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Executive summary 
This deliverable documents the initial work on tools for iterative quality enhancement, developed as part 
of task T4.3. This component feeds results back into the design models to provide guidance to the 
developer on the quality offered by the application at runtime. In the initial version, the tool is able to 
estimate and fit application parameter related to memory and execution times and annotate UML models. 
Moreover, initial work has been carried out towards defining architecture and algorithms for anti-pattern 
detection and architecture refactoring. Initial validation has been carried across a variety of technologies, 
including Cassandra, Hadoop/MapReduce, and an in-memory DB.    
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Glossary 
ADL Architecture Description Language 
ADT Anomaly Detection Tool 
APR Anti-Patterns & Refactoring 
PAML Performance Anti-pattern Modeling Language 
CTMC  Continuous-time Markov chain  
DIAs Data-intensive applications 
DICE Data-Intensive Cloud Applications with iterative quality enhancements 
DMon DICE Monitoring platform 
FG Filling-the-Gap 
MARTE Modeling and Analysis of Real-Time and Embedded Systems 
MCR MATLAB Compiler Runtime 
MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds 
M2M Model-to-Model Transformation 
QN Queueing Network 
SLOs Service level objectives 
TraCT Trace checking tool 
UML Unified Modelling Language 
VM Virtual Machine 
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1. Introduction and Context 
This deliverable presents the initial release of the DICE Enhancement tools 
(ENHANCEMENT_TOOLS), which are being developed in task T4.3 within the WP4 work package. 
The main goal of the DICE Enhancement tools is to provide feedback to DICE developers on the 
application behaviour at runtime, leveraging the monitoring data from the DICE Monitoring Platform 
(MONITORING_TOOLS), in order to help them iteratively enhance the application design.  

Enhancement tools introduce a new methodology and a prototype to close the gap between measurements 
and UML diagrams. According to our knowledge, no mature methodology appears available in the 
research literature in the context of data-intensive applications (DIAs) to address the difficult problem of 
going from measurements back to the software models, annotating UML to help reasoning about the 
application design. ENHANCEMENT_TOOLS aims at filling this gap. 

The rest of this section presents the objectives of task T4.3, and discusses the relation to other WP4 tasks 
of DICE tool-chain. We also review objectives of this deliverable. 

1.1. Objectives of T4.3 
Task 4.3 in WP4 focuses on the development of ENHANCEMENT_TOOLS which aim at filling the gap 
between the runtime (monitoring data) and design time (models and tools). The general working principle 
of this toolset is as follows. Upon demand by the user, ENHANCEMENT_TOOLS queries the DICE 
Monitoring Platform (MONITORING_TOOLS) to obtain runtime monitoring data, normally gathered 
during application tests, but possibly also during production.  

The tools then correlate this monitoring data to the DICE UML models developed within WP2, with the 
aim of bridging the semantic gap between UML abstractions and concrete system implementation. For 
example, ENHANCEMENT_TOOLS estimates parameters for the SIMULATION_TOOLS and 
OPTIMIZATION_TOOLS, developed as part of WP3, by inferring the execution times of application 
requests placed at the different resources of the DIA. Based on the acquired data, 
ENHANCEMENT_TOOLS allows the developer to conduct within the DICE IDE more precise 
simulations and optimizations, that can rely on experimental data, rather than guesses of unknown 
parameters. ENHANCEMENT_TOOLS will also support the developer in carrying out refactoring 
scenarios, with the aim of iteratively improving application quality in a DevOps fashion, 

1.2. Relation to other WP4 tasks 
The other main tools developed in WP4 are the MONITORING_TOOLS (DMon), the DICE Anomaly 
Detection Tool (DICE ADT) and the DICE Trace Checking Tool (DICE TraCT). While the monitoring 
platform is primarily concerned with acquiring monitoring data from the runtime environment, the other 
tools are concerned with verifying the quality of the executions, in terms of characteristics such as 
performance and correctness. These aims are clearly different from those of the 
ENHANCEMENT_TOOLS, which is foremost focused on inferring the parameters of UML models from 
monitoring data and guide the refactoring process. 

1.3. Objectives of the Document 
This document presents the initial release of ENHANCEMENT_TOOLS. The present report is the first of 
two deliverables, the second being set for release at M30. The current deliverable focuses in particular on 
parameter estimation and on setting the technical approach for the refactoring methodology. The next 
deliverable (at M30) is scheduled to focus on the refactoring methods and on expanding the parameter 
estimation capabilities of the tool, for example to capture technology-specific characteristics.  

1.4. Structure of the document 
The structure of this deliverable is as follows: 

● Chapter 2 recaps on the requirements that T4.3 aims to cover. 
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● Chapter 3 presents an updated architecture and design details of the Enhancement tool, which 
extends the initial design provided in deliverable D1.3. 

● Chapter 4 presents the design principle of DICE-FG which is the key part of this initial release 
Enhancement tool. 

● Chapter 5 discusses the new scientific algorithms we have developed specifically for the DICE-
FG module.  

● Chapter 6 discusses the envisioned technical approach for application refactoring and anti-pattern 
detection, reporting on initial results on a cloud-based software system, as part of the Anti-
Patterns & Refactoring (APR) submodule. 

● Chapter 7 summarises achievements, overall progress, and outlines the future work. 

Appendix A provides more detail on experimental validation of the tool against a number of cases studies. 
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2. Requirements 
This section reviews the requirements of the ENHANCEMENT_TOOLS. Then we explain how 
requirements have been fulfilled in the current prototype. 

2.1. Requirements 
Deliverable D1.2 Requirements specifications [1] describes the requirements analysis for the DICE 
project. This section summarizes these requirements. We here list the Must have requirement of the 
ENHANCEMENT_TOOLS. Should have and could have requirements are available in [1] and in 
successive versions of D1.2 released on the DICE website1. 

Table 1: Resource consumption breakdown Requirement 

ID R4.11 
Title Resource consumption breakdown 
Priority Must have 
Description The DEVELOPER MUST be able to obtain via the ENHANCEMENT_TOOLS the 

resource consumption breakdown into its atomic components. 
 

Table 2: Bottleneck Identification Requirement 

ID R4.12 
Title Bottleneck Identification 
Priority Must have 
Description The ENHANCEMENT_TOOLS MUST indicate which classes of requests represent 

bottlenecks for the application in a given deployment. 
 

Table 3: Semi-automated anti-pattern detection Requirement. 

ID R4.13 
Title Semi-automated anti-pattern detection 
Priority Must have 
Description The ENHANCEMENT_TOOLS MUST feature a semi-automated analysis to detect 

and notify the presence of anti-patterns in the application design. 
 

Table 4: Enhancement tools data acquisition. 

ID R4.17 
Title Enhancement tools data acquisition 
Priority Must have 
Description The ENHANCEMENT_TOOLS must perform its operations by retrieving the 

relevant monitoring data from the MONITORING_TOOLS. 
 

Table 5: Enhancement tools model access Requirement. 

ID R4.18 
Title Enhancement tools model access 
Priority Must have 
Description The ENHANCEMENT_TOOLS MUST be able to access the DICE profile model 

associated to the considered version of the APPLICATION. 
 

                                                      
1 www.dice-h2020.eu/deliverables/  

http://www.dice-h2020.eu/deliverables/
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Table 6: Parameterization of simulation and optimization models Requirement. 

ID R4.19 
Title Parameterization of simulation and optimization models. 
Priority Must have 
Description The ENHANCEMENT_TOOLS MUST extract or infer the input parameters needed 

by the SIMULATION_TOOLS and OPTIMIZATION_TOOLS to perform the 
quality analyses. 

 

Table 7: Propagation of changes/automatic annotation of UML models Requirement. 

ID R4.27 
Title Propagation of changes/automatic annotation of UML models 
Priority Must have 
Description ENHANCEMENT_TOOLS MUST be capable of automatically updating UML 

models with analysis results (new values) 
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3. Architecture and Design of the Enhancement Tool 
The DICE Enhancement tool is designed for iteratively enhancing the DIA quality. Enhancement tool 
aims at providing a performance and reliability analysis of big data applications, updating UML models 
with analysis results, and proposing a refactoring of the design, if performance anti-patterns are detected. 
Figure 1 shows the workflow we have defined in task T3.4 for the Enhancement tool, which covers all of 
its intended functionalities, which are discussed in details below. 

 
Figure 1. Workflow of Enhancement Tool 

3.1. Core Components 
The core components of the DICE Enhancement tools are two modules:  

● DICE Filling-the-Gap (DICE-FG) module (see Figure 2), a tool focusing on statistical estimation 
of UML parameters used in simulation and optimization tool. This tool has been initially 
developed relying on a baseline, called FG, provided by the MODAClouds FP7 project as a way 
to close the gap between Development and Operations. Within DICE, the tool has undergone a 
major revision and is being integrated and adapted to operate on DIA datasets. Architectural 
changes have been introduced in DICE-FG, compared to the original FG. 

