts for modelling DIA, then obtaining the abstractions
for the DPIM level, which conform the DICE Metamodel at DPIM level. Later, we have reviewed the
Big Data technologies addressed by DICE (e.g., Hadoop or Storm) and we have defined the abstractions
of interest, consequently obtaining the DICE Metamodels at DTSM level. The last level, DDSM, will
be presented in another deliverable D2.4 (Deployment abstractions - Final version deliverable [5]) due
at M27.

As a second step, the DICE Profile, at DPIM and DTSM levels, was defined by mapping the concepts
from the DICE domain models or DICE Metamodels to UML, MARTE and DAM. While constructing
the initial version of the DICE Profile, following WP2 requirements, we introduced a set of stereotypes
that can be easily used by the software engineer.

As a result, an initial version of the DICE Metamodels and Profiles has been presented in deliverable
D2.1 (Design and quality abstractions - Initial version deliverable [3]). The Metamodels and Profiles
introduced in that document are now enlarged and updated in this new release. For instance, reliability
and quality annotations are now supported in the stereotypes of the DPIM Profile. In addition, the
DICE Metamodel and Profile have been extended for supporting SecureUML, a UML-based modelling
language for defining privacy and security constraints in software applications.

The DPIM Metamodel and Profile core parts are technology-independent and, consequently, they are
available for supporting modeling of any DIA. They can be, however, extended with concepts peculiar
of specific Big Data technologies to simplify the work of designers and operators of DIAs. With the
purpose of showing examples of technology-specific extensions, we consider in this deliverable the cases
of Hadoop and Storm.

The DICE Profile is employed for stereotyping elements of behavioural UML diagrams (e.g., activity
nodes in UML activity diagrams; or lifelines in UML sequence diagrams) and components in structural
UML diagrams (e.g., computational nodes in UML deployment diagrams). The information contained in

Copyright c© 2017, DICE consortium – All rights reserved 12

Deliverable 2.2. Design and quality abstractions - Final version.

the annotations of the stereotyped UML elements guides the transformation process from UML models
into formal models for performance or reliability analysis. Currently, the stereotypes proposed by the
DICE Profile are useful for obtaining performance models by applying M2M transformations at DPIM
and DTSM level (see Deliverable D3.1 [14]). Besides, reliability models are now obtained by M2M
transformation of DPIM-profiled models using the new annotations incorporated in this version of the
DICE Profile. Reliability models for DTSM-profiled models will be reported in Deliverable D2.4 titled
Deployment abstractions - Final version. In the following we summarize the latest advances regarding
the DICE Metamodel and DICE Profile.

Figure 1: DICE Metamodel - High-level View

Figure 2: DICE Metamodel - DTSM View

3.1 DICE Metamodel

The DICE metamodel, previously detailed in Appendix A of the deliverable D2.1 [3], is sketched in Fig-
ure 1. DICE considers one metamodel per abstraction level: DPIM, DTSM and DDSM. The rationale

Copyright c© 2017, DICE consortium – All rights reserved 13

Deliverable 2.2. Design and quality abstractions - Final version.

behind this organization is that each abstraction level keeps separated, self-contained and mutually in-
cremental. At DPIM level the metamodel provides those abstract concepts needed for DIA modeling. At
DTSM level, see Figure 2 the metamodel provides a core-DTSM metamodel and one DTSM metamodel
for each technology addressed.

The logical division of the most complex abstraction layers in the DICE Profile, namely, the DICE
DTSM and DDSM layers, was arranged using a standard package-like notation. Following a systematic
approach tailored from Formal Concept Analysis (FCA) [15], we elicited the core-constructs common
to all technologies addressed by DICE and captured said constructs in a core package, to be used by
all technological extensions. In addition, specific technological extensions, e.g., Hadoop MapReduce or
Storm, were self-contained into separate packages, thus allowing to keep them transparent to less expert
users. Nevertheless, DICE will strive to make available these packages as possibly instantiable and mod-
ifiable constructs, e.g., to accommodate the needs of more experienced users.

3.2 DICE Profile

For each aforementioned metamodel we propose a mapping for obtaining the DICE Profile. The con-
cepts of the DICE Metamodel are synchronized with the current update of the DICE Profiles. Figure 3
offers a high-level view of the DICE Profile, which basically contains the DICE Library and the DICE
Extensions.

The DICE Library, detailed in Figure 4, contains basic and complex DIA types. We have imported
the DAM library, which also imports the basic Non-Functional Properties (NFP) types from the MARTE
library, for the definition of these types. In particular, the MARTE NFPs sub-profile is applied to the def-
inition of new basic DIA types and the Value Specification Modeling (VSL) sub-profile to the definition
of the complex ones.

The DICE Extensions package, detailed in Figure 5, provides the domain expert with a set of stereo-
types to be applied at model specification level, i.e., the stereotypes necessary to represent the different
system views in concrete UML models.

Figure 3: DICE Profile - High-level View

Copyright c© 2017, DICE consortium – All rights reserved 14

Deliverable 2.2. Design and quality abstractions - Final version.

Figure 4: DICE Library

Figure 5: DICE UML Extensions

Copyright c© 2017, DICE consortium – All rights reserved 15

Deliverable 2.2. Design and quality abstractions - Final version.

4 DPIM Logical Layer

The major technical extensions to the DICE platform-independent (DPIM) layer consider the privacy-
by-design strategy adopted by DICE, and augments DPIM according to this strategy. Moreover, the
DPIM profile introduces new reliability and quality annotations. The next sections address these two
aspects focusing on: (a) metamodel - from this perspective we elaborate the privacy-by-design for the
architectural level (DPIM); (b) profile - from this perspective we elaborate how the DICE UML profile
can be elaborated to use MARTE annotations for the purpose of DICE specific analyses.

4.1 Meta-model

The Data-Intensive Platform Independent meta-model (DPIM) underwent little or no modifications
in its final iteration since the main role of this abstraction layer is to allow the component-based elabora-
tion of a data-intensive solution keeping in mind quality and design concerns stated out from customers
and/or DICE solution engineers. In this respect, the little modifications that DPIM underwent concern
its adaptation to specify and accommodate the use of additional notations and abstractions needed to
support DICE-specific concerns and properties [16] along privacy-by-design of DIAs.

4.2 Extending DPIM to support Privacy-By-Design of DIAs

The DICE DPIM meta-model was accommodated to welcome its augmentation by means of the Se-
cureUML notation [17] for the specification and support of privacy-by-design annotations. SecureUML
is, quoting from its original specification: “a modelling language that defines a vocabulary for annotat-
ing UML-based models with information relevant to access control. It is based on the model for Rule
Based Access Control (RBAC) [...], with additional support for specifying authorisation constraints. Se-
cureUML defines a vocabulary for expressing different aspects of access control, like roles, role permis-
sions and user-role assignments. Due to its general access-control model and extensibility, SecureUML
is well suited for business analysis as well as design models for different technologies".

