

Developing Data-Intensive Cloud

Applications with Iterative Quality

Enhancements

DICE Framework – Initial version

Companion Document

Deliverable 1.5

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 2

Deliverable: D1.5

Title: DICE Framework – Initial version – Companion Documente

Editor(s): Marc Gil (PRO)

Contributor(s): Marc Gil (PRO), Ismael Torres (PRO), Christophe Joubert (PRO) Giuliano

Casale (IMP), Darren Whigham (Flexi), Matej Artač (XLAB), Diego Pérez

(Zar), Vasilis Papanikolaou (ATC), Francesco Marconi (PMI), Eugenio

Gianniti(PMI), Marcelo M. Bersani (PMI), Daniel Pop (IEAT), Tatiana

Ustinova (IMP), Gabriel Iuhasz (IEAT), Chen Li (IMP), Ioan Gragan

(IEAT), Damian Andrew Tamburri (PMI), Jose Merseguer (Zar), Danilo

Ardagna (PMI)

Reviewers: Darren Whigham (Flexi), Matteo Rossi (PMI)

Type (R/P/DEC): -

Version: 1.0

Date: 31-January-2017

Status: First Version

Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright © 2017, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre

FLEXI: FlexiOPS

IEAT: Institutul e-Austria Timisoara

IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA

PMI: Politecnico di Milano

PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.

ZAR: Universidad De Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No.

644869

http://www.dice-h2020.eu/deliverables/

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 3

Glossary

API Application Programming Interface

AST Abstract Syntax Tree

ATL ATL Transformation Language

CEP Complex Event Processor

CI Continuous Integration

CPU Central Process Unit

CSS Cascade Style Sheet

DDSM DICE Deployment Specific Model

DIA Data-Intensive Application

DICE Data-Intensive Cloud Applications with iterative quality enhancements

DICER DICE Rollout Tool

Dmon DICE Monitoring

DPIM DICE Platform Independent Model

DSL Domain Specific Language

DTSM DICE Technology Specific Model

EMF Eclipse Modelling Framework

EPL Eclipse Public License

FCO Flexiant Cloud Orchestrator

GEF Graphical Editing Framework

GIT GIT Versioning Control System

GMF Graphical Modelling Framework

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IDE Integrated Development Environment

IP Internet Protocol

JDO Java Data Objects

JDT Java Development Tools

MARTE Modeling and Analysis of Real-Time and Embedded Systems

MBD Model Based Design

MDSD Model Driven Software Development

MOF Meta-Object Facility

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

MW MiddleWare

OCL Object Constraint Language

OLAP OnLine Analytical Processing

OMG Object Management Group

OSGi Open Services Gateway initiative

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 4

PDE Plug-in Development Environment

PNML Petri Net Markup Language

POM Project Object Model (MAVEN)

QA Quality-Assessment

QVT Meta Object Facility (MOF) 2.0 Query/View/Transformation Standard

QVTO QVT Operational Mappings language

RCP Rich Client Platform

SCM Source Code Management

SQL Structured Query Language

SVN Subversion Versioning Control System

SWT Standard Widget Toolkit

TC Trace Checking

TOSCA Topology and Orchestration Specification for Cloud Applications

UI User Interface

UML Unified Modelling Language

UML2RDB Unified Modelling Language to Relational Data Base

URL Uniform Resource Locator

UUID Universal Unique IDentifier

VCS Versioning Control System

VM Virtual Machine

WST Web Standard Tools

WTP Web Tools Platform

XMI XML Metadata Interchange

XML eXtensible Markup Language

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 5

Table of Figures

Figure 1. Configure Simulation tool SSH connection ...9
Figure 2. Launch the Simulation tool..9
Figure 3. Configure the Simulation tool execution. ...10
Figure 4. Simulation tool result view. ..10
Figure 5. Verification tool: modeling the uml model. ...12
Figure 6. Verification tool: applying the stereotypes. ..12
Figure 7. Verification tool: final diagram. ...13
Figure 8. Verification tool: set value to the stereotype attributes. ...14
Figure 9. Verification tool: run the configuration. ...14
Figure 10. Verification tool: set the values to the configuration. ...15
Figure 11. Verification tool: see the results. ..15
Figure 12. Monitoring tool API. ..17
Figure 13. Monitoring tool: Monitoring Service Visualization UI. ...19
Figure 14. Delivery tool: web service properties configuration. ...21
Figure 15. Delivery tool: menu entry tool execution. ..21
Figure 16. Delivery tool: web service. ...22
Figure 17. Delivery tool: upload the blueprint file (1). ..23
Figure 18. Delivery tool: upload the blueprint file (2). ..23
Figure 19. Delivery tool: progress of the deployment. ..24
Figure 20. Delivery tool: deploying the blueprint. ...24
Figure 21. Optimization tool: main web service. ...27
Figure 22. Optimization tool: alternatives for public cloud analyses. ...28
Figure 23. Optimization tool: selection of cloud admission control files. ...28
Figure 24. Optimization tool: experiments. ...29
Figure 25. DICER tool: configuring the model (1). ...39
Figure 26. DICER tool: configuring the model (2). ...40
Figure 27. DICER tool: configuring the model (3). ...41
Figure 28. DICER tool: configuring the model (4). ...42
Figure 29. DICER tool: configuring the model (5). ...42
Figure 30. DICER tool: configuring the model (6). ...43
Figure 31. DICER tool: configuring the model (7). ...43
Figure 32. DICER tool: configuring the model (8). ...44

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 6

Table of Contents

Glossary ...3

Table of Figures ...5

Table of Contents ...6

1. Introduction ..8

2. Simulation Tool ...9

2.1. Configuration ...9

2.2. Getting Started ...9

3. Verification Tool ..11

3.1. Installation..11

3.2. How to use D-VerT ..11

3.3. DPIM Modeling ...11

3.4. DTSM Modeling ..11

4. Monitoring Tool ...16

4.1. Installation..16

4.2. Getting Started ...16

4.2.1. DICE Monitoring Service Administration ...16

4.2.2. DICE Monitoring Service Visualization UI ...18

5. Delivery Tool ...20

5.1. Installation..20

5.2. Getting Started ...21

6. Optimization Tool ..25

6.1. Installation..25

6.2. Configuration ...25

6.3. Getting started ..27

7. Anomaly detection Tool ..30

8. Trace Checking Tool ..31

8.1. Installation..31

8.2. How to use DICE-TraCT ...31

9. Enhancement Tool ...33

9.1. Installation..33

9.2. Getting Started ...33

10. Fault Injection Tool ..35

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 7

11. Configuration Optimization Tool...36

11.1. Installation ..36

11.2. Getting Started ...37

12. Quality Testing Tool ..38

13. Deployment Modelling (DICER) Tool ..39

13.1. Introduction ..39

13.2. DPIM Modeling ...39

13.3. DTSM Modeling ..40

13.4. DDSM Modelling ..41

13.5. Running the DICER Tool ..44

14. Conclusions ..45

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 8

1. Introduction

This companion document to Deliverable 1.5 shows relevant information about each tool that is part of the

DICE IDE, such as user installation guides, user guides and videos.