● APR (Anti-Patterns & Refactoring) module, a tool for anti-patterns detection and refactoring. The 
tool aims at suggesting improvements to the designer of the DIAs, based on observed and 
predicted performance and reliability metrics. The goal is to optimize a reference metric, such as 
maximize latency or minimize mean time to failure (MTTF). Differently from DICE-FG, APR 
has no baseline software to start from, since the only available tools in this space are not for 
UML. Hence it will be an original contribution of DICE, to our knowledge novel in the UML 
space. 

Together, DICE-FG and APR cover the entire workflow of the Enhancement Tool. Since the output of 
DICE-FG is required by APR, in the initial work carried out in WP4 up to M18, we have focused 
primarily on DICE-FG, whereas APR has been designed and the technical methodology validated, with 
the goal of delivering an implementation of a prototype at M24, in conjunction with the first release of the 
DICE framework, and a final version at M30, with the second release of the DICE framework. 

3.1.1. Filling-the-Gap (DICE-FG) Module 
DICE-FG is designed to achieve the following objectives: 

● Provide statistical estimation algorithms to infer resource consumption of an application. 
● Provide fitting algorithms to match monitoring data to parametric statistics distributions. 
● Use the above algorithms to parameterize UML models annotated with the DICE profile. 
● Acquire data via JSON and the DICE Monitoring platform (DMon). 
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The main logical components of the DICE-FG tool are the Analyzer and the Actuator. Below we describe 
each component: 

● DICE-FG Analyzer: The DICE-FG Analyzer executes the statistical methods necessary to 
obtain the estimates of the performance models parameters, relying on the monitoring 
information available on the input files.  

● DICE-FG Actuator: The DICE-FG Actuator updates the parameters in the UML models, e.g., 
resource demands, think times, which are obtained from the DICE-FG Analyzer. 

DICE-FG relies on the MATLAB Compiler Runtime (MCR R2016a) for execution, this is a royalty-free 
environment that does not require a MATLAB license. MATLAB source code is also provided in the 
release. The proposed architecture is leaner than the original FG tool developed in MODAClouds, 
henceforth denoted as MODAClouds-FG, a decision we have taken considering that DICE-FG may have 
to cope with a much larger number of parameters and models than MODAClouds-FG, which was more 
intended for use at run-time in applications such as load-balancing. Here is a detailed comparison of the 
two tools, highlighting all the major differences. 

Table 8: Comparison of MODAClouds-FG and DICE-FG 

 MODAClouds-FG DICE-FG 

Algorithms Estimation of execution times, 
think times, number of jobs. 

Estimation of execution times, 
think times, number of jobs, 
memory usage, for single 
resources and collections of 
resources. 

Fitting of data to statistical 
distributions. 

Data input Fuseki local database based on 
MODAClouds ontology 

JSON-based input, compatible 
with D-MON monitoring 
platform. 

An XML-based input 
configuration language to 
constraint, verify and optimize 
the performance of the analysis 
workflow. 

Model output Annotated layered queueing 
network model for use with 
LINE queueing network solver. 

Annotated UML model which 
can be mapped to the DICE 
simulation and optimization 
tools.  

Reporting A PDF report is generated to 
summarize the outcomes. 

Model annotations which can be 
inspected via the DICE Eclipse 
IDE GUI. 

3.1.2.  Anti-Patterns and Refactoring (APR) Module 
An Anti-Pattern (AP) is identified as a bad design practice, e.g., Blob, Empty Semi Trucks, which might 
cross several levels of an application development cycle, e.g., architecture definition, development. We 
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consider, for each AP, a problem statement, which identifies the AP but observable problems, and the 
corresponding solution actions, which need to be applied to the software system in order to remove the 
SP. In our case, the solutions should support the feedback generation which leads to architecture 
refactoring (e.g., a set of modifications in the parameters of models).  

The DICE Anti-Patterns and Refactoring (APR) module is designed to achieve the following objectives: 

● Transforming UML diagrams annotated with DICE profiles to performance model (e.g., Petri 
Nets and/or Queueing Networks) for performance analysis.  

● Specifying the selected popular AP of DIAs in a formal way (e.g., a logic formula which is 
suitable for model checking, executable codes).  

● Detecting the potential AP from the performance model. 
● Generating refactoring decisions to update the architecture model (manually or automatically) to 

fix the design flaws according to the AP solution. 

The components of the APR module are Model-to-Model (M2M) Transformation, Anti-patterns 
Detection and Architecture Refactoring as detailed below. 

● Model-to-Model (M2M) Transformation: The component is based on some of the 
transformations developed in T3.1 and APR-specific transformations developed in T4.3. It 
provides the transformation of annotated UML model with DICE Profile into quality analysis 
model. The target performance models can be Petri Nets or Queueing Networks. 

● Anti-patterns Detection: The Anti-patterns detection component relies on the analysis results of 
the M2M Transformation component. The selected anti-patterns are formally specified for 
identifying if there are any anti-patterns issues in the model. 

● Architecture Refactoring: According to the solution of discovered anti-patterns, refactoring 
decisions will be proposed, e.g., component replacement or component reassignment, to solve 
them. The Architecture model will be shared back to the DICE IDE for presentation, to the user 
in order to decide if the proposed modification should be applied or not.  

 

 
Figure 2. Interactions among the core components of DICE-FG Module.  
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3.2. Components Interaction 
Based on the above description of the core component - DICE-FG tool, Figure 2 describes their 
interactions within the DICE-FG tool. For readability, the DICE Monitoring Platform is also included to 
show what data are collected. The dashed box highlights the sub-modules composing the DICE-FG tool, 
which offer more functionalities compared to the MODAClouds-FG baseline, as will be further 
elaborated in section 4.  

However, differently from the baseline, data is now acquired into the DICE-FG through a JSON dump of 
the DICE Monitoring Platform, which in turn is capable of obtaining metrics for the DIA and the Big data 
platform running the DIA (e.g., log-files of Hadoop/MapReduce, Spark, etc), as well as from the 
underpinning virtual machines (VMs). These provide a richer set of input metrics compared to the 
MODAClouds baseline, which was concerned only with the VM metrics. 
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4. DICE-FG tool 
In this section, we present the design principle for DICE-FG – the key component of this first release of 
the Enhancement tool. 

4.1. Goal 
As a core component of the Enhancement tool, the DICE-FG tool plays two roles: 

● Updating parameters of design time model (UML models annotated with DICE Profile)  
● Providing in the UML resource usage breakdown information for the data-intensive application.  

Together these features provide to the DICE designer the possibility to: 

● Benefit from a semi-automated parameterization of simulation and optimization models. This 
supports the state goal of DICE of reducing the learning curve of the DICE platform for users 
with limited skills in performance and reliability engineering. 

● Inspect in Eclipse the automated annotations placed by DICE-FG to understand the resource 
usage placed by a workload across software and infrastructure resources. 

The above features are graphically illustrated in Figure 3, which illustrates the model parameterization 
process undertaken without DICE-FG. Figure 4 instead shows the result with the DICE-FG automatic 
parameterization, i.e., the determination of parameters such as resource processing rates that are 
indispensable to predict performance and reliability through the cycle of iterative refinement.     

 

Figure 3. Manual guess of parameters by the DICE designer at DPIM model level for performance prediction 

 

Figure 4. DICE-FG avoids at DTSM the parameter guessing through inference and fitting of monitoring data 

Note that Figure 4 effectively provides a resource usage breakdown. This is because the rate of 
processing is easily related to the time a request spends at each resource as follows, i.e., let R be the rate 
of processing of a request at a given resource, then the mean time spent in execution at the resource is 
1/R, after discount of contention overheads. Such mean time parameter is explicitly captured by the 
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hostDemand parameter in the DICE UML model and one of the key parameters estimated by DICE-FG.  
Other parameter of interests include the parallelism level at a resource, and the inter-arrival times of jobs, 
among others.  

4.2. Updating UML parameters with DICE-FG 
The DICE-FG tool operation process involves three stages: configuration, analysis (either estimation or 
distribution fitting), and model update. To be specific, firstly, the DICE-FG tool is interfaced to D-MON 
and the model repository. Secondly, DICE-FG Analyzer performs inference analysis on the datasets 
provided in input via D-MON. Then, DICE-FG updates the parameters of DICE UML models according 
to the results of estimation and fitting. Integration activities planned at later stage of the project will 
ensure that such annotated UML is returned to the IDE. 

The following table describes the output parameters supported by DICE-FG with corresponding 
examples. We point to deliverable D2.1 - Design and quality abstractions - Initial version for a technical 
overview of DICE UML models and their parameters. 

