

Developing Data-Intensive Cloud
Applications with Iterative Quality

Enhancements

Iterative quality enhancement tools –
Initial version

Deliverable 4.5

Ref. Ares(2016)3988271 - 28/07/2016

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 2

Deliverable: D4.5
Title: Iterative quality enhancement tools – Initial version

Editor(s): Giuliano Casale, Chen Li (IMP)
Contributor(s): Giuliano Casale (IMP), Chen Li (IMP), Weikun Wang (IMP), Jose-Ignacio

Requeno (ZAR)
Reviewers: Danilo Ardagna (PMI), Craig Sheridan (FLEXI)

Type (R/DEM/DEC): DEM
Version: 1.0

Date: 31-July-2016
Status: Final version

Dissemination level: Public
Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright © 2016, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre
FLEXI: Flexiant Limited

IEAT: Institutul e-Austria Timisoara
IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA
PMI: Politecnico di Milano
PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.
ZAR: Unversidad De Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

http://www.dice-h2020.eu/deliverables/

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 3

Executive summary
This deliverable documents the initial work on tools for iterative quality enhancement, developed as part
of task T4.3. This component feeds results back into the design models to provide guidance to the
developer on the quality offered by the application at runtime. In the initial version, the tool is able to
estimate and fit application parameter related to memory and execution times and annotate UML models.
Moreover, initial work has been carried out towards defining architecture and algorithms for anti-pattern
detection and architecture refactoring. Initial validation has been carried across a variety of technologies,
including Cassandra, Hadoop/MapReduce, and an in-memory DB.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 4

Glossary
ADL Architecture Description Language
ADT Anomaly Detection Tool
APR Anti-Patterns & Refactoring
PAML Performance Anti-pattern Modeling Language
CTMC Continuous-time Markov chain
DIAs Data-intensive applications
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DMon DICE Monitoring platform
FG Filling-the-Gap
MARTE Modeling and Analysis of Real-Time and Embedded Systems
MCR MATLAB Compiler Runtime
MODAClouds MOdel-Driven Approach for design and execution of applications on multiple Clouds
M2M Model-to-Model Transformation
QN Queueing Network
SLOs Service level objectives
TraCT Trace checking tool
UML Unified Modelling Language
VM Virtual Machine

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 5

Table of contents

Executive summary ... 3

Glossary .. 4

Table of contents ... 5

List of Figures ... 7

List of Tables .. 7

1. Introduction and Context ... 9

1.1. Objectives of T4.3 ... 9

1.2. Relation to other WP4 tasks .. 9

1.3. Objectives of the Document .. 9

1.4. Structure of the document ... 9

2. Requirements ... 11

2.1. Requirements .. 11

3. Architecture and Design of the Enhancement Tool .. 13

3.1. Core Components .. 13

3.1.1. Filling-the-Gap (DICE-FG) Module ... 13

3.1.2. Anti-Patterns and Refactoring (APR) Module .. 14

3.2. Components Interaction .. 16

4. DICE-FG tool .. 16

4.1. Goal ... 17

4.2. Updating UML parameters with DICE-FG .. 18

4.3. Running DICE-FG .. 18

4.3.1. Configuration Files ... 19

4.3.2. DICE-FG input data format .. 22

4.3.3. Specifying DICE-FG input data via JSON ... 25

4.3.4. Integration with DMon .. 26

5. DICE-FG Algorithms .. 27

5.1. Overview ... 27

5.2. Inference of Memory Patterns ... 27

5.2.1. Methodology ... 27

5.2.2. Obtaining memory weights from DICE-FG ... 29

5.3. Inference of Mean Execution Times ... 29

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 6

5.4. Confidence Intervals on Mean Execution Times .. 29

5.5. Estimation of Execution Time Distribution .. 30

5.5.1. Contribution and innovation ... 30

5.5.2. Fitting distributions using phase-type models ... 31

5.5.3. Fitting phase-type models using DICE-FG ... 31

6. Performance & Reliability Anti-Pattern Detection ... 32

6.1. Technique Review of Anti-Pattern Detection ... 32

6.2. Our Approach .. 33

6.3. Initial Work on Refactoring Methods ... 35

7. Conclusion and Future Plan .. 38

7.1. Achievements .. 38

2.2. Summary of progress at M18 .. 38

7.2. Future work for DICE-FG... 39

7.3. Future work for APR .. 40

References ... 41

APPENDIX A. DICE-FG Validation Experiments .. 43

A.1 Validating memory usage estimation.. 43

A.2 Validating applicability of mean execution time estimation in DIA .. 43

A.3 Validating distribution analysis of execution times .. 45

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 7

List of Figures

1 Figure 1. Workflow of Enhancement Tool .. 13

2 Figure 2. Interactions among the core components of DICE-FG Module. 15

3 Figure 3. Manual guess of parameters by the DICE designer at DPIM model level for
performance prediction .. 17

4 Figure 4. DICE-FG avoids at DTSM the parameter guessing through inference and fitting of
monitoring data ... 17

5 Figure 5. Example of query (JSON format) .. 26

6 Figure 6. Example of obtained runtime data (JSON format).. 26

7 Figure 7. Execution time distribution in MapReduce experiments .. 30

8 Figure 8. Specifying the matrix T of a PH distribution ... 31

9 Figure 9. An overview of Anti-Patterns detection process .. 33

10 Figure 10. State diagram of our iterative approach ... 36

11 Figure 11. Varying the design constraints in terms of component replicability (“Y” yes, “N” no).
Components are ordered in this way: Application Server, Database Server, Database I/O 36

12 Figure 12. Comparison of analytical and empirical memory models ... 43

13 Figure 13. Validation of analytical model using simulation .. 43

14 Figure 14. Analytical model of Apache Cassandra used to validate DICE-FG 44

15 Figure 15. DICE-FG Validation Results on Apache Cassandra ... 45

16 Figure 16. DICE-FG distribution fitting results on MapReduce execution time data 45

List of Tables

1 Table 1: Resource consumption breakdown Requirement ... 11

2 Table 2: Bottleneck Identification Requirement .. 11

3 Table 3: Semi-automated anti-pattern detection Requirement. ... 11

4 Table 4: Enhancement tools data acquisition. .. 11

5 Table 5: Enhancement tools model access Requirement. .. 11

6 Table 6: Parameterization of simulation and optimization models Requirement. 12

7 Table 7: Propagation of changes/automatic annotation of UML models Requirement. 12

8 Table 8: Requirements for Enhancement Tool ... 38

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 8

9 Table 9: Comparison of MODAClouds-FG and DICE-FG ... 14

10 Table 10: Output parameters of DICE-FG tool ... 18

11 Table 11: Input parameters of DICE-FG tool .. 21

12 Table 12: Information provided in each row .. 23

13 Table 13: Information provided in the first 11 rows .. 25

14 Table 14: Description of the factors ... 28

15 Table 15: Lower and upper bound of each factor .. 28

16 Table 16: Popular refactoring decisions .. 34

17 Table 17: Anti-pattern and refactoring processing .. 35

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 9

1. Introduction and Context
This deliverable presents the initial release of the DICE Enhancement tools
(ENHANCEMENT_TOOLS), which are being developed in task T4.3 within the WP4 work package.
The main goal of the DICE Enhancement tools is to provide feedback to DICE developers on the
application behaviour at runtime, leveraging the monitoring data from the DICE Monitoring Platform
(MONITORING_TOOLS), in order to help them iteratively enhance the application design.

Enhancement tools introduce a new methodology and a prototype to close the gap between measurements
and UML diagrams. According to our knowledge, no mature methodology appears available in the
research literature in the context of data-intensive applications (DIAs) to address the difficult problem of
going from measurements back to the software models, annotating UML to help reasoning about the
application design. ENHANCEMENT_TOOLS aims at filling this gap.

The rest of this section presents the objectives of task T4.3, and discusses the relation to other WP4 tasks
of DICE tool-chain. We also review objectives of this deliverable.

1.1. Objectives of T4.3
Task 4.3 in WP4 focuses on the development of ENHANCEMENT_TOOLS which aim at filling the gap
between the runtime (monitoring data) and design time (models and tools). The general working principle
of this toolset is as follows. Upon demand by the user, ENHANCEMENT_TOOLS queries the DICE
Monitoring Platform (MONITORING_TOOLS) to obtain runtime monitoring data, normally gathered
during application tests, but possibly also during production.

The tools then correlate this monitoring data to the DICE UML models developed within WP2, with the
aim of bridging the semantic gap between UML abstractions and concrete system implementation. For
example, ENHANCEMENT_TOOLS estimates parameters for the SIMULATION_TOOLS and
OPTIMIZATION_TOOLS, developed as part of WP3, by inferring the execution times of application
requests placed at the different resources of the DIA. Based on the acquired data,
ENHANCEMENT_TOOLS allows the developer to conduct within the DICE IDE more precise
simulations and optimizations, that can rely on experimental data, rather than guesses of unknown
parameters. ENHANCEMENT_TOOLS will also support the developer in carrying out refactoring
scenarios, with the aim of iteratively improving application quality in a DevOps fashion,

1.2. Relation to other WP4 tasks
The other main tools developed in WP4 are the MONITORING_TOOLS (DMon), the DICE Anomaly
Detection Tool (DICE ADT) and the DICE Trace Checking Tool (DICE TraCT). While the monitoring
platform is primarily concerned with acquiring monitoring data from the runtime environment, the other
tools are concerned with verifying the quality of the executions, in terms of characteristics such as
performance and correctness. These aims are clearly different from those of the
ENHANCEMENT_TOOLS, which is foremost focused on inferring the parameters of UML models from
monitoring data and guide the refactoring process.

1.3. Objectives of the Document
This document presents the initial release of ENHANCEMENT_TOOLS. The present report is the first of
two deliverables, the second being set for release at M30. The current deliverable focuses in particular on
parameter estimation and on setting the technical approach for the refactoring methodology. The next
deliverable (at M30) is scheduled to focus on the refactoring methods and on expanding the parameter
estimation capabilities of the tool, for example to capture technology-specific characteristics.