The complete information about the tools can be found in the deliverable for each tool. Also, for a global

reference for the DICE Tools see the Github of the DICE Project.1

1 https://github.com/dice-project

https://github.com/dice-project

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 9

2. Simulation Tool

The DICE simulation tool is fully integrated with DICE IDE and comes already installed in it.

2.1. Configuration

The simulation tool requires some configuration from the user before being able to offer its functionality.

The tool needs to access a Petri net analysis engine; hence it requires the hostname (or IP address), port

number where it can be accessed, and credentials (username and password) of a user of the server hosting

the Petri net simulator.

Figure 1. Configure Simulation tool SSH connection

After this configuration action, the tool is ready to simulate DIA DPIM and DTSM scenarios defined as

profiled UML diagrams and offer the computed performance and reliability results to the user. The next

paragraphs specify a simple scenario for the utilization of the simulation tool.

2.2. Getting Started

By clicking on the simulation tool icon when a DIA DPIM or DTSM scenario is selected in the IDE, the

simulation tool User Interface is launched. Next figure depicts the position of the simulation tool launching

icon in the IDE.

Figure 2. Launch the Simulation tool.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 10

Through the GUI that opens when clicking in this button, the user can specify the metrics of interest that

should be computed. The following figure shows a case where the user is interested has defined Response

Time, Throughput and Reliability metrics in the profiled UML model whilst, for this concrete execution of

the simulation tool, the user is not considering Throughput or Reliability measures and concentrates on the

Response Time evaluation.

Figure 3. Configure the Simulation tool execution.

Then, the user clicks on “Run”, the simulation process is launched, and results are returned as shown in the

next figure. The uppermost part of the following figure shows that the simulation has finished correctly

and, by double clicking on the result (for instance, in any point of the highlighted row in the figure), the

computed results are opened. The lowermost part of the figure shows these computed results for the

selected Response time metric. For instance, in figure the expected response time of the simulated DIA

scenario is 5.90 s.

Figure 4. Simulation tool result view.

Further information on the capabilities and usage of the simulation tool is provided in D3.32, which details

the intermediate version of the tool and is submitted contemporarily to this deliverable.

2 D3.3 - DICE simulation tools - Intermediate version: http://www.dice-h2020.eu/deliverables/ . To appear

http://www.dice-h2020.eu/deliverables/

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 11

3. Verification Tool

D-VerT is the verification tool of DICE, which is fully integrated in the DICE platform. Currently, D-VerT

supports the verification of Storm topologies that are defined at the DTSM level by means of annotated

class diagrams. The instance of the verification problem is provided by the user through the DICE IDE

which specifies (i) the DTSM diagram, (ii) the values of all the parameters needed to carry out verification

and (iii) the computational nodes of the application that the user wants to analyse.

3.1. Installation

D-VerT can be installed automatically through the Eclipse installation service by linking the repository

http://dice-project.github.io/DICE-Verification/updates in the “Install New Software” menu. Being a client-

server application, D-VerT exploits an external service running on a server that carries out the

mathematical verification. The server can be easily installed by running Docker that build the docker image

available in the github repository.

3.2. How to use D-VerT

Storm topologies can be defined as DICE-Profiled UML class diagrams, in which each component of the

application needs to be conveniently annotated. The class diagram is defined by simply dragging and

dropping elements from the palette available in the DICE IDE.

The user starts the design of the DIA by creating a new Papyrus UML project and by selecting the “Class”

kinds of diagram for his/her model.

Afterwards, the user opens the created class diagram and instantiates two packages, one for the DPIM

model and another for the DTSM model and applies on the packages the DICE::DPIM and the

DICE:DTSM UML profiles respectively. Specifically, as this guide exemplifies the creation of a Storm

application, the user shall add to the project the “Core” and the “Storm” metamodels/profile that can be

found in the DTSM entry.

3.3. DPIM Modeling

In the DPIM package, the user models the high level architecture of the DIA in a class diagram

representing the computation of the application which elaborates input coming from possibly

heterogeneous data sources. To this end, the user instantiates a new class and applies the

<<DPIMComputationNode>> stereotype on it; he/she models the data sources, which can be either profiled

by using the <<DPIMSourceNode>> of the <<DPIMStorageNode>> stereotypes, depending on the kind of

data source; and, finally, he/she associates the computation nodes to the available data sources.

In this DPIM diagram the technological aspects of the application are not considered. These details are

defined by means of the DTSM modeling.

3.4. DTSM Modeling

In the DTSM package, the user specifies which technologies implement the various components of the

DIA. In particular, the user models the actual implementation of the computations declared in the DPIM

along with all the technology-specific details.

http://dice-project.github.io/DICE-Verification/updates

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 12

For instance, let us suppose that the user wants to use Apache Storm to characterize the implementation of

a <<DiceComputationNode>> appearing in the DPIM model. To this end, the user applies the stereotypes

from the DICE::DTSM-Storm profile to describe the Storm application.

The following steps show how to define a Storm topology and to verify its model by means of D-VerT.

1. From the right hand-side panel, the user can drag-and-drop all the nodes defining the application

into the design panel (Figure 5)

Figure 5. Verification tool: modeling the uml model.

2. From the bottom panel, the user can select the proper stereotype for each component of the

application. The stereotype is chosen according to the kind of the node, that can be either a data

source (StormSpout) or a computational node (StormBolt).

Figure 6. Verification tool: applying the stereotypes.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 13

The user connects the nodes together through directed associations. Each association defines the

subscription relation between two nodes: the subscriber, at the beginning of the arrow, and the subscribed

node, at the end of the arrow.

4. Finally, the user should obtain a diagram similar to the one depicted in the following picture which

will be verified with D-VerT.