Table 9: Output parameters currently supported by DICE-FG tool 

Output Parameter Name Description Example 
UML Models – 
MARTE Profile 

hostDemand Execution time. This is the 
real CPU demand, after 
contention overheads are 
discarded. 

Mean time a mapper 
takes to process a task 
spawned by a 
Hadoop/MR job.  

extDelay Inter-issue times 
of  successive jobs 

Average time between 
submission of jobs to a 
resource 

population Average number of jobs 
running in the system 

 Number of jobs 
observed at the 
resource during testing 

UML Models – 
DICE Profile 

hadoopExtDelay Inter-issue times 
of  successive Hadoop jobs 

Average time between 
submission of jobs to a 
Hadoop/MR or Spark 
cluster. 

hadoopPopulation Average number of Hadoop 
jobs running in the system 

 Number of 
Hadoop/MR or Spark 
jobs observed in the 
system during testing. 

 respT Response time ( elapsed time 
since a user submits a job to 
the cluster and return of the 
result) 

Execution time of the 
map and reduce phases 
plus the time spent in 
the queues and 
communication delays 

 

We have also been working towards annotating average memory requirements of individual jobs. At the 
moment this can be estimated by DICE-FG from the data, but there is a lack of a suitable annotation in 
the DICE profile, since memory annotations are inherited from UML MARTE for a host, but not for 
individual job. This limitation is now identified and will be addressed in the next released of the DICE 
profile. 

4.3. Running DICE-FG 
In this section, we overview the input data format and the configuration file provided to the DICE-FG 
tool. These are the only inputs required to run the tool, which may be invoked from the command line, 
e.g., as follows 

./bin/run_dicefg.sh MCR_FOLDER ./tests/test1/configuration_val.xml 
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where MCR_FOLDER needs to be replaced with the installation folder of the Matlab Compiler Runtime, 
and configuration_val.xml is a test configuration file, similar to the one provided in the next section. After 
the execution of DICE-FG terminates, normally within very few seconds, the UML model(s) specified 
within the configuration file will be annotated with concrete value of the unknown parameters.   

Detailed installation and running instructions for DICE-FG are available on the DICE-FG wiki at 
https://github.com/dice-project/DICE-Enhancement-FG/wiki/. 

4.3.1. Configuration Files 
We here focus on the specification of the input data that is requested to the user in order to use DICE-FG. 
The input parameters for DICE-FG tool are specified in a dedicated XML file. Examples are included 
within the DICE-FG distribution, including the one below: 

 

The above configuration file specifies a complete DICE-FG analysis, consisting of a statistical 
distribution fitting step and an estimation analysis step.  At the end of this execution, the parameters 
$redT, $RT, and $mapT in the UML model ./tests/test2/model.uml will be replaced by concrete numbers.  

The configuration file relies on several XML element tree:  

● The <configuration> tree specifies general configuration parameters of DICE-FG, such as the 
amount of data shown on the standard output. 

● The <dataset> tree specifies the dataset to be loaded in memory at the beginning of the DICE-FG 
execution. Each execution of DICE-FG can rely only on a single dataset. The dataset will be 
loaded from MAT (Matlab native) or JSON files, transformed into an internal data structure, 
validated and in some case sanitized for erroneous or missing entries.  A dataset is defined by a 
collection of files: 

○ ResourceDataFile contains the measurements that are used for estimation or fitting, 
collected at the level of the individual resources that compose the system.  

https://github.com/dice-project/DICE-Enhancement-FG/wiki/
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○ ResourceClassList is a list of text labels that assign names to different classes of jobs that 
arrive at the resources. It is assumed that properties of different job classes have been 
measured separately (e.g., for a NoSQL DB response times one may collect in 
ResourceDataFile separate measurements for read operations and write operations).  

○ ResourceList lists the resources at which the measurements have been collected. 
○ SystemDataFile contains the measurements which are used for estimation or fitting, 

collected across a collection of resources that compose the system. For example, the end-
to-end response time is a property that typically depends on the traversal of multiple 
resources.  

○ SystemClassList provides a list of system-wide classes. These can either be in 1-to-1 
mapping with the ResourceClassList ones, or a combination therefore. 

● The <fitting> tree defines a fitting analysis to be carried out with a specified algorithm (here fit-
norm) on the given metric (here qlen) at the specified resource, which is specified using the  
<resource> tree. 

● The <output> defines the handler in charge of writing the parameters to the UML models, in this 
example the UML MARTE handler. 

● The <estimation> tree requires to estimate a missing parameter using statistical inference, for the 
given resource and metrics. 

● The <resource> tree can be replaced by a <system> tree, which defines an estimation problem 
over a collection of resources, as opposed to a single resource. This requires the SystemDataFile 
and SystemClassList information. 

More examples are provided within the DICE-FG release. We limit here to provide more details on the 
above notions of System, Resource, SystemClass and ResourceClass using the diagram below. The figure 
depicts and application composed of 3 resources:  

 

• All resources process resource class 1 jobs. 
• Resource 1 and Resource 2 both process jobs of resource class 2. 
• A system class exists, composed of the dashed path. 
• Four systems may be considered: (Resource 1, Resource 2), (Resource 1, Resource 3), (Resource 

2, Resource 3), or (Resource 1, Resource 2, Resource 3, Resource 4).  

The above definitions allow to specify in DICE-FG a variety of analyses, from estimating the 
requirements of individual resource classes at a specific resource, to fitting the response time distribution 
of a system class over the system resources. Such flexibility is useful to describe complex topology 
featured by DIAs, such as those based on stream processing systems like Storm. 
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We now discuss more in the details the parameters presented in the above configuration XML file and 
their allowed values.  

Table 10: Input parameters of DICE-FG tool 

Element 
tree/Element 

Element/Attribute Description 

Configuration Verbose Controls the verbose level of the tool, allowed values: 
● 0: silent 
● 1: normal 
● 2: debug 

Dataset period Timestamps defining the time window for the data. The times 
can be logical (e.g., for simulation data) or physical (e.g., 
UNIX timestamp).  

File ResourceDataFile Path to resource data provided in .mat or .json format. 

File SystemDataFile Path to system data provided in .mat or .json format. 

File ResourceClassList Path to input class file in .mat or .json format. The list includes 
only classes in the ResourceDataFile. 

File SystemClassList Path to input class file in .mat or .json format. The list includes 
only classes in the SystemDataFile. 

File ResourceList Path to input resource file in .mat or .json format. 

Estimation type Algorithm to be used for estimation or fitting.  
Supported estimation algorithms are as follows: 

● est--ci: inference of average execution times from 
response time data. The method requires the logging 
for all jobs, as opposed to periodic sampling. 

● est--ubr: inference of average execution times from 
samples of average throughputs and average utilization 
in each sampling window. 

● est--qmle: inference of average execution times from 
queue-length data.  

● est--qbmr: inference of average memory usage from 
queue-length and aggregate memory data. 

● est--maxpopulation: obtains the maximum population 
of jobs observed at the resource.  

● est--maxavgpopulation: obtains the maximum of the 
samples of the average population of jobs observed at 
the resource.  

● est--extdelay: inference of the mean external delay 
between submission of successive jobs to the resource.  

Most of the above algorithms are based on DICE-sponsored 
papers or state-of-the-art algorithms. We point to the DICE-FG 
wiki for references and a description of individual methods. 

Estimation flags A string of text with custom options, see wiki for extended 
documentation. 

Fitting type Supported fitting algorithms are: 
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● fit-norm: fit data to a normal distribution.  
● fit-gamma: fit data to a gamma distribution. 
● fit-exp: fit data to an exponential distribution. 
● fit-erl: fit data to an Erlang distribution. 
● fit-ph2: fit data to a 2-state PH distribution   
● fit-map2: fit time series to a 2-state Markov modulated 

Poisson process 

fitting flags A string of text with custom options, see wiki for extended 
documentation. 

resource name Indicates the resource label, chosen within ResourceList, 
associated to the parameter of interest. 

resource flags A string of text with custom options, see wiki for extended 
documentation. 

Metric confidence Supported values: 
● none: the returned value does not make use of 

confidence intervals. 
● upper: the returned value of the parameters is taken at 

the upper end of the confidence interval (95% 
significance). 

● lower: the returned value of the parameters is taken at 
the lower end of the confidence interval (95% 
significance). 

metric class Class label, from those read in ClassList, associated to the 
parameter of interest. 

metric name Metric label, used to indicate to DICE-FG which metric should 
be fitted. The parameter is not required by estimation 
algorithms. See Section 4.3.2.1 for supported values (e.g., arvT 
for arrival times).  

metric type Parameter type from Table 10, e.g., hostDemand, extDelay, 
etc. 

metric param Name of context parameter to be annotated in the UML model.  

output handler • uml-marte: annotate UML MARTE parameters 
• uml-dice: annotate UML DICE parameters 

output path Path to UML file. The file will be overwritten. 

