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Executive summary

The assessment of performance and reliability properties, as well as the verification of safety properties,
is a must for developing high quality software. These complex tasks need to be performed using formal
models, specifically quality analysis models. This document presents the DICE transformations of UML
models into quality analysis models. Therefore, it describes the model transformation techniques used
to obtain simulation and verification models from the application models and their corresponding im-
plementations and validations. Such transformations have been incorporated into the DICE-Simulation
Tool [1] and the DICE-Verification Tool [2]. The work presented in this deliverable has been carried out
within task T3.1 (Transformations to quality analysis models).

The DICE-Simulation Tool, DICE-Verification Tool and DICE-Profiles [3] mentioned in this doc-
ument are reported in previous deliverables. All the artifacts described in this document are publicly
available in the so-called DICE-Models Repository [4], DICE-Profiles Repository [5], DICE-Simulation
Repository [6] and DICE-Verification Repository [7].
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Glossary

AIS Automatic Identification System
DAM Dependability Analysis and Modeling
DDSM DICE Deployment Specific Model
DIA Data-Intensive Applications
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DPIM DICE Platform Independent Model
DTSM DICE Technology Specific Model
EMF Eclipse Modeling Framework
MARTE Modeling and Analysis of Real-Time and Embedded Systems
MDD Model-Driven Development
MDE Model-Driven Engineering
MTM Model To Model
M2M Model-to-model Transformation
NFP Non-Functional Property
NMEA National Marine Electronics Association
OMG Object Management Group
PNML Petri Net Markup Language
QVT Meta Object Facility (MOF) 2.0 Query/View/Transformation Standard
QVTc QVT Core language
QVTo QVT Operational Mappings language
QVTr QVT Relations language
UML Unified Modeling Language
VSL Value Specification Language
XMI XML Metadata Interchange
XML eXtensible Markup Language
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1 Introduction and Context

The focus of the DICE project is to define a quality-driven framework for developing data-intensive ap-
plications that leverage Big Data technologies hosted in private or public clouds. DICE offers a novel
profile and tools for data-aware quality-driven development. This document describes the transforma-
tions of UML models annotated with the DICE profile into suitable models that will be used by the
quality analysis tools of the DICE project for performance, reliability and verification assessment.

1.1 Objectives of WP3
The goal of WP3 is to develop the quality analysis toolchain that will be used to guide the early design
stages of the data-intensive application and guide quality evolution once operational data becomes avail-
able. In particular, the main contributions of this WP are (i) stochastic performance models and tools for
simulation-based reliability and efficiency assessment, (ii) formal models and tools for formal verifica-
tion of safety properties related to the sequence of events and states that the application undergoes, and
(iii) numerical optimisation techniques for searching of optimal architecture designs.

The work presented in this deliverable corresponds to the task T3.1 (see below), namely, the trans-
formations of UML models annotated with DICE profiles to quality analysis models. The transformed
models are used by the DICE Simulation and Verification Tools developed in tasks T3.2 and T3.3. The
tasks T3.2 and T3.3 will carry out the evaluation and verification activities. They cover the evaluation and
verification activities of performance and quality annotations, data protection and privacy constraints.
Finally, task T3.4 focuses on the design optimization. It assesses the impact of different architectural
choices at design time, and estimates the costs associated with the usage.

1.2 Objectives of Task T3.1
Task T3.1 will provide the transformation of UML profiled models at DPIM and DTSM level into quality
analysis models for studying a) the performance and reliability of software systems at design level; and b)
the verification of safety requirements using formal verification techniques. The automatic transforma-
tion of UML models to quality analysis models requires enriching the UML diagrams with performance
and safety information in order to guide the transformation process. To this end, we use the abstrac-
tions introduced by the DICE Profile (Deliverable 2.1 [3]) for describing data properties and data usage
requirements among other data-related concerns. The DICE profiles provide a set of stereotypes that
capture the main ideas of Big Data applications and several particular technologies. The transformations
defined in the task T3.1 receive as input the design models annotated with the DICE profile and defined at
DPIM and DTSM level in T2.1 and T2.2 and produce as outputs the analysis models used by the quality
tools developed in the DICE project, that is, the DICE Simulation and Verification Tools.

1.3 Objectives of this document
This document presents the work done for the task T3.1. It explains the transformation of UML models
annotated with the DICE Profile at DPIM and DTSM levels into quality analysis models for studying:
1) the performance and reliability of software systems; and 2) the verification of safety requirements.
The performance models obtained by the transformation of the UML diagrams are used in the DICE
Simulation Tool; and the formal models obtained for the verification of safety properties are used in the
DICE Verification Tool.

In particular for the transformation to performance models, we consider UML profiled diagrams at
DPIM level; and UML profiled diagrams for Hadoop MapReduce and Storm technologies at DTSM level.
For the transformation to formal verification models, we consider UML profiled diagrams for the Storm
technology at DTSM level. We have selected Hadoop MapReduce and Storm technologies as the initial
ones in WP3 because they are well-established Big Data technologies and they are representatives for
processing a set of jobs in batch or streaming mode, which are two of the main processing modes. Other
technologies such as Tez or Spark are based on the previous ones or extend them in some aspects. WP3
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will address some of the remaining technologies in upcoming months. This document complements
the current version of deliverables D3.2 and D3.5 for the DICE Simulation and Verification tools. In
particular, D3.5 has already introduced the temporal logic-based formal model of Storm topologies that is
the target of the verification-oriented transformation. Hence, in the present deliverable, to avoid overlaps
and unnecessary repetitions, we focus only on the mechanisms to enact the transformation from DICE
profiled UML models to temporal logic models suitable for formal verification; a detailed description of
the produced models can be found in [2].

1.4 Structure of the document
The structure of this deliverable is as follows:

• Section 1 is an executive summary.

• Section 2 summarizes the requirements that task T3.1 aims to cover.

• Section 3 summarizes the contribution of this deliverable for the transformation of the UML dia-
grams annotated with DICE profiles at DPIM and DTSM levels into performance models suitable
for the DICE Simulation Tool.

• Section 4 summarizes the contribution of this deliverable for the transformation of the UML di-
agrams annotated with DICE profiles at DPIM and DTSM levels into formal models suitable for
the DICE Verification Tool.

• Section 5 summarizes the goals achieved, and outlines the future work.

• Appendix summarizes the background and the standards used for the transformation process, as
well as the necessary technical details of the Big Data technologies that we address.

Copyright c© 2016, DICE consortium – All rights reserved 10
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2 Requirements

Deliverable D1.2 [8, 9], released on month 6, presented the requirements analysis for the DICE project.
The outcome of the analysis was a consolidated list of requirements and the list of use cases that define
the project’s goals that guide the DICE technical activities. During the progression of DICE project, the
requirements and goals can be changed or adapted dynamically. For that reason, an online version of the
requirement document [10] is constantly updated in order to register all the modifications and the current
status.

Next, we recapitulate the requirements for Task T3.1. They will be reviewed in the Conclusions so
as to evaluate the advances.

ID R3.1

Title M2M Transformation

Priority Must have

Description The TRANSFORMATION_TOOLS MUST perform a model-to-model transformation
taking the input from a DPIM or DTSM DICE annotated UML model and returning a
formal model (e.g. Petri net model or a temporal logic model).

ID R3.2

Title Taking into account relevant annotations

Priority Must have

Description The TRANSFORMATION_TOOLS MUST take into account the relevant annotations
in the DICE profile (properties, constraints and metrics) whether related to perfor-
mance, reliability, safety, privacy, and transform them into the corresponding artifact
in the form.

ID R3.3

Title Transformation rules

Priority Could have

Description The TRANSFORMATION_TOOLS MAY be able to extract, interpret and apply the
transformation rules from an external source.

ID R3.6

Title Transparency of underlying tools

Priority Must have

Description The TRANSFORMATION_TOOLS and SIMULATION_TOOLS MUST be transpar-
ent to users. From their point of view the user is analyzing metrics from and making
simulations over an enriched UML Model.

Copyright c© 2016, DICE consortium – All rights reserved 11
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ID R3.7

Title Generation of traces from the system model

Priority Must have

Description The VERIFICATION_TOOLS MUST be able, from the UML DICE model a system,
to show possible execution traces of the system, with its corresponding time stamps.
This sequence SHOULD be used by the QA_ENGINEER to determine whether the
system model captures the behavior of the application or not, for model validation
purposes.

ID R3.12

Title Modelling abstraction level

Priority Must have

Description Depending on the abstraction level of the UML models (detail of the information gath-
ered, e.g., about components, algorithms or any kind of elements of the system we
are reasoning about), the TRANSFORMATION_TOOLS will create the formal model
accordingly, i.e., at that same level that the original UML model.

ID R3.13

Title White/black box transparency

Priority Must have

Description For the TRANSFORMATION_TOOLS and the SIMULATION_TOOLS there will be
no difference between white box and black box model elements.

ID R3.15

Title Verification of temporal safety/privacy properties

Priority Must have

Description Taking the DICE annotated UML model (which must include the property to be ver-
ified) as an input, the VERIFICATION_TOOLS MUST be able to answer questions
related to whether the specified property holds for the modeled system or not.

ID R3IDE.3

Title Usability

Priority Could have

Description The TRANSFORMATION_TOOLS and SIMULATION_TOOLS MAY follow some
usability, ergonomics or accessibility standard such as ISO/TR 16982:2002, ISO 9241,
WAI W3C or similar.
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3 Transformations Proposed for the Simulation Tool

One of the tools within the DICE framework is the so-called Simulation Tool. It allows evaluating
quality properties of data-intensive applications, in particular efficiency and reliability metrics. The
DICE Simulation Tool considers annotated UML models at the DPIM and DTSM level, and returns
information about the prediction of a metric value in the environment being studied. Models at the
DPIM layer specify the fundamental architecture elements that constitute a data-intensive application.
For example, they include the definition of the data flow and essential high-level processing properties
(e.g., rate, properties provided and required by every component, etc.) as well as key data processing
needs (e.g., batch, streaming, etc.). A DPIM can be enriched with technological information and then
transformed into a model at DTSM level. It defines a more precise and concrete view of the execution
platform of the system. The next step consists of filling the gap between the DPIM and DTSM and the
formal models needed for performance assessment.

The objective of this section is the definition of an automatic transformation toolchain within the
DICE framework that receives a UML model annotated with the DICE profile at DPIM or DTSM level
and finally obtains a formal model suitable for performance and reliability analysis in the DICE Simula-
tion Tool. A plain UML model must be annotated with extra information that drives the transformation
process so that the UML diagram can be transformed into adequate models for the simulation and predic-
tion. To this end, we use a set of DICE profiles presented in the Deliverable 2.1 [3]. The DICE profiles
define UML stereotypes that capture the essential attributes for the data-intensive applications (DIA) and
the underlying Big Data technology at DPIM and DTSM level. The stereotypes of the DICE profiles can
be seen as templates that are instantiated with the parameters of the system in the performance model.
The designer only has to tune some particular values for the system being modeled.

In particular, the methodology that we use in this document for obtaining a formal model for per-
formance assessment from the UML diagram is divided in four steps: (i) the identification of the main
application and technological concepts that are relevant for the system that is being modeled and the
correspondence with the stereotypes and annotations of the DICE Profile, (ii) the theoretical definition
of the transformation from an annotated UML model with the DICE profile into a formal model for per-
formance assessment according to the current aspects annotated in a UML diagram, (iii) the validation
of the transformation process by comparing the results returned with the simulation tool for the perfor-
mance model obtained by the transformation toolchain and the results returned by the real execution of
the application on a controlled environment, and (iv) the implementation of the automatic transforma-
tion of UML diagrams to performance models. This section covers the points (i)-(iv) for the DPIM and
(i)-(iii) for the DTSM. The point (iv) for the DTSM is currently under development.

The transformation of the Petri net represented in the PNML format into the format of a specific Petri
net tool is accomplished using Model-to-Text (M2T) transformations. To execute the M2T transforma-
tions we have selected Acceleo [11]. Starting from version 3, Acceleo transformations are specified
using the MOFM2T standard language [12], proposed by the OMG too. In this sense, we have selected
Acceleo to make all our toolchain compliant with the OMG standards, from the definition of the initial
(profiled) UML models to the 3rd party analysis tools (which use a proprietary format). In our case,
the Petri net tool that receives the resulting Petri net at the end of the model transformation toolchain is
GreatSPN [13].

The structure of this section is divided in two parts: the first one is devoted to the actual transfor-
mations of the UML models annotated with the DICE profile at the DPIM level; and the second one is
devoted to actual the transformations of the UML models annotated with the DICE profile at the DTSM
level.

In the first part of this section, we focus on the transformations at the DPIM level. DPIM models
are independent of any platform and technology, and as such, any behavior that needs to be analysed
must be modeled explicitly. Such modeling is done using two UML behavioral models, namely, UML
Activity Diagrams and UML Sequence Diagrams, that are complemented using the stereotypes of the
aforementioned DICE profile. Consequently, in this subsection, (i) we describe the stereotypes provided
by the DPIM DICE profile that are of interest for the transformations to analysis models; (ii) we describe
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the transformation patterns used to transform UML Activity Diagrams; (iii) we describe the transforma-
tion patterns used to transform UML Sequence Diagrams; (iv) we explain an excerpt of the actual QVT
transformation that perform the automatic translation from UML to analysis models; and (v) we present
the experiments that validate the patterns presented.

In the second part of this section, we focus on the transformations of UML Activity Diagrams and
UML Deployment Diagrams at the DTSM level for two of the main technologies for DIA applications:
Apache Hadoop MapReduce and Apache Storm. Each technology has a dedicated subsection. On the one
hand, Hadoop MapReduce is a distributed cluster-based generalization of the map/reduce functions from
functional programming paradigm that processes the tasks in batch mode according to some schedul-
ing and fault-tolerance policies. On the other side, Storm is a distributed computation framework for
real-time processing of data streams in a directed acyclic graph (DAG) topology (i.e., a Storm applica-
tion). These technologies cover the main families of computational process, both batch and streaming
approaches. Other technologies such as Spark and Tez are variants or refinements of the technologies
studied here and the methodology presented in this section for obtaining performance models from an-
notated UML diagrams can be applied to those technologies too.

3.1 Transformations to Quality Analysis Models for the DPIM Level
Performance evaluation is traditionally carried out using scenarios, i.e., typical system paths of usage that
specify the system behavior of an application. With UML, we can specify a scenario by using behavioral
diagrams, such as the previously presented activity or sequence ones. However to perform a quantitative
analysis of such scenarios, UML models need to be complemented with some quantitative data. Here is
where the DICE profile gets into the action.

At the DPIM layer, the DICE profile provides Software Architects with a set of core concepts to
specify the fundamental architecture elements that constitute a data-intensive application, together with
the high level topology of the application and its QoS requirements. Designers may use the identified
core architecture elements to quickly put together the structural view of their Big-Data application, high-
lighting and tackling concerns such as data flow and essential high-level processing properties (e.g., rate,
properties provided and required by every component, etc.) as well as key data processing needs (e.g..,
batch, streaming, etc.).

In this Section, first we describe which DICE stereotypes are relevant for performance evaluation;
second, we describe the model transformations that we have developed in the DICE Simulation Tool to
analyse DIA models at the DPIM layer; third, we explain an excerpt of the DPIM QVTo transformations
to illustrate what the transformation rules look like; and fourth, we describe how we have validated the
proposed transformation patterns in one of the case studies of DICE: POSIDONIA Operations [14].

