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Executive summary

The current deliverable is the first of the two deliverables (D3.8, and D3.9) reporting the status of devel-
opment activities related to T3.4 that is the realization of DICE Optimization Tools (D-SPACE4Cloud).
Furthermore, in this document, we present a first reference to install and use the prototype tool to be
developed in the framework of this task.

D-SPACE4Cloud allows the architect to assess the performance and minimize the deployment cost
of data-intensive applications against user-defined properties, in particular meeting deadlines under dif-
ferent levels of cluster congestion. More precisely, D-SPACE4Cloud takes 1. a DICE annotated model
in form of DDSM, 2. the Service Level Agreement (SLA) to be validated, and 3. a description of the
execution environment (list of providers, list of virtual machine (VM) types or a description of the com-
putational power available in house, application expected profiles) and uses them to generate (via DICE
transformation tools) a suitable performance model that is then evaluated and optimized. The optimiza-
tion consists in finding the less expensive cluster configuration able to guarantee the application to be
completed before a user defined deadline. The architect can analyze the application behavior under dif-
ferent conditions; she can, e.g., study pros and cons of public clouds versus private cloud in terms of
execution costs.

D-SPACE4Cloud is a distributed software system able to exploit multi-core architecture to execute
the optimization in parallel. The outcome of the process is a cluster configuration with the selection of the
cloud provider (in case the public cloud scenario is considered), VM types and number and costs. Costs
are obtained considering cloud providers’ own pricing models or electricity costs (in case the private
cloud scenario is analyzed).

D-SPACE4Cloud encompasses different modules that communicate each other by means of REST-
ful interfaces or SSH following the Service Oriented Architecture (SOA) paradigm. In particular, it
features a presentation and orchestration service (referred to as frontend) and an horizontally scalable
optimization service (referred to as backend), which makes use of third-party services as RDBMS, sim-
ulators and mathematical solvers.
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Glossary

DAG Directed acyclic graph
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DIA Data-Intensive Application
DPIM DICE Platform Independent Model
DTSM DICE Platform and Technology Specific Model
DDSM DICE Deployment Specific Model
IDE Integrated Development Environment
JSON JavaScript Object Notation
M2M Model to Model transformation
QA Quality Assurance
UML Unified Modelling Language
QN Queueing network
SPN Stochastic Petri net
SWN Stochastic Well-formed net
MINLP Mixed integer nonlinear programming
QoS Quality of Service
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1 Introduction

The crux of the DICE EU project is the definition of a quality-driven environment for developing
Data-Intensive Applications (DIAs) grounded atop Big Data technologies hosted in private or public
clouds. DICE offers a UML profile, a workflow, and a set of tools for QoS-aware DIAs development.
The end user of the DICE methodology is called to design an application using the DICE profile in a
model-driven fashion, selecting the appropriate technologies. The outcome of this process is a model
that, eventually, undergoes a verification and an optimization phase in order to avoid design and secu-
rity/privacy flaws, as well as to reduce execution costs for given quality guarantees. The DICE Opti-
mization Tool (codename D-SPACE4Cloud) is, within the frame of DICE project, the component in
charge of the design-time optimization process; in a nutshell the rationale of this tool is to support the
application designer in identifying the most cost-effective cluster configuration that fulfills some desired
quality requirements, expressed in terms of job1 deadlines.

This document describes the initial version of D-SPACE4Cloud, which is developed in the frame-
work of WP3 Task 3.4 and is published as an open source tool in the repository of Polimi on GitHub.2, 3

1.1 Objectives
The goal of WP3 is to develop a quality analysis tool-chain that will be used to guide the early

design stages of DIAs and the evolution of the quality of the application once operational data becomes
available. The outcomes of the work-package are a set of tools devoted to:

1. simulation-based reliability and efficiency assessment;

2. formal verification of safety properties related to the sequence of events and states that the appli-
cation undergoes;

3. analysis techniques capable of reasoning about the resources and architecture that DIAs require to
meet given quality levels expressed in terms of service-level agreements (SLA).

WP3 defines model-to-model (M2M) transformations that accept as input the DDSM design models
defined in tasks T2.1 (Data-aware abstractions) and T2.2 (Data-aware quality annotation) and produce
as outputs the analysis models used by the quality verification and optimization tools.

Task T3.4 focuses on the development of the optimization tool to tackle to the resource provisioning
problem for DIAs in the specific context of private and public clouds (see Section 4.2 for more details
about the problem).

The outcome of tasks T2.1 and T2.2 are DIA topologies, which consist of two parts, defined in the
DDSM annotated diagrams: (i) the graph-based representation of the application under development and
(ii) a set of non-functional requirements that complement the application model and allow the designer
to perform the optimization under different levels of concurrency.4 Such diagram represent the ground
basis for the research carried out in T3.4.

This deliverable reports on the research activity carried out in task T3.4, whose goal is to develop
and implement a set of tools supporting the identification of optimized DIA deployments. Such tools are
based on well-known results from the combinatorial optimization field. Nonetheless, given the inherent
complexity of the problem faced, the design and implementation of an efficient and effective technique
represents a challenge in itself and an advance for the research field. Therefore, in this deliverable
some space is dedicated to describing a local search based algorithm, hybridized with exact methods and
simulation. As a matter of fact, simulation models (developed within T3.2) play a role of paramount
importance in the optimization process as it is able to estimate with a certain accuracy the execution time
of the DIA at design time under different levels of concurrency (see deliverable D3.1, Transformations to

1 Here we consider MapReduce jobs, future work will also take into account Spark, where all the computation that takes
place between two subsequent actions constitutes a job.

2https://github.com/deib-polimi/diceH2020-space4cloudsWS
3https://github.com/deib-polimi/diceH2020-space4cloud-webGUI
4With concurrency level we mean the number of users accessing the system at the same time.
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analysis models). Furthermore, this document provides an architectural and behavioral description of the
initial version of the optimization tool, along with the required inputs and the expected outputs. Finally, a
validation of the quality of the solution in terms of deadline fulfillment is obtained through performance
models, namely, Stocastic well-formed networks (SWNs) and Queueing networks (QNs).

The contributions of Task T3.4 are:

1. the definition of the resource provisioning problem in terms of shared Cloud cluster for concurrent
DIAs

2. the evaluation of the quality of the solution through QNs and SWNs

3. the design and implementation of state-of-the-art algorithm enabling the user to reason about dif-
ferent cluster configuration and DIA topologies.

1.2 Motivation
Originally, companies and other entities set up and provisioned Big Data clusters in house exploiting

internal infrastructures; Hadoop was the principal technology on the market and it was installed chiefly
on bare metal. Hadoop allowed the execution of one DIA at a time assigning all the available resources to
that application. In these circumstances, the execution time only depended on the particular dataset. Soon
the scenario changed, to improve utilization, resources were virtualized and the cluster shared among
different heterogeneous DIAs. Further, we witnessed a tendency to outsource the resource management
and cluster provisioning to the cloud with the aim at overcoming the limits of local facilities, while
avoiding large upfront investments and maintenance costs. In this scenario, the problem of predicting and
analyzing the performance of a certain DIA turns out to be a real challenge. Indeed, DIAs performance
depends on other application running on the cluster at the same time.

Within the DICE framework, the ARCHITECT is the figure in charge of ensuring the application
under development is compliant with some user-defined non-functional requirements. To do that, she has
to consider many factors: the application topology, cluster composition and size, leasing costs of virtual
resources, computational power in house, and expected concurrency levels and contention. Certainly,
this is far from being a trivial task and it calls for an enabling tool, better if integrated with the design
environment. The rationale is, in effect, to provide a tool that is able to assist the ARCHITECT in the
definition of expected costs and execution times in realistic scenarios.

DICE adopts simulation to study DIAs specified by means of DTSM and DDSM diagrams. The user
specifies non-functional requirements in terms of maximum execution time (hereinafter called deadline)
for the application along with a set of suitable providers and VM types for each of them. In case of
private cloud a description of the available hardware and VMs must be provided as well.

The optimization process is designed to be carried out in an agile way. More precisely, DICE opti-
mization tool fosters an approach whereby cluster optimization can be performed through the DICE IDE
that hides the complexity of the underlying models and engines. The IDE allows the user to easily load
the required model, launch the optimization algorithm, and taking track of the experiments (running or
completed). This eliminates the need for the user to be an expert of software profiling and performance
prediction, and simulation, techniques on which D-SPACE4Cloud is grounded.

1.3 Structure of the document
The structure of this deliverable is as follows. Section 2 recaps the requirements related to the Opti-
mization Tools. Section 3 introduced D-SPACE4Cloud and shows its interaction with the DICE frame-
work. Section 4 provides some context about DIAs, it introduces the resource provisioning problem
and presents the underlying performance models used to simulate DIA behavior under different levels
of concurrency. Section 5 discusses the implementation of D-SPACE4Cloud, with particular focus on
the backend service. Section 6 shows some practical experiments to validate the approach and discusses

Copyright © 2016, DICE consortium –– All rights reserved 9
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future achievements. Finally, Appendix A provides the installation and usage manual, Appendix B pro-
vides further details on the mathematical formulation of the optimization problem, whereas Appendix C
provides documentation specifically addressed to developers.

Copyright © 2016, DICE consortium –– All rights reserved 10
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2 Requirements and usage scenarios

Deliverable D1.2 [1, 2] presents the requirements analysis for the DICE project. The outcome of the
analysis is a consolidated list of requirements and the list of use cases that define the goals of the project.

This section summarizes, for Task T3.4, these requirements and use case scenarios and explains how
they have been fulfilled in the current D-SPACE4Cloud prototype.

2.1 Tools and actors
As specified in D1.2, the data-aware quality analysis aims at assessing quality requirements for DIAs
and at offering an optimized deployment configuration for the application. The quality assessment elab-
orates DIA UML diagrams, which include the definition of the application functionalities and suitable
annotations, including those for optimization, and employs the following tools:

• Transformation Tools
• Simulation Tools
• Verification Tools
• Optimization Tools D-SPACE4Cloud, which takes as input some partially specified DDSM mod-

els produced by the application designers, and determines the minimum cost configuration such
that the SLA associated with the DIA is met.

In the rest of this document, we focus on the tools related to Task T3.4, i.e., D-SPACE4Cloud.
According to deliverable D1.2 the relevant stakeholders are the following:

• ARCHITECT — The designer of DIAs uses D-SPACE4Cloud through the DICE IDE.
• Optimization Tool (D-SPACE4Cloud) — The tool loads the high-level description of the DIA

as well as a description of the execution environment (e.g., profiled VMs, available hardware,
list of cloud providers, etc.). This input is used to generate a mathematical model representing
the problem to be solved by means of a suitable mixed integer nonlinear programming (MINLP)
solver. The so-obtained solution is further optimized through an iterative local search process.