 

More details about required parametrization for each DICE-FG option is available at the DICE-FG 
repository: https://github.com/dice-project/DICE-Enhancement-FG/wiki/ . 

4.3.2. DICE-FG input data format 
To standardize the use of the estimation algorithms, we have adopted a common data format, from which 
each algorithm can select the data it requires to perform the estimation. We assume the data has been or is 
being collected for an application that provides a number of different services, grouped in service classes. 

There are a total of K different service classes and M different resources. Data is collected either by 
averaging in time windows, or for individual requests, or both, and can be specific to a class or aggregate. 

https://github.com/dice-project/DICE-Enhancement-FG/wiki/
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Data is associated to a subsystem of E<=M resources. If E=1, the data is stored in ResourceDataFile, 
conversely if it is associated to a subsystem of multiple resources (E>1) the data is stored in 
SystemDataFile. We discuss the two cases separately. 

4.3.2.1. Resource data 
The data format is a data structure (MATLAB cell array) with 11 rows and M(K+1) columns, 
representing M groups of (K + 1) columns. The i-th group of (K+1) columns represents the 
measurements for the i-th resource and uses the first K columns to describe data for each service class, 
while the last column is reserved for aggregate data. The column index of class r at resource i is therefore 
idx=(i-1)*(K+1)+r, while for the aggregate data at resource i it is idx=i(K+1) . 

For each column, the information provided in each row is the following: 

Table 11: Information provided in each row 

Row ID Metric type Unit of 
measure 

AnalyzeMetric Description 

1 Sampling 
timestamp 

sec ts Holds the timestamps corresponding to 
the end of each sampling interval 

2 Utilization  n/a, in [0,1] util Holds the average CPU utilization for 
each sampling window. Typically, only 
overall CPU utilization is collected, thus 
only the column K +1 will hold an array, 
while the other columns will be empty.  

3 Arrival 
timestamps 

sec arvT Holds the timestamps of the arrival of 
each request to the resource. 

4 Response 
time 

sec respT Holds the observed response time 
(departure time minus arrival time) of 
each request 

5 Average 
response time 

sec respTAvg Holds the mean response time of the 
requests processed in each sampling 
window. If no requests of a given class 
are processed in a sampling interval, the 
corresponding entry in the array is set to 
zero. 

6 Average 
throughput 

jobs/sec tputAvg Holds the throughput observed for each 
service class in each sampling window. 
The throughput is computed as the total 
number of requests processed in the 
sampling interval, divided by the length 
of the interval (in seconds). 

7 Departure sec depT Holds the timestamps of the departure of 
each request from the resource. 
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times 

8 Queue-length jobs Qlen Holds the actual queue-length (number of 
jobs in the system) seen at sampling 
instants. 

9 Average 
queue length 

jobs qlenAvg Holds the average queue-length (number 
of jobs in the system) for each service 
class in each sampling period. 

10 JobId n/a, integer jobId Holds the id of the job that generated the 
sample (e.g., id of arriving job)   

11 Memory 
usage 

kB mem Holds the memory usage in each sampling 
window. More accurate results can be 
obtained if the memory is computed as 
the total memory usage minus the 
memory allocation due to operating 
system or other services running in the 
background. 

12 Average 
memory 
usage 

kB memAvg Holds the average memory usage in each 
sampling window. More accurate results 
can be obtained if the memory is 
computed as the total average memory 
usage minus the memory allocation due to 
operating system or other services 
running in the background. 

4.3.2.2. System data 
At the moment, DICE-FG supports only system-wise estimation for metrics recorded on the entire set of 
resources, i.e., E=M. For example, the end-to-end response time, the system throughput, and the total 
number of jobs in the system. The specification of data is again based on columnar data, with the first 11 
rows as for the resource data. However, the following rows are also included: 

12. System matrix: a binary matrix with M rows (resources) and K columns (classes). If element (m,k) is 
set to 1, then it is assumed that the measure includes the resource consumption of class-k jobs at resource 
m. It is possible to set to 1 several classes k1, k2,..,kr on the same resource m, in this case all the class data 
of these classes will be summed to determine the resource consumption at resource m. The outside world 
(in open systems) and the delay node representing the external delay (extDelay/think time) of the users (in 
closed systems) are not included in the M resource rows.  

13. System routing matrix (optional): a probability matrix of order K(M+1) specifying the route of 
requests across the system of resources. The upper-left submatrix of order KM represent the routing 
probabilities of the K classes across the M resources. For example, the first K rows represent the routing 
probabilities out of resource 1, with the k-th row representing class-k jobs. Note that this format allows 
one to specify class-switching, i.e., that a class leaving a resource can enter a resource into another class.  
The remaining entries represent probabilities of flows from/to the outside world (open topology) or to the 
delay node representing the external delay (extDelay/think time) of the users (closed topology).  

Given the above routing matrix, the information provided in the first 11 rows is interpreted as follows: 
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Table 12: Information provided in the first 11 rows 

AnalyzeMetric Interpretation in SystemData  

ts Timestamps at the end of the sampling periods. For aggregate measurements, the 
sampling period ends when all the required metrics have been collected. 

util Percentage of admitted jobs in the sampling period, assuming a limited number of 
jobs can be admitted in the subsystem. 

arvT Timestamps of arrivals from node M+1 into any of the M resources. 

respT Response time between arrival from node M+1 to return to node M+1, for each 
request visiting the M resources (or a subset thereof). 

respTAvg Average value of response times seen during each sampling period.  

tputAvg Mean departure rate from any of the M resources to node M+1 seen during each 
sampling period.  

depT Timestamps of arrivals from any of the M resources to node M+1. 

qlen Number of jobs observed in the system at the end of each sampling period. 

qlenAvg Average number of jobs observed in the system at the end of each sampling period. 

mem Memory usage summed across the M resources as seen at arrival instants of jobs 
from node M+1. 

memAvg Cumulative average memory usage summed across the M resources as seen at the 
end of each sampling period. 

 

4.3.3. Specifying DICE-FG input data via JSON 
Two functions are provided with DICE-FG to convert the common data format to/from JSON. The 
common data format is composed by the data, resources and classes cell arrays. These can be converted 
to JSON from MATLAB using the command: 

fg2json( 'hmr', resdata, sysdata, resources, resclasses, sysclasses ) 

Where ‘hmr’ is a use specified text prefixed. This will create five JSON files: hmr-resdata.json, hmr-
sysdata.json, hmr-resources.json, hmr-sysclasses.json and hmr-reclasses.json. To reload these files into 
the MATLAB environment, DICE-FG uses the command: 

[resdata, sysdata, resources, resclasses, sysclasses] = json2fg( folder, 'hmr' ) 

Where folder is the path to the folder containing both JSON files, e.g., the output of MATLAB pwd 
command for the current directory. JSON files can also be specified directly, without use of MATLAB. 
Examples are provided with this tool release. 
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4.3.4. Integration with DMon 
To perform the analysis, the DICE-FG tool first needs to obtain runtime data on the DIA from the DICE 
Monitoring Platform (DMon). Within DICE we have extended DICE-FG to operate with DMon and we 
report in this section the integration approach. The DICE-FG tool sends the following JSON query string 
to DMon to collect the runtime information (See the Figure 5).  

 

Figure 5. Example of query (JSON format) 

DICE Monitoring Platform will return a JSON string which includes CPU utilization, job information, etc. 
Figure 6 shows the example of obtained JSON results.  

 

Figure 6. Example of obtained runtime data (JSON format) 

This data is then used to automatically generate a valid set of input files for DICE-FG. This is done by 
loading in memory the JSON file and operating a basic parsing of individual metrics until recovering the 
required information by DICE-FG shown in Table 13.  
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5. DICE-FG Algorithms 
In this chapter we define the technical advances to the DICE-FG tool developed as part of DICE. We first 
provide an overview and then summarize the algorithms part of DICE-FG. 

5.1. Overview 
The work done as part of DICE to extend the FG tool baseline to the specific needs of DIA development 
has focused on these following:  

● Memory usage patterns. These are critical to understand the performance of in-memory 
operations. For such operations, the DIA designer wishes to avoid memory swapping, which can 
compromise performance and reliability, as it can render the application so slow to be unavailable. 
Therefore, the DICE-FG methods in DICE consider this metric. We describe the support of 
DICE-FG for this feature in Section 5.2. 

● Confidence intervals on estimates. One of the requirements of the Enhancement tools involves 
providing information about the uncertainty on estimated requirements. This information can 
provide a measure of confidence on the quality of the inference and, for example, suggest to the 
developer and QA engineer that more test experiments are needed to gain confidence about the 
parameters of the simulation and optimization models. We have investigated this problem 
systematically, and we report results in Section 5.3.  