As part of this refinement, we defined our own DICE-specific and ad-hoc version of the SecureUML
profile originally formulated in [17] to focus on the DICE-required specification of privacy-by-design
aspects pertaining to RBAC. Fig. 6 provides an overview of our own re-interpretation of the SecureUML
profile using a simple standard UML Profile diagram.

In this respect, DPIM is augmented with aspects that cover:
• Specification of «Role» and «Permission» for certain computing resources, i.e., DICE «Com-

puteNode», «StorageNode», «SourceNode» and «VisualizationNode» respectively;

• Specification of specific sets of «Action» that «Permission» types are able to restrict with respect
to particular «Resource» nodes;

• Specification of deterministic «AuthorizationConstraint» elements that essentially dictate the con-
ditions upon which a certain «Role» can grant «Permission» elements;

The above ternary set of elements is necessary and sufficient to cover our problem of grant-based
access control, that is, the primary privacy-by-design concern to be addressed as part of the work in
DICE, with a major focus to the context of the NETF fraudster detector case-study (more details in Sec.
5.1.1). Also, inner source properties to the above meta-elements were removed for the sake of simplicity
while extending the DPIM meta-model. The rationale behind this decision stems from the assumption
that DICE privacy-by-design annotations need to focus on grant- and rule-based access-control and do
not need any finer-grained granularity in terms of properties and privacy aspects specification.

Finally, the above elements essentially overlap the DPIM elements we reported in Deliverable D2.1.
Therefore, rather than editing previously existing elements, DICE designers focused on adding meta-
elements and constraints to the original DPIM meta-model to accommodate the use and effective mod-
elling of SecureUML in action.

Copyright c© 2017, DICE consortium – All rights reserved 16

Deliverable 2.2. Design and quality abstractions - Final version.

Figure 6: DICE UML Meta-Modelling Extensions: SecureUML

Figure 7 reports the diagram generated from the current version of the DPIM metamodel. The top-
level concepts in the abstraction hierarchy, such as DIA and DIAElement, are omitted for the sake of
space and clarity. The shown meta-model is first of all an improvement and consolidation of the DPIM
meta-model reported in the previous version of this deliverable. Moreover the new concepts derived from
the integration of the SecureUML meta-model are now in place.

Table 1 summarizes the current list of meta-elements of the DICE DPIM meta-model, without in-
cluding the new privacy-specific elements coming from the integration with SecureUML.

Table 1: Meta-Elements at DPIM level

Meta-Element Description (This meta-element is for model elements
representing. . .)

DIA Represents a Data Intensive Application, which might be composed of
multiple DIA elements, such as compute nodes, storage nodes, but also
users and permissions.

DIAElement An element of a Data Intensive Application. It can be a
ComputationNode or a DataSource.

ComputeNode Represents an element of the application whose goal is to perform
some computation.

DataSource This entity represents an element of the DIA acting as a data source at
the DPIM layer.

SourceNode This entity represents a node of a DIA emitting data, but not providing
persistence and storage features.

StorageNode Represents an element of the application whose goal is to store and
provide the application data (i.e, a database or a file system). It can be
managed by the DIA owner or externally provided.

Dataset Represents the data that an element of the application can take in input
and/or produce in output.

Copyright c© 2017, DICE consortium – All rights reserved 17

Deliverable 2.2. Design and quality abstractions - Final version.

SchemaField Represents a field of a dataset. Can be seen as a column of a table.
FilterNode Represents a specific type of ComputeNode whose goal is to apply a

filter on the input data.
MachineLearningNode Represents a specific type of ComputeNode whose goal is to perform a

machine learning algorithm on the input data.
VisualizationNode Represents a specific type of ComputeNode whose goal is to properly

visualize the input data.

Table 2 reports the list of meta-elements of the SecureUML modelling language proposal imple-
mented within DICE DPIM meta-model.

Table 2: Meta-Element at DPIM level implemented from SecureUML

Meta-Element Description (This meta-element is for model elements
representing. . .)

User A user of the DIA. A user can own a set of ComputeNode and can have
a role over which specific permissions are set.

Role Represents a role in the context of a DIA. Multiple users can be
assigned to the same role. A role can have assigned several
permissions.

Permission According to the RBAC approach, a permission represents basically a
relationship between a role and an object of the DIA. In order to be
flexible and abstract enough the object of a permission can be any
DIAElement, of course with different semantics depending on the case.

ActionType Represents an action that a permission allows to perform on the
referenced object.

In order to obtain the privacy-aware DPIM metamodel, first of all we carefully studied the meta-
model behind SecureUML as introduce in [17], in order to understand the right connecting elements.
Our analysis shows that there is basically no overlap between the concepts previously existing in the
DPIM metamodel and those coming from the SecureUML metamodel - the only connecting element is
the object protected by a given permission. According to the original SecureUML metamodel, reported
in Figure 8 a protected object can be any modelling element from UML (see again [17]). Following the
same principle, in the DICE DPIM metamodel a protected element can be any DIAElement.

Figure 9 shows an example model that was obtained by instantiating the DPIM meta-model. The
model refers to a simple DIA developed in the context of DICE called Wikistats. Wikistats main goal is
to calculate statistics from the web pages of the popular Wikimedia website. The result of this analysis
has to be stored in a managed database. With the aim of exemplifying the usage of the new modelling
elements for privacy-aware models, we assume the user Damian to be the owner of the Wikistats appli-
cation. As an admin user, Damian should be able to query the managed storage system for the result of
his analysis. In particular he should be able to read the dataset output of the Wikistats application. Thus
a specific privacy permission has been modelled to specify this use case.

Copyright c© 2017, DICE consortium – All rights reserved 18

Deliverable 2.2. Design and quality abstractions - Final version.

Figure 7: Diagram obtained for the DICE DPIM metamodel.

Figure 8: The SecureUML metamodel

Copyright c© 2017, DICE consortium – All rights reserved 19

Deliverable 2.2. Design and quality abstractions - Final version.

Figure 9: An example of a DPIM model obtained by instantiating the DPIM meta-model, which also
includes privacy related aspects.

Copyright c© 2017, DICE consortium – All rights reserved 20

Deliverable 2.2. Design and quality abstractions - Final version.

4.3 Profile

Table 3 summarizes the current list of stereotypes of the DICE Profile for the DPIM level.