1.4. Structure of the document
The structure of this deliverable is as follows:

● Chapter 2 recaps on the requirements that T4.3 aims to cover.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 10

● Chapter 3 presents an updated architecture and design details of the Enhancement tool, which
extends the initial design provided in deliverable D1.3.

● Chapter 4 presents the design principle of DICE-FG which is the key part of this initial release
Enhancement tool.

● Chapter 5 discusses the new scientific algorithms we have developed specifically for the DICE-
FG module.

● Chapter 6 discusses the envisioned technical approach for application refactoring and anti-pattern
detection, reporting on initial results on a cloud-based software system, as part of the Anti-
Patterns & Refactoring (APR) submodule.

● Chapter 7 summarises achievements, overall progress, and outlines the future work.

Appendix A provides more detail on experimental validation of the tool against a number of cases studies.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 11

2. Requirements
This section reviews the requirements of the ENHANCEMENT_TOOLS. Then we explain how
requirements have been fulfilled in the current prototype.

2.1. Requirements
Deliverable D1.2 Requirements specifications [1] describes the requirements analysis for the DICE
project. This section summarizes these requirements. We here list the Must have requirement of the
ENHANCEMENT_TOOLS. Should have and could have requirements are available in [1] and in
successive versions of D1.2 released on the DICE website1.

Table 1: Resource consumption breakdown Requirement

ID R4.11
Title Resource consumption breakdown
Priority Must have
Description The DEVELOPER MUST be able to obtain via the ENHANCEMENT_TOOLS the

resource consumption breakdown into its atomic components.

Table 2: Bottleneck Identification Requirement

ID R4.12
Title Bottleneck Identification
Priority Must have
Description The ENHANCEMENT_TOOLS MUST indicate which classes of requests represent

bottlenecks for the application in a given deployment.

Table 3: Semi-automated anti-pattern detection Requirement.

ID R4.13
Title Semi-automated anti-pattern detection
Priority Must have
Description The ENHANCEMENT_TOOLS MUST feature a semi-automated analysis to detect

and notify the presence of anti-patterns in the application design.

Table 4: Enhancement tools data acquisition.

ID R4.17
Title Enhancement tools data acquisition
Priority Must have
Description The ENHANCEMENT_TOOLS must perform its operations by retrieving the

relevant monitoring data from the MONITORING_TOOLS.

Table 5: Enhancement tools model access Requirement.

ID R4.18
Title Enhancement tools model access
Priority Must have
Description The ENHANCEMENT_TOOLS MUST be able to access the DICE profile model

associated to the considered version of the APPLICATION.

1 www.dice-h2020.eu/deliverables/

http://www.dice-h2020.eu/deliverables/

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 12

Table 6: Parameterization of simulation and optimization models Requirement.

ID R4.19
Title Parameterization of simulation and optimization models.
Priority Must have
Description The ENHANCEMENT_TOOLS MUST extract or infer the input parameters needed

by the SIMULATION_TOOLS and OPTIMIZATION_TOOLS to perform the
quality analyses.

Table 7: Propagation of changes/automatic annotation of UML models Requirement.

ID R4.27
Title Propagation of changes/automatic annotation of UML models
Priority Must have
Description ENHANCEMENT_TOOLS MUST be capable of automatically updating UML

models with analysis results (new values)

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 13

3. Architecture and Design of the Enhancement Tool
The DICE Enhancement tool is designed for iteratively enhancing the DIA quality. Enhancement tool
aims at providing a performance and reliability analysis of big data applications, updating UML models
with analysis results, and proposing a refactoring of the design, if performance anti-patterns are detected.
Figure 1 shows the workflow we have defined in task T3.4 for the Enhancement tool, which covers all of
its intended functionalities, which are discussed in details below.

Figure 1. Workflow of Enhancement Tool

3.1. Core Components
The core components of the DICE Enhancement tools are two modules:

● DICE Filling-the-Gap (DICE-FG) module (see Figure 2), a tool focusing on statistical estimation
of UML parameters used in simulation and optimization tool. This tool has been initially
developed relying on a baseline, called FG, provided by the MODAClouds FP7 project as a way
to close the gap between Development and Operations. Within DICE, the tool has undergone a
major revision and is being integrated and adapted to operate on DIA datasets. Architectural
changes have been introduced in DICE-FG, compared to the original FG.

● APR (Anti-Patterns & Refactoring) module, a tool for anti-patterns detection and refactoring. The
tool aims at suggesting improvements to the designer of the DIAs, based on observed and
predicted performance and reliability metrics. The goal is to optimize a reference metric, such as
maximize latency or minimize mean time to failure (MTTF). Differently from DICE-FG, APR
has no baseline software to start from, since the only available tools in this space are not for
UML. Hence it will be an original contribution of DICE, to our knowledge novel in the UML
space.

Together, DICE-FG and APR cover the entire workflow of the Enhancement Tool. Since the output of
DICE-FG is required by APR, in the initial work carried out in WP4 up to M18, we have focused
primarily on DICE-FG, whereas APR has been designed and the technical methodology validated, with
the goal of delivering an implementation of a prototype at M24, in conjunction with the first release of the
DICE framework, and a final version at M30, with the second release of the DICE framework.

3.1.1. Filling-the-Gap (DICE-FG) Module
DICE-FG is designed to achieve the following objectives:

● Provide statistical estimation algorithms to infer resource consumption of an application.
● Provide fitting algorithms to match monitoring data to parametric statistics distributions.
● Use the above algorithms to parameterize UML models annotated with the DICE profile.
● Acquire data via JSON and the DICE Monitoring platform (DMon).

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 14

The main logical components of the DICE-FG tool are the Analyzer and the Actuator. Below we describe
each component:

● DICE-FG Analyzer: The DICE-FG Analyzer executes the statistical methods necessary to
obtain the estimates of the performance models parameters, relying on the monitoring
information available on the input files.

● DICE-FG Actuator: The DICE-FG Actuator updates the parameters in the UML models, e.g.,
resource demands, think times, which are obtained from the DICE-FG Analyzer.

DICE-FG relies on the MATLAB Compiler Runtime (MCR R2016a) for execution, this is a royalty-free
environment that does not require a MATLAB license. MATLAB source code is also provided in the
release. The proposed architecture is leaner than the original FG tool developed in MODAClouds,
henceforth denoted as MODAClouds-FG, a decision we have taken considering that DICE-FG may have
to cope with a much larger number of parameters and models than MODAClouds-FG, which was more
intended for use at run-time in applications such as load-balancing. Here is a detailed comparison of the
two tools, highlighting all the major differences.

Table 8: Comparison of MODAClouds-FG and DICE-FG

 MODAClouds-FG DICE-FG

Algorithms Estimation of execution times,
think times, number of jobs.

Estimation of execution times,
think times, number of jobs,
memory usage, for single
resources and collections of
resources.

Fitting of data to statistical
distributions.

Data input Fuseki local database based on
MODAClouds ontology

JSON-based input, compatible
with D-MON monitoring
platform.

An XML-based input
configuration language to
constraint, verify and optimize
the performance of the analysis
workflow.

Model output Annotated layered queueing
network model for use with
LINE queueing network solver.

Annotated UML model which
can be mapped to the DICE
simulation and optimization
tools.

Reporting A PDF report is generated to
summarize the outcomes.

Model annotations which can be
inspected via the DICE Eclipse
IDE GUI.

3.1.2. Anti-Patterns and Refactoring (APR) Module
An Anti-Pattern (AP) is identified as a bad design practice, e.g., Blob, Empty Semi Trucks, which might
cross several levels of an application development cycle, e.g., architecture definition, development. We

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 15

consider, for each AP, a problem statement, which identifies the AP but observable problems, and the
corresponding solution actions, which need to be applied to the software system in order to remove the
SP. In our case, the solutions should support the feedback generation which leads to architecture
refactoring (e.g., a set of modifications in the parameters of models).

The DICE Anti-Patterns and Refactoring (APR) module is designed to achieve the following objectives:

● Transforming UML diagrams annotated with DICE profiles to performance model (e.g., Petri
Nets and/or Queueing Networks) for performance analysis.

● Specifying the selected popular AP of DIAs in a formal way (e.g., a logic formula which is
suitable for model checking, executable codes).

● Detecting the potential AP from the performance model.
● Generating refactoring decisions to update the architecture model (manually or automatically) to

fix the design flaws according to the AP solution.

The components of the APR module are Model-to-Model (M2M) Transformation, Anti-patterns
Detection and Architecture Refactoring as detailed below.

● Model-to-Model (M2M) Transformation: The component is based on some of the
transformations developed in T3.1 and APR-specific transformations developed in T4.3. It
provides the transformation of annotated UML model with DICE Profile into quality analysis
model. The target performance models can be Petri Nets or Queueing Networks.

● Anti-patterns Detection: The Anti-patterns detection component relies on the analysis results of
the M2M Transformation component. The selected anti-patterns are formally specified for
identifying if there are any anti-patterns issues in the model.

● Architecture Refactoring: According to the solution of discovered anti-patterns, refactoring
decisions will be proposed, e.g., component replacement or component reassignment, to solve
them. The Architecture model will be shared back to the DICE IDE for presentation, to the user
in order to decide if the proposed modification should be applied or not.

Figure 2. Interactions among the core components of DICE-FG Module.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 16

3.2. Components Interaction
Based on the above description of the core component - DICE-FG tool, Figure 2 describes their
interactions within the DICE-FG tool. For readability, the DICE Monitoring Platform is also included to
show what data are collected. The dashed box highlights the sub-modules composing the DICE-FG tool,
which offer more functionalities compared to the MODAClouds-FG baseline, as will be further
elaborated in section 4.