● Applicability to DIA of baseline algorithms for mean execution times. DIAs are also ordinary 
Java-based software systems, hence several methods that apply to resource consumption 
estimation in ordinary applications can also be applied as-is to DIAs. However, we are not aware 
of systematic studies in the literature about this. During the second year we have investigated this 
research direction by applying DICE-FG to a case study being developed jointly with the 
MIKELANGELO H2020 project in the context of Cassandra performance engineering. We report 
in Section 5.3 and the appendix initial results for this line of work. 

● Distribution of execution times. Compared to a canonical three-tier application, a DIA typically 
features smaller concurrency levels, since each operation is more intensive in terms of volumes of 
data processed or memory usage. Therefore, it is often the case that one has at disposal precise 
measurements about the running times of an application, which are not inflated by contention 
overheads. In this setting, it is possible to provide a distributional characterization of execution 
times, which increases the accuracy of simulation and optimization. In Section 5.4 we describe 
the extension of DICE-FG developed in DICE to fit execution time data into phase-type 
distributions. 

5.2. Inference of Memory Patterns 

5.2.1. Methodology 
The main question we wanted to answer in our study on estimating memory consumption patterns is as 
follows: Do we need to develop a full-fledged memory consumption model for the DIA or can we devise 
the same information by knowing the average behavior of each single activity from test runs?  

The answer we have found is that characterizing the behavior of individual activities and considering the 
effect of the superposition of multiple activities appears sufficient to capture memory behavior as a whole. 
This means that simple tests in isolation for each application activity can provide to DICE-FG the 
necessary data to annotate the UML diagrams with memory consumption parameters. This conclusion has 
been validated on a case study involving in-memory processing, in collaboration with an external 
stakeholder interested in the DICE results: SAP, which now runs a core business in Big data analytics 
through their HANA solution.  The results of this work are described in [27] and are here summarized. 



Deliverable 4.5. Iterative quality enhancement tools - Initial version 
 

Copyright © 2016, DICE consortium – All rights reserved                                                                                                           28 
 

In this study we have run test experiments on a HANA testbed using an analytic workload (TPC-H) 
representative of business analytics applications. The experiments have been carried out an IBM x3950 
X6 server running SLES 11 SP3. This test server features 8 processor sockets with a total of 120 physical 
cores and provides a total of 6 TB RAM corresponding to 750GB per socket. 64 experiments have been 
carried out, varying the factors shown in Table 14.  

Table 13: Description of the factors 

 
Each factor is assigned one of two possible levels, as shown in Table 15, which considers scenarios of 
varying complexity, involving multiple tenant databases. 

Table 14: Lower and upper bound of each factor 

 
Throughout each experiment, we have recorded total memory consumption of the analytic workload. 
Moreover, we have carried out isolation experiments, in which the memory consumed by each individual 
request was monitored, without memory interference from the other requests. Our analysis considered 
two aspects: 

Memory inference via stochastic models. Whether the analytic models used in DICE, in particular those 
based on queueing network models and JMT, could correctly predict the total memory consumption using 
only the memory consumption information of individual requests. This is done using the formula: 

𝑀𝑀𝑖𝑖 = �
𝑄𝑄𝑐𝑐,𝑖𝑖

𝑙𝑙𝑐𝑐

𝐶𝐶

𝑐𝑐=1

𝑚𝑚𝑐𝑐  

in which Mi represents the memory consumed at the i-th time interval, Qc,i is the mean number of jobs of 
class c in execution in the system during interval i, mc is the memory consumption of jobs of class c 
obtained by isolation tests, and lc is the parallelism level of a class c job. This memory model depends on 
the mean number of jobs in execution, Qc,i, which can either be obtained by direct measurement or via 
simulation, in case of predictive studies. In this study, we use Qc,i computed by simulation and try to 
match with the above formula the memory consumption observed in the real system. We point to [27] for 
a description of the JMT queueing network model used to describe this application and report here the 
qualitative conclusions of our study.  

Memory inference via regression. DICE-FG obtains from the above expressions the memory 
consumptions mc. We studied how these can be used for model-based prediction compared to developing 
a memory consumption model based on response surfaces, which interpolate the experimental results 
through nonlinear regression methods. Clearly, such surfaces do not require the development of a 
stochastic model, hence they are simpler to fit to observations. DICE integrates the fitting of regression 
surfaces as part of the Anomaly Detection tool, developed in WP4, and we have used this feature to 
model memory consumption on this application, without knowledge of the memory behavior of 
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individual requests. We consider in particular response surfaces that encompass the six configuration 
parameters varied in the experiments, trained on a fraction of the data available (8, 16 or 32 experiments).    

5.2.2. Obtaining memory weights from DICE-FG 
The main takeaway is however that simulation is surprisingly accurate, in spite of the fact that there is an 
indirect estimation as we are relying just on data obtained during isolated runs. This implies a simple 
methodology for estimation of memory via DICE-FG:  

● The user runs a set of isolation experiments for each job type, in which memory usage is obtained 
by DMon. 

● DICE-FG retries this data and annotates the UML model with average memory consumption 
levels observed for each request in isolation. 

The inference step is delegated to the computation of memory consumption using inference formulas such 
as the one provided above for Mi. If the performance and reliability analysis is carried out with JMT, it is 
however possible for the user to obtain a direct estimate of Mi by using a metric called FCR - Mean 
Memory Consumption that has been contributed by the DICE team to JMT.  

An experimental validation of the predicting capabilities of the memory estimation features integrated in 
DICE-FG is given in Appendix A.1 of the present document. 

5.3. Inference of Mean Execution Times 
During M1-18 the DICE-FG tool has been part of a formal collaboration between the MODAClouds and 
DICE projects. The problem of inferring mean execution times has been systematically investigated in 
MODAClouds and a set of algorithms have been developed to obtain inference of mean execution times 
from utilization data, response time data, and queue-length occupancy data. A paper, sponsored by both 
projects, has been written with the aim of comparing the accuracy and execution times of the integrated 
methods [25] and a tutorial presented at ACM/SPEC ICPE 2016 to train the user community [26]. We 
point the DICE users to these material for an overview of the inference methods of mean execution times. 

After the conclusion of MODAClouds, we have developed validation of applicability of the methods to 
DIA, as part of a case study on Apache Cassandra, currently being carried out as part of a collaboration 
between DICE and the MIKELANGELO H2020 project.  

We report this case study in Appendix A.2, where we show the accurate prediction results obtained on 
Apache Cassandra thanks for the parameterization generated by DICE-FG. 

5.4. Confidence Intervals on Mean Execution Times 
A limitation of the MODAClouds-FG baseline tool is the fact that its estimation algorithms are designed 
to return confidence intervals on the produced estimates. This is undesirable, since QA engineers need to 
get an understanding of the quality of execution time estimates. We have addressed this limitation in 
DICE-FG by developing a new estimator of mean execution times, called QMLE, which has been 
integrated in DICE-FG and can return rigorous confidence intervals on the estimated mean execution 
times.  We here briefly overview the QMLE method and its confidence interval generation feature. 

The QMLE method, specified in DICE-FG via the est-qmle option, provides an approximate closed-form 
estimator for mean execution times in software systems. Assume that a dataset D has been collected, 
containing measurements of the number of jobs in execution, for each type and at each node of the DIA. 

We denote by  the mean number of requests of type j running at node i obtained via the monitoring 

tool, by the total number of jobs running in the system, and by the mean think time between 
submission of successive jobs of type j by a user. The QMLE computes the mean execution times of type 

j at node i, denoted by ,  as [24] 



Deliverable 4.5. Iterative quality enhancement tools - Initial version 
 

Copyright © 2016, DICE consortium – All rights reserved                                                                                                           30 
 

 
Here the bs superscript indicates that the formula of the estimator is obtained by relying on a theoretical 
approximation known as Bard-Schweitzer algorithm, we point the interested reader to [24] for details. 

The above formula allows to compute the 95% confidence interval of the mean execution times using 

the expression where c=1.96 and the term under square root is the element in inverse of 

the Fisher information matrix associated to the maximum-likelihood estimator of .  

We provide explicit formulas for the Fisher information matrix in [24] and these have been integrated in 
DICE-FG tool as part of the DICE activities. A validation of the correctness of the expressions has been 
given in [24], we point the interested reader to the paper. In the paper we show that the results of the 
above confidence interval expression are exact. 