3.1.1 DPIM DICE Stereotypes for Quantitative Analysis
Activity and Sequence diagrams are the two behavioral diagrams of UML that DICE considers for per-
formance evaluation. Both kinds of diagrams need to be annotated with stereotypes from the DICE
profile in order to be simulated. These annotations guide the transformation from the UML domain to
the Petri net domain, and more specifically, to the PNML abstract syntax presented in Section A.2.2.
Several DICE stereotypes can be applied to elements in both kinds of diagrams to express the same. For
that reason, next we summarize the main stereotypes that may be used in such diagrams to specify the
NFP that are relevant to perform a simulation.

DICE::DICE_UML_Extensions::DPIM::DpimScenario — A Scenario (DpimScenario) captures sys-
tem-level behavior and attaches allocations and resource usages to it. It is composed of subopera-
tions called Steps (GaStep).

• In DICE, applied to:

UML::Activities::Activity (as a specialization of UML::Classifiers::NamedElement)
in Activity Diagrams.
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UML::Interactions::Interaction (as a specialization of UML::Classifiers::NamedEle-
ment) in Sequence Diagrams.

• Tagged values of interest:

throughput : MARTE_Library::Basic_NFP_Types::NFP_Frequency [*]
respT (response time): MARTE_Library::Basic_NFP_Types::NFP_Duration [*]
utilization : MARTE_Library::Basic_NFP_Types::NFP_Real [*]

Example:

The following expression applied to a DpimScenario specifies that the simulation should calculate
(calc) the mean response time (respT) of the scenario, in seconds. That response time should be
associated to the $rt variable.

respT = (expr = $rt, unit = s, statQ = mean, source = calc)

MARTE::MARTE_AnalysisModel::GQAM::GaAnalysisContext — For a given analysis, the con-
text identifies the model elements (diagrams) of interest and specifies global parameters of the
analysis.

• In DICE, applied to:

UML::Activities::Activity (as a specialization of UML::Classifiers::NamedElement).

• Tagged values of interest:

contextParams : NFP_String [*]
Strings giving a set of annotation variables defining global properties of this analysis
context. Each string should conform to the concrete syntax for variable calls or declara-
tions as defined in B.3.3.12 of the MARTE standard.
Variable names must match the following structure:

identifier ::= ("$") (letter|"_") (letter | digit | "_")*.

Example:

The following expression specifies that $rt is an output variable, and $njobs, $p1 and $t1 are
input variables (if unspecified – e.g., $t1 – a variable is considered as input variable). Additionally,
the default value for $njobs is 5.

contextParams = [ out$rt, in$njobs = 5, in$p1, $t1 ]

MARTE::MARTE_AnalysisModel::GQAM::GaWorkloadEvent — A stream of events that initiate
system-level behavior. It may be generated in different ways: by a stated arrival process, by an
arrival-generating mechanism modeled by a workload generator class, by a timed event and from
a trace.

• In DICE, applied to:

UML::Activities::InitialNode in an Activity Diagram.
UML::Interactions::Message (only the first message) in Sequence Diagram.

• Tagged values of interest:

pattern : MARTE::MARTE_Library::BasicNFP_Types::ArrivalPattern [0..1]
Pattern of arrival events. The pattern can be:
closed — It describes a workload characterized by a fixed number of active or poten-

tial users or jobs that cycle between executing the scenario. This pattern makes
the transformation produce a closed Petri net that is analysed in steady state. The
following attributes may be defined:
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population : NFP_Integer [0..1]
Size of the workload. This property is required for the automatic analysis of the
net, and denotes the initial marking of the place corresponding to this InitialNode.

extDelay : NFP_Duration [0..1]
The delay between the end of one response and the start of the next for each
member of the population of system users.

open — This pattern produces an open Petri net for transient analysis with initial and
final transitions that produce and consume tokens. The following mutually exclusive
attributes may be defined:

interArrivalTime : NFP_Duration [0..1]
The time between successive arrivals. For a Poisson process this is exponentially
distributed with mean = 1/rate.

arrivalRate : NFP_Frequency [0..1]
The average rate of arrivals.

Example:

A valid GaWorkloadEvent denoting an initial marking of $njobs is typically declared as follows:

pattern = (closed = (population = (expr = $njobs)))

MARTE::MARTE_AnalysisModel::GQAM::GaStep (extends MARTE::MARTE_AnalysisModel::
GQAM::GaScenario) — A GaStep is a part of a Scenario, defined in sequence with other actions.

• In DICE, applied to:

UML::Action::Action in an Activity Diagram using the throughput or utilization
tagged values to calculate the metric on this Action.

UML::Action::Action in an Activity Diagram using the hostDemand tagged value to spec-
ify its mean execution time.

UML::Activities::ControlFlow (as a specialization of UML::Classifiers::NamedEle-
ment) in an Activity Diagram using the prob tagged value to specify the probability of
the execution path after a ChoiceNode.

UML::Interactions::ExecutionSpecification in an Sequence Diagram using the hostDe-
mand tagged value to specify its mean execution time.

UML::Interactions::Message in an Sequence Diagram using the hostDemand tagged value
to specify its mean communication time.

UML::Interactions::InteractionOperand in an Sequence Diagram using the prob tagged
value to specify the probability of executing that execution path.

• Tagged values of interest:

hostDemand : MARTE_Library::Basic_NFP_Types::NFP_Duration [*]
The cpu demand in units of operations, if all Steps are on the same host.

prob : MARTE_Library::Basic_NFP_Types::NFP_Real [0..1] = 1
The probability of the step to be executed (for a conditional execution).

Examples:

The following hostDemand declarations can be applied to an Action to specify that the mean
execution time is 2 seconds.

hostDemand = (value = 2, unit = s)
hostDemand = (value = 2, unit = s, statQ = mean)

Copyright c© 2016, DICE consortium – All rights reserved 16



Deliverable 3.1. Transformations to Analysis Models

The following hostDemand declaration can be applied to an Action to specify that the mean (if
unspecified, the statQ is assumed to be the mean) execution time is $t1 seconds.

hostDemand = (expr = $t1, unit = s)

The following hostDemand declaration can be applied to a ControlFlow to specify that the the
probability of this alternative path is $p1.

prob = (expr = $p1)

MARTE::MARTE_AnalysisModel::PAM::PaRunTInstance — A PaRunTInstance is a stereotype
for a swimlane or lifeline that indicates a run-time instance of a process resource and its properties.

• In DICE, applied to:

UML::Interactions::Lifeline in an Sequence Diagram using the poolSize tagged value to
specify the number of threads of the process.

• Tagged values of interest:

poolSize : MARTE_Library::Basic_NFP_Types::NFP_Integer [0..1]
The number of threads for the process.

Example:

The following poolSize declarations can be applied to a Lifeline to specify the number of threads
that the lifeline represents.

poolSize = (value = 2)

3.1.2 Transforming DICE-profiled UML Activity Diagrams
The Activity Diagram To PNML Transformation (AD2PNML) is the transformation in charge of pro-
ducing analysable Petri nets out of DICE-profiled UML Activity Diagrams. To implement this trans-
formation, a set of transformation patterns have been identified between the two domains (UML and
PNML). Later on, following the MDE paradigm, these transformation patterns have been first mapped
to the concepts of the domain metamodels, and second translated to a set of transformation rules written
in QVTo.

Next, we first describe the transformation patterns using a graphical syntax; and second, we present
a small illustrative example that demonstrates what the transformation produces when applied to a com-
plete Activity Diagram.

Transformation Patterns

Table 1 summarizes the main transformation patterns that we have identified between the DICE-profiled
activity diagrams and the Petri net domain. The first column indicates to which UML elements the
pattern applies and which stereotypes may be applied to them. The second column shows the pattern,
in the UML domain, that will be checked against the source candidate model to find possible matches.
The third column shows the Petri net fragment that will be generated from the elements matched by the
pattern in the second column. In Petri net fragments, M(x) represents the initial marking for element
x; r(y) represents the firing rate of transition y, and w(z) represent the weight (i.e., firing probability)
of transition z. Elements in black represent the elements that are actually transformed by the pattern,
and elements in gray are only shown to provide additional information about the matching context (e.g.,
which element may precede or follow the matching pattern).
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Table 1: Transformation patterns for DICE-profiled UML Activity Diagrams

UML ELEMENT(S) UML PATTERN PETRI NET PATTERN

(1)

InitialNode
stereotyped as

«GaWorkloadEvent»
(closed pattern)

ActivityFinalNode

«GaWorkloadEvent»
closed=(population=$pop, 
             extDelay=$delay)

t1p1

r(t1)=1/$delayM(p1)=$pop

tsystem

(2)

InitialNode
stereotyped as

«GaWorkloadEvent»
(open pattern)

ActivityFinalNode
«GaWorkloadEvent»

open=(arrivalRate=$rate)

t1

r(t1)=$rate

(3) FlowFinalNode

(4)
OpaqueAction
stereotyped as

«GaStep» «GaStep»
hostDemand=(expr=$time, unit=s, source=est, statQ=mean)

A
tApA

r(tA)=1/$time

(5) DecisionNode

(6) MergeNode

(7) ForkNode

(8) JoinNode

(9)

ActivityPartition
linked via its

represents property
to an element
stereotyped as

«Resource»

Partition(R)

Node
R

«Resource»
poolSize=$size

D
ep

lo
ym

en
t

tR

M(pR)=$size

(10) ControlFlow
(general case)

(11)

ControlFlow
stereotyped as

«GaStep»
(departing form a
DecisionNode)

«GaStep»
prob=(expr=$p1 unit=s, source=est, statQ=mean)

t1

w(t1)=$p1

(12)
ControlFlow
(arriving to a

JoinNode)
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«GaWorkloadEvent»
pattern=(closed=
(population=3))

Start

«GaStep»
A1

hostDemand=1s

«GaStep»
A2

hostDemand=2s

End

«GaStep»
prob=$p1

«GaStep»
prob=$p2

(a)

Start
t1

A1

A2

t2

w(t2) = $p1

t3

w(t3) = $p2

t4

r(t4) = 1/1

t5

r(t5) = 1/2

End
t6

t7

(b)

Figure 1: Example activity diagram (a) and corresponding Petri net (b)

An illustrative example

Figure 1a shows a simple UML activity diagram consisting of a unique initial node (Start), a unique final
node (End) and two alternative actions (A1 and A2). Observe that the two GaWorkloadEvent and GaStep
stereotypes have been applied. Such stereotypes, defined in the MARTE profile [15], are imported in the
DICE profile to specify the performance input parameters. As previously explained, GaWorkloadEvent
is applied to the initial node to specify a closed workload with an initial population of 3 jobs, and GaStep
is applied to the transitions outgoing the decision node to indicate the probability of execution of the
actions A1 o A2 i.e., $p1 and $p2, respectively. Such probabilities are specified as variables that will
be set to actual values when configuring the simulation experiments. Finally, the GaStep stereotype is
applied to the actions A1 and A2 to indicate the CPU host demand required for their execution, i.e., 1s in
case of action A1 and 2s in case of action A2.

Figure 1b shows the graphical representation of the GSPN model derived from the M2M transfor-
mation and that can be used to evaluate the performance of the system specified by the Activity Diagram
in Figure 1a: circles correspond to places, black bars represent immediate transitions and white bars
represent timed transitions. The initial marking of the Start place consists of three tokens (as indicated
by the initial population annotated in the UML model); immediate transitions t2 and t3 are characterized
by weights $p1 and $p2, respectively; and the timed transitions t4 and t5 are characterized by the firing
rates (inverse of the mean firing times annotated in the host demand tagged values).

3.1.3 Transforming DICE-profiled UML Sequence Diagrams
The Sequence Diagram To PNML Transformation (SD2PNML) is the transformation in charge of trans-
forming DICE-profiled UML Sequence Diagrams to analysable Petri nets. Similarly to the AD2PNML
transformation, a set of transformation patterns have been identified between the two domains, which in
turn, have been translated to a set of transformation rules writen in QVTo.

Next, we first describe the transformation patterns using a graphical syntax; and second, we present
a small example demonstrating the transformation.
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Transformation Patterns

Table 2 summarizes the main transformation patterns that we have identified between the DICE-profiled
sequence diagrams and the Petri net domains. The first column indicates to which UML elements the pat-
tern applies and which stereotypes may be applied to them. The second column shows the pattern, in the
UML domain, that will be checked against the source candidate model to find possible matches. The third
column shows the Petri net fragment that will be generated from the elements matched by the pattern in
the second column. As in table 1, elements in black represent the elements that are actually transformed
by the pattern and elements in gray are only shown to provide additional information about the matching
context. In addition to these conventions, since OccurrenceSpecifications are not represented using any
graphical primitive, a solid black circle drawn on top of a lifeline indicates that an instance of an Ocur-
renceSpecification is of interest for the transformation pattern. These black circles can be drawn at the
top or the bottom of an ExecutionSpecification to represent ExecutionOccurrenceSpecifications; and the
start or the end of a Message to represent a MessageOccurrenceSpecification.

Table 2: Basic Transformation Patterns for DICE-profiled UML Sequence Diagrams

UML ELEMENT(S) UML PATTERN PETRI NET PATTERN

(1)

Lifeline sending the
first message, which

is stereotyped as
«GaWorkloadEvent»

(open pattern)

a : Actor l : Lifeline

«GaWorkloadEvent»
open=(arrivalRate=$rate)

ta
r(ta)=$rate

(2)

Lifeline sending the
first message, which

is stereotyped as
«GaWorkloadEvent»

(closed pattern)

a : Actor l : Lifeline

«GaWorkloadEvent»
closed=(population=$pop, 
             extDelay=$delay)

ta

a

M(a)=$pop

r(ta)=1/$delay

continued . . .
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. . . continued

UML ELEMENT(S) UML PATTERN PETRI NET PATTERN

(3)
All other Lifelines

stereotyped as
«PaRunTInstance»

l1 : Lifeline1 l2 : Lifeline2

«PaRunTInstance»
poolSize=$size

l1

common

M(l1)=$size

l2

(4)
Execution-

Occurrence-
Specification

OR

(5)
ExecutionSpecifica-
tion stereotyped as

«GaStep»

«GaStep»
hostDemand=

(expr=$time, unit=s,
source=est, statQ=mean)

t

p

r(t)=1/$time

(6)
MessageOccurrence-

Specification
(send event)

(7)
MessageOccurrence-

Specification
(receive event)

continued . . .
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. . . continued

UML ELEMENT(S) UML PATTERN PETRI NET PATTERN

(8) Message stereotyped
as «GaStep»

m

«GaStep»
hostDemand=

(expr=$time, unit=s,
source=est, statQ=mean)

r(m)=1/$time

inboxm outboxm
tm

CombinedFragments produce more complex patterns. For the sake of simplicity, Table 3 presents
the patterns to transform the most used CombinedFragment types. To present these patterns, we have
limited the number of lifelines covered by the CombinedFragments to two (i.e., l1 and l2). Nevertheless,
observing these patterns carefully, it can be observed that they can be easily extended to an arbitrary
number of Lifelines or InteractionOperands.