2.2 Use cases and requirements
The requirements elicitation of D1.2 considers a single use case that concerns D-SPACE4Cloud, namely
UC3.2. This use case can be summarized as follows [2, p. 104]:

ID: UC3.3
Title: Optimization of the deployment from a DDSM DICE annotated UML model with

reliability and performance constraints
Priority: REQUIRED
Actors: ARCHITECT OPTIMIZATION_TOOLS, SIMULATION_TOOLS
Pre-conditions: There exists a DDSM level UML annotated model (where the number and

possibly type of VMs are not specified). Cost are stored in the OPTIMIZA-
TION_TOOLS internal resource DB

Post-conditions: The ARCHITECT starts from a partial DDSM model and reasons about the op-
timal resource allocation considering the trade off cost/requirements. Multiple
technology are analyzed by providing multiple DDSMs throught what-if scenar-
ios.

Copyright © 2016, DICE consortium –– All rights reserved 11
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The requirements listed in [1] are the following:

ID: R3.8
Title: Cost/quality balance
Priority of accomplishment: Must have
Description: The OPTIMIZATION_TOOLS will minimize deployment costs try-

ing to fulfill reliability and performance metrics (e.g., map-reduce
jobs execution deadlines).

ID: R3.10
Title: SLA specification and compliance
Priority of accomplishment: Must have
Description: OPTIMIZATION_TOOLS MUST permit users to check their out-

puts against SLA’s included in UML model annotations. If an SLA
is violated the tools will inform the user.

ID: R3.11
Title: Optimization timeout
Priority of accomplishment: Could have
Description: The OPTIMIZATION_TOOLS MUST explore the design space and

should accept the specification of a timeout and return results grace-
fully when this timeout is expired

Copyright © 2016, DICE consortium –– All rights reserved 12
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3 Optimization tool overview

D-SPACE4Cloud (DICE Optimization Tool) is the optimization tool integrated in the DICE IDE. It
consists of two main components: frontend and a backend. Details on the overall architecture and on
the internals of each component can be found in Section 5. Suffice to say that the frontend exposes a
graphical interface designed to facilitate the interaction with the end user while the backend implements
a strategy aimed at optimizing semi-defined DTSM diagrams.

DDSM is only semi-definite as the ARCHITECT has still to decide VMs types and numbers and
evaluate performance and costs. D-SPACE4Cloud is the tool appointed to help the user in such an
important task. In the current version of the tool the DDSM model5 is not the only input to be provided
to the optimization tool; it goes along with a description of the execution environment (list of providers,
list of VM types or a description of the computational power available in house, application expected
profiles). The reader is referred to Section C.4 for a complete description of the input files and a example
of their format.

In the final version of the tool, the model-to-model (M2M) transformation mechanism implemented
within the DICE IDE will be exploited to generate a suitable performance model (SWN or QN) to be used
to predict the expected execution time of the DIA; at the time of writing the performance is evaluated
via a set of models embedded in the tool. Such modes, as said, are used to estimate the execution
time of the application at hand in meaningful scenarios. For this reason D-SPACE4Cloud requires that
suitable solvers are installed and accessible. In particular, the initial version of the tool is shipped with
connectors for two particular third-party tool, i.e., JMT [3] and GreatSPN [4], which can handle QN and
SWN models, respectively. Refer to Section 5.3 for a detailed comparison of the alternatives.

The set of third-party tool needed to execute D-SPACE4Cloud includes also AMPL [5], a tool for
modeling and handling optimization problems in form of mathematical models. In a nutshell, AMPL
provides modeling tools and connectors to the most important mathematical solvers (as Cplex, Gurobi,
Knitro, CBC, etc); a MINLP solver is also required to run D-SPACE4Cloud. For the experiments
reported in this document we made use of Knitro solver. Future releases of the optimization tool will
rely on full open source optimization modelling tools and solvers, such as CMPL [6] or GLPK [7].

The sequence diagram depicted in Figure 1 describes the interactions occurring among the com-
ponent of DICE optimization tool ecosystem. Through the IDE and the graphical interface provided
by D-SPACE4Cloud the ARCHITECT uploads the DICE DDSM model along with the other models
describing the scenario under study. Several experiments can be submitted; the frontend component
manages the runs, carrying out them in parallel where possible. The frontend component, in effect,
searches for an available backend service instance and oversees the various phases of the optimization.
In particular, the first phase consists in generating an initial solution in a fast and effective way. To do
this, the backend generates a MINLP model for each job in the considered scenario, for each provider,
and VM type, solves them by means of an external mathematical solver and selects the cheapest con-
figuration able to satisfy the deadlines associated with jobs. This phase is designed to spawn swiftly an
initial solution that could hopefully set the successive local search phase in a promising position within
the space of possible solution (also referred to as Solution Space). This solution is then evaluated by
means of simulation in order to get a more precise (but much slower) estimate of the expected execution
times of the jobs considered in the experiment.

Finally, the local search takes the just evaluated solution as a starting point for the optimization
process, which essentially consists in increasing /decreasing and changing the VM type for each job.
This task is executed in parallel where possible, considering job deadlines and available resources (in
case of private cloud) as constraints. Parallelism is particularly important as each solution spawned
during the optimization is evaluated via simulation and this is a time-consuming task. Therefore, in
order to make the DICE optimization tool usable we focused on increasing the level of parallelism as
much as possible.

5Note that at the time of writing DDSMs are still under definition.
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Figure 1: D-SPACE4Cloud: Sequence Diagram
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3.1 Dependencies on other components of DICE IDE
As seen, DICE Optimization tools heavily rely on transformation and simulation tools to achieve the goal
(optimization of DDSM diagrams). DICE Transformation tools, as a matter of fact, generate from the
UML DICE-profiled model, via suitable M2M transformations, performance models; DICE Simulation
tools, instead, are in charge of validating such models and orchestrating external tools in order to evaluate
them in terms of performance and reliability.

It is important to reiterate that, while the final version of the optimization tools will use the APIs
exposed by the transformation and simulation tools to generate an initial performance model, which will
be modified during the local search phase, and evaluate new candidate solutions, the version presented
in this deliverable employs its own (fixed) performance models and implements its own connectors to
communicate with external model solvers (for more details see Section 5.2).

3.2 Usage scenarios
The aim of this section is to introduce the reader to D-SPACE4Cloud usage scenarios. Each scenario
corresponds to the analysis of a particular version of the resource allocation problem with its own goal,
constraints and resolution methods.

Two main analyses can be conducted using D-SPACE4Cloud:

• Public Cloud Analysis - In this scenario the ARCHITECT wants to analyze the case in which the
whole Big Data cluster is provisioned on a public Cloud. The first consequence of this choice is
that the virtualized resources (i.e., VMs) that can be used to provision the cluster can be considered
practically infinite for our purposes. This also means that, under the common assumption that
rejecting a job has a much higher cost than the VM leasing costs, it will not apply any job rejection
policy in this case. Consequently, the concurrency level for each job (see Section 4) can be set
arbitrarily high being always (theoretically) possible to provision a cluster able to handle the load.
In this scenario, the ARCHITECT may want to know which machine type to select and how many
of them in order to execute the application with a certain level of concurrency, meaning considering
several similar applications running at the same time in the cluster. She might also like to know
which cloud provider is cheaper to choose, considering that providers have also different pricing
models. For this reason, she has to feed the tool with the DDSM diagram but also with a list of
providers, and a list of VM types for each provider, and a profile for each machine. A profile
is a set of information able to describe the performance behavior of the application for a certain
virtualized resource. Typical pieces of information in the profile are: number of maps, number of
reducers, average map time, average reduce time, etc. For more information refer to Section 4.2

• Private Cloud Analysis - In this case the cluster is provisioned in house. This choice in some
sense changes radically the problem. In fact, the resources usable to constitute a cluster are gen-
erally limited by the hardware available. Therefore, the resource provisioning problem has to
contemplate the possibility to exhaust the computational capacity (memory and CPUs) before be-
ing able to provision a cluster capable of satisfying a certain concurrency level and deadlines. In
such a situation the ARCHITECT could consider two sub-scenarios:

– Allowing job rejection, that is consider the possibility to reject a certain number of jobs
(lowering consequently the concurrency level). In this case, since the overall capacity is
limited, the system reacts to the excess of load by rejecting jobs; this has an impact on
the execution costs as it seems fair to believe that pecuniary penalties can be associate to
rejection. In is worth to notice, however, that in case of job rejection it is always possible to
generate a feasible solution for the problem.

– Denying job rejection, that is imposing that a certain concurrency level must be respected.
This translates into a strong constraint for the problem that may not be satisfiable with the
resources at hand.
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Another aspect not to be underestimated is that data-centers are made of physical machines each
with a certain amount of memory and cores; considering the sum of the memory and CPUs as the
capacity of the data-center is an approximation that in some cases can lead to generating theoreti-
cally feasible provisioning that are actually infeasible. DICE Optimization tool considers also this
case and the ARCHITECT can provide a description of the physical machines to generate a more
precise solution (this feature will be actually introduced in the next release). Finally, for in house
cluster it can be difficult to identify the right cost function, as it can depend on many factors. In the
development agenda of the optimization tool a simplified cost model including electricity costs and
eventually acquisition costs is considered. Note that the initial version of the D-SPACE4Cloud
implements only the public cloud deployment scenario.
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4 Optimizing the Deployment of Data-intensive applications

This section introduces the reader to the problem of optimizing the deployment of DIAs at design time. In
particular, Section 4.1 presents Hadoop 2.x as the reference Big Data ecosystem for the problem; useful
concepts to understand the problem are given there. Section 4.2 represents the core of this Section; it
presents in detail the resource provisioning optimization problem for the deployment of Big Data cluster
in private or public clouds. Finally, Section 4.3 addresses the issue of estimating the completion time of
a DIA and QN models are presented.

4.1 Reference technology models
The current version of D-SPACE4Cloud supports the optimization of Hadoop deployments. Spark and
Storm will be supported by the final release of the optimization tool. The Hadoop framework [8] allows
for parallel and distributed computing on large scale clusters of commodity hardware, focusing on batch
processing of huge datasets. Furthermore, it guarantees beneficial properties of fault-tolerance, scalabil-
ity, and automatic parallelization and distribution of computation across the cluster, at the expense of a
simple yet rigid programming paradigm. MapReduce jobs are composed of two main phases, namely,
Map and Reduce. The former takes as input unstructured data from the Hadoop Distributed File System
(HDFS), filtering them and performing a preliminary elaboration, according to the instructions in a user-
defined function. The intermediate results are returned as key-value pairs, grouped by key in the Shuffle
phase and distributed across the network, so as to provide each node taking part in the Reduce phase with
all the values associated with a set of keys. In the end, every reduce node applies a second user-defined
function to complete data elaboration and outputs to HDFS.