Figure 7. Verification tool: final diagram.

5. Before running the verification tool, the user specifies the values of the parameters related to the

technology implementing the application. By selecting a node, the user can define, in the bottom

panel, all the information needed for the verification. For instance, the timing features

characterizing the spouts of the applications and the parallelism of the bolts. The values that are

required to verify the topology are the following:

a. parallelism, alpha, sigma for the bolts and

b. parallelism, averageEmitRate for the spouts.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 14

Figure 8. Verification tool: set value to the stereotype attributes.

6. Afterwards, the user can verify the topology with D-VerT. The Run configuration menu allows the

user to define the best configuration for the verification task

Figure 9. Verification tool: run the configuration.

7. The user provides the following information in the Run configuration window:

a. The model to be verified (from the Browse menu).

b. The number of time positions to be used in the verification process (time bound).

c. The plugin that D-VerT uses to verify the model.

d. The bolts that the user wants to test for undesired behaviors.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 15

Figure 10. Verification tool: set the values to the configuration.

8. Now, the user executes D-VerT. In the D-VerT dashboard, the user can monitor the verification

task running on the server.

Figure 11. Verification tool: see the results.

9. The results after executing D-VerT are::

a. The result of the verification, that is SAT, if anomalies are observed, or UNSAT.

b. In case of SAT, the output trace produced by the model-checker shows the temporal

evolution of all the model elements in detail and the graphical representation of the

verification outcome shows the anomalies for a qualitative inspection.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 16

4. Monitoring Tool

DICE monitoring platform3 (DMon) collects, stores, indexes and visualizes monitoring data in real-time

from applications running on Big Data frameworks. It supports DevOps professionals with iterative quality

enhancements of the source code. Leveraging on Elastic.co’s open source technology stack, DMon is a

fully distributed, highly available and horizontally scalable platform. All the core components of the

platform have been wrapped in microservices accessible through HTTP RESTful APIs for an easy control.

DMon is able to monitor both the infrastructure (memory, CPU, disk, network etc.) and multiple Big Data

frameworks, currently supported being Apache HDFS, YARN, Spark, Storm and MongoDB. Visualization

of collected data is fully customizable and can be structured in multiple dashboards based on your needs, or

tailored to specific roles in your organization, such as administrator, quality assurance engineer or software

architect.

4.1. Installation

The DICE Monitoring Platform plug-in in Eclipse provides end-users with access to

● the platform's controller service REST API, the administration interface, and

● the visualization engine.

In order to configure the end-points for DICE Monitoring Service, do the following:

● select Preferences option from Window menu,

● under DICE entry, select Monitoring Tools,

● edit the preferences for monitoring platform

○ protocol: choose http or https to indicate which protocol the DICE monitoring service uses;

○ server: enter the IP or the hostname where the DICE Monitoring Service is accessible;

○ admin port: provide the port number of the DICE Monitoring Service's REST API

○ visualization port: provide the port number of the DICE Monitoring Service Visualization

user interface

● click Apply to save preferences.

4.2. Getting Started

4.2.1. DICE Monitoring Service Administration

To connect to the DICE Monitoring Platform Administration interface, select Open DICE Monitoring

Service under DICE Tools menu. This will open a new window of the built-in browser pointing to the

DICE Monitoring Platform Controller service REST API. The address opened depends on the preferences

provided in the installation step.

The opened view will show the Swagger UI for the DICE Monitoring Controller REST API, which exposes

the specific operations for management and query of the platform, such as:

● control (deploy/start/stop) platform’s core components (Elasticsearch, Kibana, Logstash)

3 D4.1 - DICE Monitoring and data warehousing tools - Initial version and D4.2 - DICE Monitoring and data

warehousing tools - Final version: http://www.dice-h2020.eu/deliverables/

http://www.dice-h2020.eu/deliverables/

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 17

● manage monitored nodes: register nodes, change configuration parameters and current status,

deploy and configure node-level metrics, start/stop components

● query the platform, retrieve collected data defining metrics of interest, time window, etc.

 To execute an operation against DICE Monitoring Platform, do the following:

1. Click on the verb (GET, POST, PUT, DELETE)

2. Fill in any details required by the operation

3. Press ‘Try it out’ button

This will issue the operation on the platform and result is sent back to the user.

For example, to list all nodes monitored by the platform, click GET button corresponding to

/dmon/v1/observer/nodes. In the response body received after ‘Try it out!’ button is pressed, you will get

the list of monitored nodes.

Figure 12. Monitoring tool API.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 18

The operations exposed by DICE Monitoring Platform REST API are extensively described in several

places:

● Deliverable D4.1 and D4.2 - Monitoring and data warehousing tools – Initial/final version4, or

● DICE Monitoring Platform Wiki page5, which is the up to date documentation and the authoritative

source for it.

4.2.2. DICE Monitoring Service Visualization UI

To connect to the DICE Monitoring Platform Visualization interface, select Open DICE Monitoring

Service Visualization UI under DICE Tools menu. This will open a new window of the built-in browser

pointing to the DICE Monitoring Platform Visualization Engine UI. The address opened depends on the

preferences provided in the installation step.

The opened view will show the Kibana user interface for DICE Monitoring service. The official Kibana

Getting started website6 introduces the end-user to Kibana experience. For example, to create a CPU load

graph, do the following:

● from the main menu, select Visualize

● on ‘Create new visualization’ page select ‘Line chart’ and then select ‘from a new search’

● select the appropriate index, that is logstash.*

● then, on metrics area (Y-axis), select Aggregation type = Average and Field = midterm

● repeat the step above for shortterm and longterm fields

● on buckets area (X-axis), select Aggregation type = Date histogram and Field = @timestamp; leave

interval=Auto

● From top-right corner, select the time interval (last 15 minutes, last hour, today, last week, last

month etc.)

● click ‘Apply changes’ button (the green play arrow)

● the right panel will contain the chart built appropriately.

4 http://www.dice-h2020.eu/deliverables

5 https://github.com/dice-project/DICE-Monitoring/wiki/Getting-Started

6 https://www.elastic.co/guide/en/kibana/current/getting-started.html

http://www.dice-h2020.eu/deliverables/
https://github.com/dice-project/DICE-Monitoring/wiki/Getting-Started
https://www.elastic.co/guide/en/kibana/current/getting-started.html

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 19

Figure 13. Monitoring tool: Monitoring Service Visualization UI.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 20

5. Delivery Tool

DICE delivery tool7 is a package for easy and fast deployment of DIAs. It enables the DevOps process for

otherwise difficult processes such as installing and configuring Storm, Spark, Cassandra or any other Big

Data services. The DICE delivery tool consists of the DICE Deployment Service8 and DICE TOSCA

technology library9.