Table 3: Transformation Patterns for Combined Fragments in DICE-profiled UML Sequence Diagrams

UML ELEMENT(S) UML PATTERN PETRI NET PATTERN

(9)
CombinedFragment

(interaction-
Operator = opt)

l2 : Lifeline2

opt

l1 : Lifeline1

«GaStep»
prob=$prob

startl1 startl2

endl1 endl2

optnop-op

optend

optstart
p(optstart)=$prob

p(optno-op)=
1-$prob

(10)
CombinedFragment

(interaction-
Operator = alt)

l2 : Lifeline2

alt

l1 : Lifeline1

alt1

alt2

«GaStep»
prob=$p1

«GaStep»
prob=$p2

startl1 startl2

alt1
endl1

alt1
endl2

alt1end alt2end

alt1start

alt2
endl1

alt2
endl2

alt2start

p(alt1start)=$p1 p(alt2start)=$p2

continued . . .
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. . . continued

UML ELEMENT(S) UML PATTERN PETRI NET PATTERN

(11)
CombinedFragment

(interaction-
Operator = par)

l2 : Lifeline2

par

l1 : Lifeline1

startl1 startl2

alt1
endl1

alt1
endl2

parend

alt2
endl1

alt2
endl2

parstart

(12)
CombinedFragment

(interaction-
Operator = loop)

l2 : Lifeline2

loop

l1 : Lifeline1

«GaStep»
prob=$prob

startl1 startl2

endl1 endl2

loopnop-op

optend

loopstart

p(loopstart)=
   $prob

p(loopno-op)=
1-$prob

An illustrative example

Figure 2 on the following page shows an example Sequence Diagram with some DICE stereotypes ap-
plied. Specifically, the diagram contains three lifelines: the first one (a) represents the Actor that gen-
erates the workload of the system; the second one (l1) represents an instance of the Lifeline1 classifier
with, a poolSize of $size1; and the third one (l2) represents an instance of the Lifeline2 classifier with, a
poolSize of $size2.

The workload of the system is specified in the first message (m1) that a sends to l1 by using the
GaWorkloadEvent stereotype. As it can be observed, the workload follows an open pattern, which spec-
ifies an arrival rate of $rate. When l1 receives the m1 message, it starts an ExecutionSpecification that,
optionally, may send a message m2 to l2, which in turn, will start an ExecutionSpecification that will take
$time seconds (on average) to be executed. At the end of that execution, l2 will send a reply message
to l1 and l1 will send a reply message to a. In the case of l1 not sending a message to l2, l1 will send a
reply message to a directly.
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a : Actor l1 : Lifeline1

«GaWorkloadEvent»
open=(arrivalRate=$rate)

l2 : Lifeline2

opt

«GaStep»
hostDemand=

(expr=$time, unit=s,
source=est, statQ=mean)

«GaStep»
hostDemand=

(expr=$timem2, unit=s,
source=est, statQ=mean)

m1

m2

r1

«PaRunTInstance»
poolSize=$size1

«PaRunTInstance»
poolSize=$size2

«GaStep»
prob=$prob

r2

Figure 2: Example Sequence Diagram

Figure 3 shows the Petri net that corresponds to the Sequence Diagram depicted in Figure 2. That
net has been produced by applying the transformation patterns previously explained to the initial DICE-
profiled UML model. In the figure, places and transitions have been arranged vertically in three imagi-
nary lines that represent each one of the execution paths of original lifelines. Thus, places and transitions
in the leftmost vertical line correspond to UML elements placed in the lifeline of a; places and transi-
tions in the middle vertical line correspond to UML elements placed in the lifeline of l1; and places and
transitions in the rightmost vertical line correspond to UML elements placed in the lifeline of l2.

As it can be observed, the leftmost execution path is left open, as indicated by pattern (1) of Table 2.
The middle and the rightmost execution paths converge in the common transition as indicated by pat-
tern number (3). Places and transitions that communicate the different execution paths (e.g., inboxm1,
m1outboxm1, inboxm2, m2, outboxm2, inboxr1, r1, outboxr1, inboxr2, r2 and outboxr2) represent
the messages between lifelines. The optional execution path has been transformed according to pattern
(9). As it can be observed, the communication between l1 and l2 can be avoided by following the path
that passes through the transition optno−op. Finally, the ExecutionSpecification of l2 can be found in the
timed transition (texe) placed in the rightmost execution path. As it can be observed, texe has a firing rate
(r(texe)) of 1/$time as specified in the source UML diagram.

3.1.4 An Excerpt of the DPIM Transformations Explained
Listing 1 on page 26 reproduces a simplified version of the QVTo rules that are in charge of transforming
pattern number (4) of Table 1 – i.e., an OpaqueAction of an Activity Diagram stereotyped as a «GaStep» –
into a Petri net fragment formed by a Place, an Arc, and a Transition. The complete DPIM transfor-
mations (AD2PNML and SD2PNML) can be found in the Companion Document [16] and a complete
reference of the QVTo language specification can be found in Chapter 8 of the QVT standard [17].

As it can be observed in line 1 of the listing, the transformation declares four arguments, two of them
are the inputs and the other two are the outputs. The two input arguments are: (i) ad, a DICE-profiled
UML model; and (ii) vars, a set of 〈$var, value〉 pairs used to valuate the VSL expressions. On the other
hand, the remaining (output) arguments are (iii) res, the PNML result model; and (iv) traces, a set of
traceability links that relate the element of the input UML model with the elements of the output PNML
model.

Next, the main() method – the entry point for the transformation – is declared. It invokes the
mapping (e.g., rule) activityNode2subNet for each ActivityNode contained in the scenario be-
ing transformed. When the actual type of the ActivityNode being transformed is OpaqueAction, the
activityNode2subNet mapping delegates its execution to basicActivityNode2subNet since it is
the only mapping whose type matches the type of the element being transformed. The basicActivity-
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startl1 startl2

optnop-op

optstart

optend

ta
r(ta)=$rate

inboxm1 outboxm1

l1

M(l1)=$size1

inboxm2 outboxm2

l2

M(l2)=$size2

texe

pexe

r(texe)=1/$time

common

r(m2)=1/$timem2

m2

m1

r2

r1

outboxr2 inboxr2

outboxr1 inboxr1

endl1 endl2

p(optstart)=$prob

p(optstart)=1-$prob

Figure 3: Petri net corresponding to the example Sequence Diagram (Fig. 2)
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Node2subNet mapping is a simple rule that, by calling the activityNode2place and activityNode-
2transitionmappings, creates a Place and a Transition. Next, it creates the arc that links the Place
with the Transition by calling the mapping arc(...). Finally, the mapping creates two trace links by
calling the trace(...) mapping: the first one links the ActivityNode to the newly created Place; and
the second one links the ActivityNode to the newly created Transition.

Regarding the activityNode2transition mapping, it is noteworthy to highlight its last line:
this line invokes the opaqueActionHostDemand2toolInfo mapping in the case of the element being
transformed is an OpaqueAction. Specifically, that rule (opaqueActionHostDemand2toolInfo) will
check whether the OpaqueAction has a hostDemand NFP defined or not. In the case of OpaqueAction
having the GaStep stereotype applied, if it contains a hostDemand tagged value, the rule will generate the
metadata (in the form of a PNML ToolInfo element) specifying the transition processing rate according
to the transformation patterns.

Listing 1: Excerpt of the AD2PNML Transformation
1 transformation ad2pnml(in ad : UML, in vars : TYPES, out res : PNML, out traces :

TRACE);
2
3 main() {
4 // [...] Content removed for clarity purposes
5 ad.scenario().node[UML::ActivityNode] -> map activityNode2subNet();
6 // [...] Content removed for clarity purposes
7 }
8
9 mapping UML::ActivityNode::activityNode2subNet() disjuncts

10 UML::InitialNode::initialNode2subNet,
11 UML::DecisionNode::decisionActivityNode2subNet,
12 UML::JoinNode::joinActivityNode2subNet,
13 UML::ActivityNode::basicActivityNode2subNet {};
14
15 /**
16 Transform a generic ActivityNodel into a simple [place]->[transition] subnet
17 */
18 mapping UML::ActivityNode::basicActivityNode2subNet() {
19 var place := self.map activityNode2place();
20 var transition := self.map activityNode2transition();
21 var arc := map arc(place, transition);
22 // Add tracing information
23 self.map trace(place, "basicActivityNode2place");
24 self.map trace(transition, "basicActivityNode2transition");
25 }
26
27 /**
28 Transform a generic ActivityNode into a Place
29 */
30 mapping UML::ActivityNode::activityNode2place() : PNML::Place {
31 containerPage := resolveoneIn(UML::NamedElement::model2page);
32 id := createRandomUniqueId();
33 if (self.name.oclIsUndefined().not()) {
34 name := object PNML::Name {
35 text := self.name;
36 };
37 };
38 }
39
40 /**
41 Transform a generic ActivityNode into a Transition and
42 creates any additional ToolInfo depending on the ActivityNode
43 subtype (e.g., OpaqueActions with hostDemand may create
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44 exponential transitions)
45 */
46 mapping UML::ActivityNode::activityNode2transition() : PNML::Transition {
47 containerPage := resolveoneIn(UML::NamedElement::model2page);
48 id := createRandomUniqueId();
49 if (self.name.oclIsUndefined().not()) {
50 name := object PNML::Name {
51 text := self.name;
52 };
53 };
54 toolspecifics += self[OpaqueAction].map opaqueActionHostDemand2toolInfo();
55 }
56
57 /**
58 Transformas an OpaqueAction with a hostDemand annotation to a ToolInfo element
59 */
60 mapping UML::OpaqueAction::opaqueActionHostDemand2toolInfo() : List ( PNML::ToolInfo )
61 when {
62 self.getGaStep_hostDemand().oclIsUndefined().not();
63 }{
64 var hostDemand := self.getGaStep_hostDemand();
65 result += expTransitionToolInfo( 1 / hostDemand.value());
66 result += infServerTransitionToolInfo();
67 }
68
69 /**
70 Creates the ToolInfo that identifies an exponential timed transition,
71 i.e., CONST::TransitionKind::Exponential
72 */
73 helper expTransitionToolInfo(rate : Real) : PNML::ToolInfo {
74 return object PNML::ToolInfo {
75 tool := CONST::ToolInfoConstants::toolName.toString();
76 version := CONST::ToolInfoConstants::toolVersion.toString();
77 toolInfoGrammarURI := CONST::TransitionKind::Exponential.toString().createURI();
78 formattedXMLBuffer := ("<value grammar=\"" +

CONST::TransitionKind::Exponential.toString() + "\">" + rate.toString() +
"</value>").createLongString();

79 };
80 }
81
82 /**
83 Creates the ToolInfo that identifies an InfiniteServer timed transition,
84 i.e., CONST::ServerType::InfiniteServer
85 */
86 helper infServerTransitionToolInfo() : PNML::ToolInfo {
87 return object PNML::ToolInfo {
88 tool := CONST::ToolInfoConstants::toolName.toString();
89 version := CONST::ToolInfoConstants::toolVersion.toString();
90 toolInfoGrammarURI := CONST::ServerType::InfiniteServer.toString().createURI();
91 formattedXMLBuffer := ("<value grammar=\"" +

CONST::ServerType::InfiniteServer.toString() + "\"/>").createLongString();
92 };
93 }
94
95 mapping OclAny::trace(to : OclAny, text : String) : TRACE::Trace {
96 init {
97 result := object TRACE::Trace {
98 fromDomainElement := self.eObject();
99 toAnalyzableElement := to.eObject();
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100 rule := text;
101 }
102 }
103 }

3.1.5 Validation of the Transformation Patterns for the DPIM Level
The model transformations developed for the DPIM layer have been validated with the POSIDONIA

Operations case study [14], within the approach in [18]. In particular, the approach – summarized by the
Algorithm 1 – aims at deriving a GSPN model amenable to be used for performance predictions.

The input specification consists of: (i) a UML-based design that includes a (set of) Activity Dia-
gram(s) AD, which represent the execution process(es) of a data-intensive application – such as the
parsing and the complex event processing (CEP) engine scenarios of POSIDONIA shown in Figures 4
and 5, respectively – and a Deployment Diagram1 DD, which specifies the software component alloca-
tion on computing nodes – such as the DD of Figure 6 – and (ii) the data log L which includes a set of
process execution traces.

The model transformations have been used in the first step (Step 1), where a Generalized Stochas-
tic Petri Net (GSPN) model N is automatically derived from each AD and the DD [1]. The Activity
Diagrams (AD) and the Deployment Diagram (DD) in Figures 4, 5 and 6 are annotated with the DICE
profile; in particular, input parameters are assigned to the mean durations of the action steps (i.e., host-
Demand tagged-values) and to the data stream arrival rate (i.e., arrivalRate tagged-value). Figure 7 on
page 30 shows the two GSPN subnets, in the dotted rectangles, that are derived via M2M transformation
from the parsing scenario of Figure 4 and the CEP scenario of Figure 5, considering the logical resource
restrictions specified in the DD of Figure 6 (poolSize tagged-values).

The next steps of the Algorithm 1 (Steps 2-7) consists in pre-processing the data logs L and applying
process mining techniques to: (i) check the conformance of the UML-based design with the data logs,
and (ii) assign values to the rate parameters of the performance GSPN model. In particular, the data logs
of POSIDONIA were collected in separate .csv files, 4 files related to the parsing process -one for each
parser thread- with a mean number of 69 920 traces, and one single file related to the CEP process with
a total of 56 698 traces. Each parsing trace represents the transformation of an NMEA message2 – from
the AIS (Automatic Identification System) receiver of the Balearic Islands – into an AIS sentence and
includes 8 event occurrences, which correspond to the start and completion of each action modelled in
the AD of Figure 4. Each trace of the CEP process represents instead the message handling by the CEP
of the Palma port.

Algorithm 1 Approach

Require: UML design (AD,DD), data log (L)
Ensure: Performance model (GSPN ) & results (R)

1: Get a normative model N from AD
2: Pre-process data log to get event log EL
3: repeat
4: Filter EL
5: Check for conformance N and EL
6: until fitness ≥ thres
7: Enhance N with timing perspective: GSPN
8: Performance analysis with GSPN : R

1As mentioned in Section A.1, Deployment Diagrams can be used to complement behavioral or structural models (among
other uses). Since they are only used to complement behavioral diagrams from the transformations to analysis models point of
view, we have not gone into detail for the sake of brevity.

2NMEA stands for National Marine Electronics Association, a US-based marine electronics trade organisation setting
standards of communication between marine electronics.
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Figure 4: Activity Diagram for the Parsing scenario
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IP_ParserServer

«artifact»
«PaLogicalResource»

AIS NMEA Parser

«artifact»
ParsingTask

«artifact»
Parser

«artifact»
StationManager

«artifact»
StationProcessors

«artifact»
MessageQueue

«artifact»
«PaLogicalResource»

CEP

«artifact»
AISSentenceListener

«artifact»
StatefulKnowledgeSession

«artifact»
SubscriberAISSentence

poolSize=(expr=$cep)poolSize=(expr=$aisParser)

IP_CEPServer

Figure 6: Deployment Diagram

Copyright c© 2016, DICE consortium – All rights reserved 29



Deliverable 3.1. Transformations to Analysis Models
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Figure 7: corresponding Generalized Stochastic Petri Net model

The values set to the rate parameters associated to the timed transition of the GSPN model were
estimated by replaying the execution traces in the logs on the GSPN models derived from M2M trans-
formation: the trace-driven simulator of the ProM tool [19] was used for this purpose. The table in
Figure 7 (right side) shows the mean values obtained for the timed transitions of the two GSPN subnets
of POSIDONIA (left side). All the transition firing times of the parser scenario subnet are characterized
by the negative exponential distribution, since the standard deviations were similar to the mean val-
ues. Concerning the CEP scenario subnet, all the transition firing times are exponentially distributed but
t_firingAll rules that is approximated by an Erlang distribution with k = 3 steps.