However, differently from the baseline, data is now acquired into the DICE-FG through a JSON dump of
the DICE Monitoring Platform, which in turn is capable of obtaining metrics for the DIA and the Big data
platform running the DIA (e.g., log-files of Hadoop/MapReduce, Spark, etc), as well as from the
underpinning virtual machines (VMs). These provide a richer set of input metrics compared to the
MODAClouds baseline, which was concerned only with the VM metrics.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 17

4. DICE-FG tool
In this section, we present the design principle for DICE-FG – the key component of this first release of
the Enhancement tool.

4.1. Goal
As a core component of the Enhancement tool, the DICE-FG tool plays two roles:

● Updating parameters of design time model (UML models annotated with DICE Profile)
● Providing in the UML resource usage breakdown information for the data-intensive application.

Together these features provide to the DICE designer the possibility to:

● Benefit from a semi-automated parameterization of simulation and optimization models. This
supports the state goal of DICE of reducing the learning curve of the DICE platform for users
with limited skills in performance and reliability engineering.

● Inspect in Eclipse the automated annotations placed by DICE-FG to understand the resource
usage placed by a workload across software and infrastructure resources.

The above features are graphically illustrated in Figure 3, which illustrates the model parameterization
process undertaken without DICE-FG. Figure 4 instead shows the result with the DICE-FG automatic
parameterization, i.e., the determination of parameters such as resource processing rates that are
indispensable to predict performance and reliability through the cycle of iterative refinement.

Figure 3. Manual guess of parameters by the DICE designer at DPIM model level for performance prediction

Figure 4. DICE-FG avoids at DTSM the parameter guessing through inference and fitting of monitoring data

Note that Figure 4 effectively provides a resource usage breakdown. This is because the rate of
processing is easily related to the time a request spends at each resource as follows, i.e., let R be the rate
of processing of a request at a given resource, then the mean time spent in execution at the resource is
1/R, after discount of contention overheads. Such mean time parameter is explicitly captured by the

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 18

hostDemand parameter in the DICE UML model and one of the key parameters estimated by DICE-FG.
Other parameter of interests include the parallelism level at a resource, and the inter-arrival times of jobs,
among others.

4.2. Updating UML parameters with DICE-FG
The DICE-FG tool operation process involves three stages: configuration, analysis (either estimation or
distribution fitting), and model update. To be specific, firstly, the DICE-FG tool is interfaced to D-MON
and the model repository. Secondly, DICE-FG Analyzer performs inference analysis on the datasets
provided in input via D-MON. Then, DICE-FG updates the parameters of DICE UML models according
to the results of estimation and fitting. Integration activities planned at later stage of the project will
ensure that such annotated UML is returned to the IDE.

The following table describes the output parameters supported by DICE-FG with corresponding
examples. We point to deliverable D2.1 - Design and quality abstractions - Initial version for a technical
overview of DICE UML models and their parameters.

Table 9: Output parameters currently supported by DICE-FG tool

Output Parameter Name Description Example
UML Models –
MARTE Profile

hostDemand Execution time. This is the
real CPU demand, after
contention overheads are
discarded.

Mean time a mapper
takes to process a task
spawned by a
Hadoop/MR job.

extDelay Inter-issue times
of successive jobs

Average time between
submission of jobs to a
resource

population Average number of jobs
running in the system

 Number of jobs
observed at the
resource during testing

UML Models –
DICE Profile

hadoopExtDelay Inter-issue times
of successive Hadoop jobs

Average time between
submission of jobs to a
Hadoop/MR or Spark
cluster.

hadoopPopulation Average number of Hadoop
jobs running in the system

 Number of
Hadoop/MR or Spark
jobs observed in the
system during testing.

 respT Response time (elapsed time
since a user submits a job to
the cluster and return of the
result)

Execution time of the
map and reduce phases
plus the time spent in
the queues and
communication delays

We have also been working towards annotating average memory requirements of individual jobs. At the
moment this can be estimated by DICE-FG from the data, but there is a lack of a suitable annotation in
the DICE profile, since memory annotations are inherited from UML MARTE for a host, but not for
individual job. This limitation is now identified and will be addressed in the next released of the DICE
profile.

4.3. Running DICE-FG
In this section, we overview the input data format and the configuration file provided to the DICE-FG
tool. These are the only inputs required to run the tool, which may be invoked from the command line,
e.g., as follows

./bin/run_dicefg.sh MCR_FOLDER ./tests/test1/configuration_val.xml

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 19

where MCR_FOLDER needs to be replaced with the installation folder of the Matlab Compiler Runtime,
and configuration_val.xml is a test configuration file, similar to the one provided in the next section. After
the execution of DICE-FG terminates, normally within very few seconds, the UML model(s) specified
within the configuration file will be annotated with concrete value of the unknown parameters.

Detailed installation and running instructions for DICE-FG are available on the DICE-FG wiki at
https://github.com/dice-project/DICE-Enhancement-FG/wiki/.

4.3.1. Configuration Files
We here focus on the specification of the input data that is requested to the user in order to use DICE-FG.
The input parameters for DICE-FG tool are specified in a dedicated XML file. Examples are included
within the DICE-FG distribution, including the one below:

The above configuration file specifies a complete DICE-FG analysis, consisting of a statistical
distribution fitting step and an estimation analysis step. At the end of this execution, the parameters
$redT, $RT, and $mapT in the UML model ./tests/test2/model.uml will be replaced by concrete numbers.

The configuration file relies on several XML element tree:

● The <configuration> tree specifies general configuration parameters of DICE-FG, such as the
amount of data shown on the standard output.

● The <dataset> tree specifies the dataset to be loaded in memory at the beginning of the DICE-FG
execution. Each execution of DICE-FG can rely only on a single dataset. The dataset will be
loaded from MAT (Matlab native) or JSON files, transformed into an internal data structure,
validated and in some case sanitized for erroneous or missing entries. A dataset is defined by a
collection of files:

○ ResourceDataFile contains the measurements that are used for estimation or fitting,
collected at the level of the individual resources that compose the system.

https://github.com/dice-project/DICE-Enhancement-FG/wiki/

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 20

○ ResourceClassList is a list of text labels that assign names to different classes of jobs that
arrive at the resources. It is assumed that properties of different job classes have been
measured separately (e.g., for a NoSQL DB response times one may collect in
ResourceDataFile separate measurements for read operations and write operations).

○ ResourceList lists the resources at which the measurements have been collected.
○ SystemDataFile contains the measurements which are used for estimation or fitting,

collected across a collection of resources that compose the system. For example, the end-
to-end response time is a property that typically depends on the traversal of multiple
resources.

○ SystemClassList provides a list of system-wide classes. These can either be in 1-to-1
mapping with the ResourceClassList ones, or a combination therefore.

● The <fitting> tree defines a fitting analysis to be carried out with a specified algorithm (here fit-
norm) on the given metric (here qlen) at the specified resource, which is specified using the
<resource> tree.

● The <output> defines the handler in charge of writing the parameters to the UML models, in this
example the UML MARTE handler.

● The <estimation> tree requires to estimate a missing parameter using statistical inference, for the
given resource and metrics.

● The <resource> tree can be replaced by a <system> tree, which defines an estimation problem
over a collection of resources, as opposed to a single resource. This requires the SystemDataFile
and SystemClassList information.

More examples are provided within the DICE-FG release. We limit here to provide more details on the
above notions of System, Resource, SystemClass and ResourceClass using the diagram below. The figure
depicts and application composed of 3 resources:

• All resources process resource class 1 jobs.
• Resource 1 and Resource 2 both process jobs of resource class 2.
• A system class exists, composed of the dashed path.
• Four systems may be considered: (Resource 1, Resource 2), (Resource 1, Resource 3), (Resource

2, Resource 3), or (Resource 1, Resource 2, Resource 3, Resource 4).

The above definitions allow to specify in DICE-FG a variety of analyses, from estimating the
requirements of individual resource classes at a specific resource, to fitting the response time distribution
of a system class over the system resources. Such flexibility is useful to describe complex topology
featured by DIAs, such as those based on stream processing systems like Storm.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 21

We now discuss more in the details the parameters presented in the above configuration XML file and
their allowed values.

Table 10: Input parameters of DICE-FG tool

Element
tree/Element

Element/Attribute Description

Configuration Verbose Controls the verbose level of the tool, allowed values:
● 0: silent
● 1: normal
● 2: debug

Dataset period Timestamps defining the time window for the data. The times
can be logical (e.g., for simulation data) or physical (e.g.,
UNIX timestamp).

File ResourceDataFile Path to resource data provided in .mat or .json format.

File SystemDataFile Path to system data provided in .mat or .json format.

File ResourceClassList Path to input class file in .mat or .json format. The list includes
only classes in the ResourceDataFile.

File SystemClassList Path to input class file in .mat or .json format. The list includes
only classes in the SystemDataFile.

File ResourceList Path to input resource file in .mat or .json format.

Estimation type Algorithm to be used for estimation or fitting.
Supported estimation algorithms are as follows:

● est--ci: inference of average execution times from
response time data. The method requires the logging
for all jobs, as opposed to periodic sampling.

● est--ubr: inference of average execution times from
samples of average throughputs and average utilization
in each sampling window.

● est--qmle: inference of average execution times from
queue-length data.

● est--qbmr: inference of average memory usage from
queue-length and aggregate memory data.

● est--maxpopulation: obtains the maximum population
of jobs observed at the resource.

● est--maxavgpopulation: obtains the maximum of the
samples of the average population of jobs observed at
the resource.

● est--extdelay: inference of the mean external delay
between submission of successive jobs to the resource.

Most of the above algorithms are based on DICE-sponsored
papers or state-of-the-art algorithms. We point to the DICE-FG
wiki for references and a description of individual methods.

Estimation flags A string of text with custom options, see wiki for extended
documentation.

Fitting type Supported fitting algorithms are:

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 22

● fit-norm: fit data to a normal distribution.
● fit-gamma: fit data to a gamma distribution.
● fit-exp: fit data to an exponential distribution.
● fit-erl: fit data to an Erlang distribution.
● fit-ph2: fit data to a 2-state PH distribution
● fit-map2: fit time series to a 2-state Markov modulated

Poisson process

fitting flags A string of text with custom options, see wiki for extended
documentation.

resource name Indicates the resource label, chosen within ResourceList,
associated to the parameter of interest.

resource flags A string of text with custom options, see wiki for extended
documentation.