Table 3: Stereotypes at DPIM level

Stereotype Description (This stereotype is for model elements representing. . .)
DpimComputationNode DIA components with computation throughput, type of data

processing, and maybe expected target technology.
DpimFilterNode Filter nodes that extend general DpimComputationNode with input

and output ratios.
DpimSourceNode DIA components with a given storage volume, type of generated data,

and data generation rate.
DpimStorageNode DIA component with resource multiplicity, type of stored data, and

speed in terms of maximum operations rate.
DpimChannel Connectors that have a maximum speed and that are subject to failures

and propagation of errors.
DpimScenario An execution scenario of the DIA, which defines the quality properties

of interest and the scenario quality requirements.

Table 4. depicts the list of stereotypes of the SecureUML modeling language proposal implemented
within DICE.

Table 4: Stereotypes at DPIM level implemented from SecureUML

Stereotype Description (This stereotype is for model elements representing. . .)
User A user of the DIA.
Group A group of users of the DIA.
Role The definition of a role in the interaction with the DIA.
SubjectAssignment The existence of a relation between a User or Group and a Role in the

DIA.
SubjectGroup The relation of belonging between a User and a Group.
Permission The actions that are granted for a certain Role.
AuthorizationConstraint A predicate in function of the DIA state that affects the validity of

Permissions along changes in the DIA state.
Resource A protected resource in the DIA.
AtomicAction An operation that can be executed on a Resource.
CompositeAction An aggregation of operations that can be executed on a Resource.

Copyright c© 2017, DICE consortium – All rights reserved 21

Deliverable 2.2. Design and quality abstractions - Final version.

5 DTSM Logical Layer

The major technical extensions to the DICE technological layer consider the privacy-by-design strat-
egy adopted by DICE and augments DTSM according to this strategy. Moreover, the DTSM is aug-
mented from a profile point of view to accommodate DICE analyses previously foreseen in the de-
scription of work. The next sections address these two aspects focusing on: (a) metamodel - from this
perspective we elaborate the DICE strategy in pursuing privacy-by-design from the architectural (DPIM)
to the technological level (DTSM); (b) profile - from this perspective we elaborate how the DICE UML
profile can be elaborated to use MARTE annotations for the purpose of DICE specific analyses.

As we have already mentioned, the DTSM Profile needs to be extended when support to new tech-
nologies is incorporated into DICE. In this document we describe the recent updates of the Apache
Hadoop MapReduce and Apache Storm instantiations of the DTSM Profile.

5.1 Metamodel

This section addresses and elaborates on the augmentation of the DTSM metamodel, mostly driven by
our process of supporting privacy-by-design.

5.1.1 New Technology-Specific Design Problems: Privacy-By-Design

The design problem reported in this deliverable was formulated following several email and direct
interview exchanges with NETF case-study owners with respect to their stringent Security and Privacy
Issues. Said conversation is omitted for the sake of brevity but was overseen, analysed and coded by
PMI, IeAT and NETF jointly. The technological design problem for the DICE technology-specific layer
can be recapped as follows:

Consider the NETF Big Data application which is a tax fraudster detector (see the deliverable
D6.1 [19] for a detailed description of the framework). NETF is the system orchestrator and the ap-
plication provider. The Big Data framework providers include:

• FLEXI: infrastructure provider;

• Cassandra: data platform provider;

• Spark, Kafka, and Akka: processing frameworks providers;

These three layers of Big Data framework providers are fully explained in NIST v1V6 reference
architecture for privacy-by-design, section 4.4, page 17 [18]. The data providers are simulated entities
such as:

(a) French tax authorities;

(b) French city councils;

(c) French banks.

In the scope of DICE, the above actors are assumed to be replaced by simulators that generate fake but
realistic data. The data consumers are viewers, which print tax fraudster lists on end-users’ screens.

At this point, we observed that NIST (section 5.1, page 33 of the reference architecture document
[18]) provides an extensive outline of standard and necessary measures to implement in order to have se-
cure interactions between the five functional NBDRA components (system orchestrators, data providers,
Big Data application providers, data consumers, and Big Data framework providers).

Inspired by this document, we concluded that:

Copyright c© 2017, DICE consortium – All rights reserved 22

Deliverable 2.2. Design and quality abstractions - Final version.

• simulators (which replace tax authorities, city councils, banks, and so on) must encrypt their gen-
erated data to prevent FLEXI from reading them. They will be pipelined to some Cassandra
databases in their encrypted form;

• the tax fraudster detector, built by NETF, will decrypt them in-memory for analysis. To be sure that
these data are not corrupted and come truly from our simulated entities, simulators must digitally
sign their generated data. Any other method that guarantee integrity and authenticity is acceptable;

• only NETF must be able to access the streams created by simulators: a protocol, may be based on
credentials, must be designed;

• since viewers consume the results of the analytics, a way to prohibit unauthorised viewers must be
implemented: encryption, digital signatures, and credentials, again.

Stemming from the above technology-specific design problem, we augmented the DTSM notation
to address policy design and structural specification dynamics such that said design problem can be
addressed with appropriate design decisions and their documented rationale. Moreover, we enabled
DICE transformation technologies (i.e., the DICER tool) to be able to deploy and support said policy
specifications and allow for their enforcement at the Deployment specific layer (i.e., DDSM) - this latter
part will be addressed by a future deliverable, namely, D2.4 “Deployment abstractions - Final version"
to be prepared by PMI in the form of a Public Report within M27.

This not withstanding, having understood and framed our privacy-by-design strategy around the
above understanding, we defined an additional requirement for our specification efforts, as follows:

“We restrict the privacy and security policies to be concerned explicitly about the DIA itself rather
than the circumstantial technology with which the DIA is developed, operated and evolved. For example,
restricting the behaviour of the monitoring platform on top of the privacy-sensitive DIA or reducing
monitoring operations in any way due to privacy concerns is out of the scope of the support intended in
DICE.”

5.1.2 Privacy-By-Design in DICE: A Technology-Aware and Secure Deployment Process

In summary, an overall DICE privacy & secure deployment process can be defined as follows:
1. Define at the DPIM level a certain specific privacy definition (i.e., a series of privacy policies to be

applied across one or more topologies);

2. Refine that definition in the DTSM level applying it to specific technologies with specific monitor-
ing and/or trace-checking needs;

3. Move said privacy definition at DDSM level (e.g., by means of M2M transformation) - at the
deployment level privacy and secure deployment become real and need to be reflected by ad-hoc
infrastructure specification code (e.g., a Hadoop MR will never access a stream of messages from
a certain message broker).