The two GSPN subnets were validaded separately by considering four parser threads and a single
CEP (last two rows of the table in Figure 7), and the mean processing time as performance metric of
reference. Both the analytical solver and the event driven simulator of GreatSPN [13] were used for this
purpose. The relative error of the mean processing time of the parsing with respect to the one inferred
by the logs was less than 1%. The relative error of the mean processing time of the CEP was around
10% (probably due to the abstraction level of the model, where the activation and firing of single CEP
business rules are not explicitly represented).

The validated GSPN model (Figure 7) was used to evaluate the scalability of the POSIDONIA appli-
cation considering different assumptions on the deployment environment. In particular, the deployment
configurations included the number of parser threads (related to the number of AIS receptors), the num-
ber of CEPs for each geographical area and the arrival time of the data stream. Details on the performance
analysis results can be found in [18].

3.2 Transformations to Quality Analysis Models for the DTSM Level
In this section, we focus on the transformations of UML models at DTSM level for two Big Data tech-
nologies: Apache Hadoop MapReduce and Storm. The transformation process of annotated UML di-
agrams to performance models requires an UML activity diagram for representing the logic and the
temporal information of the application; and an UML deployment diagram for showing the number of
available computational resources and their assignation to the different Big Data operations.

3.2.1 Hadoop MapReduce
This section is devoted to the Apache Hadoop MapReduce technology and it contains three subsections.
The first one presents the UML models annotated with the DICE profile that capture the main concepts
introduced in the Background section for an Apache Hadoop MapReduce framework. The second one
details our approach of how a Hadoop UML model is transformed into a performance model. The third
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one is devoted to the validation of our approach. To this end, we compare the results obtained by the
execution of a Hadoop application in a controlled environment and the predictions of the performance
model obtained by the transformation of the UML model that represents such application.

UML Models for Hadoop MapReduce

In this section, we present our proposal for modeling Hadoop MapReduce applications with UML dia-
grams and the DICE profile. The focus of our proposal is on performance evaluation, which means that
the DICE profile is used to introduce performance parameters (e.g., workload or host demands) in the
UML models that represent the Hadoop MapReduce framework.

Figure 8 on the next page shows the UML activity diagram for an example of Hadoop applica-
tion. The diagram starts with a mapping phase and finishes with a reducing phase. In this example,
there are three classes of mappers and and three classes of reducers, a capacity job scheduler and a spe-
cific workload. The number of mappers and reducers, the type of scheduler and the kind of workload
are parameters that change from one configuration to another, but the UML activity diagrams will al-
ways have the same structure. These parameters of the Hadoop MapReduce cluster are captured by the
DICE::DTSM::Hadoop profile annotations (i.e., stereotypes and its corresponding tags). In Figure 8 they
appear as notes to ease its readability. Values using the symbol dollar ($) represent variables. They are
useful for parametrizing the UML model and consequently the resulting performance model.

Table 4 on page 33 links the Hadoop MapReduce concepts with the DICE::DTSM::Hadoop pro-
file annotations. The DICE::DTSM::Hadoop profile includes five new and genuine stereotypes that are
created for representing the schedulers, the workload, the mappers, the reducers and the cluster. The
stereotypes and annotations for Hadoop are based on MARTE [15], DAM [20], the DICE::DPIM and
Core profiles [3]. The DICE::DTSM::Hadoop stereotypes inherit or refine information from the men-
tioned profiles and also add new information. For instance, part of the annotations for the mapper and
reducer stereotypes use MARTE-DAM for including temporal information (i.e., host demands) in the
UML models. In the following we describe these five stereotypes.

The workload is described by the «HadoopWorkloadEvent» stereotype through two tags: hadoop-
Population and hadoopExtDelay. It defines the number of jobs for each class that are initially in the
system; and the arrival rate of each class of job. The number of jobs is specified by the hadoopPopula-
tion tag, i.e., an array of integers. The element $nCi of the array represents the number of jobs of the
class i. The arrival rate of jobs is specified by the hadoopExtDelay tag, i.e., an array of integers. The
element $thi of the array represents the time between the arrival of a new job of the class i to the cluster
and the next one.

The stereotype «HadoopScenario» includes information of the complete cluster. For instance, the
scheduler algorithm of the tasks and the response time of a job. The scheduler of the Hadoop MapReduce
cluster is determined by the jobSchedule tag. It has an enumerable value that can be any of three common
schedulers ({capacity, fifo, fair}). The response time (respT) measures the elapsed time since a user
submits a job to the cluster until it returns the result. In other words, it includes the execution time of
the map and reduce phases plus the time spent in the queues and communication delays. In fact, the
response time is a metric defined within the «HadoopScenario» stereotype (see Figure 8). The mean
(statQ=mean) response time is computed by the simulation of the performance model (source=calc)
according to the information stored in the map (reduce) stereotypes and the rest of the diagram. The data
type of the field source in the hostDemand tag is an enumerable {est, calc, meas, req}, where est means
estimated; calc is calculated; meas is measured and req is required. The annotation est is equivalent to
meas. They indicate that the execution time is estimated or measured by the user, and provided as input
parameter to the DICE Simulation tool. The annotation calc is used for defining the metrics that will
be computed in the performance model. The annotation req represents a temporal constraint that must
be accomplished by the component (e.g., imposing a maximum delay for a response time). The DICE
Simulation tool computes a metric, and then compares the result with the requirement for knowing if the
requirement is satisfied or not.

Together with the «HadoopScenario» stereotype, we use the «GaAnalysisContext» stereotype from
MARTE profile for summarizing all the parameters of the Hadoop MapReduce model. This stereotype
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Figure 9: Example of a deployment diagram for Hadoop MapReduce with DICE profile annotations

is used for technical reasons. Mainly, it is used for saving the information of the Hadoop MapReduce
configuration in order to simplify the transformation process from UML diagrams to performance mod-
els.

The mappers are functions that divide and preprocess the data during the mapping phase. The com-
position of the intermediate results is done by reduce functions (i.e., reducers) in the reducing phase.
In an abstract sense, mappers and reducers are operations in the Hadoop cluster that execute a partic-
ular function during a certain amount of time. For that reason, they are both annotated with the same
«HadoopOperation» stereotype. That is, the «HadoopOperation» stereotype models any operation in
the Hadoop cluster. It includes a hostDemand tag for indicating the execution time of the function (field
value). The execution time of the map (reduce) operations has been estimated before the simulation of
the performance model (field source=est). This value represents the mean execution time (statQ=mean)
of the map (reduce). The unit time is milliseconds (unit=ms). The stereotype also includes the tag nTasks
(i.e., an array of integers) for specifying the number mappers (reducers) functions in which a class of job
is divided. By default, we use $nMi for naming the number of mappers and $nRi for naming the number
of reducers of the job class Ci.

Finally, the «HadoopComputationNode» stereotype defines the physical assignation of map (reduce)
functions to computational cores during the execution of the system (see the UML deployment diagram
of Figure 9). The stereotype includes an array of integers nCores that associates $nPi computational
resources (cores) to each class of job (Ci). The tag resMult defines the maximum number of resources
that are available in the computational node, in this case, resMult = $nP1.

Hadoop MapReduce Transformations

A Hadoop MapReduce application, specified at DTSM level during the design phase using the UML
activity and deployment diagrams with DICE::DTSM::Hadoop profile annotations, needs to be trans-
formed into a formal model for assessing the performance and reliability of the designed system. The
performance model that we use as target transformation of the UML diagrams is a Stochastic Well-
formed colored Net (SWN) [21], i.e., a Petri net with a temporal interpretation and data types. A SWN
is a useful formalism for the modeling and performance analysis of Hadoop MapReduce applications.
Places represent the intermediate steps of the processing. Transitions represent the execution of map/re-
duce operations that are fired when certain conditions are met or a temporal delay is reached. Besides,
tokens represent different type of elements depending on the color. Colors are used for distinguishing 1)
the different users of the system for the scheduling policies, 2) the kind of processing according to the
type of task (i.e., map or reduce), or 3) the computational resources (e.g., the cores assigned to a type of
user). In summary, a SWN is an useful formalism for the modeling and performance analysis of Hadoop
systems. Tools such as GreatSPN [13] allow the simulation and analysis of SWNs.
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The transformation of the UML diagrams into a SWN must take into account all the information
contained in the annotations (stereotypes and tags). The UML activity diagram is transformed into a
single SWN. Later on, the annotations in the UML deployment diagram parametrize some parts of this
SWN. We start with the transformation of the DICE::DTSM::Hadoop profile into an initial version of
Petri net and show how to refine it according to the annotations. Figure 10 shows the transformation of
the Hadoop phases (i.e., schedule, map and reduce) into a simple SWN that will be successively refined.
A Hadoop MapReduce application is always transformed to the same Petri net prototype. The Petri net
starts with the scheduling of the arriving tasks, continues with the mapping and reducing phases, and it
finishes with the release of the resources. The Petri net is closed for emulating the batch processing mode
of the Hadoop cluster. The SWN continues with the next batch once it finishes the current execution.
The annotations of the stereotypes representing the workload, the scheduler, the mappers, the reducers
and the cluster will only change the parameters of the net or a portion of it. That is, the information
contained in the stereotypes mainly define the number of colors in the system (i.e., the number of jobs of
each class in the net) or the performance information (i.e., temporal delays in the transitions).

The classes of jobs and the computational resources in the UML models are transformed to different
colors in the SWN. In this example, there are three classes of colors for a Job data type. A Job must
belong to any of the classes Ci. The notation u means that the Job type is the union of classes C1, C2
and C3. There are a maximum of $nCi tokens (jobs) of class Ci and a minimum of 1. The value $nCi
matches with the value of the element of the array hadoopPopulation in the «HadoopWorkloadEvent»
stereotype.

The computational resources are partitioned according to the number of classes of jobs. There are
three possible colors for the Partition data type. The type of job Ci has reserved a Pi number of cores.
The value $nPi matches with the value of the corresponding element of the array nCores in the «Hadoop-
ComputationNode» stereotype. The place Core in the SWN indicates the total number of resources in
the system. It is initialized with numCores tokens. In the SWN syntax, <S> is the standard notation
for the whole place color domain. That is, numCores = $nP1 + $nP2 + $nP3. The annotation resMult
of the «HadoopComputationNode» is not explicitly used in the SWN. The SWN algorithm controls the
assignation of resources of type Pi to jobs of class Ci.

In the SWN, the timed transitions fire following an exponential distribution probabilistic delay and
in one case they are executed by infinite available servers. They determine the rate of messages per
unit time. The arrival rate of new jobs is simulated by the think rate of the initial timed transition
extDelay. The transition extDelay should be divided into three concurrent transitions for each type of
job in the Figure 10 because the arrival rates were different, but we draw a single transition in the SWN
for readability. The temporal information of the transition extDelay corresponds to hadoopExtDelay
annotation of the stereotype «HadoopWorkloadEvent», and it has the value 1/$thi.

Figure 10: Petri net of Hadoop MapReduce
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The timed transitions jobSchedule, mapping and reducing are abstract representations of the schedul-
ing algorithm, the mapping and reducing phases. The jobSchedule transition will be analyzed and refined
in the following paragraphs. The value $mapT ($redT) assigned to the mapping (reducing) transition is
the time required by the mapping (reducing) phase for creating a intermediate value and composing the
final results. They correspond to the hostDemand tag annotation in the UML activity diagram. We use
the inverse 1/$mapT (1/$redT) for expressing the throughput or the number of output tokens produced
by unit time.

A more refined SWN is obtained by replacing the timed transitions (i.e., jobSchedule, mapping and
reducing) by a concrete subnet capturing the specific characteristics of schedulers, mappers and reducers.
For instance, Figure 11 shows a subnet that refines the map (reduce) transitions. This subnet divides a job
into multiple tasks during the mapping (reducing) step. The fork (join) immediate transitions produce
(consume) as many tokens (i.e., pairs of related <job,task>) as the cardinality of the static subclass Ti.
The cardinality of the data type Ti is the number of subtasks (i.e., $nMi mappers or $nRi reducers in
the «HadoopOperation» stereotype) a job of type Ci is divided during the map (reduce) phase. The
cardinality of Ti is denoted by <S Ti>.

The arcs of the SWN are annotated with the color of the tokens that can traverse them. For example,
the label <x> is used for expressing the type of job, <t> is the type of task and <r> is the type of resource.
The colors in the arcs also impose conditions for firing a transition of the SWN. Beside, they show the
assignation and release of resources. For instance, the taskScheduling transition in in Figure 11 has two
input arcs (<x,t> and <r>), and an output arc (<x,t,r>). It means that a resource <r> is taken from the place
Core and assigned to the task <t> of the job <x> producing a tuple <x,t,r>. Internally, the taskScheduling
transition checks the values of the data types of the input arcs and guarantees that only an output token is
produced when certain color conditions are met. For example, a firing condition is that the color of the
resource <r> and the job <x> must be compatible. That is, <r> belongs to the partition P1 and the job
<x> belongs to the job class C1 (i.e., P1 represent the set of cores reserved for the jobs of class C1).

The scheduling policy generates different configurations during the transformation phase to the per-
formance and validation model. The subnet that will replace the jobSchedule transition in the Figure 10
will change depending on the scheduling policy adopted. Figure 12 on page 38 is an adaptation of the
initial SWN that is able to capture completely the behavior of the capacity scheduler policy. For sim-
plicity, there is only one type of jobs (users) in the cluster in this example (i.e., class C1). The capacity
scheduler will generate an independent FIFO queue for each job class.

To enforce the FIFO scheduling, each job is assigned an identifier ID i. The initial marking M2
of the place IDs1 is set to the first index (1) of the color class ID. Once transition think sends a job
to the ready state, it increases this index by one (!i is equivalent to i:= (i+1) mod C1). The transition
generateMaps will start the job (<x,i>) that has the index equal to the one it is getting from place IDs2
(<i>). In other words, the job that has its turn will start the Map phase. Whenever a job gets resources
for all of its reduce tasks (place wait4ResRed drains), the job with the next index will be started thanks
to the transition startNext, which updates the IDs2 place with the next index. This condition is controlled
by an inhibitor arch that activates startNext when wait4ResRed is empty. Observe that the map tasks
<y,t>, associated to a job <y>, are generated when all the reduce tasks <x,t>, associated to the previous
job <x>, are not waiting for resource availability.

When a job <x> is ready to be processed and it has its turn—i.e., the place jobReady is marked with
a token <x, i> and the IDs2 place is marked with the same index <i>—a group of $nM1 map tasks are
generated (firing of generateMaps transition). Such tasks, associated to job <x> are represented by $nM1
pairs <x,t>, where the color <t> belongs to the subclass Map of the basic color class Task. Each task
<x,t> needs to acquire a resource <r> to be executed (firing of getResMap transition). The map tasks
are concurrently executed according to resource availability. The set of resources is again defined by the
basic color class Partition, which in this case consists of a unique partition P1 including $nP1 resources.