In this section we focus on using the DICE deployment tool in its stand-alone mode. This, of course, does

not prevent the users from taking advantage of the interactions between DICE tools. For instance, one such

important interaction is the use of the DICER tool in the IDE, which directly results in a TOSCA document

used by the deployment tool.

The DICE deployment tool is also integrated with other tools outside the IDE, but the effects will be visible

in the respective components' IDE plug-ins. In one scenario, the user can use the DICE deployment tool

plug-in to deploy a monitored DIA, where the Deployment Service will automatically connect the relevant

nodes with the DMon service. This will then be visible in the DMon's plug-in back in the IDE, letting the

user monitor the runtime of the application.

5.1. Installation

The DICE delivery tool IDE plug-in is available as an open-source plug-in10 and has an update site11. It also

comes pre-installed with the DICE IDE.

Once the plug-in is installed, navigate to your DICE Deployment Service web page, or use the command

line tool to create a deployment container for deploying your application. Please refer to the Container

management section12 of the DICE Deployment Service administration guide for instructions.

Next, configure the plug-in to use the container that you have just created.

1. In DICE IDE (Eclipse), open the Window menu and select Preferences.

2. On the left side of the Preferences dialog, click *Deployment Tools.

3. In the main part of the dialog, enter the appropriate values:

○ Protocol: choose http or https to indicate which protocol the DICE deployment service uses

for both the Web GUI and the API.

○ Server: enter the IP or the host name where the DICE Deployment Service is accessible.

○ Port: provide the port number of the DICE Deployment Service's Web GUI and the API

service.

○ Container: enter the UUID of the container created for deploying your application into.

7 D5.2 - DICE delivery tools - Intermediate version

8 DICE Deployment Service: https://github.com/dice-project/DICE-Deployment-Service/wiki

9 DICE TOSCA library: https://github.com/dice-project/DICE-Deployment-Cloudify

10 DICE Deployment IDE plug-in: https://github.com/dice-project/DICE-Deployment-IDE-Plugin/wiki

11 DICE Deployment plug-in update site: http://dice-project.github.io/DICE-Deployment-IDE-Plugin/updates/

12 https://github.com/dice-project/DICE-Deployment-Service/wiki/Installation#container-management

https://github.com/dice-project/DICE-Deployment-Service/wiki
https://github.com/dice-project/DICE-Deployment-Cloudify
https://github.com/dice-project/DICE-Deployment-IDE-Plugin/wiki
http://dice-project.github.io/DICE-Deployment-IDE-Plugin/updates/
https://github.com/dice-project/DICE-Deployment-Service/wiki/Installation#container-management

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 21

4. Click OK to confirm and save the preferences.

Figure 14. Delivery tool: web service properties configuration.

5.2. Getting Started

In the initial version, the DICE Deployment Service plug-in in Eclipse opens a Web user application view

of the application's deployment container.

To start, click on the Deployment Service menu and select the DICE Deployments Tool UI option. This

will open a new window of the built-in browser, pointing to the view of the container. The address visited

depends on the preferences provided.

Figure 15. Delivery tool: menu entry tool execution.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 22

The user interface will first challenge the user for the proper credentials.

Figure 16. Delivery tool: web service.

Once you log in, you can upload a TOSCA blueprint of an application to be deployed. Simple blueprints

are available in the example13 folder of the DICE Deployment Service repository. Examples of Big Data

application blueprints are also available14.

1. Click on the Upload Blueprint button in the deployment container view.

13 Simple blueprint examples: https://github.com/dice-project/DICE-Deployment-Service/tree/master/example

14 DIA example blueprints: https://github.com/dice-project/DICE-Deployment-Examples

https://github.com/dice-project/DICE-Deployment-Service/tree/master/example
https://github.com/dice-project/DICE-Deployment-Examples
https://github.com/dice-project/DICE-Deployment-Service/tree/master/example
https://github.com/dice-project/DICE-Deployment-Examples

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 23

Figure 17. Delivery tool: upload the blueprint file (1).

2. Select a .yaml file containing the blueprint of the application.

3. Confirm the upload by clicking the Upload button.

Figure 18. Delivery tool: upload the blueprint file (2).

The deployment process will then proceed unattended. The container view shows the progress of the

deployment.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 24

Figure 19. Delivery tool: progress of the deployment.

When the deployment is finished, a table showing output parameters of the application will appear.

Normally, this shows relevant information on the deployed application, such as access point addresses.

Figure 20. Delivery tool: deploying the blueprint.

To undeploy this application and replace it with a new one, the user needs to upload a new blueprint,

repeating the steps listed above.

The Undeploy button tears down the application and frees the resources.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 25

6. Optimization Tool

This sections reports installation instructions and a quick hands on example to get started with the DICE

Optimization tool, D-SPACE4Cloud.

6.1. Installation

Build dependencies:

● Java 8 JDK

● Maven

Runtime dependencies:

● Java 8 JRE

● SSH

● AMPL

● Artelys Knitro or CPLEX

● JMT

● GreatSPN

In order to perform its optimisation procedures, the D-SPACE4Cloud back end relies on the third party

solvers listed under “Runtime dependencies”. Refer to the respective documentation for installation

instructions. Also note that you can use either JMT or GreatSPN (or both), but you need to satisfy all the

other runtime dependencies.

To download a D-SPACE4Cloud back end pre-built binary, look for the latest release in the Releases page

of its repository15. There it is possible to find a relocatable jar file ready for download. The same goes for

the D-SPACE4Cloud front end16.

6.2. Configuration

The configuration files for both ends should be saved as application.properties in the same directory

where the relocatable jar is stored and launched.

Below you can find an example configuration file for the back end. You should bear in mind that the solver

paths ({minlp,SPN,QN}.solver_path) in the configuration file should be either command names

available in the remote system PATH or absolute paths to the solver executables. The remote working

directory ({minlp,SPN,QN}.remote_work_dir) must be a path where the remote use has full permissions.