In order to apply the above results to DICE-FG estimation results, the user simply needs to specify the 
Confidence parameter in the input XML, as discussed in Table 11. For example, if Confidence is set to 
upper then the confidence interval half-width at 95% significance level is automatically added to the 
mean execution time. The same principle is also applied to fitting of statistical distributions, for example 
with the fit-normal option confidence intervals are generated for both the estimators of the mean and 
standard deviation for the normal and used to correct the estimate of these parameters according to the 
setting of the Confidence parameter.  

5.5. Estimation of Execution Time Distribution 

5.5.1. Contribution and innovation 
The synchronization intrinsic in the operation of DIAs is generally sensitive to the execution times of the 
activities to be synchronized. Consider for example the Map phase of Hadoop/MapReduce involving the 
processing of two tasks in parallel: after the first mapper completes its task, the platform awaits for the 
second mapper to also complete it task before moving to the Reduce phase. Clearly, if the second job 
incurs a long execution time - in statistical terms, it has execution times featuring a long tail - the system 
will be blocked for a longer period of time than a system with a light tail in the execution times.   

The dataset has been collected by PMI using the Cineca infrastructure, a description of this dataset is 
provided in deliverable D3.8 - DICE Optimization Tools in Section 6.1. The cumulative distribution 
function of the execution times of the Map and Reduce phases is shown in the Figure 7. 

 
Figure 7. Execution time distribution in MapReduce experiments 
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It is interesting to note that in both cases the execution times of the phases is quite long tailed, with the 
cumulative distribution function extending over a wide range of values before converging to 100%. This 
essentially means that large samples are observed in the execution time of the application, which albeit 
rare can induce significant deviations from the expected execution times. As noted above, this can have a 
large impact in the modelling of synchronizations in DIAs. 

As shown in Table 11, DICE-FG accepts several algorithms for fitting input data to parametric 
distributions, including Normal, Gamma, Exponential, and Erlang. We also added support for Markov-
chain based distribution modelling, via the fit-ph2 and fit-map2 options. We here review just the former 
fitting option and point the interested reader to the DICE tutorial at ICPE 2016 for an introduction to the 
Markovian arrival process fitted with the fit-map2 option [26].   

5.5.2. Fitting distributions using phase-type models 
To address the problem, we have added to DICE-FG the possibility of fitting execution time distributions. 
Our solution relies on phase-type distributions, which are a class of Markov models compatible for use 
with Stochastic Petri nets and Queueing networks, which are the two classes of stochastic models used in 
DICE.  

A phase-type distribution (PH) is a model of a statistical distribution specified in terms of a continuous-
time Markov chain (CTMC). A CTMC is a classic dynamical model, where one specifies the transitions 
rates between a set of m states in a matrix called infinitesimal generator Q, in which the element in 
position (i,j) represent the instantaneous rate of change from state i to state j and the diagonal elements are 
set so that each row sum is zero. A PH extends this notion by treating the m-th state as the absorbing 
state, i.e. a state where the execution of the dynamical model terminates, and by using the distribution of 
the time to enter this absorbing state as a tool to model arbitrary distributions. One specific advantage of 
this class of models is that it is easy to couple with stochastic Petri nets and queueing network models. An 
illustration of this notion is given below, where the T submatrix represent the transition rates between 
ordinary states, whereas the t subvector represents the rate of jump to the absorbing state.  

 
Figure 8. Specifying the matrix T of a PH distribution 

In PH, an arbitrary statistical distribution is modelled by the fitting the function where is 
an arbitrary probability vector to be fitted to the data, is the matrix exponential of T evaluated at point 

t, and is a column vector of ones. Based on the above definitions, it is easy to see that in order to fit  a 

PH distribution one needs to assign the rates in the matrix T and vector  automatically, up to matching 
the desired cumulative distribution function.  

5.5.3. Fitting phase-type models using DICE-FG 
We have added to DICE phase-type moment-matching methods by adapting and integrating in DICE-FG 
the algorithms available in the KPC-Toolbox2, an open source fitting toolbox maintained by the IMP 
team. The KPC-Toolbox is able to automatically fit a PH distribution based on the empirical moments of 
the input trace. This is well-suited to fit long-tailed data, since moment-based matching is known to have 
a high-quality fit of the tail, due to the sensitivity of means to outliers, whereas it is generally less 
accurate on the distribution body. We point to Appendix A.3 for the experimental validation of this 
feature on a data-intensive application based on Hadoop/MapReduce.  

                                                      
2 https://github.com/kpctoolboxteam/kpc-toolbox  

https://github.com/kpctoolboxteam/kpc-toolbox
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6. Performance & Reliability Anti-Pattern Detection 
Task T4.3 in DICE aims also at exploring the possibility of defining an APR methodology for DICE 
models. It has been recognized since proposal stage that this feature is treated as an experimental one, 
given a shortage of results in this space in the research literature on this topic. Therefore, we have focused 
the initial work on the APR tool on outlining the methodology to follow. In this section, we review the 
result of this initial investigation on techniques for detection of performance anti-patterns. Then we report 
on initial experiments we have conducted that suggest viability of the approach. Finally, we discuss the 
approach that we will follow in the next period in order to concretely develop the APR tool. 

6.1. Technique Review of Anti-Pattern Detection 
In software engineering, anti-patterns are recurrent problems identified by incorrect software decisions at 
different hierarchical levels (architecture, development, or project management). Software AP are largely 
studied in the industry. They are catalogued according to the source problem and a generic solution is 
suggested [2], [3], [4]. The increasing size and complexity of the software projects involves the rising of 
new obstacles more frequently. For that reason, the identification of AP at the early steps of the project 
life cycle saves money, time and effort. 

In the context of big data technologies, which often executes thousands of tasks with gigabytes of data, 
the impact of AP in performance is even more evident. It becomes crucial to detect and solve the software 
pitfalls and bottlenecks that hamper the performance and scalability of the system. The benefits of 
introducing performance AP in Cloud environments are discussed in [5]. 

Most of the performance AP in DIAs are related to the partition and distribution of the data and the 
computations. The definition of execution pipelines and the selection of the degree of parallelism is 
usually carried out at the architecture or design level. However, the discovery of potential dangers when 
conceptualizing and designing a new system requires additional information (i.e., expected execution time 
of the code or the number of resources or components) for calculating the performance metrics that will 
warn the appearance of performance AP. 

Recent works follow the same schema presented in [6] for automating the detection and solution of 
performance AP (see Figure 9). The approach consists of 1) modeling the system with a high-level 
description language, 2) transform it to a performance model through a Model-to-Model (M2M) 
transformation guided by performance annotations, 3) the simulation of the performance model for 
getting performance metrics, 4) the interpretation of the results for finding performance AP with respect 
to the structure of the system, and finally 5) feedback the original model for solving the problems. A 
software refactoring will usually improve the software structure and potentially solve the flaws. 
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Figure 9. An overview of Anti-Patterns detection process 

For instance, the authors in [7] have applied a M2M transformation from UML diagrams annotated with 
MARTE profiles into queuing networks. They define the AP in terms of OCL rules that are evaluated at 
the UML level. Next, the paper [8], [8] use the Palladio Component Model (PCM) [10] for describing 
component-based software architectures, extended queuing networks as performance models, and 
performance AP defined by a set of rules and actions. Finally, the work in [11] presents a Performance 
Anti-Pattern Modeling Language (PAML) for models described in the Architecture Description Language 
(ADL). These papers differ on the modeling language, the performance model, the language that they use 
for expressing AP, and the AP that they can detect and solve. 

6.2. Our Approach 
Based on the above technique review of anti-patterns detection, we propose to follow a similar 
methodology for automatically detecting and solving performance problems. 

The first option is using UML diagrams annotated with DICE profiles as modeling language and Petri 
nets as performance models. Our goal is the integration of this approach inside the DICE framework in 
order to take advantage of all the research and tools developed in the project. We suggest the introduction 
of model checking technologies for the automatic detection of performance AP over Petri nets. The 
detection of performance AP using model checking is a novelty with respect to previous works. 

Model checking is a paradigm stemming from computer science based on temporal logics which has been 
successfully applied in industry for system modeling and verification [12]. The model checking process 
consists of three phases: modeling both the system and properties with appropriate description languages, 
running the verification (checking the property validity with a model checking software) and analyzing 
the results (returning counterexamples if the property fails). Given a model and a set of properties, the 
verification process is completely automatized by a generic model checking tool. In our context, the 
models are the Petri nets obtained from UML diagrams; and a performance AP is a property that we 
desire to investigate if it is present in the model or not. 

Thus, the next step consists of obtaining a formal representation for both the model and the performance 
AP. On the one hand, the DICE transformation tool-chain allows obtaining performance models (e.g., 
Petri net) from UML models stereotyped with the DICE profile for different big data technologies (see 
the DICE Deliverable 3.1-Transformations to Analysis models [13]). The Petri nets that result of the 
transformation are annotated with performance information (i.e., estimated execution time, number of 
resources or cores, etc.); and allow the computation of performance metrics (e.g., response time of a 
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server). These models are more suitable than UML diagrams for executing a model checking analysis. 
Tools such as GreatSPN [14] allow the verification of properties expressed in terms of temporal logic 
(e.g., CTL [15] or CSLta [16]) over Petri nets. 

