
Developing Data-Intensive Cloud
Applications with Iterative Quality

Enhancements

Quality anomaly detection and trace
checking tools - Initial Version

Deliverable 4.3

Ref. Ares(2016)4011355 - 29/07/2016

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Deliverable: D4.3
Title: Quality anomaly detection and trace checking tools

Editor(s): Gabriel Iuhasz (IEAT)

Contributor(s): Gabriel Iuhasz (IEAT), Ioan Dragan (IEAT), Tatiana Ustinova
(IMP), Marcello Bersani (PMI)

Reviewers: Efstratios Tzoannos (ATC), Simona Bernardi (ZAR)
Type (R/P/DEC): DEM

Version: 1.0
Date: 29-July-2016

Status: Final version.
Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/
Copyright: Copyright c© 2016, DICE consortium – All rights reserved

The DICE project (February 2015-January 2018) has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

Copyright c© 2016, DICE consortium – All rights reserved 2

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Executive summary

This deliverable documents the anomaly and trace checking tools from the DICE solution. It details the
development and architecture of the Anomaly Detection Tool (ADT) from Task 4.2 and that of the Trace
Checking (TraCT) from T4.3. The initial versions of the Regression based Anomaly Detection method
is also detailed in this deliverable. In the initial versions of these tools the main goal was to create a
comprehensive and extensible yet lightweight base on which further advancements related to anomaly
detection can be built. We have done this by defining the overall architecture and workflow for ADT as
well as TraCT. Furthermore, we also detail a Regression based AD solution that is able to compare and
highlight anomalies in different versions of the same application.

The document is structured as follows: the Introduction section highlights the objectives and features
of the anomaly detection, trace checking tools as well as that of the Regression based AD method. It
also describes the contributions of these tools to DICE objectives and DICE innovation objectives. This
is followed by the presentation of the position of the tools inside overall architecture and its interfaces
to other DICE tools. The first section also highlights the achievements of the period under report. The
second section, Architecture and design of the tool, details the constituent components of each of the
tools. The third section connects the DICE Monitoring platform to DICE use cases and requirements
identified and presented in deliverable D1.2. Deployment and validation of the tools is tackled in section
4. The last section draws final conclusions and sets the future development plans for DICE ADT and
Trace Checking.

Copyright c© 2016, DICE consortium – All rights reserved 3

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Glossary

AD Anomaly Detection
ADT Anomaly Detection Tool
DIA Data Intensive Applications
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DMon DICE Monitoring
ELK Elasticsearch, Logstash and Kibana
IDE Integrated Development Environment
LM Log Merger
PMML Predictive Model Markup Language
TCE Trace Checking Engine
TraCT Trace checking
UML Unified Modelling Language

Copyright c© 2016, DICE consortium – All rights reserved 4

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Contents

Executive summary . 3

Glossary . 4

Table of Contents . 5

List of Figures . 6

List of Tables . 6

List of Listings . 6

1 Introduction . 7
1.1 Objectives . 8
1.2 Relation to DICE objectives . 8
1.3 Relation to DICE Tools . 8
1.4 Achievements of the period under report . 10
1.5 Structure of the document . 10

2 Architecture and Implementation . 11
2.1 Anomaly detection tool . 11

2.1.1 Big Data framework metrics data . 11
2.1.2 Types of anomalies . 11
2.1.3 Anomaly detection methods . 12
2.1.4 Anomaly detection Implementation . 13

2.2 Trace checking tool . 14
2.2.1 Storm logging . 16
2.2.2 DICE-TraCT architecture . 18
2.2.3 Trace Checking Engine . 18
2.2.4 Log Merger . 19
2.2.5 DICE-TraCTor . 19

2.3 Regression based Anomaly Detection . 22
2.3.1 Model Training module . 23
2.3.2 Model Analysis module . 28
2.3.3 Report generation . 31
2.3.4 Discussion . 31

3 Use cases . 33
3.1 Anomaly Detection . 33
3.2 Trace Checking tool . 33
3.3 Regression based Anomaly Detection . 34

4 Integration and Validation . 36
4.1 Anomaly Detection . 36
4.2 Trace Checking tool . 37

5 Conclusions . 44
5.1 Summary . 44
5.2 Further work . 44

References . 45

Copyright c© 2016, DICE consortium – All rights reserved 5

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

List of Figures

1 Summary view of the project methodology. 7
2 DICE Overall architecture. 10
3 General overview of Anomaly Detection Stack. 14
4 ADT Sequence diagram. 15
5 Deployment in (a) for a Storm topology (b) . 17
6 Partion of the ExclamationTopology log. 17
7 Architectural overview shows DICE-TraCT component within the Anomaly Detection

tool. 18
8 DICE-TraCT architecure. 18
9 Merging logs w1.log and w2.log into three new log files for each topology node. 19
10 DICE-TraCT sequence diagram highlighting the intraction of all components. 20
11 Regression based Anomaly Detection. Architecture, inputs and interaction with other DICE tools. 25
12 Model training module: architecture and process flow.. 26
13 A figure with Architecture and Flow Diagram . 28
14 Visualization of the term by term comparison of model coefficients 30
15 Anomaly Detection flow. 33
16 Examples of configuration files . 34
17 Anomaly detection integration with DMON. 36
18 Snapshot of the execution of spark-submit for node spoutA. 43

List of Tables

1 Relation to DICE objectives . 9
2 Anomaly Detection Tool requirements . 15
3 Trace Checking tool requirements . 22
4 List of inputs to the model training module. 24
5 Two-level full factorial design for two factors. 26
6 Outcomes and interpretation of the two application models’ term-by-term comparison. . 29
7 Requirements for Regression based AD . 32
8 Input parameters for the packaged tool . 35

Listings

1 Example of JSON script requesting trace checking analysis for spoutA and boltA 21
2 JSON job descriptor . 37
3 Field ”node” of the JSON script used for validation experiment. 38
4 Json script sent by D-Mon to DICE-TraCT. Each node name is endow with the list of

logs where it appears. 39
5 JSON script sent by D-Mon to DICE-TraCT. Each node name is endow with the list of

logs where it is appears. 40
6 Event log ready for trace checking built by LM for node boltA. 41
7 Descriptor of regular expression used to parse the files. 41
8 Template of the temporal logic formula used in the validation example. 41
9 Temporal logic formula used in the validation example built from the template for node

spoutA. 42
10 Temporal logic formula used in the validation example built from the template for node

spoutB. 42
11 Command line to submit a spark job and execute trace checking. 42

Copyright c© 2016, DICE consortium – All rights reserved 6

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

1 Introduction

This section will describe the motivation and context for this deliverable. A summary view of the project
methodology is shown in the Figure 1:

Figure 1: Summary view of the project methodology.

This deliverable presents the initial release of the DICE Anomaly Detection Tool (ADT) and Trace
checking tool (DICE-TraCT) whose main goals are to enable the definition and detection of anomalous
measurements from Big Data frameworks such as Apache Hadoop, Spark or Storm. Both tools are
developed in WP4, more specifically the ADT is developed in T4.2 ”Quality incident detection and
analysis” while the DICE-TraCT tool in T4.3 ”Feedbacks for iterative quality enhancement”. We can see
that these tools are represented in Figure 1 and are responsible for signalling anomalous behaviour based
on measured metrics (ADT and Regression based AD) and on framework logs (DICE-TraCT).

The main objectives of these tools are to detect anomalies, in particular contextual anomalies. DICE-
TraCT on the other hand will be used for detecting sequential anomalies. Also, the creation of a lambda
architecture when combining ADT with DMon. Lastly, the definition of a new Regression based anomaly
detection method.

Main features of the anomaly detection are:

• Integration with several open source machine learning frameworks

• Trace checking capabilities for Apache Storm

• Regression based anomaly detection

• Integration with DMon [13]

• Ability to train and validate supervised predictive models

The remaining of this section presents the positioning of ADT and Trace checking tool relative to
DICE innovation objectives, DICE objectives and relation to other tools from DICE tool-chain.

Copyright c© 2016, DICE consortium – All rights reserved 7

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

1.1 Objectives

The focus of the DICE project is to define a quality-driven framework for developing data-intensive
applications that leverage Big Data technologies hosted in private or public clouds. DICE will offer a
novel profile and tools for data-aware quality-driven development. The methodology will excel for its
quality assessment, architecture enhancement, agile delivery and continuous testing and deployment,
relying on principles from the emerging DevOps paradigm. The DICE anomaly detection and trace
checking tools contribute to all core innovations of DICE, as follows:

I1: Tackling skill shortage and steep learning curves in quality-driven development of data- intensive
software through open source tools, models, methods and methodologies.

ADT and Regression based AD will enable the detection and alerting of anomalous behaviour
during data intensive application development. DICE-TraCT on the other hand will deal with
sequential anomalies identified from log data. This will help identify quality related anomalies
and signal these, in essence making the debugging and identification of performance bottlenecks
much easier.

I2: Shortening the time to market for data-intensive applications that meet quality requirements, thus
reducing costs for ISVs while at the same time increasing value for end-users.

Several tools and actors profit from the information (anomalies) signalled by ADT and DICE-
TraCT, thus using the detected anomalies in their initial setup.

I3: Decreasing costs to develop and operate data-intensive cloud applications, by defining algorithms
and quality reasoning techniques to select optimal architectures, especially in the early develop-
ment stages, and taking into account SLAs.

By detecting quality and performance related anomalies operational costs can be reduced by the
optimized version of the application. At the same time other tools may use the detected anoma-
lies to provide feedback to the end user/developer and the output of these optimization tools can
provide significant financial and performance advantages.

I4: Reducing the number and severity of quality-related incidents and failures by leveraging DevOps-
inspired methods and traditional reliability and safety assessment to iteratively learn application
runtime behaviour.

Runtime application behaviour is collected by DMon which is then used as a data source for ADT
permitting the timely detection of quality-related incidents.

1.2 Relation to DICE objectives

The following table 1 highlights the contributions of ADT and Trace checking tool to DICE objec-
tives.

1.3 Relation to DICE Tools

Figure 2 illustrates the interfaces between the ADT (marked with red) and the rest of the DICE
solution. The main goal of ADT is to detect inconsistencies at runtime and on historical data for jobs and
services in data intensive applications. It is meant to provide a powerful but still light weight solution for
both developers, architects and software engineers.

As mentioned in the deliverable D4.1 [13], there exists a tight integration between DMon and ADT
as these two tools will for the basis of a lambda type architecture. DMon is the serving layer while
instances of ADT can take the role of both speed and batch layers.

Other tools that make us of ADT are: Fault Injection, Quality Testing and IDE. The fault injection
tool is able to produce system level anomalies which can be used by ADT for the creation of training/-
validation datasets. Quality testing tool will use the detected anomalies while the IDE will permit the

Copyright c© 2016, DICE consortium – All rights reserved 8

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Table 1: Relation to DICE objectives

DICE Objective Description Relation to Anomaly Detection tools
DICE profile and methodology,
Define a data-aware profile and a data-aware
methodology for model-driven development
of data-intensive cloud applications.
The profile will include data abstractions
(e.g., data flow path synchronization),
quality annotations (e.g., data flow rates)
to express requirements on reliability,
efficiency and safety
(e.g., execution time or availability constraints).

None

Future versions may be used to enable
the ad-hoc creation of feature vectors from
the DICE Profile

Quality analysis tools,
Define a quality analysis tool-chain
to support quality related decision-making
through simulation and formal verification.

The quality testing and Delivery tool [6] will
be able to use detected anomalies.

Quality enhancement tools,
An approach leveraging on DevOps tools to
iteratively refine architecture design and
deployment by assimilating novel data
from the runtime, feed this information to
the design time and continuously redeploy
an updated application configuration to
the target environment.

Enhancement tools may use the detected
anomalies to further streamline it’s
input data.

Deployment and testing tools,
Define a deployment and testing
toolset to accelerate delivery of the application.

The initial versions of the tools described in this
deliverable use simple bash scripts for installation. Future
versions will most likely be deployed using the WP5
Deployment Service

IDE, Release an Integrated Development
Environment (IDE) to simplify adoption
of the DICE methodology.

ADT will be controllable from the IDE,
meaning that query definition.