In more recent versions, Hadoop 2.x allocates resources relying on a distributed resource manage-
ment framework: Yet Another Resource Negotiator (YARN). This module features different entities to
take care of resources at various scales. A first class of components, the Node Managers, handles re-
sources on each computational node, partitioning them as containers. The central Resource Manager,
instead, has the role of providing resources for the execution of jobs, based on a configurable scheduling
policy. However, all the duties dealing with specific jobs are delegated to Application Masters. When a
job is submitted for execution, the Resource Manager bootstraps a container for the corresponding Ap-
plication Master, then the latter requests a number of containers to perform the computation. According
to the current state of the cluster and the scheduling policy, the Resource Manager allows the Application
Master to exploit containers.

It is possible to supply a custom scheduler for the Resource Manager to use; nonetheless the Hadoop
project provides three ready general purpose alternatives: the FIFO, Fair, and Capacity schedulers.
The FIFO scheduler is very basic and follows the scheduling policy adopted by Hadoop 1, with a single
global queue served on a first-in/first-out basis. This could lead to job starvation and prevent from sharing
clusters, since it does not allow to enforce quotas for different users. The Fair scheduler addresses these
shortcomings by guaranteeing a fair share of resources to every user so as to prevent job starvation and
allowing to create several queues, in order to easily control resource allocation at different granularity
levels. Eventually, the Capacity scheduler boasts features similar to those provided by the Fair one,
except that leaf queues are managed on a FIFO basis rather than fair share. In the following, we will
focus on modeling clusters adopting the Capacity scheduler.

4.2 Modeling assumptions
In this section we aim at introducing a general overview of the addressed optimization problem. We
envision the following scenario, wherein a company needs to set up a cluster to carry out efficiently a set
of DIAs. A Hadoop 2.x cluster featuring the YARN Capacity Scheduler and running on a public cloud
Infrastructure as a Service (IaaS) is considered a fitting technological solution for the requirements of
the company. Different classes gather applications that show a similar behavior. The goal is to meet
Quality of Service (QoS) requirements, specifically a prearranged concurrency level (i.e., the number of
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concurrent users) bound to complete within a deadline. In order to obtain this objective, it is possible to
act upon the cluster composition and size, in terms of type and number of VMs.

Moreover, YARN is configured in a way that all the available cores can be dynamically assigned to
either Map or Reduce tasks. Finally, in order to limit the risk of data corruption and according to the
practices suggested by major cloud vendors [9, 10], the datasets reside on an external storage infrastruc-
ture [11, 12] accessible at quasi-constant time.

As, in general, IaaS providers feature a limited, but possibly large, catalog of VM configurations
that differ in features and cost, making the right design-time decision poses a challenge that can lead
to important savings throughout the cluster life-cycle. In this scenario, we consider a pricing model
derived from Amazon EC2 [13]. The provider offers: 1) reserved VMs, for which it adopts a one-
time payment policy that grants access to a certain number of them for the contract duration, either
at a strongly discounted hourly fee or without further variable costs; and 2) on-demand VMs, which
customers can buy at a higher price to compensate peaks in the incoming workload, without long term
commitment. In order to obtain the most cost-effective configuration, we rely on reserved VMs for the
bulk of computational needs and complement them with on-demand instances. Once determined the VM
type and the required number of instances, it is easy to compute the overall hourly cluster cost of the
configuration.

Reducing the operating costs of the cluster by using efficiently the leased virtual resources is in the
interest of the company. This translates into a Resource Provisioning problem where the renting out
costs must be minimized subject to the fulfillment of QoS requirements, namely, observing per-class
concurrency levels and meeting prearranged deadlines. In the following we assume that the system can
be represented as a closed model [14], i.e., that users work interactively with the system and run another
job after an exponentially distributed think time.

In order to rigorously model and solve this problem, it is crucial to predict with fair confidence the
execution times of each application class under different conditions: level of concurrency, cluster size,
and composition. Following the approach presented in [15] it is possible to derive from the Hadoop logs
a job profile, that is a concise behavior characterization for each class. In particular, every job class is
characterized by the overall number of Map and Reduce tasks, plus several parameters that quantify task
durations and depend on the chosen VM type as well. For a more detailed overview of the considered
parameters (which are already included in the DICE profile, see deliverable D2.1 Design and quality
abstractions - Initial version) the reader is referred to Appendix B.

Note that, the execution of jobs on a suboptimal VM type might give rise to performance disrup-
tions, hence it is critical to avoid assigning tasks to the wrong instance type. Indeed, YARN allows
for specifying Node Labels and partitioning nodes in the cluster according to them, thus enforcing this
constraint. Our configuration statically splits different VM types with this mechanism and adopts within
each partition either a further static separation in classes or a work conserving scheduling mode, where
idle resources can be assigned to jobs requiring the same instance type. The assumption on the schedul-
ing policy governing the exploitation of idle resources is not critical: it only affects the interpretation
of results, where the former case leads to sharp predictions, while in the latter the outcomes of the op-
timization algorithm are upper bounds, with possible performance improvements due to a better cluster
utilization.

In light of the above, we can say that the ultimate goal of the proposed approach is to determine, for
all the classes, the optimal VM type, number, and pricing model, such that the sum of costs is minimized,
while the deadlines and concurrency levels are met.

4.3 Performance models
Within D-SPACE4Cloud, we make use of both a SWN and a QN model to estimate average MapReduce
job completion times, assuming that the YARN Capacity Scheduler is used. In the following, we do not
make any assumptions on the configuration of the Capacity Scheduler, according to the considerations
presented in Section 4.2. The model can be applied to both statically partitioned and work conserving
mode clusters, but care should be taken in the interpretation of results. In the former case, our model
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provides the mean completion time for every job class. On the other hand, if the scheduler is config-
ured in work conserving mode, then the completion time we obtain is an approximation due to possible
performance gains when resources are exploited by other classes instead of lying idle. Exploiting the
node labeling mechanism, we enforce that jobs run on their optimal VM type in any case, so as to avoid
cases where some tasks running on improper nodes become bottlenecks and disrupt both the lender and
borrower class performance.

SWNs are described in DICE Deliverable D3.1. Details about the QN model can be found in Ap-
pendix D.
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5 DICE Optimization Tool Architecture

D-SPACE4Cloud follows the Service Oriented Architecture (SOA) pattern. Its architecture, in fact,
encompasses a set of services that can be roughly aggregated in three tiers. The first tier implements the
frontend of the optimization tool in form of a standalone Java web service exposing a HTML/CSS based
GUI. Further, the frontend is in charge of managing several concurrent optimization runs keeping track
of the launched experiments. The fronted is already integrated within the DICE IDE. More details about
the frontend are provided in Section 5.1.

The frontend interacts with one or more D-SPACE4Cloud backend instances; each instance is a
RESTful Java web service in charge of solving the resource provisioning problem introduced in Sec-
tion 4.2. Since the optimization process is a time-demanding operation, the backend has been designed
in order to scale horizontally whereas the frontend service is able to balance the load between the backend
services. The backend component is described in Section 5.2.

Finally, the third tier (described in Section 5.3) encompasses a set of third-party utilities providing
different services. In particular, the backend makes use of a relational database (through JPA) to store
and retrieve information (e.g., name, memory, number of cores, speed of VM publicly offered by the
considered cloud providers). This database is an extension of the resources database developed within
the MODAClouds project [16]. Other services in this layer are a mathematical non linear solver, a SWN
or QN simulator managed via SSH connection.

D-SPACE4Cloud
Backend

D-SPACE4Cloud
Backend

D-SPACE4Cloud
Backend

D-SPACE4Cloud
Frontend

JPA

MINLP Solver

RDBMS

Figure 2: D-SPACE4Cloud three-tier architecture

5.1 Frontend service
The fist task carried out by the frontend service is to provide the user with a simple and intuitive graphical
interface to interact with the optimization engine. In particular, it allows to: i) upload the input files defin-
ing the problem instance to optimize, ii) launch, stop and cancel the optimization process, iii) download
the results of the optimization process. Screenshots of D-SPACE4Cloud web interface are proposed in
Figures 3, 4 and 5. In particular, Figure 3 is the principal interface with the user; we can see four square
regions:

• upper-left corner—this square leads to a selection menu for setting up a new optimization consid-
ering the scenario of private cloud (see Section 3.2, which will be available with the next release).
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Figure 3: D-SPACE4Cloud web GUI: main page

Figure 4 shows some details of the analysis that the tool is preparing to run; in particular, the user
can decide to execute the experiment with or without Admission Control. The successive form
is presented in Figure 5, where the user can select the appropriate files and upload them to the
frontend service.

• lower-left corner—results for the private cloud scenario can be accessed through this square (also
this feature will be available with the next release).

• upper-right corner—this square enables the end user to run analyses considering the public cloud
scenario.

• lower-right corner—results for the public cloud scenario can be accessed through this square. Fig-
ure 6 shows an example of the D-SPACE4Cloud page that displays running, aborted and finished
experiments, allowing, in the latter case, the user to download them.

The other duty of the Frontend service is to manage the experiments running them in parallel whether
it is possible. In order carry out this task it implements a component called SimulationsOptManager
(see Figure 7) that handles the list of active Backend services, load-balancing the experiments on them
according to a FIFO policy.

It is important to notice that, the Backend service embeds a FSM (presented in Section C.2) that can
be controlled via a REST interface. The SimulationsOptManager has to know the details of this machine
and manages it to perform the optimization. The interested reader is referred to Section C.3 for the
activity diagram of the optimization process, which includes all the REST interactions required to carry
out the optimization.

5.2 Backend service
Figure 8 depicts the main elements of the D-SPACE4Cloud backend that comes into play in the opti-
mization scenario. The tool is a RESTful web service that takes in input a description of the considered
problem, consisting in a set of applications, a set of suitable VMs for each application along with the
respective job profiles for each machine, and QoS constraints expressed in terms of deadlines for each
considered application. Specifically, all these parameters are collected in a JSON file provided as input
to the tool.

The main components of the backend are the Initial Solution Builder, the Parallel Local Search
Optimizer and the Evaluator. Such elements contribute to the identification of an optimized solution for
the resource provisioning problem. More details on each component are reported in the following.
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Figure 4: D-SPACE4Cloud web GUI: Private Cloud Analysis selection menu

Figure 5: D-SPACE4Cloud web GUI: input form

Figure 6: D-SPACE4Cloud web GUI: results page
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Figure 7: D-SPACE4Cloud Component Diagram
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Figure 8: D-SPACE4Cloud backend architecture

5.2.1 Initial Solution Builder
The Initial Solution Builder generates a starting solution for the problem using a MINLP formulation
presented in Appendix B. For more details the reader is referred to [17]. It must be highlighted, at
this point, that the quality of the returned solution can still be improved: this is because the MINLP
relies on an approximate representation of the Application-Cluster liaison; for this reason the QN model
presented in the previous section (or the SWN described in the DICE Deliverable D3.1, Transformations
to analysis models) is exploited to get a more accurate execution time estimate. The increased accuracy
leaves room for further cost reduction; however, since simulation is time consuming, the space of possible
cluster configurations has to be explored in the most efficient way, avoiding to evaluate unpromising
configurations.