Focusing on the DTSM level, therefore, the previous version was accommodated to model the pos-
sible entry-points and all possible interactions across technologies and middleware involved in the DIA
itself. As a consequence, an additional topological specification of the entire DIA was needed to make
sure the model is consistent with the privacy requirements. To accomodate this addition, the DTSM
layer was augmented with the possibility to specify privacy policies on a technology-specific (DTSM)
yet component-based (DPIM). In more practical terms, we modified the metamodel and profile to allow
the modelling of DTSM technological concepts on a standard UML component diagram, typically used
to elaborate a DICE DPIM diagram.

In principle, with this additional technologically-refined and privacy-augmented architecture layer
in place, privacy-by-design can be enforced by checking, once all computation has ended and before
releasing the result to DICE users, the execution and monitoring traces by means of trace-checking
certifiers to offer formal guarantees that privacy policies were not violated and the datum was not changed

Copyright c© 2017, DICE consortium – All rights reserved 23

Deliverable 2.2. Design and quality abstractions - Final version.

in its data qualities as well as no privacy issue was generated (e.g., no one entered in contact with the
datum unless she was allowed to do so). As specified above, this process, as well as the process of
enforcing the above-stated DTSM privacy structure and policies at DDSM level are addressed in future
deliverables concerning deployment abstractions in their final form.

5.2 Profile

The Data-Intensive Technology Specific profile (DTSM) underwent some modifications in its final itera-
tion. It includes a DTSM::Storm Profile, the update of the DTSM::Hadoop Profile, and the refinement of
the DICE::DICE_Library. The Hadoop and Storm Profiles do not fully incorporate quality and reliability
aspects yet, but they will be added incrementally in the following releases. Other DTSM profiles, such
as the Spark profile, will be included and refined in the near future.

The Hadoop and Storm profiles have been validated by the transformations presented in the deliv-
erable D3.1 [14], and used by the DICE Simulation and Verification Tools. The modeling of qualities
using MARTE, i.e. NFP specification, was reported in the Deliverable 1.1 - State of the Art [4] (See
sections B3.3.2 Modelling with MARTE, and B3.3.3 Modelling with DAM). Some examples showing
the utilization of these profiles can be found in the deliverable D3.1 [14] (See section 3.1.1 for the use of
quantitative analysis tags at DPIM level, and Tables 4, 6 and 7 for Hadoop and Storm technologies).

5.3 Updating DTSM to support Apache Hadoop MapReduce

The DTSM Profile for the Apache Hadoop MapReduce technology has been updated in this deliv-
erable. The DTSM Profile includes a list of stereotypes that addresses the main concepts of the Apache
Hadoop MapReduce technology identified in Table 6. In particular, we stress those concepts that di-
rectly impact on the performance of the system. Consequently, these parameters are essential for the
performance analysis of the Hadoop applications and are useful for the DICE Simulation, Verification
and Optimization tools.

Concept Meaning
1. Map (task) Filtering phase
2. Reduce (task) Composition of results phase
3. Workload Number of tasks per user in the cluster
4. Scheduling Policy for assigning cluster resources to the map and reduce phases

Table 6: Storm concepts that impact in performance

The Hadoop framework1 allows for parallel and distributed computing on large scale clusters of
commodity hardware, focusing on batch and, nowadays, also interactive processing of huge datasets.
Furthermore, it guarantees beneficial properties of fault-tolerance, scalability, and automatic paralleliza-
tion and distribution of computation across the cluster, at the expense of a simple and stiff programming
paradigm.

MapReduce jobs are composed of two main phases, namely, map and reduce. The former takes as
input unstructured data from the filesystem, filtering them and performing a preliminary elaboration,
according to the instructions in a user-defined function. The intermediate results are returned as key-
value pairs, grouped by key in the shuffle phase and distributed across the network, so as to provide each
node taking part in the reduce phase with all the values associated with a set of keys. In the end, every
reducer applies a second user-defined function to complete data elaboration and outputs the result. Each
map and reduce phase is carried out by a set of concurrent tasks, i.e., mappers and reducers.

More recent versions of Hadoop allocate cluster resources relying on a hierarchical resource man-
agement framework. The central resource manager has the role of providing resources for the execution
of jobs, based on a configurable scheduling policy and the workload of the cluster. In previous versions,

1http://hadoop.apache.org

Copyright c© 2017, DICE consortium – All rights reserved 24

Deliverable 2.2. Design and quality abstractions - Final version.

resources, i.e., cpu slots, were allocated statically to the mappers and reducers. Recently, the new version
Hadoop allows for the dynamic assignation of resources among ready tasks, leading to a better utilization
of the cluster. It is possible to supply a custom scheduler, nonetheless the Hadoop project provides three
ready general purpose alternatives: the fifo, Fair, and Capacity schedulers.

For instance, the fifo scheduler is very basic and follows the scheduling policy with a single global
queue for all the users served on a fifo basis. More refined schedulers such as Fair and Capacity sched-
ulers split the global queue into several ones (for instance, depending on the number of users or institu-
tions that utilize the cluster), and internally manage the queue of jobs on a fifo basis in order to prevent
starvation among users.

The parameters of the Hadoop MapReduce cluster are captured by the updated DICE::DTSM::Hadoop
profile annotations presented in Table 13. Table 13 links the Hadoop MapReduce concepts with the
DICE::DTSM::Hadoop profile annotations. The DICE::DTSM::Hadoop profile includes five genuine
stereotypes that are created for representing the schedulers, the workload, the mappers, the reducers and
the cluster. The stereotypes and annotations for Hadoop are based on MARTE [12], DAM [13], the
DICE::DPIM and Core profiles. The DICE::DTSM::Hadoop stereotypes inherit or refine information
from the mentioned profiles and also add new information. For instance, part of the annotations for
the mapper and reducer stereotypes use MARTE-DAM for including temporal information (i.e., host
demands) in the UML models.

The workload is described by the «HadoopWorkloadEvent» stereotype through two tags: hadoop-
Population and hadoopExtDelay. These annotations define the number of jobs for each class (user) that
are initially in the system; and the arrival rate of each class of job to the cluster. The number of jobs of
each class is specified by the hadoopPopulation tag, i.e., an array of integers. The arrival rate of jobs is
specified by the hadoopExtDelay tag, i.e., also an array of integers. The element i of the arrays represent
the number of jobs of the class i; and the time between the arrival of a new job of the class i to the cluster
and the next one.

The mappers are functions that divide and preprocess the data during the mapping phase. The com-
position of the intermediate results is done by reduce functions (i.e., reducers) in the reducing phase.
They perform Hadoop operations and, for that reason, they belong to the same «HadoopOperation»
stereotype. That is, the «HadoopOperation» stereotype models any operation in the Hadoop cluster. The
stereotype includes the tag nTasks, i.e., an array of integers for specifying the number map (reduce) tasks
in which a class of job is divided. Other tags of the stereotype are inherited from MARTE. For instance,
hostDemand is used for indicating the execution time of the map (reduce) function.