Moreover, the connection with solvers and simulators is established via SSH, hence you should provide an

address ({minlp,SPN,QN}.address) and port ({minlp,SPN,QN}.port) where the remote SSH daemon

listens, the path to your local known_hosts ({minlp,SPN,QN}.known_hosts) file, the remote user name

({minlp,SPN,QN}.username), and the path to an authorised private key file

({minlp,SPN,QN}.private_key_file). The accuracy and significance properties can be used to tune

15 https://github.com/dice-project/DICE-Optimisation-Back-End

16 https://github.com/dice-project/DICE-Optimisation-Front-End

https://github.com/dice-project/DICE-Optimisation-Back-End
https://github.com/dice-project/DICE-Optimisation-Front-End

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 26

the stopping criteria observed by the solvers. JMT allows to set a timeout for simulations, hence you can

enforce a maximum simulation time in seconds via the QN.max-duration property. The solver.type

property allows to choose the default simulator between JMT (QNSolver) and GreatSPN (SPNSolver).

Depending on this choice, you might leave out the configuration of the unused simulator or even avoid

installing it outright.

spring.profiles.active = test

solver.type = QNSolver

server.port = 8081

minlp.address = your.minlp.server.org

minlp.username = username

minlp.port = 22

minlp.remote-work-dir = /home/username/AMPL

minlp.ampl-directory = ampl

minlp.solver-path = knitroampl

minlp.known-hosts = ${HOME}/.ssh/known_hosts

minlp.private-key-file = ${HOME}/.ssh/id_rsa

minlp.force-clean = false

SPN.address = your.greatspn.server.org

SPN.username = username

SPN.port = 22

SPN.solver-path = swn_ord_sim

SPN.remote-work-dir = /home/username/GreatSPN

SPN.accuracy = 10

SPN.known-hosts = ${HOME}/.ssh/known_hosts

SPN.private-key-file = ${HOME}/.ssh/id_rsa

SPN.force-clean = false

QN.address = your.jmt.server.org

QN.username = username

QN.port = 22

QN.model = class-switch

QN.solver-path = /home/username/JavaModellingTools/JMT.jar

QN.remote-work-dir = /home/username/JMT

QN.accuracy = 10

QN.significance = 0.05

QN.known-hosts = ${HOME}/.ssh/known_hosts

QN.private-key-file = ${HOME}/.ssh/id_rsa

QN.force-clean = false

QN.max-duration = 7200

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 27

s4c.parallel = true

logging.file = log.txt

The following is an example configuration file for the front end. The ports listed in the front end

launcher.ports property must be those configured in the back end configuration files as server.port.

Currently you can use multiple back ends at once, provided they are reachable at the same

launcher.address. Further, there is no need to deploy both the front and back ends on the same machine.

launcher.sol-instance-dir allows to configure the directory where the front end stores the user

uploaded files, whilst launcher.result-dir is the path where it stores the results retrieved from the back

end.

launcher.sol-instance-dir = solInstances

launcher.result-dir = results

launcher.address = your.back.end.server.org

launcher.ports = 8081,8082

server.port = ${port:8080}

logging.file = logLauncher.txt

6.3. Getting started

Figure 21. Optimization tool: main web service.

Launch your browser and type in the address where your front-end instance can be accessed. The figure

above shows the home page where you will land. The small button at the bottom of the page shows the

status of all the configured back ends. On the other hand, the four large tiles allow for data input to start the

available analyses, in the upper row, and for results retrieval, in the lower row. The columns, instead, set

apart private from public cloud scenarios. Clicking on either of the analysis tiles brings up a choice among

possible alternatives, each provided with an explanation of the relevant scenario. The following figure

shows, e.g., the alternatives available for public cloud analyses:

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 28

Figure 22. Optimization tool: alternatives for public cloud analyses.

After choosing the analysis of interest, you will be prompted to provide the needed data files. For

an example, see the following figure. The dropdown list allows to choose between two alternative

mathematical programming models to enforce the capacity constraint in private clouds. In the "Select a

folder:" field you should, instead, point to the directory containing all the input files.

Figure 23. Optimization tool: selection of cloud admission control files.

As soon as the experiment is launched, the associated record populates the results page, shown

below. Every record shows a unique identifier, date and time of submission, the configured accuracy, the

overall number of runs involved and the number of completions, plus a status icon that highlights with a

red signal experiments that went amiss. In addition to this data, there are icons to retrieve the input files and

the results, as well as to discard a record or to restart an experiment.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 29

Figure 24. Optimization tool: experiments.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 30

7. Anomaly detection Tool

The Anomaly detection tool (AD) will reason on the base of black box and machine learning models

constructed from the monitoring data. The predictive models built by the tool are then used to detect

contextual anomalies in real-time monitoring data streams. A second use case supported by the Anomaly

detection tool is the analysis of monitoring data produced during two subsequent executions of the same

DIA. In this way, AD is able to discover anomalies introduced by latest code changes.

At M24, the tool is seamlessly integrated with the DICE Monitoring Service:

● in order for models to be able to detect not only point anomalies but also contextual anomalies, the

tool will select a subset of data features from the Monitoring Service to train and validate a

predictive model,

● the model is later stored in Monitoring Platform itself

● the anomalies detected are stored in the Monitoring Platform in a dedicated index.

The documentation about Anomaly detection tool can be found here17, while the code is stored in Github18.

More details about the design, modules and initial validation are available in D4.3 ‘Quality anomaly

detection and trace checking tools - Initial Version’ deliverable19.

One module of anomaly detection tool deals with regression based checking of two consecutive runs of a

DIA. The documentation for this module is available here20, and video is available here21.

Remark: Integration of anomaly detection tool in IDE is a work in progress due M30.

17 https://github.com/dice-project/DICE-Anomaly-Detection-Tool/wiki

18 https://github.com/dice-project/DICE-Anomaly-Detection-Tool

19 http://www.dice-h2020.eu/deliverables/

20 https://github.com/dice-project/DICE-Anomaly-Detection-Regression-Based-Tool/wiki

21 https://www.youtube.com/watch?v=RnRxc09vphg

https://github.com/dice-project/DICE-Anomaly-Detection-Tool/wiki
https://github.com/dice-project/DICE-Anomaly-Detection-Tool
https://github.com/dice-project/DICE-Anomaly-Detection-Regression-Based-Tool/wiki
https://www.youtube.com/watch?v=RnRxc09vphg
https://github.com/dice-project/DICE-Anomaly-Detection-Tool/wiki
https://github.com/dice-project/DICE-Anomaly-Detection-Tool
http://www.dice-h2020.eu/deliverables/
https://github.com/dice-project/DICE-Anomaly-Detection-Regression-Based-Tool/wiki
https://www.youtube.com/watch?v=RnRxc09vphg

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 31

8. Trace Checking Tool

The Trace checking tool will be integrated in the IDE in future releases. In the current release, it cannot be

launched from the IDE and it cannot connect to the D-mon platform. However, the tool can be used as a

stand-alone application to validate Storm logs with a temporal property specified by the user.