5.2.2 Parallel Local Search Optimizer
In the light of such considerations, a heuristic approach has been adopted and a component called Par-
allel Local Search Optimizer has been devised. Internally, it implements a parallel hill climbing (HC)
technique to optimize the number of replicas of the assigned resource for each application; the goal is
to find the minimum number of resources to fulfill the QoS requirements. This procedure is applied
independently, and in parallel, on all application classes and terminates when a further reduction in the
number of replicas would lead to an infeasible solution. As soon as all the classes reach convergence,
it is possible to retrieve from the D-SPACE4Cloud tool a JSON file listing the results of the overall
optimization procedure. In particular, HC is a local-search-based procedure that operates on the current
solution performing a change (more often referred to as move) in the structure of the solution in such a
way that the newly generated solution could possibly show an improved objective value. If the move is
successful it is applied again on the new solution and the process is repeated until no further improve-
ment is possible. The HC algorithm stops when a local optimum is found; however, if the objective to
minimize is convex, HC is able to find the global optimum. This is the case of the considered cost func-
tion, which is linear in the number of VMs in the cluster: refer to Appendix B for more details. Hence,
every feasible instance of the inner problem can be heuristically solved to optimality via HC.

Algorithm 1 is reported here for clarity purposes. The initial solution S, obtained from the MINLP
solution, is evaluated using the QN or the SWN model and each one of its parts is optimized separately
and in parallel (line 2). If the partial solution Si is infeasible the size of its cluster is increased by one
unit (line 5) until it reaches feasibility. Otherwise, the procedure attempts to decrease the cost function
by reducing the cluster size (line 10). Finally, it is worth pointing out that every time the total number of
machines in a cluster is incremented or decremented the best mix of pricing models (i.e., the number of
on demand and reserved VMs) is computed so as to minimize the renting out costs of that configuration.
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Algorithm 1 Hill climbing algorithm
Require: S = {Si ∣ i ∈ C}

1: Evaluate (S)
2: for all i ∈ C do
3: if Si is infeasible then
4: while Si is infeasible do
5: IncrementCluster (Si)
6: Evaluate (Si)
7: end while
8: else
9: while Si is feasible do

10: DecrementCluster (Si)
11: Evaluate (Si)
12: end while
13: IncrementCluster (Si)
14: end if
15: end for
16: return S

Parallel for

Pursuit of feasibility

Cost optimization

5.2.3 Evaluator
In D-SPACE4Cloud the Evaluator component carries out the important task of mapping the candidate
solutions onto suitable performance models, submit them to the related third-part solver and retrieve
the outcomes, namely the mean execution times for each class of jobs. Furthermore, it is in charge of
checking the feasibility of evaluated solutions and calculate the related actual cluster leasing costs.

In order to accomplish this task in the most efficient way it implements an abstraction layer and a set
of ssh connectors for different solvers (at the time of writing connectors for JMT [3] and GreatSPN [4]
are available) that allow to evaluate each solution in parallel (that the mean execution time is estimated
for each class of jobs in a parallel and independent way).

Finally, the evaluator embeds a cache system to speed up the evaluation process. As a matter of
fact, since a solution is evaluated in parallel and since the local search optimizer may generate similar
solutions (i.e., solutions that shares part of their structure), the cache system retains past evaluation and
returns them, if needed, in a transparent way. An overall acceleration of the optimization process is the
net result of this caching mechanism.

5.3 Third-party services
D-SPACE4Cloud relies on a set of third-party services that are accessed (with the exception of the
Resource Database) via SSH connection. Such services are briefly described below:

Resource Database is an open source relational database in MySQL format and D-SPACE4Cloud ac-
cesses it via JPA. As said, it is an extension of the Resource database realized within MODAClouds
EU project and it contains information about several cloud providers. The typical information that
can be found and are relevant for the DICE Optimization tool are: name of the provider, virtual
resources offered by a certain provider, the memory size and CPU speed for each virtual resource,
and the pricing model applied.

MINLP Solver and AMPL AMPL is the acronym for “A Modeling Language for Mathematical Pro-
gramming” [18]: developed at Bell Laboratories, it is a proprietary algebraic modeling language
for linear and nonlinear optimization problems, in discrete or continuous variables. AMPL does
not solve problems directly; instead, it communicates with another mathematical software called
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solver, which is responsible for finding the best solution for the problem. One of the main advan-
tages of AMPL is its syntax: it is very similar to the mathematical optimization problems notation,
which makes it very readable and simple to understand. It is available for the most important 32-
and 64-bit platforms including Linux, Mac OS X and Windows. There are several solvers available
on the market, each developed to solve a single or more problems classes. One of the supported
solver is Knitro [19], a tool specifically designed to tackle nonlinear optimization and proven to be
effective on a wide range of problems. Internally, it implements several algorithms as the interior
and the active-set method along with a set of techniques for the automatic selection of parameters.

GreatSPN and JMT GreatSPN [4] is the tool selected in DICE to solve SWN performance models.
In fact, it is able to validate, and evaluate the performance of distributed systems once they have
been expressed by means of a specific formal representation; in particular it can solve generalized
stochastic Petri nets (GSPNs) and SWNs. State-of-the-art algorithms are implemented within
GreatSPN.

Java Modelling Tools (JMT) [3] is a framework developed jointly by Politecnico di Milano and
Imperial College London. It is released under the GNU General Public License. Its goal si to offer
a comprehensive framework for performance evaluation via analytical and simulation techniques.
JMT includes tools for 1. simulating QN models; 2. performing exact and approximate mean
value analyses for QN models; 3. performing asymptotic analysis and identifying bottlenecks of
QN models; 4. simulating Markov chains.

GreatSPN and JMT can be used alternatively for the evaluation of the solutions obtained via an-
alytical models. JMT boasts shorter simulation times and the replayer feature, through which it
is possible to provide service times from measurement data instead of parameterizing a random
distribution. On the other hand, GreatSPN can express more general scheduling policies, at the
expense of longer simulation times and a narrower range of available distributions.

For further details on GreatSPN and JMT, see DICE Deliverable D1.1 State of the art analysis.
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6 Validation

In this section we show the results of several experiments performed to validate the proposed approach.
All these experiments have been performed on two Ubuntu 14.04 VMs hosted on an Intel Xeon E5530
2.40 GHz equipped server. The first VM ran the D-SPACE4Cloud web service and Knitro 10.0 [20], a
solver for the mathematical programming language AMPL [5], which was used to solve the optimization
problem presented in Appendix B (see [17] for further details), determining an initial solution to our
HC algorithm. The second one, instead, ran JMT 0.9.3 [3], a collection of free software performance
evaluation programs including a QN simulator and GreatSPN 2.0 [4], which is a performance evaluation
tool for GSPNs and SWNs.

Section 6.1 presents the experimental setup and the design of experiments whereas Section 6.2 re-
ports on results of validation experiments of the SWN and QN performance models. Finally, Section 6.3
demonstrates that the optimization approach described in Section 5 is capable of catching realistic be-
haviors for the system under analysis.

6.1 Experimental Setup and Design of Experiments
In order to obtain job profiles of realistic DIAs, we chose a set of SQL queries, shown in Figure 9, from
the industry standard benchmark TPC-DS [21]. We then generated synthetic data compliant with the
specifications and executed the queries on Apache Hive [22]. All the selected queries get translated into
MapReduce jobs. Notice that we generated data at several scale factors ranging from 250 GB to 1 TB.
Since profiles collect statistical information about jobs, we repeated the profiling runs at least twenty
times per query. Properly parsing the logs allows to extract all the parameters composing every query
profile, for example average and maximum task execution times, number of tasks, etc. The numbers of
map and reduce tasks varied, respectively, in the ranges (4,1560) and (1,1009). These logs are also used
to choose a proper distribution with right parameters for the map transition in the QN or SWN models.

The parallel execution of multiple tasks within higher level jobs is usually modeled in the QN lit-
erature with the concept of fork-join. The performance metrics of such networks must be computed by
considering the Markov Chain underlying the QN, due to the lack of a known closed-form solution for
fork-join networks with more than two queues. However, such approaches are not fit for Hadoop systems,
since the state space grows exponentially with the number of tasks [23, 24]. In particular, [25] proposed
a good approximation technique, but it is based on exponentially distributed service times, which is not
the case for Hadoop deployments. Our initial experiments showed that mapper and reducer times follow
general distributions, which can be approximated by Markovian arrival processes or in some cases Er-
lang [26]: in particular, we used Erlang-2 for R1, Erlang-4 for R2 and R3, and Erlang-5 for R4 and R5.
Further details about distributions can be found in deliverable D4.5 Iterative quality enhancement tools -
Initial version.

Profiling has been performed on Amazon EC2, by considering m4.xlarge instances, and on PICO,6

the Big Data cluster offered by CINECA, the Italian supercomputing center. The cluster rented on EC2
was composed of 30 computational nodes, for a total of 120 vCPUs hosting 240 containers, whilst on
PICO we used up to 120 cores configured to host one container per core. In the first case every container
had 2 GB RAM and in the second 6 GB. In the end, we recorded the different VM types characteristics.

6.2 Performance Models Validation
To start off with, we show results for the validation of the SWN and QN models. We feed them with
parameters evaluated on the real systems we took into account and compare the measured performance
metrics with the ones obtained via simulation. Specifically, we consider as a quality index the accuracy
on the prediction of response times, defined as follows:

ϑ = τ − T
T

(1)

6http://www.hpc.cineca.it/hardware/pico
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select avg(ws_quantity),
avg(ws_ext_sales_price),
avg(ws_ext_wholesale_cost),
sum(ws_ext_wholesale_cost)

from web_sales
where (web_sales.ws_sales_price between 100.00 and 150.00) or (web_sales.ws_net_profit
between 100 and 200)
group by ws_web_page_sk
limit 100;

(a) R1

select inv_item_sk,inv_warehouse_sk
from inventory where inv_quantity_on_hand > 10
group by inv_item_sk,inv_warehouse_sk
having sum(inv_quantity_on_hand)>20
limit 100;

(b) R2

select avg(ss_quantity), avg(ss_net_profit)
from store_sales
where ss_quantity > 10 and ss_net_profit > 0
group by ss_store_sk
having avg(ss_quantity) > 20
limit 100;

(c) R3

select cs_item_sk, avg(cs_quantity) as aq
from catalog_sales
where cs_quantity > 2
group by cs_item_sk;

(d) R4

select inv_warehouse_sk, sum(inv_quantity_on_hand)
from inventory
group by inv_warehouse_sk
having sum(inv_quantity_on_hand) > 5
limit 100;

(e) R5

Figure 9: Queries
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Table 1: QN and SWN models accuracy
Query Users Cores Scale [GB] nM nR T [ms] τQN [ms] ϑQN [%] τSWN [ms] ϑSWN [%]

R1 1 240 250 500 1 55410 50753.34 −8.40 50629.58 −8.63
R2 1 240 250 65 5 36881 27495.31 −25.45 37976.82 2.97
R3 1 240 250 750 1 76806 77260.03 0.60 83317.27 8.48
R4 1 240 250 524 384 92197 78573.96 −14.72 89426.51 −3.01
R1 1 60 500 287 300 378127 411940.93 8.94 330149.74 −12.69
R3 1 100 500 757 793 401827 524759.36 30.59 507758.68 26.36
R3 1 120 750 1148 1009 661214 759230.77 14.82 698276.75 5.61
R4 1 60 750 868 910 808490 844700.85 4.48 806366.51 −0.26
R3 1 80 1000 1560 1009 1019973 1053829.78 −1.00 1020294.84 0.03
R5 1 80 1000 64 68 39206 36598.32 −6.65 38796.47 −1.04
R1 3 20 250 144 151 1002160 1038951.05 3.67 909217.89 −9.27
R1 5 20 250 144 151 1736949 1215490.20 −30.02 1428894.40 −17.74
R2 3 20 250 4 4 95403 112050.45 17.45 99219.94 4.00
R2 5 20 250 4 4 145646 97619.46 −32.97 88683.10 3.09
R1 5 40 250 144 151 636694 660241.29 3.70 613577.53 −3.63
R2 3 40 250 4 4 86023 105785.41 22.97 119712.30 −17.81
R2 5 40 250 4 4 90674 103173.38 13.78 117582.82 29.68

where τ is the simulated response time, whilst T is the average measured one. Such a definition allows
not only to quantify the relative error on response times, but also to identify cases where the predicted
time is smaller than the actual one, thus leading to possible deadline misses. Indeed, if ϑ < 0 then the
prediction is not conservative.