Metric confidence Supported values:
● none: the returned value does not make use of

confidence intervals.
● upper: the returned value of the parameters is taken at

the upper end of the confidence interval (95%
significance).

● lower: the returned value of the parameters is taken at
the lower end of the confidence interval (95%
significance).

metric class Class label, from those read in ClassList, associated to the
parameter of interest.

metric name Metric label, used to indicate to DICE-FG which metric should
be fitted. The parameter is not required by estimation
algorithms. See Section 4.3.2.1 for supported values (e.g., arvT
for arrival times).

metric type Parameter type from Table 10, e.g., hostDemand, extDelay,
etc.

metric param Name of context parameter to be annotated in the UML model.

output handler • uml-marte: annotate UML MARTE parameters
• uml-dice: annotate UML DICE parameters

output path Path to UML file. The file will be overwritten.

More details about required parametrization for each DICE-FG option is available at the DICE-FG
repository: https://github.com/dice-project/DICE-Enhancement-FG/wiki/ .

4.3.2. DICE-FG input data format
To standardize the use of the estimation algorithms, we have adopted a common data format, from which
each algorithm can select the data it requires to perform the estimation. We assume the data has been or is
being collected for an application that provides a number of different services, grouped in service classes.

There are a total of K different service classes and M different resources. Data is collected either by
averaging in time windows, or for individual requests, or both, and can be specific to a class or aggregate.

https://github.com/dice-project/DICE-Enhancement-FG/wiki/

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 23

Data is associated to a subsystem of E<=M resources. If E=1, the data is stored in ResourceDataFile,
conversely if it is associated to a subsystem of multiple resources (E>1) the data is stored in
SystemDataFile. We discuss the two cases separately.

4.3.2.1. Resource data
The data format is a data structure (MATLAB cell array) with 11 rows and M(K+1) columns,
representing M groups of (K + 1) columns. The i-th group of (K+1) columns represents the
measurements for the i-th resource and uses the first K columns to describe data for each service class,
while the last column is reserved for aggregate data. The column index of class r at resource i is therefore
idx=(i-1)*(K+1)+r, while for the aggregate data at resource i it is idx=i(K+1) .

For each column, the information provided in each row is the following:

Table 11: Information provided in each row

Row ID Metric type Unit of
measure

AnalyzeMetric Description

1 Sampling
timestamp

sec ts Holds the timestamps corresponding to
the end of each sampling interval

2 Utilization n/a, in [0,1] util Holds the average CPU utilization for
each sampling window. Typically, only
overall CPU utilization is collected, thus
only the column K +1 will hold an array,
while the other columns will be empty.

3 Arrival
timestamps

sec arvT Holds the timestamps of the arrival of
each request to the resource.

4 Response
time

sec respT Holds the observed response time
(departure time minus arrival time) of
each request

5 Average
response time

sec respTAvg Holds the mean response time of the
requests processed in each sampling
window. If no requests of a given class
are processed in a sampling interval, the
corresponding entry in the array is set to
zero.

6 Average
throughput

jobs/sec tputAvg Holds the throughput observed for each
service class in each sampling window.
The throughput is computed as the total
number of requests processed in the
sampling interval, divided by the length
of the interval (in seconds).

7 Departure sec depT Holds the timestamps of the departure of
each request from the resource.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 24

times

8 Queue-length jobs Qlen Holds the actual queue-length (number of
jobs in the system) seen at sampling
instants.

9 Average
queue length

jobs qlenAvg Holds the average queue-length (number
of jobs in the system) for each service
class in each sampling period.

10 JobId n/a, integer jobId Holds the id of the job that generated the
sample (e.g., id of arriving job)

11 Memory
usage

kB mem Holds the memory usage in each sampling
window. More accurate results can be
obtained if the memory is computed as
the total memory usage minus the
memory allocation due to operating
system or other services running in the
background.

12 Average
memory
usage

kB memAvg Holds the average memory usage in each
sampling window. More accurate results
can be obtained if the memory is
computed as the total average memory
usage minus the memory allocation due to
operating system or other services
running in the background.

4.3.2.2. System data
At the moment, DICE-FG supports only system-wise estimation for metrics recorded on the entire set of
resources, i.e., E=M. For example, the end-to-end response time, the system throughput, and the total
number of jobs in the system. The specification of data is again based on columnar data, with the first 11
rows as for the resource data. However, the following rows are also included:

12. System matrix: a binary matrix with M rows (resources) and K columns (classes). If element (m,k) is
set to 1, then it is assumed that the measure includes the resource consumption of class-k jobs at resource
m. It is possible to set to 1 several classes k1, k2,..,kr on the same resource m, in this case all the class data
of these classes will be summed to determine the resource consumption at resource m. The outside world
(in open systems) and the delay node representing the external delay (extDelay/think time) of the users (in
closed systems) are not included in the M resource rows.

13. System routing matrix (optional): a probability matrix of order K(M+1) specifying the route of
requests across the system of resources. The upper-left submatrix of order KM represent the routing
probabilities of the K classes across the M resources. For example, the first K rows represent the routing
probabilities out of resource 1, with the k-th row representing class-k jobs. Note that this format allows
one to specify class-switching, i.e., that a class leaving a resource can enter a resource into another class.
The remaining entries represent probabilities of flows from/to the outside world (open topology) or to the
delay node representing the external delay (extDelay/think time) of the users (closed topology).

Given the above routing matrix, the information provided in the first 11 rows is interpreted as follows:

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 25

Table 12: Information provided in the first 11 rows

AnalyzeMetric Interpretation in SystemData

ts Timestamps at the end of the sampling periods. For aggregate measurements, the
sampling period ends when all the required metrics have been collected.

util Percentage of admitted jobs in the sampling period, assuming a limited number of
jobs can be admitted in the subsystem.

arvT Timestamps of arrivals from node M+1 into any of the M resources.

respT Response time between arrival from node M+1 to return to node M+1, for each
request visiting the M resources (or a subset thereof).

respTAvg Average value of response times seen during each sampling period.

tputAvg Mean departure rate from any of the M resources to node M+1 seen during each
sampling period.

depT Timestamps of arrivals from any of the M resources to node M+1.

qlen Number of jobs observed in the system at the end of each sampling period.

qlenAvg Average number of jobs observed in the system at the end of each sampling period.

mem Memory usage summed across the M resources as seen at arrival instants of jobs
from node M+1.

memAvg Cumulative average memory usage summed across the M resources as seen at the
end of each sampling period.

4.3.3. Specifying DICE-FG input data via JSON
Two functions are provided with DICE-FG to convert the common data format to/from JSON. The
common data format is composed by the data, resources and classes cell arrays. These can be converted
to JSON from MATLAB using the command:

fg2json('hmr', resdata, sysdata, resources, resclasses, sysclasses)

Where ‘hmr’ is a use specified text prefixed. This will create five JSON files: hmr-resdata.json, hmr-
sysdata.json, hmr-resources.json, hmr-sysclasses.json and hmr-reclasses.json. To reload these files into
the MATLAB environment, DICE-FG uses the command:

[resdata, sysdata, resources, resclasses, sysclasses] = json2fg(folder, 'hmr')

Where folder is the path to the folder containing both JSON files, e.g., the output of MATLAB pwd
command for the current directory. JSON files can also be specified directly, without use of MATLAB.
Examples are provided with this tool release.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 26

4.3.4. Integration with DMon
To perform the analysis, the DICE-FG tool first needs to obtain runtime data on the DIA from the DICE
Monitoring Platform (DMon). Within DICE we have extended DICE-FG to operate with DMon and we
report in this section the integration approach. The DICE-FG tool sends the following JSON query string
to DMon to collect the runtime information (See the Figure 5).

Figure 5. Example of query (JSON format)

DICE Monitoring Platform will return a JSON string which includes CPU utilization, job information, etc.
Figure 6 shows the example of obtained JSON results.

Figure 6. Example of obtained runtime data (JSON format)

This data is then used to automatically generate a valid set of input files for DICE-FG. This is done by
loading in memory the JSON file and operating a basic parsing of individual metrics until recovering the
required information by DICE-FG shown in Table 13.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 27

5. DICE-FG Algorithms
In this chapter we define the technical advances to the DICE-FG tool developed as part of DICE. We first
provide an overview and then summarize the algorithms part of DICE-FG.

5.1. Overview
The work done as part of DICE to extend the FG tool baseline to the specific needs of DIA development
has focused on these following:

● Memory usage patterns. These are critical to understand the performance of in-memory
operations. For such operations, the DIA designer wishes to avoid memory swapping, which can
compromise performance and reliability, as it can render the application so slow to be unavailable.
Therefore, the DICE-FG methods in DICE consider this metric. We describe the support of
DICE-FG for this feature in Section 5.2.

● Confidence intervals on estimates. One of the requirements of the Enhancement tools involves
providing information about the uncertainty on estimated requirements. This information can
provide a measure of confidence on the quality of the inference and, for example, suggest to the
developer and QA engineer that more test experiments are needed to gain confidence about the
parameters of the simulation and optimization models. We have investigated this problem
systematically, and we report results in Section 5.3.

● Applicability to DIA of baseline algorithms for mean execution times. DIAs are also ordinary
Java-based software systems, hence several methods that apply to resource consumption
estimation in ordinary applications can also be applied as-is to DIAs. However, we are not aware
of systematic studies in the literature about this. During the second year we have investigated this
research direction by applying DICE-FG to a case study being developed jointly with the
MIKELANGELO H2020 project in the context of Cassandra performance engineering. We report
in Section 5.3 and the appendix initial results for this line of work.