This section summarizes the main steps that the user follows to run trace checking with the current

implementation of the tool.

8.1. Installation

● Install Apache Spark (http://spark.apache.org/downloads.html) on your local machine

● Download the Soloist trace-checker from https://bitbucket.org/krle/mtlmapreduce/. Two options

are available:

○ download MTLMapReduce.zip which provides a precompiled version

MTLMapReduce.jar in folder /MTLMapReduce/scripts/

○ build the jar package following instructions therein

Copy the jar package into the DICE-TraCT folder or make it available with a symbolic link, if it is

stored elsewhere. The jar file must be called MTLMapReduce.jar

● Download the Python scripts from https://github.com/dice-project/DICE-Trace-Checking.

● Set environment variables JAVA_HOME and SPARK_HOME

export JAVA_HOME=/.../<your_Java_folder>

 export SPARK_HOME=/.../<your_Spark_folder>

● Start Spark master

cd spark_folder

 ./sbin/start-all.sh

8.2. How to use DICE-TraCT

Trace checking is carried out by running dicetract.py. The interface to execute it is the following:

python dicetract.py

 -f <list of .log files>

 -t <json trace checking descriptor>

 -r <json regular expression descriptor>

dicetract.py has three distinct inputs that are defined through the command line options -f, -t and -r. To run

trace checking the user specifies the log files of the Storm worker undergoing validation, a json file that

describes the trace checking instance and a json file that provides the regular expression to be used for

interpreting the log files. The property used for verification is defined in the trace checking descriptor and

can be specified either by means of a given temporal formula or through the name of a user defined

template.

dicetract.py runs a trace checking instance by means of a Spark job submitted to the Spark cluster through

spark-submit.

http://spark.apache.org/downloads.html
https://bitbucket.org/krle/mtlmapreduce/
https://bitbucket.org/krle/mtlmapreduce/
https://github.com/dice-project/DICE-Trace-Checking

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 32

The following command is an example of DICE-TraCT invocation; we assume that logs files w1.log and

w2.log are stored in a local subfolder called logs/.

python dicetract.py -f ./logs/w1.log ./logs/w2.log -t tc.json -r re.

The integration of the Trace checking tool will be achieved through the following actions that will enable

the use of the tool in Posidonia and Netf use cases.

1. In Posidonia, TC will be used to validate the behavior of the CEP given the log traces that it

produces and the sequence of events it has elaborated. Therefore, TC integration requires (i) the

definition of a format to exchange the traces and (ii) the implementation of a component providing

the following functionalities: it allows the user to load a portion of a log from the Posidonia

framework, to invoke the trace checker and to carry out the analysis of the log with respect to a

given user property.

2. In Netf use case, TC will be used to validate DB logs with the aim of checking the validity of

privacy restrictions that are enforced on some objects of the application (such as DB tables and

columns of a given table) specified at DPIM/DTSM level. TC integration requires (i) the definition

of a format to exchange the traces and (ii) the implementation of a component providing the

following functionalities: it allows the user to

a. to load a portion of a DB log from the DICE monitoring platform;

b. to extract, from the DICE UML models of the application, a temporal logic formula that

translates the privacy restriction modeled by the designer;

c. to invoke the trace checker and to carry out the analysis of the log with respect to the

formula obtained from the UML models.

In both the cases, the component to be implemented is an Eclipse plugin connected to the DICE IDE. It

exploits an external service, running on a remote server, that will launch the trace checking engine given

the instance obtained from the user through the IDE. The same architecture as the one implementing the

verification tool D-VerT will be used for the trace checking tool.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 33

9. Enhancement Tool

The DICE Enhancement tool will be externally integrated with DICE IDE. There are two modules of the

Enhancement tool, Filling-the-Gap (FG) and Anti-Patterns & Refactoring (APR). More details are available

in D4.5 - ‘Iterative quality enhancement tools – Initial version’ deliverable22.

DICE-FG will be used to estimate and fit application parameter related to memory and execution times and

annotate UML models. To perform the analysis, the DICE-FG first needs to obtain runtime information on

the DIA from the DICE Monitoring Platform (DMon). To be specific, DICE-FG sends the JSON query

string to DMon to collect the runtime data, DMon will return a JSON string which includes CPU

utilization, job information, etc. This data is then used to automatically generate a valid set of input files for

DICE-FG. Furthermore, DICE-FG also relies on the MATLAB Compiler Runtime (MCR R2016a) for

execution. Therefore, it may be externally integrated in the IDE. DICE-FG focuses on statistical estimation

of UML parameters used in simulation and optimization tool, and provides updated UML model for DICE-

APR. DICE-APR will be used to detect anti-patterns of the performance model which is transformed from

the UML model parameterized by DICE-FG. Therefore, it not only requires third party component -

Epsilon to perform M2M transformation for further anti-pattern detection but also plans to using MCR for

model refactoring.

Enhancement tool is due for final release at M30 and thus integration with DICE IDE will be completed

during year 3. In order to install and run the Enhancement tool, the following instruction helps to guide

users separately.

9.1. Installation

For DICE-FG, the installation is already specified in the GitHub repository23. Users can download the

source code and run it on local machine according to the GitHub instruction.

For DICE-APR, it requires to install the Epsilon24, which is a family of languages and tools for code

generation, model-to-model transformation, model validation, comparison, migration and refactoring that

work out of the box with EMF and other types of models, in DICE IDE.

9.2. Getting Started

The DICE-FG tool can be used as a stand-alone application. The DICE-FG tool requires runtime data via

JSON from the DMon before being able to offer its functionality. It focuses on the specific input data that

is requested to the user in order to use DICE-FG. The input parameters for DICE-FG tool are described in a

dedicated configuration file (XML format) which specifies a complete DICE-FG analysis, consisting of a

statistical distribution fitting step and an estimation analysis step. The instruction of getting started of the

DICE-FG can be found in GitHub25.