The timed transition map models the duration of the map task execution (1/$mapT) and in this case,
its firing time is an Erlang-distributed random variable. The map stage is finished when all the map
tasks <x,t> associated to job <x> have been executed. The firing of the joinMaps transition models the
beginning of the next processing step, where $nR1 reduce tasks are generated. The reducing step is
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similar to the mapping step (the reduce tasks are executed at a rate of 1/$redT). The only difference is
that the reduce tasks, associated to job <x>, are represented by $nR1 pairs <x,t> where the color <t>
belongs to the subclass Reduce of the basic color class Task.

Hadoop MapReduce Validation

The objective of this section is to validate the results obtained by our performance models against real
results. Consequently, we will validate our proposal for transforming UML models annotated with the
DICE profile into a Petri net prepared for the performance evaluation of the modeled system.

The validation results for Hadoop MapReduce has been already presented in Section 6 of the DICE
Deliverable 3.8 [22], but we also include a subset of them here in our deliverable in order to be self-
contained. The results of the DICE Deliverable 3.8 has been taken from [23]. These results consider a
refined SWN model with fault-tolerance capabilities.

The experiments are executed on Amazon EC2 and CINECA, the Italian supercomputing center.
The target version was Hadoop 2.6.0. We have studied the performance for various configurations of the
Hadoop MapReduce framework. That is, we have analyzed the simulation errors for different number
of mappers (nMaps), reducers (nRed), cores and users. We have chosen a set of SQL queries that are
translated into MapReduce jobs using Apache Hive [24]. They are executed over a dataset of several files
ranging from 250 GBytes to 1 TByte that are used as external tables. The metric that we measured was
the system response time. The GreatSPN tool [13] has been used for the simulation of the SWN model.

The validation results are summarized in Table 5. The SQL queries are identified by the name R1-
R5 in the first column of the table. A description of the SQL sentences can be consulted in the DICE
Deliverable 3.8. The last column of the table represents the percentage of relative error between the
estimated and real response times. The response times obtained by the simulation of the SWN (column
T swn [ms]) are close to the response times obtained by real executions (column T [ms]) in the Hadoop
MapReduce cluster for most situations. The simulation tool offers good estimations of the real execution

Table 5: Validation of the SWN for Hadoop MapReduce

QUERY USERS CORES SCALE [GB] NMAPS NRED T [ms] T SWN [ms] % ERROR

R1 1 240 250 500 1 55 410 50 629.58 -8.63

R2 1 240 250 65 5 36 881 37 976.82 2.97

R3 1 240 250 750 1 76 806 83 317.27 8.48

R4 1 240 250 524 384 92 197 89 426.51 -3.01

R1 1 60 500 287 300 378 127 330 149.74 -12.69

R3 1 120 750 1 148 1 009 661 214 698 276.75 5.61

R4 1 60 750 868 910 808490 806 366.51 -0.26

R3 1 80 1000 1 560 1 009 1 019 973 1 020 294.84 0.03

R5 1 80 1000 64 68 39 206 38 796.47 -1.04

R1 3 20 250 144 151 1 002 160 909 217.89 -9.27

R1 5 20 250 144 151 1 736 949 1 428 894.40 -17.74

R2 3 20 250 4 4 95 403 99 219.94 4.00

R2 5 20 250 4 4 145 646 88 683.10 3.09

R1 5 40 250 144 151 636 694 613 577.53 -3.63

R2 3 40 250 4 4 86 023 119 712.30 -17.81
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of Hadoop MapReduce systems.
The work described in this section of the document is the result of the analysis of Apache Hadoop

MapReduce, which is considered as a reference technology. Most of the concepts can be adapted to other
frameworks, since the model is very general. We have shown the transformation of UML activity and
deployment diagrams to performance models that capture the essentials of the technology. The experi-
mental results have confirmed the feasibility of our approach for common Apache Hadoop MapReduce
configurations.

3.2.2 Storm
This section is devoted to the Apache Storm technology and it contains three subsections. The first one
presents the UML models annotated with the DICE profile that capture the main concepts introduced in
the Background section for an Apache Storm topology. The second one details our approach of how a
Storm UML model is transformed into a performance model. The third one is devoted to the validation
of our approach. To this end, we compare the results obtained by the execution of a Storm application in
a controlled environment and the predictions of the performance model obtained by the transformation
of the UML model that represents such application.

UML Models for Storm

In this section, we present our proposal to represent Storm topologies using UML diagrams and the DICE
profile. The focus of our proposal is on performance evaluation, which means that the DICE profile is
used to introduce performance parameters (e.g., host demands) in the UML models that represent the
Storm topology.

Figure 13 shows the UML activity diagram for an example of Storm topology with two spouts and
three bolts in a pipeline layout. Of course, more complex Storm topologies such diamonds or stars can
also be expressed using UML activity diagrams. The UML activity diagram for Storm will always start
with a set of initial nodes corresponding to spout elements because they are the sources responsible of in-
serting tuples in the topology at a certain speed. The parameters of the Storm application are captured by
the DICE::DTSM::Storm profile annotations (i.e., stereotypes and its corresponding tags). In Figure 13
they appear as notes to ease its readability. Values using the symbol dollar ($) represent variables. They
are useful for parametrizing the UML model and consequently the resulting performance model.

It must be noticed that the usual interpretation of the UML activity diagram cannot be applied here
because the rounded rectangles representing actions will never finish according to the characteristics of
Storm as a stream processing technology. Besides, the arcs connecting actions do not represent a logical
succession of actions but a communication channel between two processes (i.e., spouts and/or bolts).
Hence, in our approach a UML activity diagram is interpreted as a DAG for a particular Storm topology.

Tables 6–7 link the Storm concepts with the stereotypes of the DICE::DTSM::Storm profile and
the annotations. The DICE::DTSM::Storm profile includes three new and genuine stereotypes for rep-
resenting the spouts, bolts, and the arcs between nodes. The stereotypes and annotations for Storm
at DTSM level are based on MARTE [15], DAM [20], the DICE::DPIM and Core profiles [3]. The
DICE::DTSM::Storm stereotypes inherit or refine information from the mentioned profiles and also add
new information. For instance, part of the annotations for the spout and bolt stereotypes use MARTE-
DAM for including temporal information (i.e., host demands) in the UML models. In addition, MARTE
allows the annotation of the number of resources (Cluster field of Table 7) during the deployment.

Spouts and bolts are important concepts that have been modeled with stereotypes in the DICE profile
for Storm. The components spout_1 and spout_2 of the UML diagram use the stereotype «StormSpout»,
and the components bolt1_1,bolt1_2 and bolt2_3 use the stereotype «StormBolt». They have indepen-
dent DICE stereotypes because they are conceptually different but spouts and bolts share the main core
attributes inherited from «CoreDAGNode»/«CoreDAGSourceNode» from the Core profile of DICE. That
is, the spout and bolt stereotypes include the definition of the level of parallelism and the execution
time. One one hand, the parallelism of a component is specified by the value of the parallelism tag. It
determines the number of threads executing the same component. On the other hand, each thread of a
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Figure 14: Example of deployment diagram for Storm with DICE profile annotations

component has an estimated execution time whose value is contained in the field value of the hostDe-
mand tag. The field source=est indicates that the execution time is estimated in the real system before
the simulation of the performance model. The explanation of the source field is located in the equivalent
section of the Hadoop MapReduce transformations. The execution time represents the mean execution
time (statQ=mean) for all the threads. The unit time is milliseconds (unit=ms).

The Storm concept of stream is captured by the stereotype «StormStreamStep», which is attached
to arcs between actions in the UML activity diagram. This stereotype has two tags: grouping and num-
Tuples. The former for specifying the policy {all,shuffle} and the latter for specifying the number of
tuples that a node must consume for producing an output. The synchronization policies for composing
the messages (AND/OR configurations in Figure 31) are represented graphically by diamonds (OR) and
bars (AND).

Finally, Figure 14 shows the annotated UML deployment diagram. It maps the elements of the
Storm topology into the hardware resources. The UML deployment diagram complements the UML
activity diagram for the definition of the system parallelism. More in detail, the annotations of the UML
deployment diagram collects the information of the number of computational resources available in the
artifacts of the system; and represents the association of each thread of a component (spout or bolt) to
a core or virtual machine. Similarly to Hadoop MapReduce, the resMult tag, from the «GaExecHost»
stereotype, indicates the number of available cores or instances using the expression $c1 ($c2).

Storm Transformations

The topology of a Storm application, specified at DTSM level during the design phase using the UML ac-
tivity and deployment diagrams with DICE::DTSM::Storm profile annotations, needs to be transformed
into a formal model for assessing the performance and reliability of the designed system. The perfor-
mance model that we use as target transformation of the UML diagrams is a Generalized Stochastic
Petri Net (GSPN) [25], i.e., a Petri net with a temporal interpretation. A GSPN is a useful formalism
for the modeling and performance analysis of Storm systems. Places represent the intermediate steps
of the processing. Transitions represent the execution of Storm operations and are fired when certain
conditions are met or a temporal delay is reached. Besides, tokens represent the messages (tuples) sent
between components; and arc weights determine the number of tokens (messages) required for firing the
transition. No colors (i.e., data types in the Petri net) are considered for this moment, but they will serve
in the future for defining different pipelines distinguishing 1) the kind of processing according to the type
of data, or 2) the characteristics of the computational resources (e.g., location of cores, computational

Copyright c© 2016, DICE consortium – All rights reserved 44



Deliverable 3.1. Transformations to Analysis Models

speed, etc.).
The transformation of the UML diagrams into a GSPN must take into account all the information

contained in the annotations (stereotypes and tags). The UML activity diagram is transformed into a
single GSPN. Later on, the annotations in the deployment diagram parametrize some parts of the GSPN.
We start with the transformation of the basic stereotypes of the DICE::DTSM::Storm profile into Petri
nets and show how to compose them incrementally. Figure 15 shows the transformation of the core
Storm components (i.e., spouts and bolts) into a GSPN. The example presents a single spout that creates
tuples, sends them to the bolt, and the bolt processes them. Spouts and bolts stereotypes are always
transformed to the same subnet prototype; the stereotype «StormStreamStep» will change the weights
and configurations of some particular arcs and transitions. The Petri net starts with a set of spouts and
ends with a set of bolts. The workload in the Petri net is open for emulating the streaming characteristic
of Storm.

The timed transitions execTask are abstract representations of the spout and bolt functions. The
tuples are generated and inserted into the pipeline at a certain rate according to the rate of the initial
timed transition representing the spout. The value $sp1 ($b1) is the time required by the spout (bolt)
for creating a new tuple. They correspond to the value of the hostDemand tag annotation in the UML
activity diagram. In the GSPN, the timed transitions are configurated as infinite available servers and
constrained by the internal parallelism of the spouts (bolts). The specification of the timed transitions is
provided by the values 1/$sp1 for the spouts (1/$b1 for the bolts). They determine the rate of messages
per unit time.

The number of threads assigned to a spout (bolt) is controlled by a explicit place named spoutPar-
allelism (boltParallelism). It is initialized with the value indicating the degree of parallelism in the
annotations (e.g., $n0). A spout (bolt) starts running when the corresponding thread gains access to a
computational resource (core).

The place Core in the GSPN defines the multiplicity of hardware resources (i.e., number of cores)
according to the value of resMult tag in the UML deployment diagram. This value then represents the
total number of available cores in the system ($c1+$c2 in the case of the Figure 14). Places spoutOutput
(boltOutput) represent just intermediate buffers for the communication between components. The output
messages generated by a spout (bolt) are put in those places. For each stream connection, an independent
place spoutOutput (boltOutput) is created.

In Figure 15, spouts and bolts are abstracted by timed transitions. Nevertheless, spouts and bolts are
generic programs that execute code for creating or manipulating tuples. In some cases, it is interesting
to increase the granularity of the GSPN for capturing the details of the execution flow of a spout (or
bolt) program. Some of the advantages of Petri nets are the modularity and composition of the models in
order to handle the level of granularity. Timed transitions can be replaced by new subnets representing

execTask
Spout

spoutParallelism

spoutOutput execTask
Bolt

boltOutput

working

boltParallelism

Core
$c1+$c2

DD

$n0 $n1

1/$sp1 1/$b1

Figure 15: Petri net for spout and bolt components in Storm

Copyright c© 2016, DICE consortium – All rights reserved 45



Deliverable 3.1. Transformations to Analysis Models

the internal workflow of spouts and bolts functions with minor impact to the overall Petri net model.
Figure 16a–16b, detail a Petri net modeling the annotations of the Storm communication channel

(i.e., the «StormStreamStep» stereotype). They detail the transformations for the attributes of grouping,
numTuples and the type of synchronization. The temporal information of the timed transitions is omitted
in the images for readability. The grouping and numTuples annotations change the arc weights in the
GSPN; while the type of synchronization, represented by bars (and policy) and diamonds (or policy),
varies the number of immediate transitions between the end of a component and the beginning of the
next one.

The grouping tag indicates the number of threads required by the next component for processing
the message. It defines the number of tokens (messages) that the timed transition execTask will put in
the place spoutOutput (boltOutput) of the GSPN. If the value of grouping is shuffle, only a thread will
receive the tuple: the arc in the GSPN has unitary weight. If the value of grouping is all, every thread
will receive the tuple: the arc in the GSPN has the same weight as the value of parallelism in the next
component. For instance, $n2 in Figure 16a–16b represents the parallelism of the bolt.

The numTuples attribute indicates the number of input messages (tokens) that a bolt requires for
creating a new message. It defines the number of tokens that the bolt will read from the place spoutOutput
(boltOutput) of the previous component in the GSPN. For instance, the bolt requires $nS1 tokens from
the first spout and $nS2 tokens from the second spout in Figure 16a–16b.

Joins (bars) in the UML activity diagram representing an and synchronization are transformed into
a single immediate transition in the GSPN that receives the arcs from all the precedent components.
Merges (diamonds) in the UML activity diagram representing an or synchronization are transformed
into several immediate transition in the GSPN, one per input arc.

Figure 16a shows two spouts sending tuples to a bolt. The bolt requires $nS1 tokens from the first
spout, and $nS2 tokens from the second spout in order to proceed. The connection between the first spout
and the bolt follows an all policy, and the connection between the second spout and the bolt follows a
shuffle policy. The parallelism is initialized with $n0 and $n1 threads for spouts and $n2 threads for the
bolt. Figure 16b shows the same GSPN model. However, in this case the bolt requires $nS1 tokens from
the first spout, or $nS2 tokens from the second spout instead of receiving both $nS1 and $nS2 messages.
Arcs between the core resources and the transitions are dotted for readability.

Finally, Figure 17 represents the complete GSPN modeling the main concepts of Figure 13–14. The
GSPN model has been created according to the values of the annotations in the UML diagrams. The
GSPN model includes the arc weights (numTuples, grouping), the level of parallelism (parallelism), the
number of available cores (resMult), and the execution times (hostDemand). The names of the places
and transitions are omitted for readability, but they can be clearly identified. The spout_1 has parallelism
$n0 and the spout_2 has parallelism $n1. The bolt1_1 requires $nS6 messages from spout_1 and $nS5
messages from spout_2 with shuffle policies. The bolt1_2 requires $nS1 messages from spout_1 or $nS2
messages from spout_2 with all policies. The bolt2_3 requires $nS3 messages from bolt1_1 or $nS4
messages from bolt1_2 with shuffle policies.