Open-source software,
Release the DICE tool-chain
as open source software.

ADT as well as Regression based AD and TraCT
rely heavily on open source technologies.

Demonstrators, Validate DICE productivity
gains across industrial domains through 3 use
cases on data-intensive applications for media,
e-government, and maritime operations.

All demonstrators will use the ADT, in particular the ATC
usecase will use the TraCT tool for their Storm
based application

Dissemination, communication,
collaboration and standardisation, Promote
visibility and adoption of project results
through dissemination, communication,
collaboration with
other EU projects and standardisation activities.

All tools have been or will be presented in both scientific
publications as well as Big Data innovation events.

Long-term tool maintenance beyond
life of project.,The project coordinator
(IMP) will lead maintenance of tools,
project website and user community
beyond DICE project lifespan.

Monitoring platform source code and homepage are
stored using, Github as a public open-source software.
Community is welcome to contribute,to the platform,
during and after DICE end.

Copyright c© 2016, DICE consortium – All rights reserved 9

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Figure 2: DICE Overall architecture.

interaction of actors with ADT, creating custom feature vectors, defining roles etc.

1.4 Achievements of the period under report

Overview of the main achievements in the reported period:
• Definition of ADT, Trace Checking and Regression based AD architectures

• Initial validation of the Trace Checking and Regression based AD

• Definition of the dmon-gen tool for the semi-automated creation of labelled data for anomaly
detection

• Outline of future work and integration

1.5 Structure of the document

The structure of this deliverable is as follows:
• Section 2 the architecture and implementation details of the anomaly detection, Trace Checking

and Regression based Anomaly Detection tools and methods

• Section 3 gives some details related to the use cases for the tools

• Section 4 presents details on initial integration and validation of these tools

• Section 5 gives conclusions and outlines future work

Copyright c© 2016, DICE consortium – All rights reserved 10

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

2 Architecture and Implementation

The following section will detail the overall architecture, implementation as well as the requirement
coverage of each tool. IT Also covers the main rationale behind the necessity of each tool as well as the
interaction between them and the overall DICE toolchain.

2.1 Anomaly detection tool

Anomaly Detection is an important component involved in performance analysis of data intensive ap-
plications. We define an anomaly as an observation that does not conform to an expected pattern [7, 8].
Most tools or solutions such as Sematex1, Datadog2 etc. are geared more towards a production envi-
ronment in contrast to this the DICE Anomaly Detection Tool (ADT) is designed to be used during the
development phases of big data applications.

2.1.1 Big Data framework metrics data

In DICE most data preprocessing activities will be done within DMon [13]. However, some additional
preprocessing such as normalisation or filtering will have to be applied at method level.

In anomaly detection the nature of the data is a key issue. There can be different types of data such
as: binary, categorical or continuous. In DICE we deal mostly with the continuous data type although
categorical or even binary values could be present. Most metrics data relate to computational resource
consumption, execution time etc.. There can be instances of categorical data that denotes the status/state
of a certain job or even binary data in the form of boolean values. This makes the creation of data sets on
which to run anomaly detection an extremely crucial aspect of ADT, because some anomaly detection
methods don’t work on categorical or binary attributes.

It is important to note that most, if not all, anomaly detection techniques and tools, deal with point
data, meaning that no relationship is assumed between data instances [8]. In some instances this assump-
tion is not valid as there can be spatial, temporal or even sequential relationships between data instances.
This in fact is the assumption we are basing ADT on with regard to the DICE context.

All data in which the anomaly detection techniques will use are queried from DMon. This means
that some basic statistical operations (such as aggregations, median etc.) can already be integrated into
the DMon query. In some instances this can reduce the dataset size in which to run anomaly detection.

2.1.2 Types of anomalies

An extremely important aspect of detecting anomalies in any problem domain is the definition of the
anomaly types that can be handled by the proposed method or tool. In the next paragraphs we will give
a short definition of the classification of anomalies in relation to the DICE context.

First we have point anomalies which are the simplest types of anomalies, represented by data in-
stances that can be considered anomalous with respect to the rest of the data [7]. Because this type of
anomaly is simple to define and check a big part of research effort will be directed towards finding them.
We intend to further investigate this type of anomalies and consider them for inclusion in DICE ADT.
However, as there are a lot of existing solutions already on the market this will not be the main focus of
ADT instead we will use the Watcher3 solution from the ELK stack to detect point anomalies.

A more interesting type of anomalies in relation with DICE are the so called contextual anomalies.
These are considered anomalous only in a certain context and not otherwise. The context is a result of
the structure from the data set. Thus, it has to be specified as part of the problem formulation [19, 7].
When defining the context we consider; contextual attributes which are represented by the neighbours of
each instance and behavioural attributes which describe the value itself. In short anomalous behaviour is
determined using the values for the behavioural attributes from within the specified context [7]. In DICE
most data is time-series data which is the most common type of data in which contextual anomalies can

1https://sematext.com/spm/
2https://www.datadoghq.com/
3https://www.elastic.co/guide/en/watcher/current/index.html

Copyright c© 2016, DICE consortium – All rights reserved 11

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

occur. Also, the meaningfulness of contextual anomalies is heavily dependant of the target application
domain. Because of this in the context of our tool we must have a set of anomalies for each of the
Big Data services covered in DICE project. In this deliverable the main focus is on creating a basic
framework that enables ad-hoc definition of context rather than an exhaustive list of predefined ones.
Future work will also feature some instances of these predefined contexts and anomalies.

The last types of anomalies are called collective anomalies. These anomalies can occur when a
collection of related data instances are anomalous with respect to the entire data set. In other words,
individual data instances are not anomalous by themselves. Typically collective anomalies are related to
sequence data and can only occur if data instances are related. In ADT these types of anomalies will be
handled by the Trace Checking tool (See Section 2.2).

2.1.3 Anomaly detection methods

There are a wide range of anomaly detection methods currently in use [7]. These can be split up into
two distinct categories based on how they are trained. First there are the methods used in supervised
methods. In essence these can be considered as classification problems in which the goal is to train a
categorical classifier that is able to output a hypothesis about the anomality of any given data instances.
These classifiers can be trained to distinguish between normal and anomalous data instances in a given
feature space. These methods do not make assumptions about the generative distribution of the event
data, they are purely data driven. Because of this the quality of the data is extremely important.

For supervised learning methods labelled anomalies from application data instances are a prereq-
uisite. False positives frequency is high in some instances, this can be mitigated by comprehensive
validation/testing. Computational complexity of validation and testing can be substantial and represents
a significant challenge which has been taken into consideration during in the ADT tool. Method used
for supervised anomaly detection include but are note limited to: Neural Networks, Neural Trees, ART1,
Radial Basis Function, SVM, Association Rules and Deep Learning based techniques.

In unsupervised anomaly detection methods the base assumption is that normal data instances are
grouped in a cluster in the data while anomalies don’t belong to any cluster. This assumption is used
in most clustering based methods [16, 17] such as: DEBSCAN, ROCK, SNN FindOut, WaveCluster.
The second assumption [7, 20] on which K-Means, SOM, Expectation Maximization (EM) algorithms
are based is that normal data instances belong to large and dense clusters while anomalies in small and
spars ones. It is easy to see that the effectiveness of each of unsupervised, or clustering based, method
is largely based in the effectiveness of individual algorithms in capturing the structure of normal data
instances.

It is important to note that these types of methods are not designed with anomaly detection in mind.
The detection of anomalies is more often than not a by product of clustering based techniques. Also, the
computational complexity in the case of clustering based techniques can be a serious issue and careful
selection of the distance measure used is a key factor.

Anomaly detection libraries

In recent years there have been a great deal of general machine learning frameworks developed.
These can deal with a wide range of problems. One of the problem domains that can be tackled using
them is that of anomaly detection. It is important to mention that we will use not only bespoked anomaly
detection libraries/methods but also more general supervised (i.e. classification based) and unsupervised
(i.e. clustering based) techniques in ADT. In Figure 3 we have a short overview of the core libraries in
the current version of ADT. For the sake of completeness we will briefly describe the machine learning
libraries used, and the rationale behind using them in ADT.

Scikit-learn [18] is a Python based open source machine learning library. Some of its core algorithms
are written in Cython to achieve performance. It has Cython wrappers around LIBSVM and LIBLIN-
EAR as well as using the Numpy and Scipy modules. It is a general purpose library with minimal
dependencies. It features various classification and clustering methods including DEBSCAN, k-means
and SVM.

Copyright c© 2016, DICE consortium – All rights reserved 12

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Weka [11] is a well known data mining and machine learning library and workbench. It supports sev-
eral data mining tasks such as; preprocessing, clustering, classification, regression and feature selection.
It is arguably the most utilized open source machine learning/data mining tool. We leverage the existing
methods from Weka and use them in ADT to further our goal of detecting contextual anomalies in data
intensive applications which utilize Big Data services.

TensorFlow [2] is an open source library designed for numerical computation using data flow graphs
extensively used in deep learning applications. It’s architecture enables the use of one or more CPUs or
GPGPUs. It was originally developed by the Google Brain4 Tream. In the DICE context we will use
some of the features and neural network implementations from Tensorflow in order to detect contextual
anomalies. It is able to export predictive models using the TensorServing5 module means that pre-trained
models can be easily exploited in a production type environment.

ELKI [20] is a Java based open source data mining software. It aims at implementation and de-
velopment of various unsupervised methods for cluster analysis and outlier detection. Performance of
the tool is guaranteed due to the performant indexing structures that are implemented as core of the
software (e.g R*-tree). The base philosophy that drives development of ELKI is use of highly parame-
terizable algorithms in order to allow ease of customization and benchmarking. ELKI’s architecture is
modular with most algorithms based on various distance functions and neighbourhood definitions. All
its functionalities can be used either through the minimalistic GUI that is provided or via command line.
Extensions to the currently implemented algorithms are done by implementing various APIs. Specific
APIs are provided in order to further enhance the power of ELKI with bespoked algorithms. In terms of
output, it provides a variety of writers that handle a big palette of standard formats as well as a complex
visualization tool, providing support for SVG rendering for high quality graphics.

All of the above mentioned tools will be integrated as submodules inside ADT. Currently we have
working versions of most of these tools inside ADT with the exception of ELKI methods. In the next
version of ADT validation and a more complete integration will be presented.

2.1.4 Anomaly detection Implementation

The ADT is made up of a series of interconnected components that are controlled from a simple
command line interface. This interface is meant to be used only for the initial version of the tool. Future
versions will feature a more user friendly interface.

In total there are 8 components that make up ADT. The general architecture can be seen in Figure
3 These are meant to encompass each of the main functionalities and requirements identified in the
requirements deliverables [9].

First we have the dmon-connector component which is used to connect to DMon. It is able to query
the monitoring platform and also send it new data. This data can be detected anomalies or learned
models. For each of these types of data dmon-connector creates a different index inside DMon. For
anomalies it creates an index of the form anomaly-UTC where UTC stands for Unix time. Similarly
to how the monitoring platform deals with metrics and their indices. Meaning that the index is rotated
every 24 hours.

After the monitoring platform is queried the resulting dataset can be in JSON, CSV or RDF/XML.
However., in some situations some additional formatting is required. This is done by the data formatter
component. It is able to normalize the data, filter different features from the dataset or even window
the data. The type of formatting the dataset may or may not need is highly dependant on the anomaly
detection method used.

The feature selection component is used to reduce the dimensionality of the dataset. Not all features
of a dataset may be needed to train a predictive model for anomaly detection. So in some situations it is
important to have a mechanism that allows the selection of only the features that have a significant impact
on the performance of the anomaly detection methods. Currently only two types of feature selection is
supported. The first is Principal Component Analysis6 (from Weka) and Wrapper Methods.

4https://research.google.com/teams/brain/
5https://tensorflow.github.io/serving/
6http://weka.sourceforge.net/doc.dev/weka/attributeSelection/PrincipalComponents.html

Copyright c© 2016, DICE consortium – All rights reserved 13

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Figure 3: General overview of Anomaly Detection Stack.

The next two components (see Figure 3) are used for training and then validating predictive models
for anomaly detection. For training a user must first select the type of method desired. The dataset is then
split up into training and validation subsets and later used for cross validation. The ratio of validation
to training size can be set during this phase. Parameters related to each method can also be set in this
component.