Among these experiments, we considered both single user scenarios, where one query has been
run repeatedly on dedicated cluster, interleaving a 10 s average think time between completions and
subsequent submissions, and multiple user scenarios, with several users concurrently interacting with
the cluster in a similar way.

Table 1 shows the results of the QN and SWN models validation. For all the experiments we report
the number of concurrent users, the overall cores available in the cluster, the dataset scale factor, and
the total number of map and reduce tasks, plus the above mentioned metric. In the worst case, the
relative error can reach up to 32.97%, which is in line with the expected accuracy in the performance
prediction field [14]. Moreover, the SWN model achieves a higher accuracy, with the average relative
error decreasing from the 14.13% of QNs down to 9.08%. For these experiments, we considered both
single user scenarios, repeatedly running the same query on a dedicated cluster with Zi = 10 s, and
multiple users scenarios.

6.3 Scenario-based Experiments
In this section we show that the optimization approach described in Section 5 is capable of catching
realistic behaviors for the system under analysis. We test this property with a set of runs where we fix all
the problem parameters but one and verify that the solutions follow an intuitive evolution.

The main axes governing performance in Hadoop clusters hosted on public Clouds are the level of
concurrency and the deadlines. In the first case, increasing the number of concurrent users and fixing all
the remaining parameters, we expect a need for more VMs to support the rising workload, thus leading
to an increase of renting out costs. On the other hand, if at fixed parameters we tighten the deadlines,
again we should observe increased costs: the system will require a higher parallelism to shrink response
times, hence more computational nodes to support it.

For the sake of clarity, we performed single-class experiments: considering only one class per ex-
periment allows for an easier interpretation of the results. Figures 10, 11 and 12 report the solutions
obtained with the 250 GB dataset profiles. The average running time for these experiments is about two
hours. All the mentioned figures show the per hour cost plotted against decreasing deadlines in ms for
both the real VM types considered: CINECA is the 20-core node available on PICO, whilst m4.xlarge
is the 4-core instance rented on Amazon AWS. In Figures 10 and 11 the expected cost increase due to
tightening deadlines is apparent for both query R1 and R3, considering 10 concurrent users. Further, in
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both cases it is cheaper to provision a Cloud cluster consisting of the smaller Amazon-offered instances,
independently of the deadlines. It is then interesting to observe that R1 shows a different behavior if the
required concurrency level increases. Figure 12 shows that, as the deadlines become tighter and tighter,
it is possible to identify a region where executing the workload on larger VMs becomes more economic.
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Figure 10: Query R1, 10 concurrent users
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Figure 11: Query R3, 10 concurrent users
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Figure 12: Query R1, 20 concurrent users
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7 Conclusions and future works

In this section we provide a wrap-up of what has been accomplished so far with the development of the
DICE Optimization framework.

The main achievements of this deliverable in relation to the initial requirements for the tool are shown
in Table 2. The primary focus of our activities was on developing architectures and algorithms for the
optimization on Map-Reduce based DIAs (R3.8). As a side activity fast-to-solve QN models have been
devised and validated. We implemented the DICE Optimization tool as an independent distributed, and
web-based software system; intermediate json files and embedded performance models have been used
since DDSM diagrams and M2M APIs are currently under completion.

Currently our tool can be used as a standalone application and provides a graphical interface to
launch optimization experiment in batch and in parallel exploiting a SOA-based architecture and hiding
the complexity of third-party solvers/simulators.

Requirement ID Description Coverage To do

R3.8 Cost/quality balance 60 %

Spark and Storm cases must be
considered: complete Hadoop and
start working on them at M24,
finalize at M30

R3.10
SLA specification and
compliance 80 % Integration with the IDE (M30)

R3.11 Optimization timeout 0 % To be done

Table 2: Requirement coverage at month 18.

7.1 Further work
Starting from the requirements listed in Table 2, the following items provide an overview of the next

issues to be addressed within Task T3.4 and of the forthcoming work that will be carried out until M36.
R3.8. In the next periods new algorithms and models will be proposed to assess and optimize the devel-

opment of Spark and Storm applications. The Backend service will be modified leaving its general
architecture unchanged; nonetheless, the initial solution generation process and the local search
must be adjusted to consider the peculiarities of those technologies.

R3.10. SLA details are specified by the ARCHITECT using the DICE profile within the DICE IDE.
Currently there is no mechanism that transform DICE profile, and in particular the SLA, to D-
SPACE4Cloud internal format and vice versa. We will address this issue with the help of the team
developing the IDE.

R3.11. Currently, the DICE simulation tools do not provide suitable APIs to set timeouts for external
tools. This has impeded the implementation of the optimization timeout in DICE Optimization
tool. However, we are preparing the software in order to make the implementation of such feature
as painless as possible once it will be available at the DICE Simulation tools.

Copyright © 2016, DICE consortium –– All rights reserved 32



Deliverable 3.8 DICE optimization tools — Initial version

References

[1] The DICE Consortium. Requirement Specification. Tech. rep. European Union’s Horizon 2020
research and innovation programme, 2015. URL: http://wp.doc.ic.ac.uk/dice-
h2020/wp- content/uploads/sites/75/2015/08/D1.2_Requirement-
specification.pdf.

[2] The DICE Consortium. Requirement Specification — Companion Document. Tech. rep. European
Union’s Horizon 2020 research and innovation programme, 2015. URL: http://wp.doc.
ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_
Requirement-specification_Companion.pdf.

[3] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. “JMT: Performance Engineering Tools for
System Modeling”. In: SIGMETRICS Perform. Eval. Rev. 36.4 (2009), pp. 10–15. ISSN: 0163-
5999. DOI: 10.1145/1530873.1530877.

[4] Soheib Baarir et al. “The GreatSPN Tool: Recent Enhancements”. In: ACM SIGMETRICS Perfor-
mance Evaluation Review 36.4 (2009), pp. 4–9.

[5] AMPL. URL: http://www.ampl.com/ (visited on 03/09/2016).

[6] CMPL 1.11.0. URL: http://www.coliop.org (visited on 07/19/2016).

[7] GLPK (GNU Linear Programming Kit). URL: https://www.gnu.org/software/glpk/
(visited on 07/19/2016).

[8] Apache Hadoop. URL: http://hadoop.apache.org (visited on 11/17/2015).

[9] Amazon Elastic MapReduce. URL: https://aws.amazon.com/elasticmapreduce/
(visited on 08/30/2015).

[10] Microsoft HDInsight. URL: http://azure.microsoft.com/en- us/services/
hdinsight/ (visited on 08/30/2015).

[11] Amazon Simple Storage Service. URL: https://aws.amazon.com/s3/ (visited on 09/17/2015).

[12] Microsoft Azure Storage. URL: http://azure.microsoft.com/en-us/services/
storage/ (visited on 09/17/2015).

[13] Amazon EC2 Pricing. URL: http://aws.amazon.com/ec2/pricing/ (visited on
07/16/2015).

[14] Edward D. Lazowska et al. Quantitative System Performance. Computer System Analysis Using
Queueing Network Models. Prentice-Hall, 1984. URL: http://homes.cs.washington.
edu/~lazowska/qsp/ (visited on 04/07/2015).

[15] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. “ARIA: Automatic Resource Infer-
ence and Allocation for MapReduce Environments”. In: Proceedings of the Eighth International
Conference on Autonomic Computing. June 2011.

[16] Danilo Ardagna et al. Prediction and Cost Assessment Tool—Final version. Tech. rep. 2015. URL:
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_
D5.4.3_PredictionAndCostAssessmentToolFinalVersion.pdf.

[17] Marzieh Malekimajd et al. “Optimal Map Reduce Job Capacity Allocation in Cloud Systems”.
In: SIGMETRICS Perform. Eval. Rev. 42.4 (June 2015), pp. 51–61. ISSN: 0163-5999. DOI: 10.
1145/2788402.2788410.

[18] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling Language for Math-
ematical Programming. 2nd ed. Cengage Learning, 2002. ISBN: 0534388094.

[19] Richard H Byrd, Jorge Nocedal, and Richard A Waltz. “Knitro: An Integrated Package for Non-
linear Optimization”. In: Energy. Vol. 83. 2006, pp. 35–59. ISBN: 978-0-387-30065-8. DOI: 10.
1007/0-387-30065-1_4. arXiv: arXiv:1011.1669v3. URL: http://www.ziena.
com/papers/integratedpackage.pdf$%5Cbackslash$nhttp://link.springer.
com/10.1007/0-387-30065-1%7B%5C_%7D4.