Storm Validation

The objective of this subsection is to validate the results obtained by our performance models against
the results obtained by deploying the real system in a real cluster of computers. Consequently, we will
validate our proposal, presented in the previous sections, for transforming UML models annotated with
the DICE profile into a Petri net prepared for the performance evaluation of the modeled system. To
this end, we use the GSPN of Figure 17 on page 48 that we have obtained by the transformation of
the annotated UML activity diagram of Figure 13 according to the transformations rules proposed. For
getting consistent results, our validation applies different configurations depending on the number of
available cores and computers in the cluster, the arrival rate of messages and the processing time of the
intermediate components (bolts). We simulate the GSPN with the GreatSPN tool [13] and we compare
the results with those obtained for the system deployed in a real cluster. We measure the relative error
between real simulations and predictions (abs(real-prediction)/prediction).
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Figure 16: Petri net modeling the annotation parameters of the Storm communication channel
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Table 8: Configuration parameters for the first experiment in a single workstation.

NCOMPUTERS RESMULT $SP_I $BI_J PARALLELISM SPOUT_I PARALLELISM BOLTI_J

1 3 X 100ms 1 1

Table 9: Configuration parameters for the second experiment in a cluster of two workstation.

NCOMPUTERS RESMULT $SP_I $BI_J PARALLELISM SPOUT_I PARALLELISM BOLTI_J

2 11 (3+8) X X 2 2

The performance metric that we have measured in the real system is the average capacity of a bolt.
In other words, we have calculated the percentage of time that the threads associated to a bolt are active
and working. In the performance model this parameter corresponds to the mean number of tokens in the
place working. We will have three capacity values per experiment because we have three bolts in the
model.

As mentioned above, we have different system configurations that will vary the number of resources
and parallelism (tokens in places spoutParallelism, boltParallelism and Core), execution times for bolts
(time of processing an input message and generate a new tuple) and spouts (time of inserting a new tuple
into the system, i.e., the inverse of the arrival rate). Times are expressed in milliseconds. Two cluster
environments have been considered for these tests. We have executed the experiments of the Storm
topology 1) locally, in a single workstation (Table 8), and 2) remotely, distributed in two workstations
(Table 9). The workstations are Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 32GBytes of RAM,
Gigabit ethernet and Ubuntu Linux version 14.04. Each workstation has 8 cores.

Tables 8 and 9 show the number of cores, the level of parallelism and the execution times of the tasks
that will remain constant for the experiments executed locally and remotely. The values of the attribute
numTuples in Figure 13–17 are $nS1=$nS2=$nS5=$nS6=5 and $nS3=$nS4=1 in both contexts. Column
resMult tells the total number of available cores in the cluster. The execution of the topology uses 3 cores
when it works in a local machine; and 11 cores (3+ 8 cores) when the topology runs remotely. Columns
$SP_I and $BI_J indicate the execution time of tasks Spout_i and Bolti_j (number of ms per message).
By default, Spout_1 and 2 are set with the same execution time. We run the experiments by changing the
values of execution time for Spout_1 and Spout_2. The execution time of Bolti_j remains constant (100
ms/message) for the executions carried out in a single workstation, but it varies when we distribute and
execute the topology in the remote cluster. The spouts and bolts have parallelism = 1 (i.e., one thread per
component) in Table 8 and parallelism = 2 in Table 9.

On the other hand, we run experiments where the total parallelism of the Storm application was
greater than the number of cores. We set parameters of Table 8 as follows: 5 threads (5 components x
1 threads/component) and 3 cores. Table 10 on the next page shows the capacity results obtained by the
execution of the topology for the Bolti_j (columns % BI_J CAP), and the deviation with respect to the
estimated values obtained by GreatSPN (columns % BI_J ERROR). In some situations, the relative error
passes the permissive value of 10% for the bolt capacity. For instance, this happens for the first row of the
table: all the bolts process a message every 100 ms and the spouts produce messages with a rate of 0.05
message/ms (20 ms/message). According to the predictions of the performance model (not shown in the
table), the thread of Bolt1_1 is active 76% of the time, the thread Bolt1_2 is active 100% of the time and
the thread Bolt2_3 is active 35% of the time. Thus, two of the cores are always busy executing the bolts;
and the remaining one is devoted to the execution of the spouts (2 threads). Therefore, the workstation is
saturated, the OS scheduler rebalances the threads and contention may appear. These facts are potentially
the origin of a greater error between the estimated and real performance values.

Finally, we conducted an experiment where the total parallelism of the Storm application was less
than the number of cores for the experiment. We set parameters of Table 9 as follows: 10 threads
(5 components x 2 threads/component) and 11 cores. In this case, the performance predictions match
reasonably good with the performance results of real executions (see results of Table 11). The percentage
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Table 10: Validation of the PN when the total number of threads is greater than the number of cores

SP_I % B1_1
CAP

% B1_2
CAP

% B2_3
CAP

% B1_1
ERROR

% B1_2
ERROR

% B2_3
ERROR

20 35,2 98,7 24,7 116,936 1,317 42,332

30 47,8 92,1 22,8 18,297 8,578 33,692

40 44 88,9 28,3 2,922 2,217 4,296

50 38,4 75,6 23,8 1,666 0,176 4,413

100 22,4 42,2 13,9 11,908 6,077 16,576

Table 11: Validation of the PN when the total number of threads is less or equal than the number of cores

SP_I B1_1 B1_2 B2_3 % B1_1
CAP

% B1_2
CAP

% B2_3
CAP

% B1_1
ERROR

% B1_2
ERROR

% B2_3
ERROR

20 100 100 100 97,6 100,0 39,0 2,459 9,910 3,716

30 100 100 100 100,0 100,0 43,2 2,913 4,489 6,053

40 100 100 100 100,0 99,5 38,1 1,004 0,407 4,503

50 100 100 100 83,1 78,0 33,1 4,611 2,072 2,426

100 100 100 100 39,4 38,7 17,0 0,068 3,275 4,180

20 20 30 40 41,2 56,4 32,0 2,907 5,852 0,269

30 20 30 40 26,9 40,1 20,8 0,681 0,462 2,868

40 20 30 40 21,2 29,9 16,6 6,057 0,192 4,051

50 20 30 40 16,5 24,7 12,8 3,395 3,216 0,096

100 20 30 40 9,5 11,9 7,3 15,738 0,958 12,618

of relative error is usually less than 10%. The exception is the last row of that table. In this case, the
spouts insert tuples at a low speed (100 ms/message or 0.01 message/ms) and bolts are idle most of the
time: the capacity is between 7.3 − 11.9 %. The absolute error between the estimations and the real
capacity values is small but they are amplified in terms of relative deviation.

From the experiments carried out we get the following insight. If the spouts insert tuples to the system
at a low rate (e.g., 100 ms/message or 0.01 message/ms) and the bolts execute low time-consuming
functions (e.g., 20 ms/message for Bolt1_1), the threads will be idle most of the time (e.g., 9, 5% of
capacity for Bolt1_1 in Table 11). Conversely, the threads will be saturated (i.e., capacity 100% for
Bolt1_2 in Table 11) if speed of the spouts inserting messages passes a certain threshold (e.g., less than
20 ms/message or more than 0.05 message/ms) or the bolts execute heavy functions (e.g., more than 100
ms/message for Bolt1_2).

The work described in this section of the document is the result of the analysis of Apache Storm,
which is considered as a reference technology. Most of the concepts can be adapted to other frameworks,
since the model is very general. We have shown the transformation of UML activity and deployment
diagrams to performance models that capture the essentials of the technology. The experimental results
confirm the feasibility of our approach for common Apache Storm configurations.
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4 Transformations Proposed for the Verification Tool

In deliverable D3.5 [2] we presented the initial version of D-VerT , the DICE formal verification tool that
allows the designers to verify the design of their applications against safety properties such as reachabil-
ity of undesired configurations of the system. The formal verification is based on a temporal logic model
capturing the behavior of Storm topologies, whose semantics is described in [2]. In this document we
focus on the transformations enabling the automated verification of safety properties on Storm applica-
tions, starting from DICE-profiled UML diagrams. We first provide an overview of the transformation
process implemented in the D-VerT tool, then we present the specific UML diagrams adopted to repre-
sent Storm topologies and describe the details of the two-step transformation from those diagrams to the
formal model. Finally we validate the approach by showing the transformation process applied to one of
the DICE industrial use cases.

4.1 Overview
Figure 18 depicts the architecture and the execution flow with respect to the different components of D-
VerT . As described in Sect. 4.2, users define Storm applications as UML Class diagrams on DICE IDE
through the Papyrus UML modeling interface. Once the application is completely designed, users specify
some tool configuration parameters and launch D-VerT tasks. Each task consists of: (i) transformation
from the UML model to the temporal logic model; (ii) launch of the verification task; (iii) processing of
verification results in order to provide a feedback to the user. The transformation phase is, in its turn,
performed in two steps: the first one, detailed in Sect. 4.3 translates the UML Class diagram plus some
additional configuration to an intermediate JSON object, and the second one, presented in Sect. 4.3.2
uses the information stored in the JSON object to generate the final Temporal Logic model based on a
template file.

4.2 DICE Models for Storm Verification
In order to carry out formal verification tasks, Storm topologies have to be specified by means of UML
class diagram, conveniently annotated with the DICE::Storm profile. The stereotypes that need to be used
are «StormSpout», «StormBolt» and, optionally, «StormStreamStep» (Fig. 19). All of them have already
been presented in Sect. 3.2.2. «StormBolt» allows the designer to specify parameters as the time needed
to process a single tuple (alpha tag), the functionality performed by the bolt (sigma tag) in terms of the
ratio #output_tuples

#input_tuples , the minimum and the maximum time to recover from a failure (minRebootTime and
maxRebootTime tags). «StormSpout» can be configured by specifying the average emitting rate of the
spout (avg_emit_rate tag). Both «StormBolt» and «StormSpout» also have the parallelism tag, inherited
from «CoreDAGNode» stereotype.

Figure 18: D-VerT architecture and execution flow, highlighting the two steps of the transformation from
UML Class diagram to the Temporal Logic model.
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Figure 19: Stereotypes in DICE::Storm profile needed for verification.

Figure 20: Class diagram representing a simple Storm topology with “direct” subscription. Configuration
provided for each node is reported in the annotations.

Spouts and bolts can be instantiated by adding classes to the class diagram and by applying on them
the stereotypes «StormSpout» and «StormBolt», respectively.

The subscription of a bolt to one or more bolts/spouts can be expressed in two ways. If in the Storm
application there are not component that are emitting output to multiple streams, all the subscription can
be indicated by directly putting an association from the subscribing bolt to the subscribed component
(“direct” way). Otherwise, if a component emits tuples to multiple output streams, each of these streams
has to be represented by inserting a class in the diagram and by annotating it as «StormStreamStep».
Then the subscribing bolt will have an association to the stream (and not a direct association to the
emitting component) and the emitting component will be associated to the stream as well. In this way it
is possible to specify explicitly the subscription of bolts to streams (as it is in actual Storm applications).
The “direct” way of expressing the subscription is a shortcut provided to the designer to define the
topology without further unnecessary details.

Figure 20 shows an example of class diagram representing a topology composed of two spouts (S1
and S2), and three bolts (B1, B2 and B3). «StormSpout» stereotype is applied on S1 and S2, while
«StormBolt» is applied on B1, B2 and B3. Subscriptions are expressed in the “direct” way: B1 subscribes
to (the output stream of) S1, B2 subscribes to both S1 and S2 and B3 subscribes to both B1 and B2.
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4.3 Transformations from DICE UML models to formal models
The transformation process is composed of two steps. The first one, performed directly into the DICE
IDE by the UML2Json component of D-VerT , takes a DICE-profiled UML Class diagram as input and
produces a JSON object containing all the information needed for the verification task. The second one,
performed by the Json2MC (standing for “JSON to Model Checking”) component, outputs the complete
formal model starting from the JSON object. The final result of the transformation is a Common Lisp
file containing the temporal logic model, which is then fed to the Zot3 tool. Interested readers can find a
detailed description of the temporal logic model in [2].

We decided to split the transformation process in two steps because we wanted to decouple the
core verification phase (performed by Json2MC) from the UML model definition phase; this allows for
greater flexibility when launching the verification phase, as explained below. We defined a JSON schema
capturing all the needed information for the verification tasks. This intermediate format allowed us to
work on the core verification component independently from the DICE profile definition, and to benefit
from its interoperability and openness characteristics. In fact, it is possible to run verification tasks with
Json2MC also by building the JSON object with other tools (e.g., the architecture recovery tool OSTIA
presented in [26]).
In the next two sections we provide more details about the two transformation steps.

4.3.1 From DICE UML to JSON
The DICE-profiled UML diagram is produced on the DICE IDE by means of the Papyrus modeling in-
terface. It is saved in XMI format and it is processed by the UML2Json component in order to perform
the first step of the transformation.
Rather than using a model transformation language, we are using a plain Java component, which navi-
gates the input model and extracts the relevant features to produce the desired output. We adopted this
approach, which is analogous to the work performed in [27], to have a lightweight integration in the
Eclipse platform, without the need of using any external component.

UML2Json is entirely written in Java and relies on the Eclipse UML24 Java library, an EMF-based
implementation of the UML 2.x OMG metamodel for the Eclipse platform.
We defined a set of classes (depicted in Fig. 21) that decorate the elements provided by the Eclipse UML2
library in order to represent all the needed features included in the DICE-profiled Class diagram for ver-
ification.
As shown in Fig. 21 and Listing 2, abstract class NodeClass represents generic components of the topol-
ogy. It decorates the Class element provided by UML2 with additional information such as parallelism
level and a textual identifier. SpoutClass and BoltClass extend NodeClass to add the attributes specific
to the two kind of components. The StormTopology class includes a list of spouts and bolts together
with attributes related to the entire topology. JsonVerificationContext class encapsulates all the needed
information to run verification, combining application-specific information with tool configuration pa-
rameters. It includes an attribute of type StormTopology and an attribute of type VerificationParameters,
in which all the needed configuration for the tool can be set. All the data needed for the StormTopology
objects is gathered by navigating the UML model, while VerificationParameters objects are instantiated
with data provided by the user by setting up the specific launch configuration on Eclipse. To the extent
of this document we will focus on the model navigation process.

Listing 2: Excerpt of the NodeClass, representing the generic topology component
package it.polimi.dice.verification.uml.diagrams.classdiagram;
import org.eclipse.uml2.uml.Class;
import it.polimi.dice.verification.uml.helpers.UML2ModelHelper;

public abstract class NodeClass {

3https://github.com/fm-polimi/zot
4http://www.eclipse.org/modeling/mdt/?project=uml2
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Figure 21: Class Diagram Showing the main Java classes used to enact the transformation.

/** The decorated UML2 class element */
protected transient org.eclipse.uml2.uml.Class umlClass;
protected String id;
protected int parallelism;

public NodeClass(org.eclipse.uml2.uml.Class c){
this.umlClass = c;
this.id = this.umlClass.getName();
}
/** Extracts parallelism attribute from the class element */
protected abstract int extractParallelism();
...
}

The tool extracts from the model all the topology components and instantiates the corresponding
Java objects. This is done by simply iterating over the class elements in the UML model and checking
if the stereotypes «StormSpout» or «StormBolt» have been applied on them. When the check is positive,
all the attributes are extracted from the model and assigned to the newly created Java object. In the
case of bolts, a further exploration of the model is needed to identify the subscription to the streams
of other components. As described in Sect. 4.2, bolt subscriptions can be defined in two ways. The
simple, "direct" subscription is managed by simply getting all the spout or bolts classes that are directly
associated to each bolt. The indirect, stream-specific subscription is processed in two steps: first, the
associated stream is identified, then the spout/bolt emitting on the stream is retrieved. An object of the
Topology class is instantiated as well, and the extracted spouts and bolts are added to it.