Validation is handled by a specialized component which minimizes the risk of overfiting the model
as well as ensuring that out of sample performance is adequate. It does this by using cross validation and
comparing the performance of the current model with past ones.

Once validation is complete the model exporter component transforms the current model into a seri-
alized loadable form. We will use the PMML [10] format wherever possible in order to ensure compat-
ibility with as many machine learning frameworks as possible. This will also make the use of ADT in a
production like environment much easier.

The resulting model can be fed into DMon. In fact the core services from DMon (specifically Elastic-
search) have to role of a serving layer from a lambda architecture. Both detected anomalies and trained
models are stored in the DMon and can be queried directly from the monitoring platform. In essence this
means that other tools from the DICE toolchain need to know only the DMon endpoint in order to see
what anomalies have been detected.

Furthermore, the training and validation scenarios (see Figure 17) is in fact the batch layer while
unsupervised methods and/or loaded predictive models are the speed layer. Both these scenarios can be
accomplished by ADT. This integration will be further detailed in later sections.

The last component is the anomaly detection engine. It is responsible for detecting anomalies. It
is important to note the it is able to detect anomalies however it is unable to communicate them to the
serving layer (i.e. DMon). It uses the dmon-connector component to accomplish this. The anomaly
detection engine is also able to handle unsupervised learning methods. We can see this in Figure 3 in
that the Anomaly detection engine is in some ways a subcomponent of the model selector which select
both pre-trained predictive models and unsupervised methods.

We can see in Figure 4 the sequence diagram for ADT and DMon. It is clearly observable that both
anomalies and predictive models are served and stored inside DMon.

Requirements

In table 2 we can see the current status of the requirements related to ADT. Requirements marked
with an x are still to be started while the other ones are either started (grey) or fully operational (black).

2.2 Trace checking tool

DICE Trace checking tool (DICE-TraCT) performs trace checking in the D-mon platform.
Trace checking is an approach for the analysis of system executions that are recorded as sequences of

timestamped events. Collected logs are analyzed to establish whether the system logs satisfy a property,

Copyright c© 2016, DICE consortium – All rights reserved 14

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Figure 4: ADT Sequence diagram.

Table 2: Anomaly Detection Tool requirements

ID Title Priority Status Comments
R4.24 Anomaly detection in app quality MUST 3

R4.24.1 Unsupervised Anomaly Detection MUST 3
ADT is capable of running
clustering based methods

R4.24.2 Supervised Anomaly Detection MUST 3

ADT is able to query and
generate datasets for
training and validation.

R4.24.3 Contextual Anomalies Should 3

Is possible to define
feature vectors that define
context.

R4.24.4 Collective anomalies Should 7

R4.24.5 Predictive Model saving for AD MUST 3
Is capable of generating PMML
or serialized predictive models

R4.24.6 Semi-automated data labelling Could 3
Can be don via dmon-gen
component.

R4.24.7 Adaptation of thresholding Could 7

R4.26.2 Report generation of analysis results Should 3
Local generation of
report is possible.

R4.36 AD between two versions of DIA MUST 7

R4.37
ADT should get input
parameters from IDE

MUST 7

Copyright c© 2016, DICE consortium – All rights reserved 15

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

usually specified in a logical language; in the positive case, the sampled system behavior conforms with
the constraints modeled by the property.

When the language allows temporal operators, trace checking is a way to check the correctness of
the ordering of the events occurring in the system and of the time delays between pairs of events. For
instance, if property requires that all the emit events of a certain bolt occur not more than ten millisecond
after the latest receive event, then checking the property over a trace results in a boolean outcome which
is positive if the distance between two consecutive and ordered pair of emit and receive events is less
than ten milliseconds.

Trace checking is especially useful when the aggregated data that are available from the monitoring
system are not enough to conclude the correctness of the system executions with respect to some specific
criteria. In some cases, in fact, these criteria are application dependent as they are related to some non-
functional property of the application itself and they do not depend on the physical infrastructure where
the application is executed. Trace checking is a possible technique to achieve this goal and can be used
on purpose to extract information from the executions of a running application.

Logical languages involved in the trace checking analysis are usually extensions of metric temporal
logics which offer special operators called aggregating modalities. These operators hold if the trace
satisfies particular quantitative features like, for instance, a specific counting property of events in the
trace. DICE-TraCT uses Soloist [3] which offers the following class of aggregating modalities:
• number of occurrences of an event e in a time window of length d,

• maximum/average number of occurrences of an event e, aggregated over right-aligned adjacent
non-overlapping subintervals (of size h) in a time window of length d,

• average time elapsed between a pair of specific adjacent and alternating events e and e’ occurring
in a time window of length d.

According to the DICE vision, trace checking is performed after verification to allow for continuous
model refinement. The result obtained through the log analysis confirms or refutes the outcome of the
verification task, which is run at design time. The value of the parameters in the design-time model is
compared with the value at runtime; if the two are “compatible” then the results of verification are valid,
otherwise the model must be refined. For a complete description of the model and the parameters for
verification see “DICE Verification Tool – Initial version” [15].

Since verification of DICE models, reported in “DICE Verification Tool – Initial version” [15], deals
only with Storm applications, DICE-TraCT currently supports Storm logs analysis. Next releases (M24-
M36) will consider other big-data technologies and relevant properties to monitor.

2.2.1 Storm logging

The initial version of DICE-TraCT is implemented for Storm logs analysis as its functionality is
currently tailored to the manipulation of collected logs in a Storm deployed topology. This paragraph
briefly introduces some features of the logging mechanism implemented in Storm.

Storm topologies are defined by graphs of computational nodes. “Spouts” are the data sources of a
topology and always produce messages - or tuples - that are elaborated by the bolts. Bolts receive tuples
from one or more nodes and send their outcome to other bolts, unless they are final. In this last case, a
bolt does not emit tuples.

The deployment of a topology in a cluster of physical machines is realized automatically by Storm.
A topology is organized by means of workers that are Java virtual machines running on some physical
machine of the cluster. A worker executes a subset of a topology and one or more workers implement the
whole topology. For each physical machine there is at least one active worker and within each worker at
least one executor runs. An executor is a thread that is spawned by a worker and runs one or more tasks
which actually perform the data processing. Defining a topology requires the user to specify the number
of workers for the topology, the number of executors and tasks for each spout and bolt.

Figure 5 shows an example of a running topology. The running configuration, depicted in (a), is a

Copyright c© 2016, DICE consortium – All rights reserved 16

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Figure 5: Deployment in (a) for a Storm topology (b)

possible deployment for the topology depicted in subfigure (b) when 2 workers are chosen (light gray
boxes). Since the total number of parallelism is 8 then each worker runs 4 executors (dark gray boxes).
Circles are the tasks that Storm instantiate to execute the node functionality. The final bolt is executed
with 6 tasks.

Storm logs contain messages related to events occurred in the topology. The relevant ones, support-
ing the verification the task of WP3, are the emit and receive events for the bolts and emit for the spouts.
An example of such logs is provided in Fig. 6. The topology producing that log is called Exclamation-
Topology and can be found in the Storm distribution.

2016-02-18T10:52:04.052+0000 [Thread-15-word] b.s.d.task [INFO] Emitting: word default [mike]
2016-02-18T10:52:04.050+0000 [Thread-2-exclaim1] b.s.d.task [INFO] Emitting: exclaim1 default [bertels!!!]
2016-02-18T10:52:04.147+0000 [Thread-2-exclaim1] b.s.d.executor [INFO]

Processing received message source: word:16, stream: default, id: {}, [nathan]
2016-02-18T10:52:04.147+0000 [Thread-2-exclaim1] b.s.d.task [INFO] Emitting: exclaim1 default [nathan!!!]
2016-02-18T10:52:04.149+0000 [Thread-16-word] b.s.d.task [INFO] Emitting: word default [jackson]
2016-02-18T10:52:04.149+0000 [Thread-16-word] b.s.d.task [INFO] Emitting: word default [mike]
2016-02-18T10:52:04.149+0000 [Thread-15-word] b.s.d.task [INFO] Emitting: word default [jackson]
2016-02-18T10:52:04.149+0000 [Thread-2-exclaim1] b.s.d.executor [INFO]

Processing received message source: word:15, stream: default, id: {}, [mike]
2016-02-18T10:52:04.149+0000 [Thread-2-exclaim1] b.s.d.task [INFO] Emitting: exclaim1 default [mike!!!]

Figure 6: Partion of the ExclamationTopology log.

The portion of log in Fig. 6 contains events of spout word and bolt exclaim1. Each line reports:

• the timestamp measured in milliseconds (e.g., 2016-02-18T10:52:04.052+0000)

• the thread and node name (e.g., [Thread-1-word])

• the class of the node which performs the action (e.g., b.s.d.task)

• the event triggered by a node.

– spout: the log shows the event, the spout name, the stream name and the emitted tuple (e.g.,
Emitting: word default [mike])

Copyright c© 2016, DICE consortium – All rights reserved 17

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

– bolt: the log shows the actual event along with the source node and thread id (e.g., Processing
received message source: word:16), the stream name (e.g., default) and, finally, the id tuple
and the tuple itself (e.g., d: {}, [nathan]. If id is empty when the topology is run
without reliable message processing).

2.2.2 DICE-TraCT architecture

DICE Trace checking tool (DICE-TraCT) is the module which performs trace checking in DICE. It
is designed as a component of the anomaly detection tool so that it exploits a direct access to the D-mon
APIs and to the DICE-IDE through the API exported by the anomaly detection service. DICE-TraCT
collects user requests from the DICE-IDE and, based on the information retrieved through the queries
sent to the D-mon platform, executes one or more instances of trace checking. The DICE-IDE allows
the user to select a property to verify for a selected DIA application, currently shown in the IDE, and
run the trace checking. The input format for DICE-TraCT is a JSON file which contains the name of the
topology to verify, the set of nodes that the user wants to analyze and the property to verify. The current
version of the tool does not support user-defined properties but only those related to parameter of the
verification model.

Figure 7: Architectural overview shows DICE-TraCT component within the Anomaly Detection tool.

The following section provides a detailed description of all the components implementing DICE-
TraCT which is composed of three components. The architecture is depicted in Fig. 8.

Figure 8: DICE-TraCT architecure.

2.2.3 Trace Checking Engine

Trace Checking Engine (TCE) is the engine that actually performs the trace analysis. It is imple-
mented in Spark and takes advantage of the distributed implementation to realize a parallel algorithm for
evaluating temporal formulae over the logs. The input is a time stamped log of events and a Soloist [3]
formula. The output is a boolean outcome which is the result of the evaluation of the formula over the
specified log. The positive outcome is obtained if the log satisfies the property.

Copyright c© 2016, DICE consortium – All rights reserved 18

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

2.2.4 Log Merger

As explained in Sec. 2.2.1, a worker log might contain more than one sequence of events, each one
associated with an executor spawned in that worker. A topology node, either spout or bolt, might then be
deployed over different workers and the information related to a single node, either spout or bolt, may
be spread over many log files.

However, TCE can analyze one log file per execution. To check a property for a node running
in different workers, the property has to be tested over many logs through independent trace checking
instances. To reduce the number of the executions while leveraging on the distributed implementation of
the trace checking engine, DICE-TraCT manipulates the collected logs to aggregate all the events related
to a node (or a subset of nodes) into a new log trace. For instance, the running topology of Fig. 5 would
produce two logs, one for “Worker 1” and one for “Worker 2”. The Log Merger splits the events of the
three nodes into three new log files, as shown in the next Fig. 9

LM receives in input a set of worker logs of a deployed topology under monitoring and a description
of the topology listing all its computational nodes. The outcome it produces is a set of logs where each
log records all, and only, the events related to a certain node in the topology.

Figure 9: Merging logs w1.log and w2.log into three new log files for each topology node.

2.2.5 DICE-TraCTor

DICE-TraCTor (Tor) coordinates the activity of LM and TCE upon a request from the DICE-IDE.
First it builds the inputs file to run LM, runs suitable transformations on the new extracted logs, if they
are needed to run trace checking, and then defines the input file of the property for TCE. Finally, it runs
TCE and, when TCE terminates, it notify the D-mon platform with the outcome of the analysis. Fig. 7
shows the sequence digram of the interactions of components in DICE-TraCT.