● Distribution of execution times. Compared to a canonical three-tier application, a DIA typically
features smaller concurrency levels, since each operation is more intensive in terms of volumes of
data processed or memory usage. Therefore, it is often the case that one has at disposal precise
measurements about the running times of an application, which are not inflated by contention
overheads. In this setting, it is possible to provide a distributional characterization of execution
times, which increases the accuracy of simulation and optimization. In Section 5.4 we describe
the extension of DICE-FG developed in DICE to fit execution time data into phase-type
distributions.

5.2. Inference of Memory Patterns

5.2.1. Methodology
The main question we wanted to answer in our study on estimating memory consumption patterns is as
follows: Do we need to develop a full-fledged memory consumption model for the DIA or can we devise
the same information by knowing the average behavior of each single activity from test runs?

The answer we have found is that characterizing the behavior of individual activities and considering the
effect of the superposition of multiple activities appears sufficient to capture memory behavior as a whole.
This means that simple tests in isolation for each application activity can provide to DICE-FG the
necessary data to annotate the UML diagrams with memory consumption parameters. This conclusion has
been validated on a case study involving in-memory processing, in collaboration with an external
stakeholder interested in the DICE results: SAP, which now runs a core business in Big data analytics
through their HANA solution. The results of this work are described in [27] and are here summarized.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 28

In this study we have run test experiments on a HANA testbed using an analytic workload (TPC-H)
representative of business analytics applications. The experiments have been carried out an IBM x3950
X6 server running SLES 11 SP3. This test server features 8 processor sockets with a total of 120 physical
cores and provides a total of 6 TB RAM corresponding to 750GB per socket. 64 experiments have been
carried out, varying the factors shown in Table 14.

Table 13: Description of the factors

Each factor is assigned one of two possible levels, as shown in Table 15, which considers scenarios of
varying complexity, involving multiple tenant databases.

Table 14: Lower and upper bound of each factor

Throughout each experiment, we have recorded total memory consumption of the analytic workload.
Moreover, we have carried out isolation experiments, in which the memory consumed by each individual
request was monitored, without memory interference from the other requests. Our analysis considered
two aspects:

Memory inference via stochastic models. Whether the analytic models used in DICE, in particular those
based on queueing network models and JMT, could correctly predict the total memory consumption using
only the memory consumption information of individual requests. This is done using the formula:

𝑀𝑀𝑖𝑖 = �
𝑄𝑄𝑐𝑐,𝑖𝑖

𝑙𝑙𝑐𝑐

𝐶𝐶

𝑐𝑐=1

𝑚𝑚𝑐𝑐

in which Mi represents the memory consumed at the i-th time interval, Qc,i is the mean number of jobs of
class c in execution in the system during interval i, mc is the memory consumption of jobs of class c
obtained by isolation tests, and lc is the parallelism level of a class c job. This memory model depends on
the mean number of jobs in execution, Qc,i, which can either be obtained by direct measurement or via
simulation, in case of predictive studies. In this study, we use Qc,i computed by simulation and try to
match with the above formula the memory consumption observed in the real system. We point to [27] for
a description of the JMT queueing network model used to describe this application and report here the
qualitative conclusions of our study.

Memory inference via regression. DICE-FG obtains from the above expressions the memory
consumptions mc. We studied how these can be used for model-based prediction compared to developing
a memory consumption model based on response surfaces, which interpolate the experimental results
through nonlinear regression methods. Clearly, such surfaces do not require the development of a
stochastic model, hence they are simpler to fit to observations. DICE integrates the fitting of regression
surfaces as part of the Anomaly Detection tool, developed in WP4, and we have used this feature to
model memory consumption on this application, without knowledge of the memory behavior of

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 29

individual requests. We consider in particular response surfaces that encompass the six configuration
parameters varied in the experiments, trained on a fraction of the data available (8, 16 or 32 experiments).

5.2.2. Obtaining memory weights from DICE-FG
The main takeaway is however that simulation is surprisingly accurate, in spite of the fact that there is an
indirect estimation as we are relying just on data obtained during isolated runs. This implies a simple
methodology for estimation of memory via DICE-FG:

● The user runs a set of isolation experiments for each job type, in which memory usage is obtained
by DMon.

● DICE-FG retries this data and annotates the UML model with average memory consumption
levels observed for each request in isolation.

The inference step is delegated to the computation of memory consumption using inference formulas such
as the one provided above for Mi. If the performance and reliability analysis is carried out with JMT, it is
however possible for the user to obtain a direct estimate of Mi by using a metric called FCR - Mean
Memory Consumption that has been contributed by the DICE team to JMT.

An experimental validation of the predicting capabilities of the memory estimation features integrated in
DICE-FG is given in Appendix A.1 of the present document.

5.3. Inference of Mean Execution Times
During M1-18 the DICE-FG tool has been part of a formal collaboration between the MODAClouds and
DICE projects. The problem of inferring mean execution times has been systematically investigated in
MODAClouds and a set of algorithms have been developed to obtain inference of mean execution times
from utilization data, response time data, and queue-length occupancy data. A paper, sponsored by both
projects, has been written with the aim of comparing the accuracy and execution times of the integrated
methods [25] and a tutorial presented at ACM/SPEC ICPE 2016 to train the user community [26]. We
point the DICE users to these material for an overview of the inference methods of mean execution times.

After the conclusion of MODAClouds, we have developed validation of applicability of the methods to
DIA, as part of a case study on Apache Cassandra, currently being carried out as part of a collaboration
between DICE and the MIKELANGELO H2020 project.

We report this case study in Appendix A.2, where we show the accurate prediction results obtained on
Apache Cassandra thanks for the parameterization generated by DICE-FG.

5.4. Confidence Intervals on Mean Execution Times
A limitation of the MODAClouds-FG baseline tool is the fact that its estimation algorithms are designed
to return confidence intervals on the produced estimates. This is undesirable, since QA engineers need to
get an understanding of the quality of execution time estimates. We have addressed this limitation in
DICE-FG by developing a new estimator of mean execution times, called QMLE, which has been
integrated in DICE-FG and can return rigorous confidence intervals on the estimated mean execution
times. We here briefly overview the QMLE method and its confidence interval generation feature.

The QMLE method, specified in DICE-FG via the est-qmle option, provides an approximate closed-form
estimator for mean execution times in software systems. Assume that a dataset D has been collected,
containing measurements of the number of jobs in execution, for each type and at each node of the DIA.

We denote by the mean number of requests of type j running at node i obtained via the monitoring

tool, by the total number of jobs running in the system, and by the mean think time between
submission of successive jobs of type j by a user. The QMLE computes the mean execution times of type

j at node i, denoted by , as [24]

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 30

Here the bs superscript indicates that the formula of the estimator is obtained by relying on a theoretical
approximation known as Bard-Schweitzer algorithm, we point the interested reader to [24] for details.

The above formula allows to compute the 95% confidence interval of the mean execution times using

the expression where c=1.96 and the term under square root is the element in inverse of

the Fisher information matrix associated to the maximum-likelihood estimator of .

We provide explicit formulas for the Fisher information matrix in [24] and these have been integrated in
DICE-FG tool as part of the DICE activities. A validation of the correctness of the expressions has been
given in [24], we point the interested reader to the paper. In the paper we show that the results of the
above confidence interval expression are exact.

In order to apply the above results to DICE-FG estimation results, the user simply needs to specify the
Confidence parameter in the input XML, as discussed in Table 11. For example, if Confidence is set to
upper then the confidence interval half-width at 95% significance level is automatically added to the
mean execution time. The same principle is also applied to fitting of statistical distributions, for example
with the fit-normal option confidence intervals are generated for both the estimators of the mean and
standard deviation for the normal and used to correct the estimate of these parameters according to the
setting of the Confidence parameter.

5.5. Estimation of Execution Time Distribution

5.5.1. Contribution and innovation
The synchronization intrinsic in the operation of DIAs is generally sensitive to the execution times of the
activities to be synchronized. Consider for example the Map phase of Hadoop/MapReduce involving the
processing of two tasks in parallel: after the first mapper completes its task, the platform awaits for the
second mapper to also complete it task before moving to the Reduce phase. Clearly, if the second job
incurs a long execution time - in statistical terms, it has execution times featuring a long tail - the system
will be blocked for a longer period of time than a system with a light tail in the execution times.

The dataset has been collected by PMI using the Cineca infrastructure, a description of this dataset is
provided in deliverable D3.8 - DICE Optimization Tools in Section 6.1. The cumulative distribution
function of the execution times of the Map and Reduce phases is shown in the Figure 7.

Figure 7. Execution time distribution in MapReduce experiments

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 31

It is interesting to note that in both cases the execution times of the phases is quite long tailed, with the
cumulative distribution function extending over a wide range of values before converging to 100%. This
essentially means that large samples are observed in the execution time of the application, which albeit
rare can induce significant deviations from the expected execution times. As noted above, this can have a
large impact in the modelling of synchronizations in DIAs.

As shown in Table 11, DICE-FG accepts several algorithms for fitting input data to parametric
distributions, including Normal, Gamma, Exponential, and Erlang. We also added support for Markov-
chain based distribution modelling, via the fit-ph2 and fit-map2 options. We here review just the former
fitting option and point the interested reader to the DICE tutorial at ICPE 2016 for an introduction to the
Markovian arrival process fitted with the fit-map2 option [26].

5.5.2. Fitting distributions using phase-type models
To address the problem, we have added to DICE-FG the possibility of fitting execution time distributions.
Our solution relies on phase-type distributions, which are a class of Markov models compatible for use
with Stochastic Petri nets and Queueing networks, which are the two classes of stochastic models used in
DICE.

A phase-type distribution (PH) is a model of a statistical distribution specified in terms of a continuous-
time Markov chain (CTMC). A CTMC is a classic dynamical model, where one specifies the transitions
rates between a set of m states in a matrix called infinitesimal generator Q, in which the element in
position (i,j) represent the instantaneous rate of change from state i to state j and the diagonal elements are
set so that each row sum is zero. A PH extends this notion by treating the m-th state as the absorbing
state, i.e. a state where the execution of the dynamical model terminates, and by using the distribution of
the time to enter this absorbing state as a tool to model arbitrary distributions. One specific advantage of
this class of models is that it is easy to couple with stochastic Petri nets and queueing network models. An
illustration of this notion is given below, where the T submatrix represent the transition rates between
ordinary states, whereas the t subvector represents the rate of jump to the absorbing state.