On the other hand, current efforts try to formulate the performance AP in terms of a first-order logic [17]. 
The temporal logics used by the verification tools are propositional formulas qualified in terms of time. In 
this kind of logics, the time is used for imposing a causal relationship between two set of states of the 
model determined by a propositional equation. Therefore, all properties expressible in first-order logic 
can also be expressed in temporal logic. 

We are also considering another option which is similar to some methodologies [7,17,18]. The idea is 
translating the high level specification - UML models which annotated with DICE profiles into 
quantitatively analysis performance models – Queueing Network models (QN) [19]. Currently, we are 
investigating PUMA [20] which might help to translate the UML models to QN. After the QN model is 
generated, we can easily obtain the performance indices of interest (i.e., response time, throughput, etc.). 
Since performance anti-patterns problem and solution are usually described in natural language, we need 
to use a formal definition for the performance anti-patterns for anti-pattern detection. Like we mentioned 
before, there are several ways to define the performance anti-patterns, for example, OCL rules, first-order 
logic. We are currently doing the research on these areas to see if AP rules can be implement into our 
model. Once the anti-patterns are detected, we need to provide quick and efficient feedbacks to refactor 
our models. In our previous work [21,22,23], we developed an approach to refactoring cloud-based 
applications for reducing the total costs while optimizing the allocation of software components. Though 
DICE project focused on the Big-data application which is not the same as cloud application (e.g., the 
runtime information of infrastructure, platform, and application are different), the proposed approach also 
considers both the hardware and software knowledge to minimize the costs of cloud resources and it will 
be a valuable reference to the Big-data application. 

Once the anti-patterns are detected, the Enhancement tool will generate the feedback and refactoring 
(manually or automatically) the architecture model. The refactoring decisions will help to modify the 
application.  Table 16 shows some popular refactoring decisions we are considering to use. 

Table 15: Popular refactoring decisions 

Refactoring Decisions Description 

Replacement A software component (e.g., an Application Server) is replaced with a 
different software component that provides the functionalities of the 
replaced component (e.g., another Application Server from a different 
vendor). 

Merge Two distinct software components (e.g., a Web Server and an 
Application Server) are replaced with a software component that 
provides the functionalities of the two replaced components. 

Reassignment It is the functional separation of a software component instance into 
two ones responsible for different classes of requests (e.g., an instance 
of Application Server is divided into two instances: one to register new 
users and one to authenticate new users). 

  

Furthermore, deployment decisions (i.e., allocation decisions for each software component to a set of 
resources.) and design constraints (i.e., limiting the application of refactoring and deployment decisions 
when a software component cannot be replaced or replicated) are also considered for supporting 
architecture refactoring.  
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In order to synthetically describe the above approaches, Table 17 gives a conceptual idea of core 
processing of how we might implement the performance analysis, anti-patterns detection and refactoring. 

Table 16: Anti-pattern and refactoring processing 

General process Approach 

Annotated Model UML diagrams annotated with  DICE Profile 

Performance Model Investigating current performance model, e.g., Petri nets, 
Queueing networks 

Performance Indices E.g. Response Time, Throughput, Resource Demand 

Performance Anti-patterns Investigating current anti-patterns formal definition, e.g., 
OCL rules, first-order logic, code level 

Results Interpretation & Feedback 
Generation 

Refactoring architecture models according to detection and 
solution of Anti-patterns 

  

In summary, the methodologies that we will follow for the detection and fixing AP issues in a big data 
context consist of: 

● The description of the system using UML diagrams annotated with the DICE profile. 
● The identification and selection of the more important AP for the analysis in big data systems. 
● The transformation of UML diagrams into performance models expressed as Petri nets or 

queueing networks, relying on transformations developed in task T3.1 and ad-hoc transformations 
for APR. 

● The formalization of performance AP in code level or with a logic suitable for model checking. 
● The evaluation of the performance AP in the model. 
● If the verification tool discovers that the performance AP is present in the system, we execute a 

refactorization of the software that mitigates the flaw. 

6.3. Initial Work on Refactoring Methods 
In order to reduce the total costs for running cloud-based applications while fulfilling service level 
objectives (SLOs), we investigated a model-based approach for optimizing the costs of running cloud-
based applications. We used model-driven application refactorings, i.e., experimenting software 
alternatives that optimize the application model, to minimize the cost of deploying them in the cloud [28].  

This approach focuses on the decision-making steps of the iterative process illustrated in Figure 10. The 
starting point is constituted by the system model, which depends on the application and the environment 
(e.g., expected number of users, expected price fluctuations, etc.), while the output is the information on 
how to deploy the application.  
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Figure 10. State diagram of our iterative approach 

We identified three main steps of our decision-making process: (i) apply to the initial model the merge 
and replace refactorings to reduce the overall computational needs of the system; (ii) reassign requests 
and create component replicas to reduce the complexity of the models; (iii) calculate an optimal 
deployment by deciding which resources to rent and how to map components to them. After the third step, 
we obtain a decision on the desirable configuration of the system that minimizes the overall costs, which 
may be used to perform a reconfiguration of the deployed system. Since the application requirements and 
the environment may change overtime, we expect our approach to be implemented as the decision-
making part of a loop in which the optimization and adaptation processes are repeated when there are 
significant changes in the system model.  

We evaluated our approach on a cloud-based distributed application [29], which represents an enterprise-
level business to business e-commerce workload of a realistic complexity. This represents an initial step 
to deliver a proof-of-concept on a class of applications that are well understood, the next step will be to 
focus on a specific data-intensive application and general the approach.  The system is composed of an 
Application Server, and a Database subsystem. Figure 11 reports the results we obtained by modifying the 
design constraints on component replicability. Additional refactoring analyses are presented in [20]. 

 

 

Figure 11. Varying the design constraints in terms of component replicability (“Y” yes, “N” no). Components 
are ordered in this way: Application Server, Database Server, Database I/O 

The experiments results show that our approach is able to reduce the costs in all scenarios up to 60% 
when compared to an approach that does not use model-driven application refactoring. In most of our 
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experiments the reassignment refactoring is typically responsible for 50% of such improvement, while the 
replacement refactoring (which depends on the alternative components provided as input) is responsible 
for the remaining 10%. The cost for this improvement is paid in terms of additional QN evaluations, 
which has shown an increase of up to 4 times. However, since our QNs are evaluated in a matter of 
seconds in our system, and the increment in convergence speed is constant, we expect our approach to be 
fast enough to be used to drive periodical reconfigurations of the system. The MATLAB source code and 
the Amazon EC2 price traces we used to perform these experiments are available on Zenodo (cf., [20]), 
these provide a baseline for the implementation of the APR module. 

The above work is an “exploratory” investigation which is based on our chosen cloud applications, we are 
currently thinking to borrow some above ideas to help us to perform the architecture refactoring for Big-
data applications of DICE project. 
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7. Conclusion and Future Plan 

7.1. Achievements 
In conclusion of this deliverable we summarize the key achievements of this first release of the 
ENHANCEMENT_TOOLS: 

● A module developed in the MODAClouds EU project, named MODAClouds-FG, has been 
adopted as a baseline for the estimation of mean execution times of jobs in DIAs. 

● We have demonstrated the applicability of existing methods present in DICE-FG to DIAs on 
three case studies involving: 

○ Apache Cassandra 
○ Apache Hadoop/MapReduce (see also deliverable D3.8, Section 6). 
○ An in-memory database system (SAP HANA). 

● DICE-FG has been extended along several dimensions that are important to model DIAs: 

○ Estimation of memory consumption. 
○ Estimation of execution time distributions. 
○ Computation of confidence intervals for mean execution times.    

● We have investigated the technical approach for the future Anti-Patterns Detection and 
Refactoring (APR) tool, and demonstrated the promise of the methodology on a case study 
involving an enterprise cloud application.  

The DICE FG tool is available online on DICE’s Github repository. The following are the main links: 

● DICE-FG Source Code: https://github.com/dice-project/DICE-Enhancement-FG   
● DICE-FG Documentation: https://github.com/dice-project/DICE-Enhancement-FG/wiki  

The APR module capabilities are planned for official release by M30, with the final version of this report.  

2.2. Summary of progress at M18 
The following table summarize the status of requirements implementation at the end of reporting period 
(M18). 