Next, the stereotype «HadoopScenario» includes information of the cluster context. For instance, the
scheduler of the Hadoop MapReduce cluster is determined by the jobSchedule tag. It is an enumerable
of the type Scheduling that can be any of three common schedulers ({capacity, fifo, fair}).

Finally, the «HadoopComputationNode» stereotype is used for annotating the computational nodes
of a Hadoop cluster in a UML deployment diagram. It defines the physical assignation of map (reduce)
functions to hardware resources during the execution of the system. The stereotype includes an array of
integers that associates a number of computational resources to each class of job.

5.4 Updating DTSM to support Apache Storm

The DTSM Profile for the Apache Storm technology is one of the main novelties of this deliverable.
The DTSM Profile includes a list of stereotypes that addresses the main concepts of the Apache Storm
technology identified in Table 8. In particular, we stress those concepts that directly impact on the
performance of the system. Consequently, these parameters are essential for the performance analysis of
the Storm applications and are useful for the DICE Simulation, Verification and Optimization tools.

Storm is a distributed real-time computation system for processing large volumes of high-velocity
data [20]. A Storm application is usually designed as a directed acyclic graph (DAG) whose nodes are
the points where the information is generated or processed, and the edges define the connections for the
transmission of data from one node to another. Two classes of nodes are considered in the topology.
On the one hand, spouts are sources of information that inject streams of data into the topology at a

Copyright c© 2017, DICE consortium – All rights reserved 25

Deliverable 2.2. Design and quality abstractions - Final version.

Concept Meaning
1. Spout (task) Source of information
2. Emission rate Number of tuples per unit of time

produced by a spout
3. Bolt (task) Data elaboration and production of results
4. Execution time Time required for producing an output by a bolt
5. Ratio Number of tuples required or produced
6. Asynchronous policy The bolt waits until it receives tuples from any of the incoming streams
7. Synchronous policy The bolt waits until it receives tuples from all the incoming streams
8. Parallelism Number of concurrent threads per task
9. Grouping Tuple propagation policy (shuffle/all/field/global)

Table 8: Storm concepts that impact in performance

certain emission rate. On the other hand, bolts consume input data and produce results which, in turn,
are emitted towards other bolts of the topology.

A bolt represents a generic processing component that requires n tuples for producing m results. This
asymmetry is captured by the ratio m

n . Spouts and bolts take a certain amount of time for processing a
single tuple.

Besides, different synchronization policies shall be considered. A bolt receiving messages from two
or more sources can select to either 1) progress if at least a tuple from any of the sources is available
(asynchronously), or 2) wait for a message from all the sources (synchronously).

A Storm application is also configurable by the parallelism of the nodes and the stream grouping.
The parallelism specifies the number of concurrent tasks executing the same type of node (spout or bolt).
Usually, each task corresponds to one thread of execution. The stream grouping determines the way a
message is propagated to and handled by the receiving nodes. By default, a message is broadcasted to
every successor of the current node. Once the message arrives to a bolt, it is redirected randomly to
any of the multiple internal threads (shuffle), copied to all of them (all) or to a specific subset of threads
according to some criteria (i.e., field, global, etc.).

In summary, a Storm framework is highly configurable by various parameters that will influence the
final performance of the application. These concepts are converted into stereotypes and tags, which are
the extension mechanisms offered by UML. Therefore, we devised a new UML profile for Storm. In
our case, we are extending UML with the Storm concepts. The stereotypes and annotations for Storm
are based on MARTE [12], DAM [13], the DICE::DPIM and Core profiles. The DICE::DTSM::Storm
profile provides genuine stereotypes (see Table 14).

Spouts and bolts have independent stereotypes because they are conceptually different, but «Storm-
Spout» and «StormBolt» inherit from MARTE::GQAM::GaStep stereotype via the DTSM::Core::Core-
DAGNode and CoreDAGSourceNode since they are computational steps. Moreover, they share the par-
allelism, or number of concurrent threads executing the task, which is specified by the tag parallelism.

On the other hand, the spouts add the tag avgEmitRate, which represents the emission rate at which
the spout produces tuples. Finally, the bolts use the hostDemand tag from GaStep for defining the task
execution time. The time needed to process a single tuple can also be expressed through the alpha tag
in case that the temporal units are not specified. The minimum and the maximum time to recover from a
failure is denoted by the minRebootTime and maxRebootTime tags.

The Storm concept of stream is captured by the stereotype «StormStreamStep». This stereotype
also inherits from MARTE::GQAM::GaStep stereotype, which enables to apply it to the control flow
arcs of the UML activity diagram. This stereotype has two tags, grouping and numTuples that match
the grouping and ratio concepts in Storm, respectively. The type of grouping is StreamPolicy, an
enumeration type of the package Basic_DICE_Types that has the values {all, shuffle, field, global} for
indicating the message passing policy. The ratio of m

n of a bolt can be expressed either through the
attribute sigma in the bolt stereotype, or by specifying the incoming and outcoming numTuples of a

Copyright c© 2017, DICE consortium – All rights reserved 26

Deliverable 2.2. Design and quality abstractions - Final version.

bolt via the stream stereotype.
Finally, the «StormScenarioTopology» stereotype is introduced for defining contextual execution in-

formation of a Storm application. That is, the reliability of the application or the buffer size of each task
for exchanging messages.

5.5 Example of MARTE annotation

The Apache Storm and Apache Hadoop MapReduce profiles heavily rely on the standard MARTE
profile [12]. This is because MARTE offers the GQAM sub-profile, a complete framework for quan-
titative analysis, which is indeed specialized for performance analysis, then perfectly matching to our
purposes. Moreover, MARTE offers the NFPs and VSL sub-profiles. The NFP sub-profile aims to de-
scribe the non-functional properties of a system, performance in our case. The latter, VSL sub-profile,
provides a concrete textual language for specifying the values of metrics, constraints, properties, and
parameters related to performance, in our particular case.

VSL expressions are used in DTSM-profiled models with two main goals: (i) to specify the values
of the NFP in the model (i.e., to specify the input parameters) and (ii) to specify the metric/s that will be
computed for the current model (i.e., to specify the output results). An example VSL expression for a
host demand tagged value of type NFP_Duration is:

(expr=$b_1, unit=ms, statQ=mean, source=est)
(1) (2) (3) (4)

This expression specifies that the operation modelled in the UML diagram demands $b_1 (1) millisec-
onds (2) of processing time, whose mean value (3) will be obtained from an estimation in the real system
(4). $b_1 is a variable that can be set with concrete values during the analysis of the model.