The message invocations among the components described in the diagram are described in the fol-
lowing:
• monitor(t,p,f.w): run the trace checking for the topology described in t, for parameter p or with

formula f over time window w.

• merge(l,logs): merge log files based on the topology description in t.

• transform(nodeLogs): prepare logs for trace checking. This function might change, add or delete
event names based on what to check (defined by p or f)

• buildProperty(): define the property to be checked based on topology description t and time win-
dow w.

• runTC(nodeLog,pr): run trace checking for nodeLog with property pr.

Copyright c© 2016, DICE consortium – All rights reserved 19

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Figure 10: DICE-TraCT sequence diagram highlighting the intraction of all components.

• notify(): notify DMon with the result.

Tor receives in input a descriptor which defines the parameters to run trace checking for a given
topology. The descriptor is a JSON file that is built through the DICE-IDE by the user who monitors the
topology. An example of a descriptor is shown in listing 1. The information stored into JSON fields are
the following:

• The field called topologyname specifies the topology name which is used by DICE-TraCT to query
the monitoring platform and obtain all the necessary log files to perform trace checking.

• A list of descriptors that specify, for each node, a non-functional property to check. The properties
can be related to parameters of the verification model like, for instance, the ratio sigma between
the number of messages in input and the number of messages in output of a Storm node; or any
user-defined property which can be translated by DICE-TraCT into a trace checking instance. Each
item defined by curly brackets defines a list of data that are needed to collect the suitable set of logs
from D-mon and to define the temporal logical formula specifying the property to check. DICE-
TraCT is equipped with standard handlers which are able to manipulate predefined properties (like
the one related to sigma) but allows for defining new custom handlers based on user needs.

• A list of formulae descriptors that specify user-defined logical formulae to be used for trace-
checking.

Requirements

This paragraph reports on the achievements obtained for the trace checking tool. Table 3 provides
the most relevant requirements and shows the degree of completion.

Copyright c© 2016, DICE consortium – All rights reserved 20

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Listing 1: Example of JSON script requesting trace checking analysis for spoutA and boltA
1 {
2 ” topologyname ” : ” ATopology ” ,
3 ” nodes ” : [
4 {
5 ”name ” : ” spoutA ” ,
6 ” t y p e ” : ” s p o u t ” ,
7 ” p a r a m e t e r ” : ” i d l e T i m e ” ,
8 ” timewindow ” : 3600 ,
9 ” i n p u t r a t e ” : 100 ,

10 ” method ” : ” ” ,
11 ” r e l a t i o n ” : ” ” ,
12 ” d e s i g n v a l u e ” : 0 . 0
13 } ,
14 {
15 ”name ” : ” bo l tA ” ,
16 ” t y p e ” : ” b o l t ” ,
17 ” p a r a m e t e r ” : ” s igma ” ,
18 ” timewindow ” : 3600 ,
19 ” i n p u t r a t e ” : 100 ,
20 ” method ” : ” c o u n t i n g ” ,
21 ” r e l a t i o n ” : ”=” ,
22 ” d e s i g n v a l u e ” : 1 . 1
23 }
24]
25 ” f o r m u l a e ” : [
26 {
27 . . .
28 }
29]
30 }

Copyright c© 2016, DICE consortium – All rights reserved 21

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Table 3: Trace Checking tool requirements

IF Title Priority Status Comments
R4.28 Safety and privacy

properties loading
MUST 7

R4.26 Report generation of
analysis results

Should 3 Trace checking results are
stored into an output file.

R4.28 Safety and privacy
properties loading

MUST 3 User can define templates of the
relevant properties and choose
them when trace checking is

invoked.
R4.28.1 Definition of time

window of interest
for safety/privacy

properties

MUST 3 Storm monitoring allows the
user to select the the time

window.

R4.29 Event occurrences
detection for safety

and privacy
properties
monitoring

MUST 3 DICE-TraCT implements the
logic to customize how to select

events from Storm logs.

R4.30 Safety and privacy
properties
monitoring

MUST 3 Storm monitoring is currently
supported.

R4.30.1 Safety and privacy
properties result

reporting

MUST 3

R4.31 Feedback from
safety and privacy

properties
monitoring to UML

models

Could 7

R4.30 Safety and privacy
properties
monitoring

MUST 3 Privacy properties are not
supported yet. Safety properties
are related to some parameters

of the verification model
R4.32 Correlation between

data stored in the
DW and DICE
UML models

MUST 3 The case of Storm application
has been studied to verify the

need of instrumenting the
source code.

2.3 Regression based Anomaly Detection

In the wake of growing complexity of data-intensive applications, market competition and pressure
to deliver applications to the market as quickly as possible without decrease in their quality, application
development lifecycle needs to be continuous, iterative, automated and cost-efficient at the same time.

SPEC group outlined the need in the performance-oriented DevOps for the enterprise applications
[4]. The same stands true for the Data-Intensive Applications (DIAs). Anomaly Detection (AD) tool
presented below is devised to automatically train statistical (linear regression) models for any type of
software applications (web-based, cloud, enterprise, data-intensive) or Big Data technology at each new
deployment and then look for the possible presence of anomalous behaviour by comparing the current
model (deployment n) with the one trained at the deployment n − 1. In other words, AD tool seeks to
uncover any potential anomalies that may arise after every modification of the application.

Copyright c© 2016, DICE consortium – All rights reserved 22

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Sequential model selection algorithm employed in the model training module was adopted based
on the requirement for cost-efficiency. During application development (especially on the early stages)
historical data is not available, while conducting model selection by conventional means – providing the
algorithm with the set of observations of a certain size – might be costly (as some of the data points
might turn out to be redundant), especially with the possible presence of interactions and/or non-linear
terms which are not known in advance. Therefore, each new observation should be added only when
absolutely necessary and also should add as much information about the system under test as possible.

The purpose of this tool/method: detect presence of performance anomalies with the elements of root
cause analysis at the application design time iteratively and in a cost-effective manner by:
• Accept a set of inputs (from the developer and certain deployment information)

• Train statistical model describing application behaviour for the given performance or reliability
metric(s) of interest (set by the developer)

• Compare this model with the model, trained at the previous deployment and identify the presence
of anomaly(-ies), if any.

• Generate report for the developer indicating the presence/absence of performance anomalies and
possible root causes (if anomalous behaviour is detected).

• Repeat the process for each deployment version.

On the high level the Regression based AD tool consists of two modules: model training and model
analysis. Model training module accepts input from the user (via IDE or DMon) along with the required
deployment data (from the IDE translated by the DICE deployment tool [6]) and builds the statistical
model of the application behaviour for the performance or reliability metric defined by the user (devel-
oper) at the current deployment (n). This model is then submitted to the model analysis module where it
is compared to the application performance model trained at the previous deployment (n-1). Afterwards,
the report is generated to inform the developer whether the anomalous behaviour is present and suggest
possible root cause(s). The high-level architecture of the Regression based AD tool is presented on the
Figure 11:

Architecture and functionality for each of the modules are described in the following sections.

2.3.1 Model Training module

The purpose of this module is to train a statistical (linear regression) model capturing the behaviour
of the application at the current deployment for the chosen performance or reliability metric of interest.

In order to do this the tool accepts a list of inputs, some of them are deployment-related information
and some are tuning/configuration parameters for the tool. These inputs can be either provided interac-
tively by the developer or a set of predefined ”optimal” settings can be used instead. The list of input
parameters to the tool along with their description is given in the Table 4:

On the high-level, model training module consists of two principal parts: initial model and sequen-
tial model selection. Sequential model selection block is composed of the logical processing block,
’action centre’, script, running the deployed application and sequential model selection algorithm. Their
functionality and operation are described in details below.

Low-level architecture of the model training module combined with the process flow diagram is pre-
sented on the Figure 14.

Initial Model

At this stage the tool selects two factors from the list L, creates the simplest two-level factorial design
(see Table 3), runs application four times with the settings from the Table 5 to obtain observations y1−y4
and fit the model (1).

y = β0 + β1 ∗ x1 + β2 ∗ x2 (1)

Copyright c© 2016, DICE consortium – All rights reserved 23

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Table 4: List of inputs to the model training module.

Input Description

Performance or
reliability metric to
be modelled (response)

This metric is always defined by the developer.
Examples:
response time, data processing time,
memory utilisation, CPU utilisation, I/O rate,
throughput etc.,In the current
implementation the tool allows to create
only one model per entire model
training cycle (i.e. there is currently
no functionality to train models for
several metrics from the
same data simultaneously)

Budget

Budget
limitation can arise from the money or time
constraints and is expressed as a
maximum number
of experiments the developer can afford to run to
obtain observations used in training the model.
Two operation modes are currently available:
unconstrained and constrained. In the case of
the budget-constrained option user should
provide the value of the maximum number
of experiments they can afford.

Mode
Automated Interactive

When choosing this
mode developer does
not participate in setting any input
parameters except for
the response and budget.

Developer can
influence model
training process by tuning certain
settings manually.

R2

Minimal required goodness
of model fit to data ([0;1]).
In general, it is a trade-off with the budget.
Smaller
threshold R2 allows to collect less observations
(but results in less accurate predictive models).
However, very large R2(close to 1) in most
cases would imply overfitting (good fit to
the training data, but bad predictive capability).
The optimal interval is considered to lie
in the range of 0.7-0.85.
Hard-coded with
‘optimal’ value (0.85)

User can tweak it.

List,of factors (L)

List
of deployment-specific parameters (hardware, configuration
parameters etc.) and their settings (min, max, mid etc.)
to be used for model selection (fitting).
Examples: number ofexecutors, allocated RAM, number of VMs,...

Chosen automatically
from the available
deployment information.

Developer can compile
their own list, based,
for example, on the perceived importance
of certain
input parameters (factors).

Copyright c© 2016, DICE consortium – All rights reserved 24

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Figure 11: Regression based Anomaly Detection. Architecture, inputs and interaction with other DICE tools.

Where β0 − β2 are coefficients of the fitted model.
Additionally to the coefficients and model terms the tool saves the following ’metadata’ for internal

use: estimated R2 for the selected model on each iteration, p-values for model coefficients and Boolean
flags interactions and squared terms.

This initial model along with the metadata is then passed to the sequential model selection block for
further model fitting.

Sequential model selection

Sequential model selection stage involves four modules (shown on the Figure 14):
• Logical processing module, where the decision what to do next based on the available data and

metadata is made by the tool. Action centre’, where the candidate model is formed.

• Script running application under test and retrieving experimental data (observations) from the
DICE Monitoring Platform to be used in model selection (fitting).

• Model selection algorithm, which uses observations to select relevant model terms from the can-
didate model formed in the ’action centre’.

Copyright c© 2016, DICE consortium – All rights reserved 25

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Figure 12: Model training module: architecture and process flow..

Table 5: Two-level full factorial design for two factors.

X∗
1 X2 Observation

−1∗∗ -1 y1
-1 1 y2
1 -1 y3
1 1 y4

Logical processing module accepts the following inputs: Ri
2 (of the latest fitted model) and R2

threshold (from the Table 4), number of factors from the list L already used (Fi) and total (F), number
of experiments conducted (Ni) and total (Budget), p-values of estimated model coefficients and Boolean
flags interactions and squared terms for the given iteration. Depending on the combination of these
inputs it will trigger execution of one of the four blocks in the ’action centre’ or terminate the operation:

a) Option 1 - if the model contains only main effect for the newly added factor (it can contain interac-
tions for the previously added factors) and its measure of fit is less than the threshold, it means that
there are interdependencies (interactions) between this newly added factor and previously chosen
factors that influence response. In this case the tool will pass the information to the ’action centre’
to generate linear interactions (up to the highest order) between the newly added factor and the
factors already in the model.

b) Option 2 - if the model contains linear interactions but the fit is still not good enough, this signifies
the presence of non-linear dependency between at least one of the factors and response. The tool
will send the signal to the action centre to generate all possible non-linear terms (if it is possible
for the given factor) up to the predefined polynomial order (e.g. 2 or 3) and update design matrix
(matrix of factors and interactions and their settings) with one more row of settings obtained via
D-optimal design.