Copyright © 2016, DICE consortium –– All rights reserved 33

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification_Companion.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification_Companion.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-specification_Companion.pdf
http://dx.doi.org/10.1145/1530873.1530877
http://www.ampl.com/
http://www.coliop.org
https://www.gnu.org/software/glpk/
http://hadoop.apache.org
https://aws.amazon.com/elasticmapreduce/
http://azure.microsoft.com/en-us/services/hdinsight/
http://azure.microsoft.com/en-us/services/hdinsight/
https://aws.amazon.com/s3/
http://azure.microsoft.com/en-us/services/storage/
http://azure.microsoft.com/en-us/services/storage/
http://aws.amazon.com/ec2/pricing/
http://homes.cs.washington.edu/~lazowska/qsp/
http://homes.cs.washington.edu/~lazowska/qsp/
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D5.4.3_PredictionAndCostAssessmentToolFinalVersion.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D5.4.3_PredictionAndCostAssessmentToolFinalVersion.pdf
http://dx.doi.org/10.1145/2788402.2788410
http://dx.doi.org/10.1145/2788402.2788410
http://dx.doi.org/10.1007/0-387-30065-1_4
http://dx.doi.org/10.1007/0-387-30065-1_4
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.ziena.com/papers/integratedpackage.pdf$%5Cbackslash$nhttp://link.springer.com/10.1007/0-387-30065-1%7B%5C_%7D4
http://www.ziena.com/papers/integratedpackage.pdf$%5Cbackslash$nhttp://link.springer.com/10.1007/0-387-30065-1%7B%5C_%7D4
http://www.ziena.com/papers/integratedpackage.pdf$%5Cbackslash$nhttp://link.springer.com/10.1007/0-387-30065-1%7B%5C_%7D4


Deliverable 3.8 DICE optimization tools — Initial version

[20] Artelys Knitro. URL: http://www.artelys.com/en/optimization-tools/knitro
(visited on 03/09/2016).

[21] TPC-DS Benchmark. URL: http://www.tpc.org/tpcds/ (visited on 03/09/2016).

[22] Apache Hive. URL: https://hive.apache.org (visited on 03/09/2016).

[23] Wesley W. Chu, Chi-Man Sit, and Kin K. Leung. “Task Response Time for Real-Time Distributed
Systems with Resource Contentions”. In: IEEE Trans. Softw. Eng. 17.10 (), pp. 1076–1092. ISSN:
0098-5589. DOI: 10.1109/32.99195.

[24] V. W. Mak and S. F. Lundstrom. “Predicting Performance of Parallel Computations”. In: IEEE
Trans. Parallel Distrib. Syst. 1.3 (July 1990), pp. 257–270. ISSN: 1045-9219. DOI: 10.1109/
71.80155.

[25] Randolf D. Nelson and Asser N. Tantawi. “Approximate Analysis of Fork/Join Synchronization
in Parallel Queues”. In: IEEE Trans. Computers 37.6 (1988), pp. 739–743. DOI: 10.1109/12.
2213.

[26] The DICE Consortium. Design and Quality Abstractions — Initial Version. Tech. rep. European
Union’s Horizon 2020 research and innovation programme, 2015. URL: http://wp.doc.
ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_
Design-and-quality-abstractions-Initial-version.pdf.

[27] Marzieh Malekimajd et al. “Optimal Capacity Allocation for Executing MapReduce Jobs in Cloud
Systems”. In: Proceedings of the 16th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing. (Timisoara, Romania). 2014, pp. 385–392.

[28] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990. ISBN: 0716710455.

Copyright © 2016, DICE consortium –– All rights reserved 34

http://www.artelys.com/en/optimization-tools/knitro
http://www.tpc.org/tpcds/
https://hive.apache.org
http://dx.doi.org/10.1109/32.99195
http://dx.doi.org/10.1109/71.80155
http://dx.doi.org/10.1109/71.80155
http://dx.doi.org/10.1109/12.2213
http://dx.doi.org/10.1109/12.2213
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-abstractions-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-abstractions-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D2.1_Design-and-quality-abstractions-Initial-version.pdf


Deliverable 3.8 DICE optimization tools — Initial version

Listing 1: Example back end properties file
spring.profiles.active = test
file-management.deletion-policy = delete
solver.type = QNSolver
server.port = 8081

minlp.address = your.minlp.server.org
minlp.username = username
minlp.port = 22
minlp.remote-work-dir = /home/username/AMPL
minlp.ampl-directory = ampl
minlp.solver-path = knitroampl
minlp.known-hosts = ${HOME}/.ssh/known_hosts
minlp.private-key-file = ${HOME}/.ssh/id_rsa
minlp.force-clean = false

SPN.address = your.greatspn.server.org
SPN.username = username
SPN.port = 22
SPN.solver-path = swn_ord_sim
SPN.remote-work-dir = /home/username/GreatSPN
SPN.accuracy = 10
SPN.known-hosts = ${HOME}/.ssh/known_hosts
SPN.private-key-file = ${HOME}/.ssh/id_rsa
SPN.force-clean = false

QN.address = your.jmt.server.org
QN.username = username
QN.port = 22
QN.model = class-switch
QN.solver-path = /home/username/JavaModellingTools/JMT.jar
QN.remote-work-dir = /home/username/JMT
QN.accuracy = 10
QN.significance = 0.05
QN.known-hosts = ${HOME}/.ssh/known_hosts
QN.private-key-file = ${HOME}/.ssh/id_rsa
QN.force-clean = false
QN.max-duration = 7200

s4c.parallel = true

logging.file = log.txt

A Installation and Usage Manual

This appendix provides a user guide for the deployment and usage of D-SPACE4Cloud. Currently we
do not provide precompiled binary packages, hence Maven and a Java 8 JDK need to be installed.

The first step is to download the back end.7 To compile it, move to the root of the downloaded
repository and run mvn package. Under target/ you will find the relocatable jar file. Create a
folder to host the web service, copy the jar file, and add a property file, see Listing 1. As soon as your
configuration is in place, you can launch the back end with java -jar <filename.jar>. Most
likely, you should consider using nohup, GNU Screen, or similar software, in order to have the web
service survive your session. Repeat these steps to obtain a compiled archive of the web front end.8 An
example properties file is shown in Listing 2.

You should bear in mind that the solver paths in the back end configuration should be either command
names available in the remote system PATH or absolute paths to the solver executables. Moreover, the
connection with solvers and simulators is established via SSH, hence you should provide an address and
port where the remote SSH daemon listens, the path to your local known_hosts file, the remote user
name, and the path to an authorized private key file. In the end, the accuracy and significance
properties can be used to tune the stopping criterion observed by the solvers.

The ports listed in the front end launcher.ports property must be those configured in the back
7https://github.com/deib-polimi/diceH2020-space4cloudsWS
8https://github.com/deib-polimi/diceH2020-space4cloud-webGUI

Copyright © 2016, DICE consortium –– All rights reserved 35

https://github.com/deib-polimi/diceH2020-space4cloudsWS
https://github.com/deib-polimi/diceH2020-space4cloud-webGUI


Deliverable 3.8 DICE optimization tools — Initial version

Listing 2: Example front end properties file
launcher.instance-dir = instances
launcher.txt-dir = instances
launcher.sol-instance-dir = solInstances
launcher.result-dir = results
launcher.address = your.back.end.server.org
launcher.ports = 8081,8082
server.port = ${port:8080}

logging.file = logLauncher.txt

spring.mail.username = name.surname@gmail.com
spring.mail.password = clear-text-password
spring.mail.host = smtp.gmail.com
spring.mail.port = 587

email.enabled = true
email.recipients = name.surname@gmail.com,your.boss@gmail.com

end files as server.port. Currently you can use multiple back ends at once, provided they are de-
ployed on the same server. In addition, it is possible to configure the front end to send a notification email
to a list of recipients when major events occur, for instance when a batch of optimizations completes.

Both the back and the front end have a configurable deletion policy for debugging purposes. The
default setting for the file-management.deletion-policy property is delete, meaning that
every temporary file gets deleted as soon as it is not needed anymore. The other two possible values are
delete-on-exit, with files that persist until the application closes, and keep-files, which never
deletes any temporary.
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B Mathematical Formulation for the Resource Provisioning problem

In this section we summarize the main concepts introduced in Section 4.2 and we present the notation
required to formulate the optimization of the deployment configuration as an optimization problem.

We envision the following scenario, wherein a company needs to set up a cluster to carry out effi-
ciently a set of interactive MapReduce jobs. Different classes C = {i ∣ i = 1, . . . , n} gather MapReduce
jobs that show a similar behavior.

A Hadoop 2.x cluster featuring the YARN Capacity Scheduler and running on a public Cloud IaaS
is considered. The cluster composition and size, in terms of type and number of VMs, must be decided
in such a way that, for every application class i, Hi jobs are guaranteed to execute concurrently and
complete before a prearranged deadline Di.

Moreover, YARN is configured in a way that all available cores can be dynamically assigned to either
Map or Reduce tasks. Finally, in order to limit the risk of data corruption and according to the practices
suggested by major Cloud vendors [9, 10], the datasets reside on an external storage infrastructure [11,
12] accessible at quasi-constant time.

As, in general, IaaS (IaaS) providers feature a limited, but possibly large, catalog of VM configu-
rations V = {j ∣ j = 1, . . . ,m} that differ in capacity (CPU speed, number of cores, available memory,
etc.) and cost, making the right design-time decision poses a challenge that can lead to important savings
throughout the cluster life-cycle. We denote with τi the VM type j used to support jobs of class i and
with νi the number of VMs of such a kind allocated to class i. In this scenario, we consider a pricing
model derived from Amazon EC2 [13]. The provider offers: 1) reserved VMs, for which it adopts a
one-time payment policy that grants access to a certain number of them for the contract duration; and
2) on-demand VMs, that customers can buy at an higher price to compensate peaks in the incoming
workload. In order to obtain the most cost-effective configuration, we rely on reserved VMs (ri) for the
bulk of computational needs and complement them with on-demand VMs (di). Being ν the total number
of VMs leased, it can be expressed as: νi = ri + di. Let δτi be the unit cost for on-demand VMs of type
τi, whilst πτi is the effective hourly cost for one reserved VM: it is the unit upfront payment normalized
over the contract duration. Overall, the cluster hourly renting out costs can be calculated as follows:

cost =∑
i∈C
(δτidi + πτiri) (2)

Reducing the operating costs of the cluster by using efficiently the leased virtual resources is in the
interest of the company. This translates into a Resource Provisioning problem where the renting out costs
must be minimized subject to the fulfillment of QoS requirements, namelyHi per-class concurrency level
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given certain deadlines Di. In the following we assume that the system supports Hi users for each class
and that users work interactively with the system and run another job after a think time exponentially
distributed with mean Zi, i.e., the system is represented as a closed model [14].

In order to rigorously model and solve this problem, it is crucial to predict with fair confidence the
execution times of each application class under different conditions: level of concurrency, cluster size,
and composition. Following the approach presented in [15] it is possible to derive from the Hadoop logs
a job profile, that is a concise behavior characterization for each class. Following the notation brought
forth in [15, 27], given a certain VM of type j, the job profile Pij for application class i aggregates the
following information: 1) nMi and nRi , respectively the total number of Map and Reduce tasks per job;
2)Mmax

ij , Rmaxij , Smax1,ij , and Smaxtyp,ij , the maximum duration of a single Map, Reduce, and Shuffle task
(notice that the first Shuffle wave of a given job is distinguished from all the subsequent ones); 3)Mavg

ij ,
Ravgij , and Savgtyp,ij , i.e., the average duration of Map, Reduce, and Shuffle tasks, respectively.