Figure 8. Specifying the matrix T of a PH distribution

In PH, an arbitrary statistical distribution is modelled by the fitting the function where is
an arbitrary probability vector to be fitted to the data, is the matrix exponential of T evaluated at point

t, and is a column vector of ones. Based on the above definitions, it is easy to see that in order to fit a

PH distribution one needs to assign the rates in the matrix T and vector automatically, up to matching
the desired cumulative distribution function.

5.5.3. Fitting phase-type models using DICE-FG
We have added to DICE phase-type moment-matching methods by adapting and integrating in DICE-FG
the algorithms available in the KPC-Toolbox2, an open source fitting toolbox maintained by the IMP
team. The KPC-Toolbox is able to automatically fit a PH distribution based on the empirical moments of
the input trace. This is well-suited to fit long-tailed data, since moment-based matching is known to have
a high-quality fit of the tail, due to the sensitivity of means to outliers, whereas it is generally less
accurate on the distribution body. We point to Appendix A.3 for the experimental validation of this
feature on a data-intensive application based on Hadoop/MapReduce.

2 https://github.com/kpctoolboxteam/kpc-toolbox

https://github.com/kpctoolboxteam/kpc-toolbox

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 32

6. Performance & Reliability Anti-Pattern Detection
Task T4.3 in DICE aims also at exploring the possibility of defining an APR methodology for DICE
models. It has been recognized since proposal stage that this feature is treated as an experimental one,
given a shortage of results in this space in the research literature on this topic. Therefore, we have focused
the initial work on the APR tool on outlining the methodology to follow. In this section, we review the
result of this initial investigation on techniques for detection of performance anti-patterns. Then we report
on initial experiments we have conducted that suggest viability of the approach. Finally, we discuss the
approach that we will follow in the next period in order to concretely develop the APR tool.

6.1. Technique Review of Anti-Pattern Detection
In software engineering, anti-patterns are recurrent problems identified by incorrect software decisions at
different hierarchical levels (architecture, development, or project management). Software AP are largely
studied in the industry. They are catalogued according to the source problem and a generic solution is
suggested [2], [3], [4]. The increasing size and complexity of the software projects involves the rising of
new obstacles more frequently. For that reason, the identification of AP at the early steps of the project
life cycle saves money, time and effort.

In the context of big data technologies, which often executes thousands of tasks with gigabytes of data,
the impact of AP in performance is even more evident. It becomes crucial to detect and solve the software
pitfalls and bottlenecks that hamper the performance and scalability of the system. The benefits of
introducing performance AP in Cloud environments are discussed in [5].

Most of the performance AP in DIAs are related to the partition and distribution of the data and the
computations. The definition of execution pipelines and the selection of the degree of parallelism is
usually carried out at the architecture or design level. However, the discovery of potential dangers when
conceptualizing and designing a new system requires additional information (i.e., expected execution time
of the code or the number of resources or components) for calculating the performance metrics that will
warn the appearance of performance AP.

Recent works follow the same schema presented in [6] for automating the detection and solution of
performance AP (see Figure 9). The approach consists of 1) modeling the system with a high-level
description language, 2) transform it to a performance model through a Model-to-Model (M2M)
transformation guided by performance annotations, 3) the simulation of the performance model for
getting performance metrics, 4) the interpretation of the results for finding performance AP with respect
to the structure of the system, and finally 5) feedback the original model for solving the problems. A
software refactoring will usually improve the software structure and potentially solve the flaws.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 33

Figure 9. An overview of Anti-Patterns detection process

For instance, the authors in [7] have applied a M2M transformation from UML diagrams annotated with
MARTE profiles into queuing networks. They define the AP in terms of OCL rules that are evaluated at
the UML level. Next, the paper [8], [8] use the Palladio Component Model (PCM) [10] for describing
component-based software architectures, extended queuing networks as performance models, and
performance AP defined by a set of rules and actions. Finally, the work in [11] presents a Performance
Anti-Pattern Modeling Language (PAML) for models described in the Architecture Description Language
(ADL). These papers differ on the modeling language, the performance model, the language that they use
for expressing AP, and the AP that they can detect and solve.

6.2. Our Approach
Based on the above technique review of anti-patterns detection, we propose to follow a similar
methodology for automatically detecting and solving performance problems.

The first option is using UML diagrams annotated with DICE profiles as modeling language and Petri
nets as performance models. Our goal is the integration of this approach inside the DICE framework in
order to take advantage of all the research and tools developed in the project. We suggest the introduction
of model checking technologies for the automatic detection of performance AP over Petri nets. The
detection of performance AP using model checking is a novelty with respect to previous works.

Model checking is a paradigm stemming from computer science based on temporal logics which has been
successfully applied in industry for system modeling and verification [12]. The model checking process
consists of three phases: modeling both the system and properties with appropriate description languages,
running the verification (checking the property validity with a model checking software) and analyzing
the results (returning counterexamples if the property fails). Given a model and a set of properties, the
verification process is completely automatized by a generic model checking tool. In our context, the
models are the Petri nets obtained from UML diagrams; and a performance AP is a property that we
desire to investigate if it is present in the model or not.

Thus, the next step consists of obtaining a formal representation for both the model and the performance
AP. On the one hand, the DICE transformation tool-chain allows obtaining performance models (e.g.,
Petri net) from UML models stereotyped with the DICE profile for different big data technologies (see
the DICE Deliverable 3.1-Transformations to Analysis models [13]). The Petri nets that result of the
transformation are annotated with performance information (i.e., estimated execution time, number of
resources or cores, etc.); and allow the computation of performance metrics (e.g., response time of a

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 34

server). These models are more suitable than UML diagrams for executing a model checking analysis.
Tools such as GreatSPN [14] allow the verification of properties expressed in terms of temporal logic
(e.g., CTL [15] or CSLta [16]) over Petri nets.

On the other hand, current efforts try to formulate the performance AP in terms of a first-order logic [17].
The temporal logics used by the verification tools are propositional formulas qualified in terms of time. In
this kind of logics, the time is used for imposing a causal relationship between two set of states of the
model determined by a propositional equation. Therefore, all properties expressible in first-order logic
can also be expressed in temporal logic.

We are also considering another option which is similar to some methodologies [7,17,18]. The idea is
translating the high level specification - UML models which annotated with DICE profiles into
quantitatively analysis performance models – Queueing Network models (QN) [19]. Currently, we are
investigating PUMA [20] which might help to translate the UML models to QN. After the QN model is
generated, we can easily obtain the performance indices of interest (i.e., response time, throughput, etc.).
Since performance anti-patterns problem and solution are usually described in natural language, we need
to use a formal definition for the performance anti-patterns for anti-pattern detection. Like we mentioned
before, there are several ways to define the performance anti-patterns, for example, OCL rules, first-order
logic. We are currently doing the research on these areas to see if AP rules can be implement into our
model. Once the anti-patterns are detected, we need to provide quick and efficient feedbacks to refactor
our models. In our previous work [21,22,23], we developed an approach to refactoring cloud-based
applications for reducing the total costs while optimizing the allocation of software components. Though
DICE project focused on the Big-data application which is not the same as cloud application (e.g., the
runtime information of infrastructure, platform, and application are different), the proposed approach also
considers both the hardware and software knowledge to minimize the costs of cloud resources and it will
be a valuable reference to the Big-data application.

Once the anti-patterns are detected, the Enhancement tool will generate the feedback and refactoring
(manually or automatically) the architecture model. The refactoring decisions will help to modify the
application. Table 16 shows some popular refactoring decisions we are considering to use.

Table 15: Popular refactoring decisions

Refactoring Decisions Description

Replacement A software component (e.g., an Application Server) is replaced with a
different software component that provides the functionalities of the
replaced component (e.g., another Application Server from a different
vendor).

Merge Two distinct software components (e.g., a Web Server and an
Application Server) are replaced with a software component that
provides the functionalities of the two replaced components.

Reassignment It is the functional separation of a software component instance into
two ones responsible for different classes of requests (e.g., an instance
of Application Server is divided into two instances: one to register new
users and one to authenticate new users).

Furthermore, deployment decisions (i.e., allocation decisions for each software component to a set of
resources.) and design constraints (i.e., limiting the application of refactoring and deployment decisions
when a software component cannot be replaced or replicated) are also considered for supporting
architecture refactoring.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 35

In order to synthetically describe the above approaches, Table 17 gives a conceptual idea of core
processing of how we might implement the performance analysis, anti-patterns detection and refactoring.

Table 16: Anti-pattern and refactoring processing

General process Approach

Annotated Model UML diagrams annotated with DICE Profile

Performance Model Investigating current performance model, e.g., Petri nets,
Queueing networks

Performance Indices E.g. Response Time, Throughput, Resource Demand

Performance Anti-patterns Investigating current anti-patterns formal definition, e.g.,
OCL rules, first-order logic, code level

Results Interpretation & Feedback
Generation

Refactoring architecture models according to detection and
solution of Anti-patterns

In summary, the methodologies that we will follow for the detection and fixing AP issues in a big data
context consist of:

● The description of the system using UML diagrams annotated with the DICE profile.
● The identification and selection of the more important AP for the analysis in big data systems.
● The transformation of UML diagrams into performance models expressed as Petri nets or

queueing networks, relying on transformations developed in task T3.1 and ad-hoc transformations
for APR.

● The formalization of performance AP in code level or with a logic suitable for model checking.
● The evaluation of the performance AP in the model.
● If the verification tool discovers that the performance AP is present in the system, we execute a

refactorization of the software that mitigates the flaw.