Copyright c© 2016, DICE consortium – All rights reserved 26

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

c) Option 3 - the situation when current model contains both interactions and/or non-linear terms,
but the fit still hasn’t reached the threshold means that the number of available data points (obser-
vations) is less than the number of significant model parameters. In this case the tool will update
design matrix with one more row of settings obtained via D-optimal design.

d) Option 4 – when the measure of fit is finally satisfactory for the selected model, the tool adds
one more factor (only the main effect) and updates design matrix with one more row of settings
obtained via D-optimal design.

e) When either the tool has sifted through all factors from the list L or ran out of the experimen-
tal budget, the model training process terminates and the model is exported and saved as a data
structure (cell array).

Boolean flags interactions and squared terms mentioned above are used by the logical processing
module to identify the composition of the model fitted on each iteration (i.e. the terms it contains) and
use this information in the decision-making process.

In the ’action centre’ candidate model for the terms selection is formed based on the information
sent from the logical processing block using D-optimal design [14]. D-optimal design aims to find the
factors’ settings which would allow to obtain an observation (after running the application with these
settings) that would be the most useful for model selection.

Model selection algorithm builds on the idea of creating the model in the situation where the number
of available observations is less than the size of the candidate model (from which algorithm aims to select
only relevant terms). There are a number of methods available, but Dantzig Selector (DS) [5] was chosen
due to it employing the so-called non-asymptotic bounds. Other model selection methods operating on
small samples (e.g. Lasso [21], ridge regression [12]) assume that sample statistics (mean, variance)
can be accepted for population statistics in obtaining estimators (model coefficients). This assumption
negatively affects accuracy of the asymptotic bounds used by the optimization algorithms in [21], [12] to
estimate model coefficients and, as a consequence, prediction accuracy of the resulting model. Dantzig
Selector, on the other hand, employs approximation theory to quantify approximation error arising from
using the sample mean and variance instead of the population mean and variance for the estimator. This
approximation error, in essence, describes the discrepancy between the approximated model (the model
that will be fit) and ‘true’ model (the unknown model that accurately describes the process in the system),
which is then added to the bounds in the optimisation algorithm for finding estimators.

However, all mentioned model selection methods rely on the tuning parameter λ (lambda), which
controls the magnitude of estimated coefficients (whether these coefficients are above or below the noise
level and, hence, should be selected into the model or discarded). Therefore, DS could not be used on its
own (as optimal is unknown). This issue was addressed by fitting the model with Lasso before DS, as
its Matlab implementation provides an entire coefficient path with the range of lambda values (i.e. not
one model, but a range of models, each with its own estimated λ). Then DS can be implemented for
each value in this narrow range of lambdas. Like other model selection methods, DS does not provide
accurate estimates of model coefficients, they are ’shrunk’ (reduced) by the value of λ (soft-thresholding).
Therefore, an approach widely applied in Machine Learning is used: after the model is selected (for each
λ provided by Lasso), chosen model terms are fit with OLS (Ordinary Least Squares) and the model with
the highest R2 (with account for overfitting and possible multicollinearity) is then chosen.

The tool continues to sequentially select the ’best’ model until one of the two following conditions
is met:

• All factors from the list L are investigated and the satisfactory fit is achieved;

• The tool still hasn’t got through all factors, but exceeded the experimental budget (e.g. because the
number of factors on the list L was larger than available experimental budget).

After the model selection process is finished, the tool checks coefficients’ p-values to remove statis-
tically insignificant terms (some of the terms in the resulting model still can be ‘noise’) and then saves

Copyright c© 2016, DICE consortium – All rights reserved 27

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

(a) Model Analysis module. Architecture (b) Model Analysis module. Process flow diagram

Figure 13: A figure with Architecture and Flow Diagram

the model as a data structure (cell array). The data structure contains application deployment version
number and the list of model terms with an array of respective coefficients.

This model is then used as an input (the model of the application at the deployment n) for the model
analysis module.

2.3.2 Model Analysis module

After the linear regression model of the application at the deployment n for the performance or
reliability metric of interest is created and saved as a data structure (cell array), the next step is to identify
whether there is an anomaly present in the modified application.

Model Analysis (MA) module accepts as inputs two linear regression models and compares them.
The first model is of the application at the previous deployment (n−1) stored externally as a data structure
(cell array), and the second is of the current deployment (n) created and saved on the model training step.
The principle of the anomaly detection procedure implemented in the DICE AD tool utilises the well-
known property of the linear regression models. Namely, that each model term (and its corresponding
coefficient) can be interpreted as a predicted change in response caused by the corresponding input when
all other inputs are fixed.

This means that comparison of the models can be carried out term by term. After the comparison is
finished, MA module generates report for the developer.

The high-level diagram of the MA module and the process flow are shown on the Figures 13a and
13b respectively.

Process flow diagram shown on the Figure 13b demonstrates that model analysis is undertaken in
three principal stages:
• Detection of model terms missing from the new model (n) and/or new ones which were not present

in the model of the previous deployment (n− 1);

• Detection if there is a change in the response (performance or reliability metric) caused by any of
the model terms by comparing coefficients for the terms between two models;

• In the case change is detected, analyse if this change is performance degradation (manifestation of

Copyright c© 2016, DICE consortium – All rights reserved 28

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Table 6: Outcomes and interpretation of the two application models’ term-by-term comparison.

1 2
Model
n-1

γ = β0n−1 + β1n−1 ∗ x1 + β2n−1 ∗ x4 γ = β0n−1 + β1n−1 ∗ x1 + β2n−1 ∗ x4

Model n γ = β0n + β1n ∗ x1 + β3n ∗ x26 γ = β0n + β1n ∗ x1 + β2 ∗ x4

What tool
reports

Term(s) [insert name(s) of the input(s)]
disappeared from the application model
after modifications (at deployment n)

Term(s) [insert name(s) of the input(s)]
appeared in the application model after
modifications (at deployment n)

What it
means

One or more terms stopped influencing
response (performance or reliability
metric of interest) after modifications
were made to the application.

One or more terms started influencing
response (performance or reliability
metric of interest) after modifications
were made to the application.

3 4
Model n-1 γ = β0n−1 + β1n−1 ∗ x1 + β2n−1 ∗ x4 γ = βon−1 + β1n−1 ∗ x1 + β2n−1 ∗ x4
Model n γ = β0n + β1n ∗ x1 + β3n ∗ x26 γ = βon + β1n ∗ x1 + β2 ∗ x4

What tool reports

Term(s) [insert name(s) of the input(s)]
disappeared from the application model
after modifications (at deployment n)
and term(s) [insert name(s) of
the input(s)] appeared in it.

Models,are identical in terms

What itmeans

One or more terms stopped influencing
response (performance or reliability
metric of interest) after modifications
were made to the application, while
one or more terms started to influence it.

If there is an anomaly, then it’s
manifested in some other way

anomalous behaviour) or not (improvement in performance caused by the modifications made to
the application on the n-th stage of development)

More detailed anomaly detection procedure and interpretation of the results are presented below
using two generic linear regression models as an example.

Step 1

Investigating models’ composition. Various outcomes of the models’ composition comparison are
presented in the Table 6:

Outcomes 1-3 from the Table 6 do not automatically imply that missing/new terms are manifestations
of anomalous behaviour. In this case the tool checks whether the addition/disappearance of the term(s)
from the model leads to the improvement/degradation of the response or does not change it significantly.

At this stage the algorithm also identifies which of the terms coincide for n−1 and n version models
and passes this information to the next step of the procedure.

Step 2

Analyse the behaviour of the application at the latest deployment for potential changes. In all of the
outcomes outlined in the Table 6 the next step is to compare the coefficients of the coinciding model terms
on the term-by-term basis. This is done by generating a sample (one for each model) of response values
for one model term (thinking of other terms as fixed), while varying input on the normalised interval
[-1;1]. Then a t-test is conducted on these two samples in order to establish if there is a significant
difference between their means. T-test tests the null hypothesis that two data samples come from the
normal distributions with equal means and equal (but unknown) variances (essentially meaning that these

Copyright c© 2016, DICE consortium – All rights reserved 29

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Figure 14: Visualization of the term by term comparison of model coefficients

two data samples were drawn from the same population and the difference in their means lies within the
sample variance). If this null hypothesis is rejected, it means that these two independent samples come
from different distributions. In relation to the software applications rejection of the null hypothesis can
be interpreted in a way that these two data samples were generated by different processes.

T-test is not directional, i.e. it is impossible to tell if significant difference detected means improve-
ment or degradation of the performance. Therefore, if it’s flagged, the tool next compares two sample
means to identify whether there is a performance improvement or degradation.

The procedure for detecting if non-coinciding significantly influence response is almost identical to
the comparison of coefficients of coinciding terms. The samples are generated for each not coinciding
term and their means are calculated. Where these terms are absent in the compared model, their coeffi-
cients and thus sample means are assumed to be zero. Then t-tests are conducted to identify if there is a
significant difference between each of the means and zero. If the new/absent model terms cause signif-
icant difference in the predicted response, then the tool goes to the step 3 to establish if this difference
means improvement or degradation.

Below is the example for the term-by-term comparison of the model coefficients for the generic linear
regression model used in the Table 6 (the values for coefficients are chosen arbitrarily for illustrative
purpose).

yn−1 = 10 + 1 ∗ x1 + 1 ∗ x4 + 0 ∗ x26
yb = 11 + 1.5 ∗ x1 + 10 ∗ x4 + 2.3 ∗ x26

(2)

By assuming that ’other model terms are fixed’, we can set them to zero and thus look at the projec-
tions of the response surface onto the axes corresponding to the specific terms. The visualisation of these
projections for the terms from the equations (2) is presented on the Figure 14.

The leftmost plot on the Figure 14 illustrates the termX1 for both models, with significant difference
not detected. The curves lie close to each other and the model coefficients, which in this setup (only
one variable and with 0 as the centre of the interval) are, essentially, sample means are also close. The
plot in the middle illustrates the case where significant difference between deployments n− 1 and n was
detected for the termX4. The rightmost plot shows the comparison between the termX2

6 which is absent
from the model n− 1 and thus modelled as having coefficient = 0.

Step 3

Establish if detected change in response is performance degradation (anomaly) or not (improvement).
Because t-test is not directional and some performance or reliability metrics improve by decreasing

Copyright c© 2016, DICE consortium – All rights reserved 30

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

(e.g. response time, data processing time), while others improve by increasing (e.g. throughput), it is
impossible for the MA module to identify the influence of change (positive/negative) only by comparing
two sample means. Therefore, it needs additional information to make a decision.

This information can be obtained from the relevant requirement (e.g. supplied directly by the de-
veloper on the tool’s prompt or extracted by the tool from the requirements repository). For example, if
there is a requirement exists: ’Performance (or reliability) metric A must not exceed value X’, the MA
module can parse it looking for the keywords such as ’not exceed’, ’not larger than/not greater than’,
/larger than/greater than’ etc. and use this information to identify if the direction of change in perfor-
mance (or reliability) metric is positive or negative (improvement or degradation).

2.3.3 Report generation

After the model analysis is finished, the AD tool generates report with the analysis results and sug-
gestions for possible root causes in the case performance degradation is detected. This functionality
is currently not implemented, because it is proposed that the tool would communicate its output to the
developer via DICE Monitoring Platform and the work on integration hasn’t started yet.

For the visualisation of the entire model or specific terms (similar to the plots from the Figure 14) in
the DICE Monitoring Platform the range of input parameters can easily be re-scaled from the normalised
interval [-1;1] back to their original values.

2.3.4 Discussion

From the description of the model analysis process it can be seen that in addition to flagging the
presence/absence of an anomaly the AD tool allows to identify if there is a significant improvement in
performance as a result of modifications undertaken and also provides basic (preliminary) root cause
analysis.

The information obtained in the Model Analysis procedure can be potentially exploited in the root
cause analysis due to the assumption based on the nature of the linear regression models. It is well-known
that linear regression models are the so-called ’black box’ models. Meaning that any change in the system
they describe can only be reflected in the model terms composition and their coefficients. However,
due to the fact that each coefficient and model term (i.e. input parameters such as, e.g. configuration,
hardware and so on) in isolation reflects its impact on the response, it can be suggested that if its negative
influence is detected, then it might be the source/manifestation of the problem (or architecture/code
directly connected with this ’problematic’ input parameter). This additional functionality comes as a
’by-product’ of the developed approach to the anomaly detection.