Another VSL interesting example is the definition of the performance metric to be calculated, the
utilization in the example:

(expr=$use, statQ=mean, source=calc)
(1) (2) (3)

This expression specifies that we want to calculate (3) the utilization, as a percentage of time, of the
whole system or a specific resource, whose mean value (2) will be obtained in variable $use (1). Such
value is obviously the result of the simulation of the performance model. The examples presented here
try to guide the use of MARTE expressions during the modelling of Big Data applications with the DICE
Profile.

Copyright c© 2017, DICE consortium – All rights reserved 27

Deliverable 2.2. Design and quality abstractions - Final version.

6 Conclusions

In this document we have presented the latest versions of the DICE Metamodels and DICE Profile,
which are the main outcomes for Tasks T2.1 and T2.2, respectively. The updated DICE Metamodels and
Profiles include:

• a new SecureUML metamodel and profile for the specification and support of privacy-by-design
annotations,

• reliability annotations for modules at DPIM level, and

• a stable and updated version of the DICE Profile for the Apache Hadoop MapReduce and Apache
Storm technologies.

The DICE Metamodels and Profiles at DDSM level will be discussed in the DICE Deployment ab-
stractions - Final version deliverable in M27. This deliverable will also include the reliability annotations
for modules at the DTSM level.

Table 9 summarizes the main achievements of this deliverable in terms of compliance to the initial
set of requirements presented in Section 2. The labels specifying the Level of fulfillment should be
understood as follows: (i) 7 (unsupported: the requirement is not fulfilled by the current version); (ii) 4

(partially-supported: most of the aspects of the requirement are fulfilled by the current version); and (iii)
4 (supported: the requirement is fulfilled by the current version).

The notes shown in the last column of the table provide an explanation in the case the level of
fulfillment of some requirement is not complete and, with the exception of R2.9 whose full fulfillment is
out of the scope of DICE, indicate when the requirement will be fully addressed.

6.1 Further Work and Roadmap

As demonstrated by the status of Table 9, the work in WP2 is completed in its main parts. The points
that require some more attention are the following:

• The reliability Profile annotations at the DTSM level. These will be released at M27 as part of
Deliverable D2.4.

• The inclusion in the Metamodels and Profile of the set of technologies adopted within the Case
Studies. As discussed in this deliverable, the Metamodels and Profile have been designed to be
extensible and to accomodate the never-ending need of adding new technologies. The additions
that will be developed for the purpose of supporting the DICE case studies will be reported in
Deliverable D2.5 DICE metodology, due at month 30, and in the final release of the case studies
themselves.

• Finally, the Deployment and Architecture Trade-Off Transformations are the main subject of De-
liverable D2.4.

Copyright c© 2017, DICE consortium – All rights reserved 28

Deliverable 2.2. Design and quality abstractions - Final version.

Table 9: Level of compliance of the current version with the initial set of requirements

Requirement Title Priority Level of fulfillment Notes
R2.0 Profile Structure MUST 4
R2.1 Profile Basis MUST 4
R2.2 Abstraction Layer Origin MUST 4
R2.3 Relation with MARTE UML

Profile
MUST 4

R2.4 DICE Constraints Specifica-
tion

MUST 4

R2.5 DICE Profile Performance
Annotations

MUST 4

R2.6 DICE Profile Reliability An-
notations

MUST 4 Reliability annotations at
DTSM level will be released
within D2.4

R2.7 DICE Profile Main DIA
Concerns - Structure and
Topology

MUST 4

R2.8 DICE Profile Main DIA
Concerns - Flow and Behav-
ior

MUST 4

R2.9 DICE Profile Pre- and Post-
Processing

MUST 4 Each technological sub-
profile addresses this
requirement.

R2.10 DICE Profile Tech-Specific
Constraints

MUST 4 New technologies will be
incorporated based on the
needs of DICE case studies.
A report on this will be pro-
vided as part of D2.5

R2.11 DICE Profile Separation-of-
Concerns

MUST 4

R2.12a DICE Profile Supervision
and Control

MUST 4

R2.12b DICE Privacy and Secure
Aspects

MUST 4

R2.13 DICE Profile Data Structure MUST 4
R2.14 DICE Profile Data Commu-

nication
MUST 4

R2.15 DICE Profile Sub-Structures MUST 4
R2.18 DICE Deployment Transfor-

mation
MUST 4 This work will be finalized

within D2.4
R2.20 DICE Architecture Trade-

Off Transformation
MUST 4 Support to this is under de-

velopment and will be deliv-
ered as part of D2.4

Copyright c© 2017, DICE consortium – All rights reserved 29

Deliverable 2.2. Design and quality abstractions - Final version.

References

[1] The DICE Consortium. DICE Models Repository. URL: https://github.com/dice-project/
DICE-Models. Dec., 2015.

[2] The DICE Consortium. DICE Profiles Repository. URL: https://github.com/dice-project/
DICE-Profiles. Dec., 2015.

[3] The DICE Consortium. Design and Quality Abstractions - Initial Version. Tech. rep. URL: http:
//wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_
Design-and-quality-abstractions-Initial-version.pdf. European Union’s Horizon
2020 research and innovation programme, 2015.

[4] The DICE Consortium. State of the Art Analysis. Tech. rep. URL: http://wp.doc.ic.ac.uk/
dice-h2020/wp-content/uploads/sites/75/2015/08/D1.1_State-of-the-art-
analysis1.pdf. European Union’s Horizon 2020 research and innovation programme, 2015.

[5] The DICE Consortium. Deployment Abstractions - Final Version. Tech. rep. To Appear. European
Union’s Horizon 2020 research and innovation programme, 2015.

[6] The DICE Consortium. Requirement Specification. Tech. rep. URL: http://wp.doc.ic.ac.
uk/dice- h2020/wp- content/uploads/sites/75/2015/08/D1.2_Requirement-
specification . pdf. European Union’s Horizon 2020 research and innovation programme,
2015.

[7] The DICE Consortium. Requirement Specification - Companion Document. Tech. rep. URL: http:
//wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_
Requirement- specification_Companion.pdf. European Union’s Horizon 2020 research
and innovation programme, 2015.

[8] DICE Requirement List (Online version). 2015. URL: https://docs.google.com/spreadsheets/
d/1Wn9OXGsTknrAs5ASUadOp9IpQ9BM_WM4NsyAuXL6_Ug/edit?usp=sharing.

[9] Douglas C. Schmidt. “Model Driven Engineering”. In: IEEE Computer 39.2 (Feb. 2006), pp. 25–
31.

[10] The Object Management Group (OMG). Model-Driven Architecture Specification and Standardi-
sation. Tech. rep. URL: http://www.omg.org/mda/.