Given the amount and type of resources allocated, the concurrency level, and the job profile, the
estimated execution time can generically be expressed as in (3):

Ti = T (Pi,τi , νi;Hi, Zi) , ∀i ∈ C. (3)

What is worthwhile to note is that the previous formula represents a general relation describing either
closed form results, as those presented in [27], or the average execution times derived via simulation, the
approach adopted in this deliverable. Since the execution of jobs on a suboptimal VM type might give
rise to performance disruptions, it is critical to avoid assigning tasks belonging to class i to the wrong
VM type j ≠ τi. Indeed, YARN allows for specifying Node Labels and partitioning nodes in the cluster
according to these labels, then it is possible to enforce this separation. Our configuration statically
splits different VM types with this mechanism and adopts within each partition either a further static
separation in classes or a work conserving scheduling mode, where idle resources can be assigned to
jobs requiring the same VM type. The assumption on the scheduling policy governing the exploitation
of idle resources is not critical: it only affects the interpretation of results, where the former case leads
to sharp predictions, while in the latter the outcomes of the optimization algorithm are upper bounds,
with possible performance improvements due to a better cluster utilization. Equations (3) can be used to
formulate the deadline constraints as:

Ti ≤Di, ∀i ∈ C. (4)

In light of the above, we can say that the ultimate goal of the proposed approach is to determine the
optimal VM type selection τi and number and pricing models of VMs νi = ri + di for each class i such
that the sum of costs is minimized, while the deadlines and concurrency levels are met.

The reader is referred to Figure 13 for a graphical overview of the main elements of the considered
resource provisioning problem. Furthermore, in Table 3 a complete list of the parameters used in the
models presented in the next sections is reported, whilst Table 4 summarizes the decision variables.

In the following we present the optimization model and techniques exploited by the D-SPACE4Cloud
tool in order to determine the optimal VM mix given the profiles characterizing the applications under
study and the possible Cloud provider to host the virtual cluster.

Basic building blocks for the optimization tool are the models of the system under study. First of all,
we need a quick, although rough, method to estimate completion times and operational costs: to this end,
we exploit a mathematical programming formulation. In this way, it is possible to swiftly explore several
possible configurations and point out the most cost-effective among the feasible ones. Afterwards, the
required resource configuration can be fine-tuned using more accurate, even if more time consuming and
computationally demanding simulations, reaching a precise prediction of the expected response time.

According to the previous considerations, the first step in the optimization procedure consists in
determining the most cost-effective resource type, based on their price and the expected performance.
This will be done by exploiting a set of logical variables xij : we will enforce that only xi,τi = 1, thus
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Table 3: Model parameters

Parameter Definition

C Set of application classes
V Set of VM types
Hi Number of concurrent users for class i
Zi Class i think time [ms]
Di Deadline associated to applications of class i [ms]
Ri Maximum number of reserved VMs allowed to class i
δj Unit hourly cost for on demand VMs of type j [e/h]
πj Effective hourly price for reserved VMs of type j [e/h]
Pij Job profile of class i with respect to VM type j

Table 4: Decision variables
Variable Definition

νi Number of VMs assigned for the execution of applications from class i
ri Number of reserved VMs booked for the execution of applications from class i
di Number of on-demand VMs assigned for the execution of applications from class i
xij Binary variable equal to 1 if class i is hosted on VM type j

determining the optimal VM type τi for application class i. We address this issue proposing the following
mathematical programming formulation:

min
x,ν,R

∑
i∈C
(δτidi + πτiri) (P1a)

subject to:

∑
j∈V

xij = 1, ∀i ∈ C (P1b)

Pi,τi = ∑
j∈V
Pijxij , ∀i ∈ C (P1c)

δτi = ∑
j∈V

δjxij , ∀i ∈ C (P1d)

πτi = ∑
j∈V

πjxij , ∀i ∈ C (P1e)

xij ∈ {0,1} , ∀i ∈ C,∀j ∈ V (P1f)

(ν,R) ∈ argmin∑
i∈C
(δτidi + πτiri) (P1g)

subject to:

ri ≤ Ri,τi , ∀i ∈ C (P1h)

νi = ri + di, ∀i ∈ C (P1i)

T (Pi,τi , νi;Hi, Zi) ≤Di, ∀i ∈ C (P1j)

νi ∈ N, ∀i ∈ C (P1k)

ri ∈ N, ∀i ∈ C (P1l)

di ∈ N, ∀i ∈ C (P1m)

(P1n)
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Problem (P1) is a bilevel resource allocation problem where the outer objective function (P1a) con-
siders running costs. The first set of constraints, (P1b), associates each class i with only one VM type j,
hence the following constraints, ranging from (P1c) to (P1e), pick the values for the inner problem pa-
rameters.

The inner objective function (P1g) has the same expression as (P1a), but in this case the prices δτi
and πτi are fixed, as they have been chosen at the upper level. Constraints (P1h) bound the number
of reserved VMs that can be concurrently switched on according to the contracts in place with the IaaS
provider. The following constraints, (P1i) add all the VMs available for class i, irrespective of the pricing
model. Further, constraints (P1j) mandate to respect the deadlines Di, as stated in the SLA contracts. In
the end, all the remaining decision variables are taken from the natural numbers set, according to their
interpretation.

The presented formulation of Problem (P1) is particularly difficult to tackle, as it is a bilevel MINLP
problem, possibly nonconvex, depending on T . According to the literature about complexity theory [28],
integer programming problems belong to the NP-hard class, hence the same applies to (P1). However,
since there is no constraint linking variables belonging to different application classes, we can split this
general formulation into several smaller and independent problems, one per class i.
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C Developers’ Documentation

In this appendix we provide detailed documentation for developers’ use.

C.1 D-SPACE4Cloud Back End REST APIs
The base URL for all the endpoints is composed of:

• address: the address of the D-SPACE4Cloud back end;

• port: the port where the D-SPACE4Cloud back end can be accessed.

Note that the port is configurable through the application.properties file of the web service.

Quick Reference

Table 5 report a short description of the REST APIs exposed by the D-SPACE4Cloud back end.
They are accessible over HTTP at the base domain http://address:port.

Table 5: REST APIs exposed by the D-SPACE4Cloud back end web service

URL HTTP verb Functionality
/event POST trigger state machine transition
/state GET retrieve current state
/upload POST upload text files needed for the replayer
/inputdata POST upload optimization input JSON file
/solution GET retrieving final solution
/solution POST upload solution JSON for assessment analysis
/settings POST setup accuracy, simulation duration, solver

Please notice that each POST HTTP method returns as response a string reporting the state of the
back end. Furthermore, the /event endpoint is useful to launch optimizations. If, after the transition,
the web service arrives in state:

RUNNING_INIT optimization will be run on the received InstanceData;

EVALUATING_INIT duration, cost, and feasibility of the received Solution will be calculated;

RUNNING_LS hill climbing will be executed on the received Solution.

C.2 Finite-State Machine
Every D-SPACE4Cloud back end web service keeps track of its own state via an embedded FSM, as
shown in Figure 14. As soon as the web service launches, the FSM attains the STARTING state, which
lasts until all the initialization tasks have been carried out. If anything prevents the web service from
initializing properly, the STOP transition sets the ERROR state. Otherwise, the back end MIGRATEs to
IDLE.

IDLE is the state where the web service waits for input. Generally, unrecoverable issues make the
back end STOP, moving to the ERROR state. On the other hand, the FSM may return IDLE either
forcibly, via RESET, or as part of the normal life-cycle, with MIGRATE. When a Solution is ready for
retrieval, the FSM reaches the FINISH state. The reader is referred to Section C.3 for a correspondence
between FSM states and phases of the application workflow.
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Figure 14: FSM implemented within the D-SPACE4Cloud back end service
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Figure 15: Optimization activity diagram
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C.3 Optimization Activity Diagram
Figure 15 shows in detail the activities carried out by the whole D-SPACE4Cloud architecture. In the
beginning, the user uploads the required input files: an example is available in Section C.4. The front
end, then, looks for the least loaded back end to transmit the relevant data. As soon as the upload is
over, the GUI sends TO RUNNING INIT, thus triggering the optimization algorithm. The back end
works asynchronously, hence the front end just needs to keep track of the FSM evolution and retrieve the
Solution when the optimization procedure completes.

Meanwhile, the web service chooses provider and VM type according to the results of the MINLP
problem discussed in Appendix B. When the initial solution is ready, the backend relies on either the
QN or SWN simulator to evaluate it: depending on these results, the following local search procedure
will aim at either meeting the prearranged deadline or saving on the running costs. According to the
preliminary evaluation, the backend applies HC iteratively calling the configured simulator after every
move: as soon as the stopping criterion is satisfied, the FSM reaches the FINISH state and the Solution
is available for retrieval.

C.4 Input Files
This section discusses examples of the required input files. All the time measures are expressed in ms,
but this is not a strict requirement: they only need be coherent.

Listing 3 is the main input file. It collects all the relevant profiles, organized by application class
and by provider. For all the class-provider combinations, the JSON has a map from VM type to job
profile, since computational capabilities affect the obtained performance. In the example file, we have
the R1 and R2 queries, with the profiles obtained on different Amazon EC2 instances. On the other hand,
Listing 4 contains parameters characterizing each application class, specifically those related to QoS. In
the example JSON you can read the deadline d, the penalty associated to the rejection of one job, the
expected (hup) and minimal (hlow) required concurrency level, in addition to the requirements in terms
of CPUs (v) and RAM (m) of each container.

Listing 3: Example JSON file with job profiles
1 {
2 "R1": {
3 "Amazon": {
4 "large": {
5 "cm": 4,
6 "cr": 4,
7 "mavg": 23840,
8 "mmax": 30723,
9 "nm": 4,

10 "nr": 4,
11 "ravg": 2352,
12 "rmax": 2841,
13 "sh1max": 0,
14 "shtypavg": 5381,
15 "shtypmax": 6501
16 },
17 "medium": {
18 "cm": 2,
19 "cr": 2,
20 "mavg": 19040,
21 "mmax": 25923,
22 "nm": 4,
23 "nr": 4,
24 "ravg": 2682,
25 "rmax": 3171,
26 "sh1max": 0,
27 "shtypavg": 6136,
28 "shtypmax": 7257
29 },
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30 "xlarge": {
31 "cm": 8,
32 "cr": 8,
33 "mavg": 28640,
34 "mmax": 35523,
35 "nm": 4,
36 "nr": 4,
37 "ravg": 2022,
38 "rmax": 2511,
39 "sh1max": 0,
40 "shtypavg": 4626,
41 "shtypmax": 5746
42 }
43 }
44 },
45 "R2": {
46 "Amazon": {
47 "large": {
48 "cm": 4,
49 "cr": 4,
50 "mavg": 26624,
51 "mmax": 39586,
52 "nm": 144,
53 "nr": 151,
54 "ravg": 2981,
55 "rmax": 4509,
56 "sh1max": 0,
57 "shtypavg": 6821,
58 "shtypmax": 10316
59 },
60 "medium": {
61 "cm": 2,
62 "cr": 2,
63 "mavg": 21024,
64 "mmax": 33986,
65 "nm": 144,
66 "nr": 151,
67 "ravg": 3408,
68 "rmax": 4936,
69 "sh1max": 0,
70 "shtypavg": 7799,
71 "shtypmax": 11294
72 },
73 "xlarge": {
74 "cm": 8,
75 "cr": 8,
76 "mavg": 32224,
77 "mmax": 45186,
78 "nm": 144,
79 "nr": 151,
80 "ravg": 2553,
81 "rmax": 4081,
82 "sh1max": 0,
83 "shtypavg": 5843,
84 "shtypmax": 9338
85 }
86 }
87 }
88 }