Next steps for the tool implementation and development would be to integrate with the other tools in
the DICE framework (DMon, Deployment tool, IDE), provide support for PMML to store the model in
the universal format and validate the tool with experiments.

As a conclusion, Table 7 indicates how the work reported in this deliverable addresses the require-
ments identified by the requirement analysis.

Copyright c© 2016, DICE consortium – All rights reserved 31

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Table 7: Requirements for Regression based AD

ID Title Priority Status Comments

R4.24.5
Predictive Model saving
for Anomaly Detection

MUST 3

Currently trained model is
exported and stored as a
data structure. Next step
would be to support
PMML format

R4.26.2
Report generation of
analysis results

Should 7

Because the tool is not
integrated with DMon
at this stage

R4.36
Detect anomalies between
two versions of DIA

MUST 3

R4.37
ADT should get input
parameters from IDE

MUST 3

Because the tool is not integrated
with DICE IDE or deployment tool
at this stage, all input is provided
via command line and configuration
files

Copyright c© 2016, DICE consortium – All rights reserved 32

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

3 Use cases

This section details what use cases are handled by each tool. It shows the main workflow for ADT
as well as that of TraCT. For the Regression based AD the input parameters for the method are detailed
as well as example configuration files.

3.1 Anomaly Detection

Anomaly detection tool will check for anomalies during the runtime of a deployed application on
a wide range of Big Data frameworks. These frameworks are unchanged from those supported by the
DICE Monitoring platform (DMon) [13]. In the case of unsupervised anomaly detection methods the
querying of DMon will result in the generation of the data sets on which these methods will operate. In
essence the only thing that the end user needs to do is give ADT the query string and the desired time
frame.

For supervised anomaly detection methods this is a bit more complicated as it is not enough to give
the query string and time frame. The data sets must be labelled in order to create a viable training and
validating data set. Once this is done the resulting predictive models can be easily applied during runtime.

Figure 15: Anomaly Detection flow.

Figure 15 show the basic flow of data between all components of ADT. It is easy to see that there are
two branching workflows. The first one is meant for training and validating the aforementioned predictive
models while the second one is meant for unsupervised methods and the loading of the validated models.

It is important to note that the method selector and anomaly detection engine are the two tools re-
quired for detecting and signalling anomalies. The method selector is used to select between unsuper-
vised and supervised methods (including their runtime parameters). This component is also responsible
for loading pre-trained predictive models. The anomaly detection engine is in charge of instantiating the
selected methods and signalling to the dmonconnector any and all detected anomalies.

We can think of the first branch as the batch layer of a lambda architecture. Once it trains and
validates a model it sends it to be stored and indexed into DMon. From there the second branch can
download it and instantiate it. This in essence represents the speed layer. There can be more than one
instance of ADT at the same time so scaling should not pose a significant problem. However, this has
not been tested for M18. Future work will tackle this issue.

3.2 Trace Checking tool

Trace checking is employed to verify the runtime behavior of a deployed application. This approach
requires that log traces meet specific properties (over time in our case) to certify the adherence of (por-
tions of) the runtime executions to the behavioral model that is assumed at design time. If the runtime
behavior does not conform to the design, then the design must be refined and later verified to obtain a

Copyright c© 2016, DICE consortium – All rights reserved 33

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Figure 16: Examples of configuration files

new certification of correctness. Specifically, trace checking in DICE allows the DICE users to verify
two classes of properties that are derived from the DPIM, DTSM and DDSM models.

The first class of property of interest for DICE consists of temporal properties that allow for checking
the validity of the results obtained with the verification analysis defined in WP3. Currently, verification
is carried out at DTSM level on UML models enriched with information that are useful to perform the
analysis of Storm applications (more details in DICE Verification Tool - Initial version [15]). Storm
topologies, that are captured by DTSM models, are analyzed through a logical model which captures
their behavior over time. Storm topologies consist of nodes that represent computational resources im-
plementing the application. They can be either data sources or data processors (bolt) that manipulate
input messages.

To verify DTSM models the designer must provide some parameter values that abstract the (temporal)
behavior of spouts and bolts (the complete description can be found in the document DICE Verification
Tool - Initial version [15]).Trace checking is employed to extract from real executions those parameter
values that are not available from the monitoring component of the framework as they might be inherently
specific of the modeling adopted for verification. An example of such a parameter is the ratio between
the number of messages that are received by a bolt and the number of messages that it emits in output.

The second class of property concerns privacy aspects of the applications. Privacy constraints are de-
signed through the the DPIM, DTSM and DDSM models by means of suitable annotations and possibly
new ad-hoc constraints specifying, for instance, authentication and authorization restrictions, resources
policies, encryption on communication etc. Checking the integrity of the deployed and running applica-
tion can be achieved through trace checking with the analysis of application logs and suitable properties
derived from the models.

3.3 Regression based Anomaly Detection

Regression-based Anomaly Detection tool is implemented in Matlab and compiled as an executable
file that can be run as a standalone application from the command line. MyAppInstaller web.exe is an
executable file of the MATLAB Generated Standalone Application and detailed installation instruction
can be found in [1]. After the application is installed it can be executed by running regressionad main
file.

All user-defined input parameters are supplied via the config main.txt and config factors.txt files that
can be found in the folder with installed application. These parameters are listed in the Table 6 and an
example for each of the configuration files is shown on the Figure 8.

It is important to note that automated mode is currently not supported, because in this mode factors
should be imported from the DICE deployment tool [6], which is not integrated yet.

The code and documentation for the tool are released on the Github repository and can be found on
the official DICE Github 7.

7https://github.com/dice-project/Anomaly-Detection-Regression-Based-Tool

Copyright c© 2016, DICE consortium – All rights reserved 34

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Table 8: Input parameters for the packaged tool

Parameter Description Input format

Metric
Performance or reliability metric
to model and investigate for anomaly

The name of the metric should be
provided exactly how it’s supplied
by the DMon, because the tool
queries DMon to obtain the
measurements for this metric.

Budget constr
Is there a limit on the number of
experiments to run

Yes/ No

Budget

If Budget constr is ‘Yes’, provide
the maximum number of experiments
possible to run. If ‘No’, do not
enter any value

Number (e.g. 27) or blank space

Mode

auto – automated mode, user does not
control R2 (see below) and leaves the
config factors.txt blank
manual – user can modify R2 and,
config factors.txt

R2

Script running the Data-Intensive
Application to obtain observations
for the performance or reliability
metric,(external executable file
provided by the user)

Number from 0 to 1 (optimal interval 0.7¸0.85).
For the auto mode it is set at the default value
(0.85)

script

Script running the Data-Intensive
Application to obtain observations
for the performance or reliability
metric,(external executable file
provided by the user)

Full path to the file location, including file name.

config factors.txt

Separate configuration file containing
the list of the parameters of the DIA
and the range in which they can vary
(min/max/mid etc.)

Each line in the file contains the information
for one input parameter in the following form
(see detailed example in the Figure 6):
Parameter name level 1 level 2 . . .

Copyright c© 2016, DICE consortium – All rights reserved 35

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

4 Integration and Validation

This section covers integration as well as validation issues for each tool. The first subsection will deal
with both ADT as well as Regression based AD and how it interacts with the overall DMon Architecture.
The second section details the Trace Checking tool and how it combines logs and checks for sequential
anomalies.

4.1 Anomaly Detection

ADT will have a closer integration with DMon than with other tools from the DICE solution. This is
mainly due to two facts. Firstly, ADT needs data on which to run anomaly detection methods. Thus it is
extremely important to have data available in a format which is usable. Second, ADT together with the
monitoring forms a lambda architecture. Each instance of ADT can have the role of batch or speed layer
while DMon has the role of a serving layer. For more details see Figure 17.

Figure 17: Anomaly detection integration with DMON.

As mentioned before the detected anomalies will be sent and indexed into DMon. All DICE actors
and tools will be able to query this special index to see/listen for detected anomalies. In this way it is
possible to create specialized ADT instances for each anomaly detection method in part. The result will
be reflected in the same index from DMon. This architecture also allows us serve the results of both the
monitoring and anomaly detection on the same endpoint (DMon).

As mentioned in section some anomaly detection methods, more precisely the ones using supervised
learning techniques, need labelled data in order to function properly. This is a fairly complicated thing to
accomplish. One solution is to label all normal data instances and all unlabelled instances are considered
anomalies. In most systems the normal data instances far outnumber the anomalous ones so labelling
them is extremely impractical.

We have decided to create a semi automated way of creating labelled data. This is accomplished
by inducing different types of anomalies during job definition and execution. A specialized tool called
dmon-gen has been implemented which allows the changing of both runtime parameters as well as plat-
form specific parameters of a Yarn, Spark job.

The tool dmon-gen has to be located on one of the VMs from the Yarn/Spark cluster. As input the
user has the ability to define a set of experiments using a JSON descriptor. An example descriptor can

Copyright c© 2016, DICE consortium – All rights reserved 36

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Listing 2: JSON job descriptor
1 {
2 ” exp1 ” :
3 [
4 {
5 ” ya rn ” : [” p i ” , ” 1 0 ” , ” 1 0 0 ”] ,
6 ” c a r d i n a l i t y ” : 1 ,
7 ” con f ” :{ ” h d f s ” :{ ”DATANODE” :
8 {” d f s d a t a n o d e d u r e s e r v e d ” : ”8455053312”}} ,
9 ” ya rn ” :{ ”NODEMANAGER” :

10 {” mapreduce am max−a t t e m p t s ” : ”2”}}}
11 }
12]
13 }

be seen in Listing 2.
First the user can define the name of the experimental run. Next, a user can define a list of both

application specific as well as platform specific settings. For example in Listing 2 we see that the there
is one yarn experiment called pi which has two parameters (10 signifies the number of maps while 100
the sample size). The cardinality setting is used to define how often the experiment is to be run.

Lastly, we have the conf settings which denote the settings based on roles for each big data service.
It is important to note that we use Cloudera CDH 5.7.x for dmon-gen so the naming conventions are the
same for our tool as with the current version of CDH 8.

It is easy to see that by using dmon-gen we are able to induce some types of anomalies in an automatic
manner and are able to correlate these with the metrics collected during a specified time-frame. In essence
labelling the data.

ADT is dependent on DMon for what type of Big Data services it can be used upon. As long as
DMon is able to collect metrics we can create training/validation datasets in order to define the types of
anomalies (point or contextual anomalies) we wish to detect.

ADT9 as well as the dmon-gen10 tool can be found at the official DICE Github Repository. These
repositories also contain the up to date documentation of the tools.

4.2 Trace Checking tool

The validation of the first version of trace checking tool that is described in this document is run
locally on a single machine and without the integration of trace checking tool in the monitoring platform
as the integration will be developed for the next release at month M24.

The goal of the validation is to show the workflow realizing the trace checking procedure in DICE.
The main steps are the following:

1. DICE-TraCT receives a user request containing a trace checking specification problem;

2. Upon the request, DICE-TraCT query the D-mon platform which replies with the log files neces-
sary to perform trace checking;

3. DICE-TraCT merges the log files as described in the previous Sec. 2.2.1 and build the formula to
be used for trace checking the logs;

4. Finally, DICE-TraCT runs a Spark job and collects the result of the trace checking analysis.

The most relevant peculiarity of the trace checking engine (TCE) employed in DICE is the distributed
procedure that TCE implements to evaluate temporal formulae on log files. TCE is implemented in

8https://www.cloudera.com/products/cloudera-manager.html
9https://github.com/dice-project/DICE-Anomaly-Detection-Tool

10https://github.com/igabriel85/dmon-experiments

Copyright c© 2016, DICE consortium – All rights reserved 37

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Spark, a general engine for large-scale data processing which is also supported in DICE as technology
to build big-data applications. Stemming from a distributed implementation, TCE takes advantage from
a distributed file system to run the trace checking procedure on a (pseudo-)distributed architecure (local
executions might be multi-threaded).