[11] The Object Management Group (OMG). Unified Modelling Language: Infrastructure, 2011. Ver-
sion 2.4.1. OMG document: formal/2011-08-05. Tech. rep. URL: http://., 2011.

[12] OMG. UML Profile for MARTE: Modeling and Analysis of Real-time Embedded Systems, Version
1.1. URL: http://www.omg.org/spec/MARTE/1.1/. Object Management Group, June 2011.
URL: http://www.omg.org/spec/MARTE/1.1/.

[13] S. Bernardi, J. Merseguer, and D. C. Petriu. “A dependability profile within MARTE.” In: Software
and Systems Modeling 10.3 (2011), pp. 313–336.

[14] The DICE Consortium. Transformations to Analysis Models. Tech. rep. URL: http : / / wp .
doc . ic . ac . uk / dice - h2020 / wp - content / uploads / sites / 75 / 2016 / 08 / D3 . 1 _
Transformations-to-analysis-models.pdf. European Union’s Horizon 2020 research and
innovation programme, 2016.

[15] Formal Concept Analysis, Foundations and Applications. Vol. 3626. Springer, 2005.

[16] G. Casale et al. “DICE: Quality-Driven Development of Data-Intensive Cloud Applications”. In:
Proceedings of the 7th International Workshop on Modelling in Software Engineering (MiSE).
May 2015, pages.

[17] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-based modeling language for model-
driven security. 2002. URL: citeseer.ist.psu.edu/lodderstedt02secureuml.html.

Copyright c© 2017, DICE consortium – All rights reserved 30

Deliverable 2.2. Design and quality abstractions - Final version.

[18] Eric Simmon and Robert B. Bohn. “An Overview of the NIST Cloud Computing Program and Ref-
erence Architecture.” In: ISPE CE. Ed. by Josip Stjepandic, Georg Rock, and Cees Bil. Springer,
2012, pp. 1119–1129. ISBN: 978-1-4471-4426-7. URL: %5Curl%7Bhttp://dblp.uni-trier.
de/db/conf/ispe/ispe2012.html#SimmonB12%7D.

[19] The DICE Consortium. Demonstrators Implementation Plan. Tech. rep. URL: http : / / wp .
doc . ic . ac . uk / dice - h2020 / wp - content / uploads / sites / 75 / 2016 / 06 / D6 . 1 -
Demonstrators-implementation-plan.pdf. European Union’s Horizon 2020 research and
innovation programme, 2015.

[20] Apache Storm Website. URL: http://storm.apache.org/.

Copyright c© 2017, DICE consortium – All rights reserved 31

D
eliverable

2.2.D
esign

and
quality

abstractions
-Finalversion.

Appendix A. Profile mappings

Next we detail the DICE profile. The engineer only needs to use those DICE tags that are useful for him/her to describe the UML model element at hand.
A.1 DICE Profile: The DICE::DICE_UML_Extensions::DPIM package

Table 11: The DICE::DICE_UML_Extensions::DPIM package

DICE DTSM::Core Stereotype
Element

Inheritance DICE Tags

DpimScenario «DpimScenario» inherits from
«DAM::DAM_UML_Extensions::
System::Core::DaService»

DpimFilterNode «DpimFilterNode» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Core::DpimComputationNode»

New tags:
• inputRatio: NFP_Frequency
• outputRatio: NFP_Frequency

DpimVisualizationNode «DpimVisualizationNode» inherits
from «DICE::DICE_UML_Extensions::
DTSM::Core::DpimComputationNode»

DpimSourceNode «DpimSourceNode» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Core::DpimComputationNode»

New tags:
• store: DiceDataVolume
• provides: DiceDataSpecification
• sourceType: SourceType
• rate: NFP_Frequency

DpimComputationNode «DpimComputationNode» inherits from
«DAM::DAM_UML_Extensions::
System::Core::DaComponent»

New tags:
• nodeThroughput: NFP_Frequency
• type: ComputationType
• targetTech: TechType
• procType: ProcessingType

DpimStorageNode «DpimStorageNode» inherits from
«MARTE::MARTE_Foundations::GRM::
StorageResource»

New tags:
• respondsTo: DiceDataSpecification
• crudRate: NFP_Frequency

DpimChannel «DpimChannel» inherits from
«DAM::DAM_UML_Extensions::
System::Core::DaConnector»

New tags:
• rate: NFP_Frequency
• messageBroker: String
• channelDescription:
DiceChannelSpecification

C
opyright

c©
2017,D

IC
E

consortium
–

A
llrights

reserved
32

D
eliverable

2.2.D
esign

and
quality

abstractions
-Finalversion.

A.2 DICE Profile: The DICE::DICE_UML_Extensions::DTSM::Core package
Table 12: The DICE::DICE_UML_Extensions::DTSM::Core package

DICE DTSM::Core Stereotype
Element

Inheritance DICE Tags

CoreComputationNode «CoreComputationNode» inherits from
«DICE::DICE_UML_Extensions::
DPIM::DpimComputationNode»

New tags:
• hasSuccessor: CoreComputationNode[*]
• processInputData: CoreData[*]
• produceOutputData: CoreData
• realise: CoreDirectAcyclicGraph

CoreStorageNode «CoreStorageNode» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Core::CoreDataSource»

New tags:
• database: String
• password: String
• user: String

CoreDAGSourceNode «CoreDAGSourceNode» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Core::CoreDAGNode»

New tags:
• readFrom: CoreDataSource

CoreDirectAcyclicGraph «CoreDirectAcyclicGraph» inherits
from
«MARTE::MARTE_AnalysisModel::
GQAM::GaScenario» and
«Metaclass(UML)Class»

New tags:
• hasSourceNode: CoreDAGSourceNode

CoreData «CoreData» inherits from
«Metaclass(UML)Classifier»

New tags:
• hasSpecification:
DiceDataSpecification

• hasVolume: DiceDataVolume
• location: CoreDataSource

CoreDataSource «CoreDataSource» inherits from
«MARTE::MARTE_Foundations::GRM::
StorageResource»

CoreDAGNode «CoreDAGNode» inherits from
«MARTE::MARTE_AnalysisModel::
GQAM::GaStep»

New tags:
• hasSuccessor: CoreDAGNode[*]
• operation: WorkflowOperation
• parallelism: NFP_Integer

C
opyright

c©
2017,D

IC
E

consortium
–

A
llrights

reserved
33

D
el

iv
er

ab
le

2.
2.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-F

in
al

ve
rs

io
n.