Once the Java objects are instantiated, the conversion to JSON objects is straightforward. We used the
gson5 Java library to directly perform serialization from one object to the other. The mappings between
the class attributes and the JSON object attributes are statically defined in the Java classes by means of
the annotation @SerializedName when their names are different. Listing 3 shows an example of JSON
file produced by UML2Json from the UML Class diagram of Fig. 20.

Listing 3: Example JSON file describing a simple topology.
1
2 {"app_name": "SIMPLE-DIA-TOPOLOGY",
3 "version": "0.1",
4 "topology":{
5 "spouts": [
6 {"id":"S1",
7 "parallelism": 5,
8 "avg_emit_rate":1.0},
9 {"id":"S2",

5https://github.com/google/gson
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10 "parallelism": 4,
11 "avg_emit_rate":1.5}],
12 "bolts":[
13 {"id": "B1",
14 "subs": ["S1"],
15 "alpha": 5.0,
16 "sigma": 2.0,
17 "parallelism": 5},
18 {"id": "B2",
19 "subs": ["S1","S2"],
20 "alpha": 5.0,
21 "sigma": 0.5,
22 "parallelism": 10},
23 {"id": "B3",
24 "subs": ["B1", "B2"],
25 "alpha": 1.0,
26 "sigma": 1.0,
27 "parallelism": 1}],
28 "min_reboot_time":10,
29 "max_reboot_time":100,
30 "init_queues":0},
31 "verification_params":
32 {"plugin" :["ae2sbvzot"],
33 "max_time" : 20000,
34 "num_steps":15,
35 "periodic_queues":["B1","B2","B3"],
36 "strictly_monotonic_queues":["B1","B2","B3"]}}

4.3.2 From JSON to the Temporal Logic model
Json2MC module exploits the Python templating engine Jinja26 to generate, starting from the JSON
object and a template file, the temporal logic model. The choice of Jinja2, a popular Python library for the
generation of template based-documents, was motivated by its simplicity and lightweight nature. Details
about the generation of the temporal logic model can be found in deliverable D3.5 [2]. We recall that the
template file is a Common Lisp file with special tags containing variables and expressions that are valued
depending on the JSON file. Listing 4 shows the fragment of the template file in which the topology
structure is defined: specifically, it is possible to notice the definition of the list of spouts (the-spouts),
the list of bolts (the-bolts) and the hash table (the-topology-table) containing, for each bolt, the
list of subscribed elements. As shown in Sect. 4.4, the values assigned to those constants and to the
hash table are taken from the JSON file. the-spouts will be a whitespace-separated list containing the
identifier of all the spouts (topology.spouts field of the JSON object). In the same way, the-bolts
will be the list of all of the bolt identifiers, and each of the entries in the-topology-table will have a
bolt id as key and the list of subscribed elements from that bolt as value.

Listing 4: Template fragment representing the topology configuration.
1 ...
2 ;TOPOLOGY DEFINITION
3 (defconstant the-spouts ’({{ topology.spouts|join(’ ’, attribute=’id’) }}))
4 (defconstant the-bolts ’({{ topology.bolts|join(’ ’, attribute=’id’) }}))
5
6 {% for b in topology.bolts %}
7 (setf (gethash ’{{b.id}} the-topology-table) ’({{b.subs | join(’ ’)}}))
8 {%endfor%}
9 ...

6http://jinja.pocoo.org/
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Figure 22: The three stages of the designed application across the transformation process: (1) DICE-
profiled UML Class diagram, (2) JSON object and (3) Lisp Temporal Logic model.

Figure 23: UML Class diagram of FocusedCrawler topology.

4.4 Validation
In this section we validate the transformations described so far by showing an example of the whole
transformation process from DICE-profiled UML Class diagram to the temporal logic model. We remark
that the goal of this section is not to validate the D-VerT and its associated verification workflow (this
validation has already been performed in deliverable D3.5 [2]), but only the transformation steps that
produce the formal model from the DICE-profiled UML model.

Figure 22 summarizes the transformation process and highlights the three stages of the model that
are shown below in this section: the DICE-Profiled UML Class diagram (Fig. 23), the JSON object
(Listing 5) and the Lisp Temporal Logic model (Listing 6).

The example topology is the FocusedCrawler topology, taken from the use case of one of the indus-
trial partners7. Figure 23 shows the UML design of the topology. Designer have to provide values to all
the relevant parameters for verification for each component.
Those values are read, together with the topology structure, by UML2Json, which generate the JSON file
shown in Listing 5.

7https://github.com/socialsensor/storm-focused-crawler/blob/master/src/main/java/eu/
socialsensor/focused/crawler/FocusedCrawler.java
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Listing 5: JSON File produced by UML2Json.
1 {
2 "app_name": "FOCUSED-CRAWLER-COMPLETE-ALL",
3 "description": "",
4 "version": "0.1",
5 "topology": {
6 "bolts": [
7 {"id": "WpDeserializer",
8 "parallelism": 4,
9 "subs": ["wpSpout"],

10 "alpha": 0.5,
11 "sigma": 2.0}
12 {"id": "expander",
13 "parallelism": 8,
14 "subs": ["WpDeserializer"],
15 "alpha": 3.0,
16 "sigma": 0.75},
17 {"id": "articleExtraction",
18 "parallelism": 1,
19 "subs": ["expander"],
20 "alpha": 1.0,
21 "sigma": 1.0},
22 {"id": "mediaExtraction",
23 "parallelism": 1,
24 "subs": ["expander" ],
25 "alpha": 1.0,
26 "sigma": 1.0},
27 {"id": "webPageUpdater",
28 "parallelism": 4,
29 "subs": ["articleExtraction", "mediaExtraction" ],
30 "alpha": 1.0,
31 "sigma": 1.0},
32 {"id": "textIndexer",
33 "parallelism": 1,
34 "subs": ["articleExtraction"],
35 "alpha": 0.4,
36 "sigma": 0.0},
37 {"id": "mediaupdater",
38 "parallelism": 1,
39 "subs": ["articleExtraction","mediaExtraction"],
40 "alpha": 1.0,
41 "sigma": 0.0},
42 {"id": "mediatextindexer",
43 "parallelism": 3,
44 "subs": ["articleExtraction","mediaExtraction"],
45 "alpha": 0.5,
46 "sigma": 0.0}
47 ],
48 "spouts": [
49 {"id": "wpSpout",
50 "avg_emit_rate":4.0,
51 "parallelism": 4}
52 ],
53 "min_reboot_time":10,
54 "max_reboot_time":100,
55 "max_idle_time": 1.0,
56 "init_queues":4
57 },
58 "verification_params":
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59 {"plugin" :["ae2bvzot", "ae2sbvzot"],
60 "max_time" : 20000,
61 "num_steps":20,
62 "periodic_queues":["WpDeserializer", "expander",

"articleExtraction","mediaExtraction", "webPageUpdater","textIndexer",
"mediaupdater", "mediatextindexer"]}

63 }

As final step in the transformation process, Json2MC takes the JSON object and generates the final
Lisp file based on its content. Listing 6 shows how the fragment of template presented in Listing 4 is
rendered according to the JSON object of Listing 5. It can be noticed that the values of the-spouts
and the-bolts constants correspond to the identifiers of the spouts and bolts present first in the UML
diagram and then in the JSON object. In the same way., the-topology-table hash table is populated
with values that reflect the subscription relationship between components defined in the starting model.

Listing 6: Excerpt of the Lisp file produced by Json2MC.
1 ...
2 ;TOPOLOGY DEFINITION
3 (defconstant the-spouts ’(wpSpout))
4 (defconstant the-bolts ’(WpDeserializer expander articleExtraction mediaExtraction

webPageUpdater textIndexer mediaupdater mediatextindexer))
5
6 ;hash table containing the subscription lists of all the bolts
7 (defvar the-topology-table)
8 (setq the-topology-table (make-hash-table :test ’equalp))
9

10 (setf (gethash ’WpDeserializer the-topology-table) ’(wpSpout))
11 (setf (gethash ’expander the-topology-table) ’(WpDeserializer))
12 (setf (gethash ’articleExtraction the-topology-table) ’(expander))
13 (setf (gethash ’mediaExtraction the-topology-table) ’(expander))
14 (setf (gethash ’webPageUpdater the-topology-table) ’(articleExtraction

mediaExtraction))
15 (setf (gethash ’textIndexer the-topology-table) ’(articleExtraction))
16 (setf (gethash ’mediaupdater the-topology-table) ’(articleExtraction mediaExtraction))
17 (setf (gethash ’mediatextindexer the-topology-table) ’(articleExtraction

mediaExtraction))
18 ...
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5 Conclusions

In this document we have presented the transformation of UML profiled models at DPIM and DTSM
levels into quality analysis models for studying (a) the performance and reliability of software systems
at design level; and (b) the verification of safety requirements using formal verification techniques. The
performance models obtained by the transformation of the UML diagrams are used in the DICE Simula-
tion Tool; and the formal models obtained for the verification of safety properties are used in the DICE
Verification Tool.

In particular, for the transformation to performance models, we have considered UML profiled di-
agrams at DPIM level; and UML profiled diagrams for Hadoop MapReduce and Storm technologies at
DTSM level. For the transformation to formal verification models, we have considered UML profiled
diagrams for the Storm technology at DTSM level.

Table 12 summarizes the main achievements of this deliverable in terms of compliance with the initial
set of requirements presented in Section 2. In Table 12, the labels specifying the Level of fulfillment
could be: (i) 7 (unsupported: the requirement is not fulfilled by the current version); (ii) 4 (partially-low
supported: a few of the aspects of the requirement are fulfilled by the current version); (iii) 4 (partially-
high supported: most of the aspects of the requirement are fulfilled by the current version); and (iv) 4

(supported: the requirement is fulfilled by the current version).
The level of fulfillment of the requirements is determined according to several aspects. The criteria

for determining the level of fulfillment for the requirements of the transformations are:

• The existence of a theoretical transformation of the UML models annotated with the DICE pro-
file into a performance or formal verification model; i.e., the existence of a conceptual mapping
between elements of the UML profiled diagrams and the destination model.

• The validation of the theoretical transformation by comparing the results obtained from the evalu-
ation of the transformed models in the simulation and verification tools with respect to the experi-
mental results extracted from the real execution of the application on a controlled environment.

• The implementation of the theoretical transformations in the transformation tool.

Table 12: Level of compliance of the current version with the initial set of requirements

REQUIREMENT TITLE PRIORITY
LEVEL OF

FULFILLMENT

R3.1 M2M Transformation Must have 4

R3.2 Taking into account relevant annotations Must have 4

R3.3 Transformation rules Could have 4

R3.6 Transparency of underlying tools Must have 4

R3.7
Generation of traces from the system
model

Must have 4

R3.12 Modelling abstraction level Must have 4

R3.13 White/black box transparency Must have 4

R3.15
Verification of temporal safety/privacy
properties

Must have 4

R3IDE.3 Usability Could have 7
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According to these considerations, the requirement R3.1 is partially-high supported. On the one
hand, the transformation of the annotated DPIM models (i.e., UML activity and sequence diagrams)
into performance models for the DICE Simulation Tool is completely supported. On the other hand,
the transformation of the annotated DTSM diagrams into performance models for the DICE Simulation
Tool is currently under implementation for Hadoop MapReduce and Storm technologies. Nevertheless,
we have identified the technological concepts, defined the theoretical transformation and validated the
approach for those technologies. The transformation of the annotated UML models into formal models
for the DICE Verification Tool is fully supported for the Storm technology at the DTSM level.

The rest of the requirements of Table 12 are related to the specific features of the transformation
tools (e.g., R3.6, transparency to the users); and the integration of the transformations with the DICE
Simulation and Verification tools. Most of the requirements are supported or partially-high supported.
In the Future Work section, we will list the actions for accomplishing the unsupported and partially
supported requirements.

5.1 Further Work
Task 3.1 will not produce more additional deliverables. The remaining requirements and features of
Table 12 will be carried out in the following months and they will be reported through alternative channels
such as publications in conference and journal papers.

In general, we will finish the implementation of the transformations of Hadoop MapReduce and
Storm at DTSM level to performance models. We expect to develop new transformations of UML di-
agrams annotated at DTSM level to performance and formal verification models for other Big Data
technologies such as, for example, Tez or Spark.

In particular, we list the concrete actions for each partially or unsupported requirement:

• Regarding requirement R3.1, the definition and implementation of more transformations for Big
Data technologies will be addressed by the simulation and verification tool.

• Regarding requirement R3.2, we need to address annotations for reliability models.

• Regarding requirement R3.15, more safety properties may be addressed. Privacy properties are
currently considered and we plan to address them in the next months.

• Regarding requirement R3IDE.3, this requirement needs to be updated since it will apply only to
the simulation tool.

Copyright c© 2016, DICE consortium – All rights reserved 60



Deliverable 3.1. Transformations to Analysis Models

References

[1] The DICE Consortium. DICE Simulation Tool - Initial Version. Tech. rep. URL:http://wp.
doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D3.2_DICE-
simulation-tools-Initial-version.pdf. European Union’s Horizon 2020 research and
innovation programme, 2016.

[2] The DICE Consortium. DICE Verification Tool - Initial Version. Tech. rep. URL:http://wp.
doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D3.5_DICE-
verification-tools-Initial-version.pdf. European Union’s Horizon 2020 research and
innovation programme, 2016.

[3] The DICE Consortium. Design and Quality abstractions - Initial Version. Tech. rep. URL: https:
//vm-project-dice.doc.ic.ac.uk/redmine/projects/dice/repository/show/
WP2/D2.1/submitted/D2.1.pdf. European Union’s Horizon 2020 research and innovation
programme, 2015.

[4] The DICE Consortium. DICE Model Repositorys. URL: https://github.com/dice-project/
DICE-Models. Dec., 2015.

[5] The DICE Consortium. DICE Profiles Repository. URL: https://github.com/dice-project/
DICE-Profiles. Dec., 2015.

[6] The DICE Consortium. DICE Simulation Repository. URL: https://github.com/dice-
project/DICE-Simulation. Dec., 2015.

[7] The DICE Consortium. DICE Verification Repository. URL: https://github.com/dice-
project/DICE-Verification. Dec., 2015.

[8] The DICE Consortium. Requirement Specification. Tech. rep. URL: http://wp.doc.ic.ac.
uk/dice- h2020/wp- content/uploads/sites/75/2015/08/D1.2_Requirement-
specification . pdf. European Union’s Horizon 2020 research and innovation programme,
2015.

[9] The DICE Consortium. Requirement Specification - Companion Document. Tech. rep. URL: http:
//wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_
Requirement- specification_Companion.pdf. European Union’s Horizon 2020 research
and innovation programme, 2015.

[10] DICE Requirement List (Online version). 2015. URL: https://docs.google.com/spreadsheets/
d/1Wn9OXGsTknrAs5ASUadOp9IpQ9BM_WM4NsyAuXL6_Ug/edit?usp=sharing.