Whilst Listings 3 and 4 characterize jobs, thus being needed in every optimization scenario, there are
also additional JSON files that may or may not be required depending on the particular optimization task
at hand, as discussed in Section 3.2. For instance, the parameters characterizing theVM types offered
by various public cloud providers are embedded in the back end database, but this is not the case for
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Listing 4: Example JSON file with class parameters
1 {
2 "R1": {
3 "d": 3600000,
4 "hlow": 7,
5 "hup": 10,
6 "id": "R1",
7 "job_penalty": 35,
8 "m": 2,
9 "think": 10000,

10 "v": 1
11 },
12 "R2": {
13 "d": 3600000,
14 "hlow": 7,
15 "hup": 10,
16 "id": "R2",
17 "job_penalty": 28,
18 "m": 4,
19 "think": 10000,
20 "v": 2
21 }
22 }

alternatives available on private infrastructures: Listing 5 provides their characteristics. Furthermore,
Listing 6 lists the parameters characterizing the homogeneous nodes that compose the physical cluster:
in particular, the example cluster features N homogeneous nodes with V CPUs, M GB RAM, and an
hourly cost E. On the other hand, when solving the allocation problem on public clouds it is possible to
set the number of reserved VMs booked in advance in Listing 7.

C.5 Output Files
When the optimization procedure finishes, the final Solution can be retrieved as a JSON file. An
example is Listing 8. The file is structured so as to report the overall running cost of the optimal con-
figuration, the time elapsed processing each phase, and detailed information about each class, with the
related parameters and results.

In particular, the example result file shows a configuration supporting 20 concurrent users of class
R3 by exploiting two 5xlarge VMs, at an overall hourly cost of 1.6758 e/h. As lstPhases shows, the
optimal solution was obtained in around four hours.
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Listing 5: Example JSON file with VM characteristics
1 {
2 "large": {
3 "core": 1,
4 "memory": 1,
5 "provider": "inHouse"
6 },
7 "medium": {
8 "core": 2,
9 "memory": 2,

10 "provider": "inHouse"
11 },
12 "xlarge": {
13 "core": 4,
14 "memory": 4,
15 "provider": "inHouse"
16 }
17 }

Listing 6: Example JSON file with private cloud parameters
1 {
2 "E": 0.1789,
3 "M": 16,
4 "N": 7,
5 "V": 8
6 }

Listing 7: Example JSON file with public cloud parameters
1 {
2 "R1": {
3 "Amazon": {
4 "large": {
5 "r": 10
6 },
7 "medium": {
8 "r": 20
9 },

10 "xlarge": {
11 "r": 4
12 }
13 }
14 },
15 "R2": {
16 "Amazon": {
17 "large": {
18 "r": 16
19 },
20 "medium": {
21 "r": 32
22 },
23 "xlarge": {
24 "r": 8
25 }
26 }
27 }
28 }
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Listing 8: Example JSON file with final results
1 {
2 "cost": 1.6758,
3 "evaluated": true,
4 "id": "3_h20_D1.0E7",
5 "lstPhases": [
6 {
7 "duration": 21154,
8 "id": "INIT_SOLUTION"
9 },

10 {
11 "duration": 14430028,
12 "id": "OPTIMIZATION"
13 }
14 ],
15 "lstSolutions": [
16 {
17 "alfa": 7840.0,
18 "beta": 392.0,
19 "changed": true,
20 "cost": 1.6758,
21 "deltaBar": 1.3205,
22 "duration": 6400256.41025641,
23 "error": false,
24 "feasible": true,
25 "job": {
26 "d": 10000000.0,
27 "hlow": 14,
28 "hup": 20,
29 "id": "R3",
30 "job_penalty": 28.0,
31 "think": 10000.0
32 },
33 "numCores": 20,
34 "numOnDemandVM": 0,
35 "numReservedVM": 2,
36 "numberContainers": 40,
37 "numberUsers": 20,
38 "numberVM": 2,
39 "parentID": "3_h20_D1.0E7",
40 "pos": 0,
41 "profile": {
42 "cm": 40,
43 "cr": 40,
44 "mavg": 27034.0,
45 "mmax": 79197.0,
46 "nm": 288,
47 "nr": 302,
48 "ravg": 3115.0,
49 "rmax": 20522.0,
50 "sh1max": 0.0,
51 "shtypavg": 13589.0,
52 "shtypmax": 89517.0
53 },
54 "rhoBar": 0.8379,
55 "sigmaBar": 0.165,
56 "typeVMselected": {
57 "id": "5xlarge",
58 "r": 24
59 }
60 }
61 ]
62 }
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Figure 16: Queueing network model

D Queueing Network Modeling

This appendix discusses the QN model currently embedded into D-SPACE4Cloud. After discussing
a possible shortcoming of the present formulation, we also describe a recent advancement in JMT that
allows for addressing the issue and provide validation results.

D.1 Current queueing network model
In this section we present the QN model we devised and used to obtain an accurate assessment of the job
execution times given the cluster configuration. The performance model is depicted in Figure 16. It is a
closed QN model where the number of concurrent users gives the overall population and the delay center
is characterized by the think time provided via input files, as per Section C.4. When a user submits their
job, this is forked into as many map task requests as stated in the relevant job profile, which then enter the
finite capacity region (FCR) [3]. FCRs model situations where several service centers access resources
belonging to a single limited pool, competing to use them. Hence, the FCR enforces an upper bound
on the total number of requests served at the same time within itself, allowing tasks in based on a FIFO
queue and supporting prioritization of different classes. The FCR includes two multi-service queues that
model the map and reduce execution stages. FCR and multi-service queues capacities are equal to the
total number of cores available to the class. In this way, we can model the dynamic assignment of YARN
containers to map and reduce tasks whenever they are ready.

Map tasks are executed by the first multi-service queue and synchronize after completion by joining
back to a single job request. The reduce phase is modeled analogously, while between the phases there
are class switches to enforce that reduce tasks waiting for resources obtain them with priority. Indeed, the
YARN Capacity Scheduler implements a FIFO scheduling policy within the same queue and containers
are allocated to the next job only when all reduce tasks have obtained enough resources. Reduce tasks
have a higher priority than map tasks to enforce this behavior. Note that the map join is external to the
FCR in order to model that when map tasks complete they release container cores, which can be assigned
to tasks ready in the FCR FIFO queue. Moreover, the reduce fork is also external to the FCR to model
correctly applications characterized by a number of reducers larger than the total number of cores. Note
that the model in Figure 16 is rather general and can be easily extended to consider also Tez or Spark
applications, where a Tez directed acyclic graph node or Spark stage is associated to a corresponding
multi-server queue.

Unfortunately, the model presented in Figure 16 has a glitch: it cannot capture the behavior of the
slow start mechanism, thanks to which reducers within Hadoop 2.x start their shuffle subtask before
the map phase has completed to mitigate network congestion. Indeed, such a model enforces a strict
separation between the map and reduce phases, thus ruling out the overlapping naturally brought about
by the slow start mechanism. Recent advancements in JMT will allow to model more accurately this
behavior, as explained in the following.
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Figure 17: Example MapReduce model with semaphore

Table 6: Measures comparison
Fork Degree Required

Tasks
Expected

Task
Semaphore

RT

Task
Semaphore

RT

Expected
Join RT

Join RT Expected F/J
RT

F/J RT

1 1 0 0 0.5 0.503 1.5 1.5
1 2 0.5 0.5 0 0 1.5 1.498
2 1 0 0 1.25 1.238 2.75 2.746
2 2 0.125 0.125 1.125 1.13 2.75 2.76
2 3 0.5 0.494 0.75 0.754 2.75 2.742
2 4 1.25 1.246 0 0 2.75 2.749

D.2 Task semaphores
When data has to be copied from mapper to reducer nodes, the traffic can be high enough to slow down
system performance. In order to address this problem, a mechanism called slow start can be enabled.
This mechanism consists in starting the reduce phase while mappers are still processing data. In other
words, reducers can start to copy over the output of mappers before the map phase reaches its end. The
trigger is a threshold on the percentage of completed map tasks. However, it is important to stress that
data merging and the execution of the user-provided reduce function only begins after all mappers finish
their processing and the whole reducer inputs are available on the hosting node.

The slow start strategy shows the clear benefit of spreading data copy across a longer time interval,
yielding a decrease in network traffic. However, the trade off is that, by starting early, you also assign
available containers as reducers early. These resources become unavailable until the map phase is over,
which may be a problem if you have many jobs going on at the same time.

In order to describe this behavior into JMT topologies, it was necessary to introduce a new component
called task semaphore. Its behavior is to stop a percentage of forked tasks in each class until they all reach
the semaphore. After the threshold is passed, it lets them pass through altogether, and tasks originated
from the same job that arrive later are not blocked. Moreover, this component is only acceptable between
a fork and a join because its functionality is based on forked tasks.

Now that JMT has all the necessary components, we can express a model for MapReduce programs
configured with slow start. It is shown in Figure 17. The Task Semaphore is introduced after the Mappers
(represented by Queues) and before a Join. It represents the data being held on mappers before the copy
stage starts. The Join is set with a standard strategy, then it has to wait for all forked tasks to trigger. This
represents the reducers waiting for all mappers to start execution.

In the following we report some results to validate the new approach. The response time (RT) of
the Task Semaphore is expected to be the same as the Partial Join for the specific number of required
tasks, while the Fork/Join RT should not change by the introduction of the new component. To make this
comparison an extremely small arriving rate λ = 0.001 is used, so that the effect of the queue time can
be eliminated. The results of this experiment are shown in Table 6.

The second approach used log files, according to Figure 18, in order to verify that the mechanism is
working correctly. Both fork degree and number of required tasks were set to 2. The results are reported
in Table 7.
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Figure 18: Testing model with loggers

Table 7: Log files results
Logger Name Timestamp Job ID

Logger 1 1003.352366854 0
Logger 3 1005.7823473767 2
Logger 2 1006.6586157349 4
Logger 4 1006.6586157349 4
Logger 4 1006.6586157349 4
Logger 3 1006.6786583273 3
Logger 4 1006.6786583273 3
Logger 2 1008.497026407 5
Logger 4 1008.497026407 5
Logger 5 1008.497026407 0

From Tables 6 and 7, we can conclude that the measures are quite close to the expected ones. More-
over, the log files also display a correct algorithm logic. Hence, both analyses validate the desired
behavior of the new component.
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