A.3 DICE Profile: The DICE::DICE_UML_Extensions::DTSM::Hadoop package

Table 13: The DICE::DICE_UML_Extensions::DTSM::Hadoop package

DICE DTSM::Hadoop Stereotype
Element

Inheritance DICE Tags

HadoopScenario «HadoopScenario» inherits from
«MARTE::MARTE_AnalysisModel::
GQAM::GaScenario»

New tags:
• jobSchedule: Scheduling

HadoopWorkloadEvent «HadoopWorkloadEvent» inherits from
«MARTE::MARTE_AnalysisModel::
GQAM::GaWorkloadEvent»

New tags:
• pattern: ArrivalPattern
• hadoopPopulation: NFP_Integer[*]
• hadoopExtDelay: NFP_Duration[*]

HadoopOperation «HadoopOperation» inherits from
«MARTE::MARTE_AnalysisModel::
GQAM::GaStep»

New tags:
• parallelism: NFP_Integer
• nTasks: NFP_Integer[*]

HadoopMap «HadoopMap» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Hadoop::HadoopOperation»

New tags:
• type: MapType

HadoopReduce «HadooReduce» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Hadoop::HadoopOperation»

New tags:
• type: ReduceType

HadoopComputationNode «HadoopComputationNode» inherits
from «DICE::DICE_UML_Extensions::
DTSM::Core::CoreComputationNode»

New tags:
• nCores: NFP_Integer[*]

HadoopMapReduceJob «HadoopMapReduceJob» inherits from
«Metaclass(UML)Classifier»

New tags:
• mapResucePhases: HadoopMapReducePhase

HadoopMapReducePhase «HadoopMapReducePhase» inherits from
«Metaclass(UML)Classifier»

New tags:
• hasMap: HadoopMap
• hasReduce: HadoopReduce
• output: CoreData

C
op

yr
ig

ht
c ©

20
17

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

34

D
eliverable

2.2.D
esign

and
quality

abstractions
-Finalversion.

A.4 DICE Profile: The DICE::DICE_UML_Extensions::DTSM::Storm package

Table 14: The DICE::DICE_UML_Extensions::DTSM::Hadoop package

DICE DTSM::Storm Stereotype
Element

Inheritance DICE Tags

StormScenarioTopology «StormScenarioTopology» inherits
from «DICE::DICE_UML_Extensions::
DTSM::Core::
CoreDirectAcyclicGraph»

New tags:
• queueThreshold: Integer
• maxTaskParallelism: Integer
• maxSpoutPending: Integer
• isReliable: Boolean

StormBolt «StormBolt» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Core::CoreDAGNode»

New tags:
• failure: ArrivalPattern
• d: NFP_Real
• alpha: NFP_Real
• sigma: NFP_Real
• minRebootTime: NFP_Real
• maxRebootTime: NFP_Real

StormSpout «StormSpout» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Core::CoreDAGSourceNode»

New tags:
• avgEmitRate: NFP_Real

StormStreamStep «StormStreamStep» inherits from
«MARTE::MARTE_AnalysisModel::
GQAM::GaStep»

New tags:
• numTuples: NFP_Integer
• grouping: StreamPolicy

StormApplication «StormApplication» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Core::CoreComputationNode»

New tags:
• hasMasterNode: StormNimbus
• hasSlaveNode: StormSupervisor
• dependsOnZookeeper: StormZookeeper

StormNimbus «StormNimbus» inherits from
«Metaclass(UML)Classifier»

New tags:
• taskTimeout: Integer
• supervisorTimeout: Integer
• monitorFrequency: Integer

C
opyright

c©
2017,D

IC
E

consortium
–

A
llrights

reserved
35

D
el

iv
er

ab
le

2.
2.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-F

in
al

ve
rs

io
n.

StormSupervisor «StormSupervisor» inherits from
«Metaclass(UML)Classifier»

New tags:
• monitorFrequency: Integer
• workerSatrtTimeout: Integer
• workerTimeout: Integer
• heatbrackFrequency: Integer
• memoryCapacity: Integer
• cpuCapacity: Integer

StormZookeeper «StormZookeeper» inherits from
«Metaclass(UML)Classifier»

New tags:
• sessionTimeout: Integer
• connectionTimeout: Integer
• retryTime: Integer
• retryInterval: Integer
• user: String
• password: String

C
op

yr
ig

ht
c ©

20
17

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

36

D
eliverable

2.2.D
esign

and
quality

abstractions
-Finalversion.

A.5 DICE model library

The DICE model library contains basic and complex types that are used by the DICE UML extensions.

A.5.1 The DICE::DICE_Library::Basic_DICE_Types package

Table 15: The DICE::DICE_Library::Basic_DICE_Types package

Basic_DICE_Types Type Name Kind Values
ComputationType Enumeration distributed, parallel,

distributedParallel,
microBench, sorting, grep,
wordCount,
collabFiltering,
naiveBayes, bfs, pageRank,
kMeans,
connectedComponents,
relQuery

TechType Enumeration hadoop, spark, storm, oryx2
ProcessingType Enumeration stream, batch
SourceType Enumeration dataStream, webapi
RefType Enumeration mongodb, hdfs, mysql,

cassandra
RefDataFormatType Enumeration JSON, plain, xml, avro,

parquet, yaml
ConstraintsType Enumeration less, lessEqual, equal,

greaterEqual, greater
MapType Enumeration regexMapper,

fieldSelectionMapper,
chainMapper

ReduceType Enumeration intSumReducer,
fieldSelectionReducer,
chainReducer

Scheduling Enumeration capacity, fifo, fair
WorkFlowOperation Enumeration groupBy, sum, count, split
StreamPolicy Enumeration all, shuffle, global, field
VMSize Enumeration small, medium, large

C
opyright

c©
2017,D

IC
E

consortium
–

A
llrights

reserved
37

D
el

iv
er

ab
le

2.
2.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-F

in
al

ve
rs

io
n.

ProviderType Enumeration flexiant, openstack
LifeCycleElementTy Enumeration start, stop, install,

create, download,
preconfigured

DDSMcomponentType Enumeration MasterSlavePlatform,
PeerToPeerPlatform,
PeerNode, PeerQuorum,
CassandraSeed,
MasterNode, SlaveNode

NFP_Privacy Data Type • expr: VLS_Expression
• source: SourceKind

ScriptType Data Type • scriptId: EString
• scriptUri: EString
• scriptKind:
LifeCycleElementType

A.5.2 The DICE::DICE_Library::Complex_DICE_Types package

Table 16: The DICE::DICE_Library::Complex_DICE_Types package

Complex_DICE_Types Type Name Attributes
DiceDataVolume • volume: NFP_DataSize
DiceDataSpecification • description: String

• size: NFP_DataSize
• refModel: RefType
• refDataFormat: RefDFType

DiceChannelSpecification • rate: NFP_Frequency
• size: NFP_DataSize

C
op

yr
ig

ht
c ©

20
17

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

38