Table 17: Requirements for Enhancement Tool 

Requirement Status at M18 
R4.11: Resource consumption breakdown ✔: the DICE-FG module is capable of 

extracting resource consumption data (memory, 
CPU time) for individual tasks at arbitrary 
nodes. The estimated data breaks down the 
usage of individual resources through job types 
that visit the resource. 

R4.12: Bottleneck identification ✔: by estimating the true execution times of 
requests, sanitized from contention overheads, 
the DICE-FG makes it trivial to identify 
bottlenecks. That is, the node with the largest 
mean execution time will be the bottleneck 
resource for a job type. Such feature is going to 
be completed by adding bottleneck identification 
capabilities in the APR module. 

https://github.com/dice-project/DICE-Enhancement-FG
https://github.com/dice-project/DICE-Enhancement-FG/wiki
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R4.13: Semi-automated anti-pattern detection ✔: an initial architecture and high-level 
approach defined, and initial proof-of-concept 
defined. The APR tool is set for initial prototype 
release at M24, and finalization with the next 
version of this deliverable at M30 (deliverable 
D4.6). 

R4.17: Enhancement tools data acquisition ✔: We have interfaced DICE-FG module with 
the DMon platform. APR module will not need 
direct access to the DMon. More metrics will be 
accessed in the feature to extend the breadth of 
the automatic UML parameterization.  

R4.18: Enhancement tools model access ✗: this feature is an integration feature to be 
developed in the next period. Currently 
integration is operated manually, in the future it 
will be automated. 

R4.19: Parameterization of simulation and 
optimization models 

✔: we have conducted validation studies on 
Hadoop/MapReduce (c.f. D3.8, Section 6), 
Cassandra, and SAP HANA that illustrate the 
ability of the DICE-FG module to provide good 
estimates of parameters.  

R4.27: Propagation of changes/automatic annotation 
of UML models 

✔: DICE-FG can successfully modify UML 
models by annotating parameters. The APR 
module is planned to introduce changes in the 
UML models, but this feature is not available yet 
as the tool is due for release later. 

✔- implemented at M18 
✗- not implemented yet, due at M24/M30 
✔ - partial accomplishment at M18 

 

7.2. Future work for DICE-FG 
● By M24 we plan to finalize the integration of DICE-FG with the DICE toolchain in terms of 

DICE profile model acquisition and automated annotation. 
● By M30 we plan to extend the features of DICE-FG towards supporting the modelling of 

technologies supported by DICE but that have been investigated to a limited extent in DICE-FG 
tool. In particular, technologies such as Spark and Storm where the computation proceeds 
according to a direct-acyclic graph (DAG), in which processing activities are forked and joined 
(i.e., synchronized) in predefined ways (as in the Map and Reduce phase sequence in Hadoop/MR) 
or according to user-specified patterns (as in Storm, Spark, and Apache Tez). Estimation of 
resource consumption that ignores DAG topologies can neglect the influence of blocking in the 
estimation of execution times. 

The current implementation of DICE-FG will be included in the first release of the DICE framework at 
M24. 



Deliverable 4.5. Iterative quality enhancement tools - Initial version 
 

Copyright © 2016, DICE consortium – All rights reserved                                                                                                           40 
 

7.3. Future work for APR 
● By M24 we plan to 1) implement the model transformation between the UML models with DICE 

Profiles annotation and performance model, and 2) formally specify the AP problem and solution 
for the selected AP. 

● By M30 we plan to 1) implement performance AP verification of the model, and 2) provide 
reasonable refactoring decisions (e.g. replacement, reassignment) to achieve the architecture 
refactoring manually or automatically.  

The M30 implementation of APR will be included in the second release of the DICE framework at M30. 
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APPENDIX A. DICE-FG Validation Experiments 

A.1 Validating memory usage estimation 
The experimental results of the study are shown in Figure 12. Here Sim represents the memory 
consumption inference via stochastic models, where is simulated via JMT, and we denote the response 
surface models by RS-8, RS-16, RS-32, where the number nn in RS-nn indicates the experiments used 
for training. The analysis considers both mean memory consumption and peak memory consumption. 

 

 
Figure 12. Comparison of analytical and empirical memory models 

The results indicate that all the approach can produce good results, with the accuracy of simulation being 
between 20% and 30%, and the accuracy of the response surface methods increasing as more data is fed 
into the estimation procedure. This suggests that both methods are viable in DICE.  

To further verify the applicability of this memory inference approach, we have compared the distribution 
of memory usage in the real system compared to the one observed during the simulation experiments with 
JMT. The results are shown below in Figure 13, showing good agreement.  

 
Figure 13. Validation of analytical model using simulation 

Summarizing, our validation has revealed that memory consumption in DIA neither necessarily require 
advanced inference techniques to decouple the memory contribution of an individual request from the one 
of the others requests, nor the development of empirical response surfaces, which require extensive 
experimentation. Conversely, using simple tests in isolation from each individual requests we were able 
to obtain good predictive accuracy.  As a result, the estimation of this parameter in UML models can 
proceed directly using the averaged memory consumption collected by DMon. 

A.2 Validating applicability of mean execution time estimation in DIA 
We have investigated the applicability of DICE-FG to the estimation of demands in an Apache Cassandra 
case study. In this case study, we have developed a simulation model for Apache Cassandra based on 
JMT. The model, shown in Figure 14, abstracts the behaviour of a Cassandra node part of a private cloud 
deployment.  
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Figure 14. Analytical model of Apache Cassandra used to validate DICE-FG 

The simulation considers aspects such as the CPU demand (c1_cpu), the disk demand (c1_disk), the 
network demand (c*_net), and the forking (c1_fork) and joining (c1_join) of jobs into tasks that are 
served either locally or by other nodes of the clusters, until conclusion (exit). The “A->B” elements 
denote a change of request type throughout its lifetime, an abstract needed for example to distinguish 
requests that are received and executed locally to a Cassandra node, from those that are received from 
remote Cassandra nodes. 

One of the goals of this case studies was to apply DICE-FG to the estimation of demands in DIA of this 
kind, and confirm the quality of the estimated demands by mean of simulation-based prediction. Since the 
NETF case study relies on Cassandra, this work also goes in the direction of validating the DICE 
simulation models developed in WP3. To this end, we conducted experiments on a 4-node cluster. Each 
data item was replicated 3 times across random nodes, and we considered different consistency levels for 
the requests: ALL (all 3 nodes that hold the data need to retrieve the data), QUORUM (2 out of 3 need to 
reply), and ONE (a single node needs to reply).  In each of these experiments, we varied the number of 
jobs that act as a client to the DIA, increasing their number up to reaching saturation (about 95% 
utilization).  

DICE-FG has been applied on each node using the utilization-based regression (UBR) algorithms in order 
to obtain all required mean execution times needed to specify the model. Based on these estimated values, 
we have parameterized the simulation and estimated the performance trends as the number of jobs is 
increased.  

The results, shown in Figure 15 below suggest that DICE-FG provides good input parameters to the 
simulation model, which result in fairly accurate estimates of mean execution times. Some deviations are 
seen above 30 jobs, but our investigation reveals that these are due to memory trashing effects that are not 
modelled and that normally do not arise in production systems, where the application is generally tuned to 
run at lighter loads than 90%.  

It is quite interesting to note, in particular, that the parameterization is obtained on an experiment with 1 
job and these values are then applied to the prediction of the system with more jobs. Therefore, similarly 
to what observed in the case of memory consumption estimation, running experiments at low concurrency 
levels and that stress features one-at-a-time appears to be sufficient to parameterize simulation models of 
DIA. 



Deliverable 4.5. Iterative quality enhancement tools - Initial version 
 

Copyright © 2016, DICE consortium – All rights reserved                                                                                                           45 
 

 
Figure 15. DICE-FG Validation Results on Apache Cassandra 

A.3 Validating distribution analysis of execution times 
In order to validate our implementation, we have attempted to generate PH distributions fitting the 
MapReduce data shown at the beginning of this section and subsequently we have used the resulting 
distributions in a simulation model of Hadoop/MapReduce to validate accuracy. The results of the fitting 
are illustrated below for the reducer execution times. 

 
Figure 16. DICE-FG distribution fitting results on MapReduce execution time data 

The diagrams indicate that the PH model delivers an accurate fitting of the empirical distribution. We also 
show the complementary c.d.f, which is here the probability that a reducer execution time exceeds the 
value shown in the x-axis. The fitting is very accurate, illustrating the capability of the algorithms 
integrated in DICE-FG to model long-tailed execution time distributions. 

The above distributions have been used in the Hadoop/MapReduce case study reported in D3.8 - DICE 
Optimization Tools in Chapter 6. Earlier attempts based on exponential distribution fitting produced 
incorrect predictions, with large inaccuracies exceeding 60% error on response time. The introduction of 
phase-type distribution resulting in much more accurate predictions of the order of 15-30% accuracy 
errors. 
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