22 http://www.dice-h2020.eu/deliverables/

23 DICE-FG Installation: https://github.com/dice-project/DICE-Enhancement-FG/wiki/Installation

24 Epsilon Update sites: http://www.eclipse.org/epsilon/download/

25 Getting Started of DICE-FG: https://github.com/dice-project/DICE-Enhancement-FG/wiki/Getting-Started

https://github.com/dice-project/DICE-Enhancement-FG/wiki/Installation

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 34

At M24, the DICE-APR is still under development since this is planned for release at M30. The model

transformation part (i.e. UML model (Activity Diagram and Deployment Diagram) annotated with DICE

Profiles to LQN model) of the DICE-APR is tested in DICE IDE V0.1.3. The DICE-APR tool requires the

updated UML model parameterized (e.g., host demand, schedule policy) by DICE-FG as input and

performs the M2M transformations to obtain the corresponding performance model for further anti-patterns

detection and refactoring.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 35

10. Fault Injection Tool

The DICE Fault Injection Tool has been developed to generate faults within Virtual Machines and at the

Cloud Provider Level. The purpose of the FIT is to allow cloud platform owners/Application VM owners a

means to test the resiliency of a cloud installation as an application target. The FTI is a command line tool

and as such can either be ran from a Java IDE such as Eclipse or packaged into a Executable Jar file to be

ran. The current User/VM level faults implemented are:

● Shutdown random VM (Ignore tagged VM with "noshutdown" in random selection)

● High CPU for VM (Using Stress tool)

● High Memory usage for VM (Using Memtest tool)

● Block VM external access (Using ufw)

● High Bandwidth usage. (Using iperf, requires external iperf server ip to be passed)

● High Disk I/O usage (Using Bonnie ++)

● Stop service running on VM

● Shutdown random VM from whitelist provided by user (Note the whitelist does not check if VM

exists or is a in a running state)

● Call YCSB on VM running MongoDB to begin workload test.

● Run JMeter plan

An example command using the executable jar:

java -jar DICEFIT --stressmem 2 512m ubuntu@111.222.333.444 -no c://SSHKEYS/VMkey.key

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 36

11. Configuration Optimization Tool

The Configuration Optimization tool is based on the Bayesian Optimization for Configuration Optimization

(BO4CO) auto-tuning algorithm for Big Data applications. BO4CO is a command line tool, which we

recommend to instantiate as a Jenkins job in order to periodically execute the configuration optimization.

Big data applications typically are developed with several technologies (e.g., Apache Storm, Hadoop,

Spark, Cassandra) each of which has typically dozens of configurable parameters that should be carefully

tuned in order to perform optimally. BO4CO helps end users of big data systems such as data scientists or

SMEs to automatically tune the system.

11.1. Installation

BO4CO can be installed through Chef. We provide an automated installation of the BO4CO via a Chef

cookbook. Detailed installation instructions are provided at https://github.com/dice-project/DICE-

Configuration-BO4CO/blob/master/README.md and here summarized.

The BO4CO installation requires a Ubuntu environment (14.04) with the latest Chef Development Kit

installed, available at https://packages.chef.io/stable. The installation cookbook is available under the

consolidated DICE Chef Repository https://github.com/dice-project/DICE-Chef-Repository.git.

Before we run the installation, we just need to provide the configuration, pointing to the external services

that the Configuration Optimization relies on. We provide this configuration in a JSON file. Here is an

example (configuration-optimization.json):

{ "dice-h2020": {

 "conf-optim": {

 "ds-container": "4a7459f7-914e-4e83-ab40-b04fd1975542"

 },

 "deployment-service": {

 "url": "http://10.10.50.3:8000",

 "username": "admin",

 "password": "LetJustMeIn"

 },

 "d-mon": {

 "url": "http://10.10.50.20:5001"

 }

 }

}

Where the parameters have the following meaning:

https://github.com/dice-project/DICE-Configuration-BO4CO/blob/master/README.md
https://github.com/dice-project/DICE-Configuration-BO4CO/blob/master/README.md
https://packages.chef.io/stable
https://github.com/dice-project/DICE-Chef-Repository.git

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 37

● ds-container is the UUID of the DICE deployment service container dedicated to the application to

run and optimize,

● deployment-service contains the access point and credentials of the DICE Deployment Service to

be used by the CO,

● d-mon contains parameters used by the CO to connect to the DICE monitoring framework.

Now we can start chef

$ sudo chef-client -z -o recipe[apt::default],recipe[java::default],recipe[dice-h2020::deployment-service-

tool],recipe[dice-h2020::conf-optim],recipe[storm-cluster::common] -j configuration-optimization.json

When the execution succeeds, the Configuration Optimization will be installed in /opt/co/ folder by default.

The command will also install the Storm client (thanks to the recipe[storm-cluster::common] provided at

the end of the runlist above).

11.2. Getting Started

A detailed getting started manual of the BO4CO tool is available at https://github.com/dice-project/DICE-

Configuration-BO4CO/wiki/Getting-Started and here briefly summarized. The user of the tool needs to

configure BO4CO by specifying the configuration parameters in expconfig.yaml. expconfig.yaml

comprises several important parts: runexp specifies the experimental parameters, services comprises the

details of the services which BO4CO uses, application is the details of the application, e.g., storm topology

and the associated Java classes, and most importantly the details of the configuration parameters are

specified in vars field.

For example, the following parameters specify the experimental budget (i.e., total number of iterations), the

number of initial samples, the experimental time, polling interval and the interval time between each

experimental iterations, all in milliseconds:

runexp:

 numIter: 100

 initialDesign: 10

 ...

 expTime: 300000

 metricPoll: 1000

 sleep_time: 10000

To run BO4CO you just need to execute the run-bo4co.sh bash script provided with the BO4CO

distribution.

https://github.com/dice-project/DICE-Configuration-BO4CO/wiki/Getting-Started
https://github.com/dice-project/DICE-Configuration-BO4CO/wiki/Getting-Started

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 38

12. Quality Testing Tool

Quality Testing tool is scheduled for release in M24. The proposed integration plan for the tool is outlined

below:

1. Quality Testing tool will be provided as a Java library in the DICE IDE, which a developer would

need to integrate/interface with their application code.

2. The developer then would need to provide the following input to the Quality Testing tool in DICE

IDE:

a) The format of test load data;

b) Load testing scenario (e.g. load volume, rate, test duration).

3. Next, the developer would need to deploy application in the ‘testing mode’ with the help of the

DICE Deployment tool.