6.3. Initial Work on Refactoring Methods
In order to reduce the total costs for running cloud-based applications while fulfilling service level
objectives (SLOs), we investigated a model-based approach for optimizing the costs of running cloud-
based applications. We used model-driven application refactorings, i.e., experimenting software
alternatives that optimize the application model, to minimize the cost of deploying them in the cloud [28].

This approach focuses on the decision-making steps of the iterative process illustrated in Figure 10. The
starting point is constituted by the system model, which depends on the application and the environment
(e.g., expected number of users, expected price fluctuations, etc.), while the output is the information on
how to deploy the application.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 36

Figure 10. State diagram of our iterative approach

We identified three main steps of our decision-making process: (i) apply to the initial model the merge
and replace refactorings to reduce the overall computational needs of the system; (ii) reassign requests
and create component replicas to reduce the complexity of the models; (iii) calculate an optimal
deployment by deciding which resources to rent and how to map components to them. After the third step,
we obtain a decision on the desirable configuration of the system that minimizes the overall costs, which
may be used to perform a reconfiguration of the deployed system. Since the application requirements and
the environment may change overtime, we expect our approach to be implemented as the decision-
making part of a loop in which the optimization and adaptation processes are repeated when there are
significant changes in the system model.

We evaluated our approach on a cloud-based distributed application [29], which represents an enterprise-
level business to business e-commerce workload of a realistic complexity. This represents an initial step
to deliver a proof-of-concept on a class of applications that are well understood, the next step will be to
focus on a specific data-intensive application and general the approach. The system is composed of an
Application Server, and a Database subsystem. Figure 11 reports the results we obtained by modifying the
design constraints on component replicability. Additional refactoring analyses are presented in [20].

Figure 11. Varying the design constraints in terms of component replicability (“Y” yes, “N” no). Components
are ordered in this way: Application Server, Database Server, Database I/O

The experiments results show that our approach is able to reduce the costs in all scenarios up to 60%
when compared to an approach that does not use model-driven application refactoring. In most of our

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 37

experiments the reassignment refactoring is typically responsible for 50% of such improvement, while the
replacement refactoring (which depends on the alternative components provided as input) is responsible
for the remaining 10%. The cost for this improvement is paid in terms of additional QN evaluations,
which has shown an increase of up to 4 times. However, since our QNs are evaluated in a matter of
seconds in our system, and the increment in convergence speed is constant, we expect our approach to be
fast enough to be used to drive periodical reconfigurations of the system. The MATLAB source code and
the Amazon EC2 price traces we used to perform these experiments are available on Zenodo (cf., [20]),
these provide a baseline for the implementation of the APR module.

The above work is an “exploratory” investigation which is based on our chosen cloud applications, we are
currently thinking to borrow some above ideas to help us to perform the architecture refactoring for Big-
data applications of DICE project.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 38

7. Conclusion and Future Plan

7.1. Achievements
In conclusion of this deliverable we summarize the key achievements of this first release of the
ENHANCEMENT_TOOLS:

● A module developed in the MODAClouds EU project, named MODAClouds-FG, has been
adopted as a baseline for the estimation of mean execution times of jobs in DIAs.

● We have demonstrated the applicability of existing methods present in DICE-FG to DIAs on
three case studies involving:

○ Apache Cassandra
○ Apache Hadoop/MapReduce (see also deliverable D3.8, Section 6).
○ An in-memory database system (SAP HANA).

● DICE-FG has been extended along several dimensions that are important to model DIAs:

○ Estimation of memory consumption.
○ Estimation of execution time distributions.
○ Computation of confidence intervals for mean execution times.

● We have investigated the technical approach for the future Anti-Patterns Detection and
Refactoring (APR) tool, and demonstrated the promise of the methodology on a case study
involving an enterprise cloud application.

The DICE FG tool is available online on DICE’s Github repository. The following are the main links:

● DICE-FG Source Code: https://github.com/dice-project/DICE-Enhancement-FG
● DICE-FG Documentation: https://github.com/dice-project/DICE-Enhancement-FG/wiki

The APR module capabilities are planned for official release by M30, with the final version of this report.

2.2. Summary of progress at M18
The following table summarize the status of requirements implementation at the end of reporting period
(M18).

Table 17: Requirements for Enhancement Tool

Requirement Status at M18
R4.11: Resource consumption breakdown ✔: the DICE-FG module is capable of

extracting resource consumption data (memory,
CPU time) for individual tasks at arbitrary
nodes. The estimated data breaks down the
usage of individual resources through job types
that visit the resource.

R4.12: Bottleneck identification ✔: by estimating the true execution times of
requests, sanitized from contention overheads,
the DICE-FG makes it trivial to identify
bottlenecks. That is, the node with the largest
mean execution time will be the bottleneck
resource for a job type. Such feature is going to
be completed by adding bottleneck identification
capabilities in the APR module.

https://github.com/dice-project/DICE-Enhancement-FG
https://github.com/dice-project/DICE-Enhancement-FG/wiki

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 39

R4.13: Semi-automated anti-pattern detection ✔: an initial architecture and high-level
approach defined, and initial proof-of-concept
defined. The APR tool is set for initial prototype
release at M24, and finalization with the next
version of this deliverable at M30 (deliverable
D4.6).

R4.17: Enhancement tools data acquisition ✔: We have interfaced DICE-FG module with
the DMon platform. APR module will not need
direct access to the DMon. More metrics will be
accessed in the feature to extend the breadth of
the automatic UML parameterization.

R4.18: Enhancement tools model access ✗: this feature is an integration feature to be
developed in the next period. Currently
integration is operated manually, in the future it
will be automated.

R4.19: Parameterization of simulation and
optimization models

✔: we have conducted validation studies on
Hadoop/MapReduce (c.f. D3.8, Section 6),
Cassandra, and SAP HANA that illustrate the
ability of the DICE-FG module to provide good
estimates of parameters.

R4.27: Propagation of changes/automatic annotation
of UML models

✔: DICE-FG can successfully modify UML
models by annotating parameters. The APR
module is planned to introduce changes in the
UML models, but this feature is not available yet
as the tool is due for release later.

✔- implemented at M18
✗- not implemented yet, due at M24/M30
✔ - partial accomplishment at M18

7.2. Future work for DICE-FG
● By M24 we plan to finalize the integration of DICE-FG with the DICE toolchain in terms of

DICE profile model acquisition and automated annotation.
● By M30 we plan to extend the features of DICE-FG towards supporting the modelling of

technologies supported by DICE but that have been investigated to a limited extent in DICE-FG
tool. In particular, technologies such as Spark and Storm where the computation proceeds
according to a direct-acyclic graph (DAG), in which processing activities are forked and joined
(i.e., synchronized) in predefined ways (as in the Map and Reduce phase sequence in Hadoop/MR)
or according to user-specified patterns (as in Storm, Spark, and Apache Tez). Estimation of
resource consumption that ignores DAG topologies can neglect the influence of blocking in the
estimation of execution times.

The current implementation of DICE-FG will be included in the first release of the DICE framework at
M24.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 40

7.3. Future work for APR
● By M24 we plan to 1) implement the model transformation between the UML models with DICE

Profiles annotation and performance model, and 2) formally specify the AP problem and solution
for the selected AP.

● By M30 we plan to 1) implement performance AP verification of the model, and 2) provide
reasonable refactoring decisions (e.g. replacement, reassignment) to achieve the architecture
refactoring manually or automatically.

The M30 implementation of APR will be included in the second release of the DICE framework at M30.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 41

References
[1] DICE Consortium, Requirement Specification M16 update (Deliverable 1.2 companion

document), 2016, M16 updated version. http://wp.doc.ic.ac.uk/dice-h2020/wp-
content/uploads/sites/75/2016/05/Requirement-Specification-M16.pdf

[2] Smith, C. U. and Williams, L. G. (2000). Software performance antipatterns. In Workshop on
Software and Performance, volume 17, pages 127-136.

[3] Smith, C. U. and Williams, L. G. (2002). New software performance antipatterns: More ways to
shoot yourself in the foot. In Int. CMG Conference, pages 667-674.

[4] Smith, C. U. and Williams, L. G. (2003). More new software performance antipatterns: Even
more ways to shoot yourself in the foot. In Computer Measurement Group Conference, pages
717-725.

[5] Trubiani, C. (2015). Introducing software performance antipatterns in cloud computing
environments: Does it help or hurt? In Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering, pages 207-210. ACM.

[6] Cortellessa, V. (2013). Performance antipatterns: State-of-art and future perspectives. In
European Workshop on Performance Engineering, pages 1-6. Springer.

[7] Cortellessa, V., Di Marco, A., Eramo, R., Pierantonio, A., and Trubiani, C. (2010). Digging into
uml models to remove performance antipatterns. In Proceedings of the 2010 ICSE Workshop on
Quantitative Stochastic Models in the Verification and Design of Software Systems, pages 9-16.
ACM.

[8] Trubiani, C. and Koziolek, A. (2011). Detection and solution of software performance
antipatterns in palladio architectural models. In ACM SIGSOFT Software Engineering Notes,
volume 36, pages 19-30. ACM.

[9] Trubiani, C., Koziolek, A., Cortellessa, V., and Reussner, R. (2014). Guilt-based handling of
software performance antipatterns in palladio architectural models. Journal of Systems and
Software, 95:141-165.

[10] Becker, S., Koziolek, H., and Reussner, R. (2009). The palladio component model for model-
driven performance prediction. Journal of Systems and Software, 82(1):3-22.

[11] Cortellessa, V., De Sanctis, M., Di Marco, A., and Trubiani, C. (2012). Enabling performance
antipatterns to arise from an adl-based software architecture. In Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP
Conference on, pages 310-314. IEEE.

[12] Grumberg, O. and Veith, H. (2008). 25 years of model checking: History, achievements,
perspectives. Springer, Berlin.

[13] Consortium, T. D. (2016). Transformations to Analysis models. Technical report, European
Union's Horizon 2020 research and innovation programme.