To validate DICE-TraCT, a local installation of Apache Hadoop [22] and Apache Spark [23] is first
set up. The former allows the trace checking tool to work on top of HDFS, the distributed file system
that Spark can access to store and retrieve data.

Next sections describe in detail the four steps mentioned before. The reference topology for the
validation consists of 5 nodes: two spouts, called spoutA and spoutB, and three bolts, called boltA, boltB
and boltC. The structure of the topology is not relevant to show the trace checking validation as the trace
checking procedure is run to analyze the behavior of single nodes only and the considered property is
not related to the topology graph.

Step 1

The trace checking procedure is activated by the user through the DICE-IDE. DICE-TraCT receives
in input a descriptor which defines the parameters to run trace checking for the selected topology shown
in the IDE. The descriptor is a JSON file that is built automatically through the IDE by the user who
activates the analysis of the topology. The descriptor used to validate the tool is shown in Listing 3.

Listing 3: Field ”node” of the JSON script used for validation experiment.
1 ” nodes ” : [
2 {
3 ”name ” : ” spoutA ” ,
4 ” t y p e ” : ” s p o u t ” ,
5 ” p a r a m e t e r ” : ” i d l e T i m e ” ,
6 ” timewindow ” : 3600 ,
7 ” method ” : ” ” ,
8 ” r e l a t i o n ” : ” ” ,
9 ” min ” : 10 ,

10 ”max ” : 1000
11 } ,
12 {
13 ”name ” : ” spoutB ” ,
14 ” t y p e ” : ” s p o u t ” ,
15 ” p a r a m e t e r ” : ” i d l e T i m e ” ,
16 ” timewindow ” : 3600 ,
17 ” method ” : ” ” ,
18 ” r e l a t i o n ” : ” ” ,
19 ” min ” : 0 ,
20 ”max ” : 2000
21 }

The information stored in the descriptor are the following:

• The field called “topologyname” specifies the topology name which is used by DICE-TraCT to
query the monitoring platform. This field allows DICE-TraCT to obtain all the necessary log files
to perform trace checking.

• A list of descriptors that specify, for each node, a non-functional property that the user wants to
check for a node on the logs collected from the running topology. The properties can be those
specified in the verification model like, for instance, the ratio sigma between the number of mes-
sages in input and the number of messages in output of a Storm node; or any user-defined property
which can be translated by DICE-TraCT into a trace checking instance. Each item defined by curly
brackets defines a list of data that are needed to collect the suitable set of logs from D-mon and

Copyright c© 2016, DICE consortium – All rights reserved 38

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

to define the temporal logical formula specifying the property to check. DICE-TraCT is equipped
with standard handlers which are able to manipulate predefined properties (like idleTime used later)
but allows for defining new custom handlers based on user needs.

• A list of formulae descriptors that specify user-defined logical formulae to be used for trace-
checking.

The query defined by the script in Fig. 3 contains two node descriptors (between curly brackets)
associated with spoutA and spoutB nodes. Both specifies to verify that the value of the idleTime of the
node is between the values defined with min and max values. Each descriptor also defines the duration
(in seconds) of the log to use for running trace checking. The length will be specified in the query to the
DMon platform to collect, from the Storm deployment, the most recent events occurred in last the period
of that length (currently, we assume that the length is measured from the last timestamp recorded in the
logs of the Storm application).

Step 2

Being not integrated with the monitoring platform, DICE-TraCT simulates the query to DMon
through an I/O operation on the local file system. We assume therefore that DMon provides:
• A JSON descriptor which specifies, for each node of the topology, the log file name where Storm

logs its events. As already explained before, a node can reside on different machines within many
workers; therefore, the events associated with a node might be stored on different logs. Listing 4
shows the descriptor.

• The logs of the deployed topology. In the current example, they are called w1.log, w2.log and
w3.log.

Listing 4: Json script sent by D-Mon to DICE-TraCT. Each node name is endow with the list of logs
where it appears.

1 {
2 ” topologyname ” : ” ATopology ” ,
3 ” l o g s ” : [
4 {
5 ” nodename ” : ” spoutA ” ,
6 ” l o g s ” : ”w2 . l o g ”
7 } ,
8 {
9 ” nodename ” : ” spoutB ” ,

10 ” l o g s ” : ”w1 . l o g ”
11 } ,
12 {
13 ” nodename ” : ” bo l tA ” ,
14 ” l o g s ” : ”w1 . log , w3 . l o g ”
15 } ,
16 {
17 ” nodename ” : ” b o l t B ” ,
18 ” l o g s ” : ”w3 . l o g ”
19 } ,
20 {
21 ” nodename ” : ” b o l t C ” ,
22 ” l o g s ” : ”w2 . log , w3 . l o g ”
23 }
24]
25 }

Copyright c© 2016, DICE consortium – All rights reserved 39

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Step 3

LM merges the log files to create a unique log file for each node of the topology. Each log contains all
the events generated by the thread implementing the node running on different workers. As an example,
we show a portion of w3.log which contains events of boltA, boltB and boltC and later a portion of the
merged log of boltA. Some information in the log are removed for convenience.

Listing 5: JSON script sent by D-Mon to DICE-TraCT. Each node name is endow with the list of logs
where it is appears.

1 2016−10−16T12 : 1 0 : 0 0 . 0 0 0 + 0 0 0 0 [Thread−11−b o l t B] . . . [INFO] emi t { t u p l e }
2 2016−10−16T12 : 1 0 : 0 0 . 1 9 7 + 0 0 0 0 [Thread−11−b o l t B] . . . [INFO] r e c e i v e { t u p l e }
3 2016−10−16T12 : 1 0 : 0 0 . 3 0 8 + 0 0 0 0 [Thread−11−b o l t B] . . . [INFO] emi t { t u p l e }
4 2016−10−16T12 : 1 0 : 0 0 . 4 6 2 + 0 0 0 0 [Thread−11−b o l t B] . . . [INFO] r e c e i v e { t u p l e }
5 2016−10−16T12 : 1 0 : 0 0 . 8 4 4 + 0 0 0 0 [Thread−11−b o l t B] . . . [INFO] emi t { t u p l e }
6 2016−10−16T12 : 1 0 : 0 0 . 8 5 8 + 0 0 0 0 [Thread−9−bo l tA] . . . [INFO] emi t { t u p l e }
7 2016−10−16T12 : 1 0 : 0 1 . 0 2 9 + 0 0 0 0 [Thread−11−b o l t B] . . . [INFO] r e c e i v e { t u p l e }
8 2016−10−16T12 : 1 0 : 0 1 . 2 0 2 + 0 0 0 0 [Thread−11−b o l t B] . . . [INFO] emi t { t u p l e }
9 2016−10−16T12 : 1 0 : 0 1 . 7 4 0 + 0 0 0 0 [Thread−9−bo l tA] . . . [INFO] r e c e i v e { t u p l e }

10 2016−10−16T12 : 1 0 : 0 1 . 8 3 0 + 0 0 0 0 [Thread−9−bo l tA] . . . [INFO] emi t { t u p l e }
11 2016−10−16T12 : 1 0 : 0 1 . 8 9 0 + 0 0 0 0 [Thread−12−b o l t C] . . . [INFO] emi t { t u p l e }
12 2016−10−16T12 : 1 0 : 0 1 . 8 9 9 + 0 0 0 0 [Thread−9−bo l tA] . . . [INFO] r e c e i v e { t u p l e }
13 2016−10−16T12 : 1 0 : 0 2 . 2 6 6 + 0 0 0 0 [Thread−9−bo l tA] . . . [INFO] emi t { t u p l e }
14 2016−10−16T12 : 1 0 : 0 2 . 3 3 9 + 0 0 0 0 [Thread−9−bo l tA] . . . [INFO] r e c e i v e { t u p l e }
15 2016−10−16T12 : 1 0 : 0 2 . 3 8 7 + 0 0 0 0 [Thread−12−b o l t C] . . . [INFO] r e c e i v e { t u p l e }
16 2016−10−16T12 : 1 0 : 0 2 . 6 7 9 + 0 0 0 0 [Thread−12−b o l t C] . . . [INFO] emi t { t u p l e }
17 2016−10−16T12 : 1 0 : 0 2 . 7 1 0 + 0 0 0 0 [Thread−12−b o l t C] . . . [INFO] r e c e i v e { t u p l e }
18 2016−10−16T12 : 1 0 : 0 2 . 8 8 1 + 0 0 0 0 [Thread−11−b o l t B] . . . [INFO] r e c e i v e { t u p l e }

Based on the topology descriptor shown in Listing 4, node boltA is run on two different workers that
logged events into the files w1.log and w3.log on different machines. The executors running the instances
of boltA are two and they are called Thread-9, in w1.log, and Thread-1, in w3.log. The following Listing
6 shows the result of LM and, precisely, an extract of file boltA.log which contains all the events related
to node boltA, that are labeled with the executor names Thread-1 and Thread-9 and that are ordered with
respect to their timestamps.

To implement a flexible parser of log event files, DICE-TraCT gets information on the syntactical
structure of the log lines from a configuration file that is set before running trace checking. The syntax
must conform the output format of the logger component that is used in the Storm application. The
configuration file used for the current validation is the following:

The field “regexp” defines the regular expression that must match all the input lines in the log files
that LM has to manipulate. The regular expression is defined according to the regular expression library
of Python 2.7. All the other fields have the following meaning:

• “numberOfgroups” defines the number of the parenthesized elements between round braces ap-
pearing in the regular expression;

• “valuePosition” is a list of positions defining the part of the log line that has to be stored as an event
in the merged file (in this example, number 9 refers to the executor name defined with the group
“(Thread-).” and number 11 refers to the node event defined with the group “(emit—receive)”).

• “keyPositions” is a list of positions that are used to define the timestamp of events in the merged
file. The final timestamp is defined as the concatenation of all the elements matching the positions
in the specified list.

• Finally, “nodePosition” is the position of the node name.

Copyright c© 2016, DICE consortium – All rights reserved 40

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Listing 6: Event log ready for trace checking built by LM for node boltA.
1 20161016121000858 ; t h r e a d 9 e m i t
2 20161016121001423 ; t h r e a d 1 e m i t
3 20161016121001740 ; t h r e a d 9 r e c e i v e
4 20161016121001830 ; t h r e a d 9 e m i t
5 20161016121001899 ; t h r e a d 9 r e c e i v e
6 20161016121002266 ; t h r e a d 9 e m i t
7 20161016121002339 ; t h r e a d 9 r e c e i v e
8 20161016121002513 ; t h r e a d 3 e m i t
9 20161016121002776 ; t h r e a d 1 r e c e i v e

10 20161016121003097 ; t h r e a d 9 e m i t
11 20161016121003295 ; t h r e a d 1 e m i t
12 20161016121004054 ; t h r e a d 3 r e c e i v e
13 20161016121005333 ; t h r e a d 1 r e c e i v e
14 20161016121005436 ; t h r e a d 9 r e c e i v e
15 20161016121005617 ; t h r e a d 9 e m i t
16 20161016121005800 ; t h r e a d 1 e m i t
17 20161016121005888 ; t h r e a d 9 r e c e i v e
18 20161016121006086 ; t h r e a d 9 e m i t
19 20161016121006185 ; t h r e a d 1 r e c e i v e
20 20161016121006316 ; t h r e a d 1 e m i t
21 20161016121006751 ; t h r e a d 9 r e c e i v e
22 . . .

Listing 7: Descriptor of regular expression used to parse the files.
1 {
2 ” numberOfgroups ” : 12 ,
3 ” v a l u e P o s i t i o n s ” : [9 , 1 1] ,
4 ” k e y P o s i t i o n s ” : [1 , 2 , 3 , 4 , 5 , 6 , 7] ,
5 ” n o d e P o s i t i o n ” : 10 ,
6 ” r e ge x p ” : ” (\\ d{4})−(\\d{2})−(\\d {2})T(\\ d {2}) :
7 (\\ d { 2 }) : (\ \ d {2})\\ . (\\ d {3})\\+
8 (\\ d {4}) \\ [(Thread−\\d +) − (.∗)\\] . ∗ \\ [INFO\\]
9 (emi t | r e c e i v e) (. ∗) ”

10 }
11 . . .