4. Deployment tool will pick up input parameters entered by developer and pass them to the Quality

Testing tool during application deployment.

5. Test results can be visualised in Jenkins.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 39

13. Deployment Modelling (DICER) Tool

13.1. Introduction

This section concisely describes the methodological steps to follow in order to create DICE UML models

from scratch so that other DICE-provided tools can be run. In particular, just as a reference example, here

we refer to the required modeling procedure to apply if you want to use the DICER tool.

For the scope of our example, a certain user is willing to use DICER, a tool developed in the context of

DICE, along with the modeling procedure here presented, which enable, for this particular user, the

automatic deployment of a Data Intensive Application (DIA), starting from its DICE UML models and

generating TOSCA (Topology and Orchestration Specification for Cloud Applications) compliant

deployment blueprints, which can, in turn, be processed by the DICE Deployment Service and deployed

successfully.

In the following sections, you will be guided through the creation and definition within the DICE IDE of

the various UML model envisioned by the DICE approach, which are the DICE Platform Independent

Model (DPIM), the Dice Technology Specific Model (DTSM) and the Dice Deployment Specific Model

(DDSM).

13.2. DPIM Modeling

Our imaginary user starts by creating a new Papyrus UML project and selecting the “Class” and

“Deployment” kinds of diagram for our model.

Our user shall then open the created class diagram and instantiate two packages, one for his DPIM model

and another for his DTSM model. On these two packages our user has to apply the DICE::DPIM and the

DICE:DTSM UML profiles respectively.

Figure 25. DICER tool: configuring the model (1).

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 40

At this point, in the DPIM package our user can model the high level architecture of his DIA, as a class

diagram representing the kind of computations over various data sources. In order to model this, our user

can instantiate a new class and apply on it the <<DiceComputationNode>> stereotype. Our user can also

model various data sources which can be either profiled using the <<DiceSourceNode>> of the

<<DiceStorageNode>> stereotypes, depending on the kind of data source. Our user can finally associate his

computations to the available data sources.

Let us model a simple DIA called WikiStats, which basically analyze web pages from the popular

Wikimedia website (a class with the <<DpimSourceNode>> stereotype) and stores the result of the

analysis into a database (a class with the <<DpimStorageNode>> stereotype). So far we don’t add any

technological aspect of our application, such as the implementing technologies for the WikistatsApplication

and WikistatsStorage nodes or the actual implementation of the WikistatsApplication node.

Figure 26. DICER tool: configuring the model (2).

13.3. DTSM Modeling

In the DTSM package you can model the actual implementation of the various computations you declared

in the DPIM package, plus all the required technology-specific details. You can decide which technology to

use for implementing the various components of our user DIA. For instance, let’s suppose you want to use

Apache Storm to detail the implementation of the “WikistatsApplication” <<DiceComputationNode>> in

the DPIM model as a Storm topology. You can use the stereotypes from the DICE::DTSM-Storm profile to

fully describe our user Storm application.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 41

Figure 27. DICER tool: configuring the model (3).

Once you have such a DTSM diagram, you might execute some analysis on it, such as formal verification

analysis to verify safety properties of our user model.

13.4. DDSM Modelling

As a last step our user can open the Deployment Diagram of our user UML model, to model the

deployment of you DIA. You can start by applying the DICE::DDSM profile on our user Deployment

Diagram. The available stereotypes allow you to model the required Cloud resources, such as virtual

machines, and the allocation of the various Big Data middlewares required to execute our user application.

For instance in the case of a Storm application, you need to instantiate two middlewares, the Apache

Zookeeper platform and the Apache Storm platform, which depends on the former. Then you need to

specify the required infrastructure for you middlewares. Let’s suppose you want to deploy both Zookeeper

and Storm on the same Cluster of VMs, which also means with the same number of replicas. In order to do

so you can first instantiate a Device and apply the <<DdsmVm>> on it. Using the <<DdsmVm>> stereotype

you can specify various properties of our user VMs cluster, such as the number of available VMs, and the

Cluster provider.

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 42

Figure 28. DICER tool: configuring the model (4).

You can then put inside our user VMs cluster a first Node and apply the <<DdsmZookeeperServer>>

stereotype. Using the <<DdsmZookeeperServer>> stereotype you can specify the various properties of our

user Zookeeper cluster. You can repeat the same process for a second Node tagged with the

<<DdsmStormCluster>> stereotype and you can model the dependency of Storm on Zookeeper by simply

connect the two nodes with a Dependency element.

Figure 29. DICER tool: configuring the model (5).

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 43

Since our Wikistats application will use store the result of its analysis into a database, let’s imagine the user

decide to use Apache Cassandra for this purpose. Thus we have to model the deployment of a Cassandra

cluster, which will be accessed by our application. Let’ also imagine we want to host the Cassandra cluster

on a different VMs cluster from the one hosting Storm and Zookeeper. We then instantiate a new Device

and we apply the <<DdsmVm>> stereotype on it. We can then put a new Node within the just created

Device and apply the <<DdsmCassandraCluster>> stereotype on it. We can finally specify the various

properties of our Cassandra cluster using to the applied stereotypes.

Figure 30. DICER tool: configuring the model (6).

Finally, our user can model the deployment of his application by instantiating an Artifact on which to apply

the BigDataJob stereotype. Our user can specify the required deployment information for his application,

such as the location of the application runnable artifact and thus specify to which of the available Big Data

middleware our user DIA has to be submitted, using the DICE Deployment service.

Figure 31. DICER tool: configuring the model (7).

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 44

13.5. Running the DICER Tool

Once our user has prepared the DDSM diagram following the above procedure or exploiting the DICER

domain-specific language (DSL), she can use the DICER plugin to generate the associated deployable

TOSCA blueprint. In order to do so our user can double click on her UML model and run through it with a

DICER run configuration. In the config, the user can set the URL to contact the DICER service and specify

the path to the input model and for the output model to be placed. Our user can finally click on run to

generate the TOSCA blueprint and submit that to the DICE Deployment Service for further processing.

Figure 32. DICER tool: configuring the model (8).

Deliverable 1.5. DICE Framework – Companion document

Copyright © 2017, DICE consortium – All rights reserved 45

14. Conclusions

This document described the current status of the DICE Tools.

In the next version of this deliverable (D1.6 DICE Framework – Final version), we will update the

information of the DICE Tools with the progress achieved at M30 of the project.