[14] Dipartimento di informatica, Università di Torino (Dec., 2015). GRaphical Editor and Analyzer
for Timed and Stochastic Petri Nets. url: www.di.unito.it/~greatspn/index.html

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/05/Requirement-Specification-M16.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/05/Requirement-Specification-M16.pdf
http://www.di.unito.it/%7Egreatspn/index.html

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 42

[15] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(2):244-263.

[16] Donatelli, S., Haddad, S., and Sproston, J. (2009). Model checking timed and stochastic
properties with CSLTA. IEEE Transactions on Software Engineering, 35(2):224-240.

[17] Cortellessa, V., Di Marco, A., and Trubiani, C. (2014). An approach for modeling and detecting
software performance antipatterns based on first-order logics. Software & Systems Modeling,
13(1):391-432.

[18] Xu, J. (2010). Rule-based automatic software performance diagnosis and improvement.Perform.
67: 585–611.

[19] Baskett, F., Chandy, K. M., Muntz, R. R., and Palacios, F. G.(1975). Open,Closed, and Mixed
Networks of Queues with Different Classes of Customers. J. ACM, 22(2):248–260.

[20] Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T. and Merseguer, J. (2005).
Performance by Unified Model Analysis (PUMA), Proc. WOSP '2005, Mallorca, 1-12.

[21] Dubois, D. J. and Casale, G. (2015). Autonomic Provisioning and Application Mapping on Spot
Cloud Resources. In ICCAC ’15, 57–68.

[22] Dubois, D. J. and Casale, G. (2016). OptiSpot: minimizing application deployment cost using
spot cloud resources. Cluster Comp., 2016.

[23] Dubois, D. J, Trubiani, C., Casale, G. (2016). Model-driven Application Refactoring to Minimize
Deployment Costs in Preemptible Cloud Resources. IEEE CLOUD 2016, San Francisco, CA,
USA.

[24] W. Wang, G. Casale, A. Kattepur, M. Nambiar. Maximum Likelihood Estimation of Closed
Queueing Network Demands from Queue Length Data, in Proc. of ACM/SPEC ICPE 2016.

[25] Weikun Wang, Juan F. Pérez, Giuliano Casale. Filling the gap: a tool to automate parameter
estimation for software performance models. In Proc. of QUDOS@SIGSOFT FSE 2015, pages
31-32.

[26] Giuliano Casale, Simon Spinner, Weikun Wang. Automated Parameterization of Performance
Models from Measurements. In Proc. of ICPE 2016, pages 325-326.

[27] Karsten Molka, Giuliano Casale. Experiments or simulation? A characterization of evaluation
methods for in-memory databases. In Proc. of CNSM 2015, 201-209.

[28] Trubiani, C., Marco, A. D., Cortellessa, V., Mani, N., and Petriu, D. C. (2014). Exploring
synergies between bottleneck analysis and performance antipatterns. In ICPE ’14, 75–86.

[29] SPEC. SPECjAppServer2002 Design Document
https://www.spec.org/jAppServer2002/docs/DesignDocument.html

https://www.spec.org/jAppServer2002/docs/DesignDocument.html

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 43

APPENDIX A. DICE-FG Validation Experiments

A.1 Validating memory usage estimation
The experimental results of the study are shown in Figure 12. Here Sim represents the memory
consumption inference via stochastic models, where is simulated via JMT, and we denote the response
surface models by RS-8, RS-16, RS-32, where the number nn in RS-nn indicates the experiments used
for training. The analysis considers both mean memory consumption and peak memory consumption.

Figure 12. Comparison of analytical and empirical memory models

The results indicate that all the approach can produce good results, with the accuracy of simulation being
between 20% and 30%, and the accuracy of the response surface methods increasing as more data is fed
into the estimation procedure. This suggests that both methods are viable in DICE.

To further verify the applicability of this memory inference approach, we have compared the distribution
of memory usage in the real system compared to the one observed during the simulation experiments with
JMT. The results are shown below in Figure 13, showing good agreement.

Figure 13. Validation of analytical model using simulation

Summarizing, our validation has revealed that memory consumption in DIA neither necessarily require
advanced inference techniques to decouple the memory contribution of an individual request from the one
of the others requests, nor the development of empirical response surfaces, which require extensive
experimentation. Conversely, using simple tests in isolation from each individual requests we were able
to obtain good predictive accuracy. As a result, the estimation of this parameter in UML models can
proceed directly using the averaged memory consumption collected by DMon.

A.2 Validating applicability of mean execution time estimation in DIA
We have investigated the applicability of DICE-FG to the estimation of demands in an Apache Cassandra
case study. In this case study, we have developed a simulation model for Apache Cassandra based on
JMT. The model, shown in Figure 14, abstracts the behaviour of a Cassandra node part of a private cloud
deployment.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 44

Figure 14. Analytical model of Apache Cassandra used to validate DICE-FG

The simulation considers aspects such as the CPU demand (c1_cpu), the disk demand (c1_disk), the
network demand (c*_net), and the forking (c1_fork) and joining (c1_join) of jobs into tasks that are
served either locally or by other nodes of the clusters, until conclusion (exit). The “A->B” elements
denote a change of request type throughout its lifetime, an abstract needed for example to distinguish
requests that are received and executed locally to a Cassandra node, from those that are received from
remote Cassandra nodes.

One of the goals of this case studies was to apply DICE-FG to the estimation of demands in DIA of this
kind, and confirm the quality of the estimated demands by mean of simulation-based prediction. Since the
NETF case study relies on Cassandra, this work also goes in the direction of validating the DICE
simulation models developed in WP3. To this end, we conducted experiments on a 4-node cluster. Each
data item was replicated 3 times across random nodes, and we considered different consistency levels for
the requests: ALL (all 3 nodes that hold the data need to retrieve the data), QUORUM (2 out of 3 need to
reply), and ONE (a single node needs to reply). In each of these experiments, we varied the number of
jobs that act as a client to the DIA, increasing their number up to reaching saturation (about 95%
utilization).

DICE-FG has been applied on each node using the utilization-based regression (UBR) algorithms in order
to obtain all required mean execution times needed to specify the model. Based on these estimated values,
we have parameterized the simulation and estimated the performance trends as the number of jobs is
increased.

The results, shown in Figure 15 below suggest that DICE-FG provides good input parameters to the
simulation model, which result in fairly accurate estimates of mean execution times. Some deviations are
seen above 30 jobs, but our investigation reveals that these are due to memory trashing effects that are not
modelled and that normally do not arise in production systems, where the application is generally tuned to
run at lighter loads than 90%.

It is quite interesting to note, in particular, that the parameterization is obtained on an experiment with 1
job and these values are then applied to the prediction of the system with more jobs. Therefore, similarly
to what observed in the case of memory consumption estimation, running experiments at low concurrency
levels and that stress features one-at-a-time appears to be sufficient to parameterize simulation models of
DIA.

Deliverable 4.5. Iterative quality enhancement tools - Initial version

Copyright © 2016, DICE consortium – All rights reserved 45

Figure 15. DICE-FG Validation Results on Apache Cassandra

A.3 Validating distribution analysis of execution times
In order to validate our implementation, we have attempted to generate PH distributions fitting the
MapReduce data shown at the beginning of this section and subsequently we have used the resulting
distributions in a simulation model of Hadoop/MapReduce to validate accuracy. The results of the fitting
are illustrated below for the reducer execution times.

Figure 16. DICE-FG distribution fitting results on MapReduce execution time data

The diagrams indicate that the PH model delivers an accurate fitting of the empirical distribution. We also
show the complementary c.d.f, which is here the probability that a reducer execution time exceeds the
value shown in the x-axis. The fitting is very accurate, illustrating the capability of the algorithms
integrated in DICE-FG to model long-tailed execution time distributions.

The above distributions have been used in the Hadoop/MapReduce case study reported in D3.8 - DICE
Optimization Tools in Chapter 6. Earlier attempts based on exponential distribution fitting produced
incorrect predictions, with large inaccuracies exceeding 60% error on response time. The introduction of
phase-type distribution resulting in much more accurate predictions of the order of 15-30% accuracy
errors.

	Executive summary
	Glossary
	Table of contents
	List of Figures
	List of Tables
	1. Introduction and Context
	1.1. Objectives of T4.3
	1.2. Relation to other WP4 tasks
	1.3. Objectives of the Document
	1.4. Structure of the document

	2. Requirements
	2.1. Requirements

	3. Architecture and Design of the Enhancement Tool
	3.1. Core Components
	3.1.1. Filling-the-Gap (DICE-FG) Module
	3.1.2. Anti-Patterns and Refactoring (APR) Module

	3.2. Components Interaction

	4. DICE-FG tool
	4.1. Goal
	4.2. Updating UML parameters with DICE-FG
	4.3. Running DICE-FG
	4.3.1. Configuration Files
	4.3.2. DICE-FG input data format
	4.3.2.1. Resource data
	4.3.2.2. System data

	4.3.3. Specifying DICE-FG input data via JSON
	4.3.4. Integration with DMon

	5. DICE-FG Algorithms
	5.1. Overview
	5.2. Inference of Memory Patterns
	5.2.1. Methodology
	5.2.2. Obtaining memory weights from DICE-FG

	5.3. Inference of Mean Execution Times
	5.4. Confidence Intervals on Mean Execution Times
	5.5. Estimation of Execution Time Distribution
	5.5.1. Contribution and innovation
	5.5.2. Fitting distributions using phase-type models
	5.5.3. Fitting phase-type models using DICE-FG

	6. Performance & Reliability Anti-Pattern Detection
	6.1. Technique Review of Anti-Pattern Detection
	6.2. Our Approach
	6.3. Initial Work on Refactoring Methods

	7. Conclusion and Future Plan
	7.1. Achievements
	2.2. Summary of progress at M18
	7.2. Future work for DICE-FG
	7.3. Future work for APR

	References
	APPENDIX A. DICE-FG Validation Experiments
	A.1 Validating memory usage estimation
	A.2 Validating applicability of mean execution time estimation in DIA
	A.3 Validating distribution analysis of execution times