After the merge phase and before launching an instance of trace checking on Spark, DICE-TraCT
builds the property that TCE has to use to check the logs. DICE-TraCT reads a template file containing
the formula that has to be used to check, for the current experiment, the property called “idleTime” on
the logs of spoutA and spoutB, as required by the JSON trace checking descriptor of Listing 1. All the
template formulae that are used for (trace) checking standard predefined properties (like, for instance,
idleTime) must be available before the execution of DICE-TraCT in the folder ./template. The template
formula for idleTime used for the current validation is shown in Listing 8:

Listing 8: Template of the temporal logic formula used in the validation example.
1 −G− (emi t −> (! emi t) −U−[$a , $b] emi t)

DICE-TraCT writes in a .sol file each property related to idleTime which now contains the events
that appear in the merged log file and, instead of the markers $a and $b, the values for min and max
that are specified in the JSON trace checking descriptor. The output of this phase consists of two files
containg a Soloist formula Listing 9 is the formula related to spoutA and Listing 10 the one for spoutB.

Copyright c© 2016, DICE consortium – All rights reserved 41

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Listing 9: Temporal logic formula used in the validation example built from the template for node spoutA.
1 −G− (t h r e a d 0 e m i t −> (! t h r e a d 0 e m i t) −U− [10 ,1000] (t h r e a d 0 e m i t)) &
2 −G− (t h r e a d 8 e m i t −> (! t h r e a d 8 e m i t) −U− [10 ,1000] (t h r e a d 8 e m i t))

Listing 10: Temporal logic formula used in the validation example built from the template for node
spoutB.

1 −G− (t h r e a d 2 e m i t −> (! t h r e a d 2 e m i t) −U− [0 ,2000] (t h r e a d 2 e m i t)) &
2 −G− (t h r e a d 5 e m i t −> (! t h r e a d 5 e m i t) −U− [0 ,2000] (t h r e a d 5 e m i t))

Step 4

DICE-TraCT finally runs Spark by submitting the trace checking jobs to the local executor. Listing 11
shows the command line run by DICE-TraCT.

Listing 11: Command line to submit a spark job and execute trace checking.
1 . / b i n / spa rk−su bmi t
2 −−c l a s s i t . p o l i m i . k r s t i c . MTLMapReduce . S p a r k H i s t o r y C h e c k
3 −−m a s t e r s p a r k : / / l o c a l h o s t :7077
4 −−e x e c u t o r−memory 4g
5 −−e x e c u t o r−c o r e s 2
6 −−num−e x e c u t o r s 1
7 . . / mt lmapreduce / t a r g e t / MTLMapReduce− 0 . 0 . 1 − [. . .] . j a r
8 <d i c e t c r a t f o l d e r >/ spoutA . h i s
9 <d i c e t r a c t f o l d e r >/ i d l e T i m e s p o u t A . s o l

10 o u t p u t f i l e
11 −−r e a d e r s p a r k − l

A portion of the output on the console only related to the trace checking instance for spoutA is
provided in Figure 18. The outcome shows that the property in file idleTimespoutA.sol does not hold
for the execution currently analyzed.

Copyright c© 2016, DICE consortium – All rights reserved 42

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

Using Spark’s default log4j profile: org/apache/spark/log4j-defaults.properties
16/07/17 13:13:37 INFO SparkContext: Running Spark version 1.6.2
16/07/17 13:13:37 WARN Utils: Your hostname, lap-bersani resolves to a loopback address: 127.0.1.1;

using 192.168.0.3 instead (on interface wlp2s0)
16/07/17 13:13:37 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
16/07/17 13:13:37 INFO SecurityManager: Changing view acls to: bersani
16/07/17 13:13:37 INFO SecurityManager: Changing modify acls to: bersani
16/07/17 13:13:37 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled;

users with view permissions: Set(bersani); users with modify permissions: Set(bersani)
16/07/17 13:13:37 INFO Utils: Successfully started service ’sparkDriver’ on port 34304.
16/07/17 13:13:37 INFO Slf4jLogger: Slf4jLogger started
16/07/17 13:13:38 INFO Remoting: Starting remoting
16/07/17 13:13:38 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@192.168.0.3:44061]
16/07/17 13:13:38 INFO Utils: Successfully started service ’sparkDriverActorSystem’ on port 44061.
16/07/17 13:13:38 INFO SparkEnv: Registering MapOutputTracker
16/07/17 13:13:38 INFO SparkEnv: Registering BlockManagerMaster

...

16/07/17 13:13:40 INFO HadoopRDD: Input split: file:/home/bersani/Tools/DICE-WP4/dicestrator/merge/spoutA.his:8508+8509
16/07/17 13:13:40 INFO HadoopRDD: Input split: file:/home/bersani/Tools/DICE-WP4/dicestrator/merge/spoutA.his:0+8508

...

16/07/17 13:13:40 INFO DAGScheduler: Job 1 finished: take at SparkHistoryCheck.java:405, took 0.636121 s
==========================
Formula 1 is false
==========================
16/07/17 13:13:40 INFO SparkUI: Stopped Spark web UI at http://192.168.0.3:4040
16/07/17 13:13:40 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
16/07/17 13:13:40 INFO MemoryStore: MemoryStore cleared
16/07/17 13:13:40 INFO BlockManager: BlockManager stopped
16/07/17 13:13:40 INFO BlockManagerMaster: BlockManagerMaster stopped
16/07/17 13:13:40 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
16/07/17 13:13:40 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
16/07/17 13:13:40 INFO RemoteActorRefProvider$RemotingTerminator:

Remote daemon shut down; proceeding with flushing remote transports.
16/07/17 13:13:40 INFO SparkContext: Successfully stopped SparkContext
16/07/17 13:13:40 INFO ShutdownHookManager: Shutdown hook called
16/07/17 13:13:40 INFO ShutdownHookManager: Deleting directory /tmp/spark-c7956eea-31b8-459e-b46e-6c28a69bf31f
16/07/17 13:13:40 INFO RemoteActorRefProvider$RemotingTerminator: Remoting shut down.
16/07/17 13:13:40 INFO ShutdownHookManager: Deleting directory

/tmp/spark-c7956eea-31b8-459e-b46e-6c28a69bf31f/httpd-a5954a3c-ecf6-4707-bf53-781d28671cda

Figure 18: Snapshot of the execution of spark-submit for node spoutA.

Copyright c© 2016, DICE consortium – All rights reserved 43

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

5 Conclusions

5.1 Summary

This deliverable presented the initial versions of ADTas well as DICE-TraCT. The goal of the first pro-
totypes (M18) of these tools to enable the definition and reporting of anomalies present in monitored
performance and quality related data from Big Data technologies. This is directly related to milestone
MS3 ”DICE Tool Initial release”. Currently it has been tested on two frameworks. First the DICE-TraCT
tool has been used on Storm worker logs while the Regression based AD has been tested on system met-
rics as well as run time metrics for Apache Spark.

Furthermore we have defined a connector between the anomaly detection tool and the DICE mon-
itoring platform. This connector can be used both to retrieve datasets and to send detected anomalies
to the Monitoring platform. It is important to note that at this time (M18) this integration is not fully
functional, data sets can be created however anomalies are not transmitted. For M24, milestone MS4
”Integrated Framework First Release” these functionalities will be finalized.

5.2 Further work

Both the Trace Checking and Regression based AD are at the moment standalone tools. They do not
use the querying and anomaly signalling components from ADT. Future versions will have a tighter
integration between them. In particular the Regression based AD will be integrated as one of the anomaly
detection methods in ADT. The Trace Checking tool requires log traces in order to function so integration
will most likely be in the form of anomaly signalling.

The current version of ADT was meant as a prototype which enables the definition of training/vali-
dating data as well several anomaly types. In M18 we did not define examples of contextual anomalies
nor the format in which these are indexed in DMon. This will be detailed in future deliverable.

Copyright c© 2016, DICE consortium – All rights reserved 44

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

References

[1] Install matlab generated standalone application. http://www.mathworks.com/
products/compiler/. Accessed: 2016-07-29.

[2] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[3] Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srdan Krstic, and Pierluigi San Pietro.
Smt-based checking of SOLOIST over sparse traces. In Fundamental Approaches to Software
Engineering - 17th International Conference, FASE 2014, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings, pages 276–290, 2014.

[4] Andreas Brunnert, Andre van Hoorn, Felix Willnecker, Alexandru Danciu, Wilhelm Hasselbring,
Christoph Heger, Nikolas Herbst, Pooyan Jamshidi, Reiner Jung, Joakim von Kistowski, Anne
Koziolek, Johannes Kroß, Simon Spinner, Christian Vögele, Jürgen Walter, and Alexander Wert.
Performance-oriented devops: A research agenda. Technical Report SPEC-RG-2015-01, SPEC
Research Group — DevOps Performance Working Group, Standard Performance Evaluation Cor-
poration (SPEC), August 2015.

[5] Emmanuel Candes and Terence Tao. The dantzig selector: Statistical estimation when p is much
larger than n. Ann. Statist., 35(6):2313–2351, 12 2007.

[6] Giuliano Casale, Pooyan Jamshidi, Tatiana Ustinova, Gabriel Iuhasz, Matej Artač, Tadej Borovšak,
and Matic Pajnič. Dice delivery tools – initial version.

[7] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM Com-
put. Surv., 41(3):15:1–15:58, July 2009.

[8] Matthias Gander, Michael Felderer, Basel Katt, Adrian Tolbaru, Ruth Breu, and Alessandro Mos-
chitti. Anomaly detection in the cloud: Detecting security incidents via machine learning. In
Alessandro Moschitti and Barbara Plank, editors, Trustworthy Eternal Systems via Evolving Soft-
ware, Data and Knowledge, volume 379 of Communications in Computer and Information Science,
pages 103–116. Springer Berlin Heidelberg, 2013.

[9] Pooyan Jamshidi Marc Gil Christophe Joubert Alberto Romeu José Merseguer Raquel Trillo Mat-
teo Giovanni Rossi Elisabetta Di Nitto Damian Andrew Tamburri Danilo Ardagna José Vilar Si-
mona Bernardi Matej Artač Madalina Erascu Daniel Pop Gabriel Iuhasz Youssef Ridene Josuah
Aron Craig Sheridan Darren Whigham Giuliano Casale, Tatiana Ustinova. D1.2 dice requirement
specification.

[10] Robert L. Grossman, Stuart Bailey, Ashok Ramu, Balinder Malhi, Philip Hallstrom, Ivan Pulleyn,
and Xiao Qin. The management and mining of multiple predictive models using the predictive
modeling markup language. Information & Software Technology, 41(9):589–595, 1999.

[11] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Wit-
ten. The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18, November
2009.

Copyright c© 2016, DICE consortium – All rights reserved 45

Deliverable 4.3. Quality anomaly detection and trace checking tools - Initial version.

[12] Jerome H. Friedman Ildiko E. Frank. A statistical view of some chemometrics regression tools.
Technometrics, 35(2):109–135, 1993.

[13] Gabriel Iuhasz and Daniel Pop. Monitoring and data warehousing tools – initial version. DICE EU
H2020 Project Deliverable, 2016.

[14] AI Khuri, JA Cornell, and SS Sablani. Response surfaces: Designs and analyses, revised and
expanded. Drying Technology, 15(5):1657–1658, 1997.

[15] Francesco Marconi Marcello M. Bersani, Madalina Erascu. D3.5 dice verification tools initial
version.

[16] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
The MIT Press, 2012.

[17] Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Comput. Netw., 51(12):3448–3470, August 2007.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[19] Hesam Sagha, Hamidreza Bayati, José Del R. Millán, and Ricardo Chavarriaga. On-line anomaly
detection and resilience in classifier ensembles. Pattern Recogn. Lett., 34(15):1916–1927, Novem-
ber 2013.

[20] Erich Schubert, Alexander Koos, Tobias Emrich, Andreas Züfle, Klaus Arthur Schmid, and Arthur
Zimek. A framework for clustering uncertain data. PVLDB, 8(12):1976–1979, 2015.

[21] Robert Tibshirani. Regression shrinkage and selection via the lasso: a retrospective. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 73(3):273–282, 2011.

[22] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.

[23] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Spark:
Cluster computing with working sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

Copyright c© 2016, DICE consortium – All rights reserved 46