[11] The Eclipse Foundation & Obeo. Acceleo. URL: https://eclipse.org/acceleo/. Dec., 2015.

[12] OMG. MOF Model to Text Transformation Language (MOFM2T), 1.0. URL: http://www.omg.
org/spec/MOFM2T/1.0/. Object Management Group, Jan. 2008. URL: http://www.omg.org/
spec/MOFM2T/1.0/.

[13] Dipartamento di informatica, Università di Torino. GRaphical Editor and Analyzer for Timed and
Stochastic Petri Nets. URL: www.di.unito.it/~greatspn/index.html. Dec., 2015.

[14] The DICE Consortium. Demonstrators Implementation Plan. Tech. rep. URL:http://wp.doc.
ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/06/D6.1-Demonstrators-
implementation- plan.pdf. European Union’s Horizon 2020 research and innovation pro-
gramme, 2016.

[15] OMG. UML Profile for MARTE: Modeling and Analysis of Real-time Embedded Systems, Version
1.1. URL: http://www.omg.org/spec/MARTE/1.1/. Object Management Group, June 2011.
URL: http://www.omg.org/spec/MARTE/1.1/.

[16] The DICE Consortium. Transformations to Analysis Models — Companion Document. Tech. rep.
URL:http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/07/
D3.1-Companion.pdf. European Union’s Horizon 2020 research and innovation programme,
2016.

Copyright c© 2016, DICE consortium – All rights reserved 61



Deliverable 3.1. Transformations to Analysis Models

[17] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Version 1.1.
URL: http://www.omg.org/spec/QVT/1.1/. Object Management Group, Jan. 2011. URL:
http://www.omg.org/spec/QVT/1.1/.

[18] Simona Bernardi et al. “A Systematic Approach for Performance Evaluation Using Process Min-
ing: The POSIDONIA Operations Case Study”. In: Proceedings of the 2Nd International Work-
shop on Quality-Aware DevOps. QUDOS 2016. Saarbr&#252;cken, Germany: ACM, 2016, pp. 24–
29. ISBN: 978-1-4503-4411-1. DOI: 10.1145/2945408.2945413. URL: http://doi.acm.
org/10.1145/2945408.2945413.

[19] B. F. van Dongen et al. “The Prom Framework: A New Era in Process Mining Tool Support”.
In: Proceedings of the 26th International Conference on Applications and Theory of Petri Nets.
ICATPN’05. Miami: Springer-Verlag, 2005, pp. 444–454. ISBN: 3-540-26301-2, 978-3-540-26301-
2. DOI: 10.1007/11494744_25. URL: http://dx.doi.org/10.1007/11494744_25.

[20] Simona Bernardi, José Merseguer, and Dorina C. Petriu. “A dependability profile within MARTE”.
In: Software & Systems Modeling 10.3 (2011), pp. 313–336. ISSN: 1619-1374. DOI: 10.1007/
s10270-009-0128-1. URL: http://dx.doi.org/10.1007/s10270-009-0128-1.

[21] Giovanni Chiola et al. “Stochastic well-formed colored nets and symmetric modeling applica-
tions”. In: IEEE Transactions on Computers 42.11 (1993), pp. 1343–1360.

[22] The DICE Consortium. Optimization Tools - Initial Version. Tech. rep. European Union’s Horizon
2020 research and innovation programme, 2016.

[23] Danilo Ardagna et al. “Modeling Performance of Hadoop Applications: A Journey from Queueing
Networks to Stochastic Well Formed Nets”. Paper submitted for publication on the 16th Interna-
tional Conference on Algorithms and Architectures for Parallel Processing. 2016.

[24] Apache Hive. URL: https://hive.apache.org (visited on 03/09/2016).

[25] Giovanni Chiola et al. “Generalized stochastic Petri nets: A definition at the net level and its
implications”. In: IEEE Transactions on software engineering 19.2 (1993), pp. 89–107.

[26] Marcello M. Bersani et al. “Continuous Architecting of Stream-Based Systems”. In: 13th Working
IEEE/IFIP Conference on Software Architecture, WICSA 2016, Venice, Italy, April 5-8, 2016.
2016, pp. 146–151. DOI: 10.1109/WICSA.2016.26. URL: http://dx.doi.org/10.1109/
WICSA.2016.26.

[27] Alfredo Motta. “Logic-based verification of multi-diagram UML models for timed systems”. In:
(2013).

[28] Stuart Kent. “Model Driven Engineering”. In: Integrated Formal Methods, Third International
Conference, IFM 2002, Turku, Finland, May 15-18, 2002, Proceedings. Ed. by Michael J. Butler,
Luigia Petre, and Kaisa Sere. Vol. 2335. Lecture Notes in Computer Science. Springer, 2002,
pp. 286–298. ISBN: 3-540-43703-7.

[29] OMG. Common Object Request Broker Architecture: Core Specification. Object Management
Group, Mar. 2004. URL: http://www.omg.org/spec/CORBA/3.0.3/.

[30] OMG. Object Management Group. 2011. URL: http://www.omg.org.

[31] OMG. MDA Guide Version 1.0.1. Object Management Group, June 2003. URL: http://www.
omg.org/docs/omg/03-06-01.pdf.

[32] OMG. Meta Object Facility (MOF) 2.0 Core Specification. Object Management Group, Jan. 2006.
URL: http://www.omg.org/spec/MOF/2.0/.

[33] Unified Modeling Language: Infrastructure. Version 2.4.1, OMG document: formal/2011-08-05.
2011.

[34] OMG. OCL 2.2 Specification. Object Management Group, Feb. 2010. URL: http://www.omg.
org/spec/OCL/2.2/.

Copyright c© 2016, DICE consortium – All rights reserved 62



Deliverable 3.1. Transformations to Analysis Models

[35] Abel Gómez et al. “Towards a UML Profile for Data Intensive Applications”. In: Proceedings
of the 2Nd International Workshop on Quality-Aware DevOps. QUDOS 2016. Saarbr&#252;cken,
Germany: ACM, 2016, pp. 18–23. ISBN: 978-1-4503-4411-1. DOI: 10.1145/2945408.2945412.
URL: http://doi.acm.org/10.1145/2945408.2945412.

[36] Tadao Murata. “Petri Nets: Properties, Analysis and Applications.” In: Proceedings of the IEEE
77.4 (Apr. 1989), pp. 541–580.

[37] ISO. Systems and software engineering – High-level Petri nets – Part 2: Transfer format. ISO/IEC
15909-2:2011. Geneva, Switzerland, 2008.

[38] Lom Messan Hillah et al. “PNML Framework: an extendable reference implementation of the
Petri Net Markup Language”. In: 31st International Conference on Petri Nets and Other Models
of Concurrency (ICATPN 2010). Vol. 6128. Lecture Notes in Computer Science. MoVe INT LIP6.
Braga, Portugal: Springer, June 2010, pp. 318–327.

[39] Apache Hadoop. http://hadoop.apache.org. URL: http://hadoop.apache.org (visited
on 11/17/2015).

[40] Apache Storm Website. URL: http://storm.apache.org/.

Copyright c© 2016, DICE consortium – All rights reserved 63



Deliverable 3.1. Transformations to Analysis Models

A Background

The term Model-Driven Engineering (MDE) was proposed by Kent [28] as a general framework to carry
out a software development. MDE aims at organizing software artifacts at different abstraction levels,
advocating for the use of models as the key artifacts to be built and maintained. A model consists of a
set of elements that provide a precise and abstract description of a system from a view point.

In this general framework, the software development process becomes thus a series of refinements
and/or transformations of models where the abstraction level changes on each step (e.g., models become
closer to the implementation platform). An MDE process must clearly define the sequence of models to
develop at each level and must describe how to refine models in order to decrease the level of abstraction.

To address the standardisation issues, the Object Management Group (OMG)8 [30] launched the
Model-Driven Architecture (MDA) initiative [31] as an approach to specify interoperable systems by us-
ing formal (or semi-formal) models. The DICE framework heavily relies on the grounds set out by MDA,
and as such, on several other OMG standards such as MOF (Meta Object Facility [32]), UML (Unified
modeling Language [33]), OCL (Object Constraint Language [34]), MARTE (Modeling and Analysis of
Real Time and Embedded systems [15]) and QVT (MOF 2.0 Query/View/Transformation [17]).

Based on the concepts provided by the previous standards, it is possible to define MDE processes.
A model transformation can be considered a trivial MDE process. Figure 24 depicts the main elements
playing a role in a model transformation in a schematic way. The diagram describes the artifacts in-
volved in a model transformation, i.e., two candidate models (and metamodels) only. In the example,
a set of Rules defines how to transform concepts from the metamodel MetaModel 1 to the metamodel
MetaModel 2. Thus, by applying the rules, an initial model (Model 1, which conforms to MetaModel 1)
is automatically transformed to obtain the Model 2, which conforms to MetaModel 2.

As it can be observed, model transformations are described using the base concepts defined in their
metamodels (the so called metaclasses), and subsequently, this is how the DICE transformations have
been defined. Next subsections, first describe the main metamodels and domain concepts that play an
important role in the transformations to the analysis models (Subsections A.1 and A.2); and second
introduce the basic concepts of the Big Data technologies that we will consider for the transformations
of the DTSM to performance and formal verification models (Subsection A.3).

A.1 Unified Modeling Language
The Unified Modeling Language (UML) [33] is a standard which provides a language to describe dif-
ferent systems. UML is a domain-independent language, although its origins are in the object-oriented
modeling. A UML model consists of elements such as packages, classes, and associations. The cor-
responding UML diagrams are graphical representations of parts of the UML model. These diagrams
contain graphical elements (nodes connected by paths) that represent elements in the UML model.

UML modeling can be generally divided into two semantic categories: behavioral modeling and
structural modeling. In addition to these main categories, there are some supplemental modeling con-

MetaModel 1

Model 1

MetaModel 2

Model 2

Rules

Conforms to Conforms to

Automatic transformation
step

Figure 24: Example of a model transformation

8The OMG is a consortium founded in 1989 aimed at setting modeling and object-oriented standards. The OMG released
their first standard, CORBA [29], in 1991. Since then, several specifications which can be considered as a de facto standards in
industry are promoted by them, (e.g. UML or MOF).
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structs that have both behavioral and structural aspects (e.g., deployment diagrams, use cases) which may
complement behavioral and/or structural models. This section will focus in the former category, i.e., be-
havioral modeling. Specifically, we will focus on activity diagrams and sequence diagrams, which are
the two kind of diagrams that will be transformed to quality analysis models.

Activity Diagrams

An Activity, as specified in the UML standard [33], is a kind of Behavior that is specified as a graph
of nodes interconnected by edges. A subset of the nodes are executable nodes that embody lower-level
steps in the overall Activity. Object nodes hold data that is input to and output from executable nodes,
and moves across object flow edges. Control nodes specify sequencing of executable nodes via control
flow edges. Activities are essentially what are commonly called “control and data flow” models.

Figure 25 shows the main concepts (i.e., metaclases) used to create activity diagrams together with
their relationships. The most relevant elements from the transformation to analysis models point of view
are:

UML::Packages::Model — A Model captures a view of a physical system. It is an abstraction of the
physical system, with a certain purpose.

UML::Activities::Activity — An Activity is the specification of parameterized behavior as the coor-
dinated sequencing of subordinate units (ActivityNodes).

UML::Activities::ActivityNode (abstract) — ActivityNode is an abstract class for points in the flow
of an Activity connected by ActivityEdges.

UML::Activities::ActivityEdge (abstract) — An ActivityEdge is an abstract class for directed con-
nections (i.e., with source [1..1] and target [1..1]) between two ActivityNodes.

UML::Activities::ControlFlow — A ControlFlow is an ActivityEdge traversed by control tokens
or object tokens of control type, which are used to control the execution of ExecutableNodes.

UML::Activities::ControlNode (abstract) — A ControlNode is an abstract ActivityNode that co-
ordinates flows in an Activity.

UML::Activities::InitialNode — An InitialNode is a ControlNode that offers a single control to-
ken when initially enabled.

UML::Activities::FinalNode (abstract) — A FinalNode is an abstract ControlNode at which a flow
in an Activity stops.

UML::Activities::ActivityFinalNode — An ActivityFinalNode is a FinalNode that terminates the
execution of its owning Activity.

UML::Activities::ForkNode — A ForkNode is a ControlNode that splits a flow into multiple con-
current flows.

UML::Activities::JoinNode — A JoinNode is a ControlNode that synchronizes multiple flows.

UML::Activities::DecisionNode — DecisionNode is a ControlNode that chooses between outgoing
ActivityEdges for the routing of tokens.

UML::Activities::MergeNode — A MergeNode is a ControlNode that brings together multiple alter-
nate flows. It is not used to synchronize concurrent flows but to accept one among several alternate
flows.

UML::Actions::Action (abstract) — An Action is the fundamental unit of executable functionality.
The execution of an Action represents some transformation or processing in the modeled sys-
tem. Actions provide the ExecutableNodes within Activities and may also be used within
Interactions.
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Figure 25: Metaclasses of the UML Activity Diagram
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Start
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Figure 26: Sample Activity Diagram

UML::Actions::OpaqueAction — An OpaqueAction is an Action whose functionality is not speci-
fied within UML.

Figure 26 shows an example activity diagram using the standard notation. It is composed by an
InitialNode (Start), an ActivityFinalNode (End), three OpaqueActions (A1, A2 and A3), a De-
cisionNode (D) and a MergeNode (M).

Sequence Diagrams

Interactions are presented in the UML standard [33] as a mechanism to get a better grip of an interaction
situation for an individual designer or for a group that needs to achieve a common understanding of
the situation. Interactions are also used during the more detailed design phase where the precise inter-
process communication must be set up according to formal protocols. The most visible aspects of an
Interaction are the messages between lifelines. The sequence of the messages is considered important
for the understanding of the situation. The data that the messages convey and the lifelines store may also
be very important, but the Interactions do not focus on the manipulation of data even though data can be
used to decorate the diagrams.

Figure 27 shows the UML metaclases that may be used to create activity diagrams. The most relevant
elements from the transformation to analysis models point of view are:

UML::Packages::Model — As aforementioned a Model captures a view of a system with a certain
purpose.

UML::Interactions::Interaction — Interactions are units of behavior, and focus on the passing of
information with Messages between the ConnectableElements. Interactions are the top-
level elements of a UML sequence diagram.

UML::Interaction::Lifeline — A Lifeline represents an individual participant in the Interaction.
Lifelines represent only one interacting entity (via the represents association to Connect-
ableElement).

UML::Interactions::InteractionFragment (abstract) — InteractionFragment is an abstract notion
of the most general interaction unit. An InteractionFragment is a piece of an Interaction.
Each InteractionFragment is conceptually like an Interaction by itself. Interaction-
Fragments are the main constituent parts of an Interaction. An InteractionFragment
may either be contained directly in an enclosing Interaction, or may be contained within an
InteractionOperand of a CombinedFragment. As a CombinedFragment is itself an Inter-
actionFragment, there may be multiple nesting levels of InteractionFragments within an
Interaction.

UML::Interactions::CombinedFragment — The semantics of a CombinedFragment is dependent
upon the contained InteractionOperand. Typical operators are alt (for alternative behaviors),
opt (for optional behaviors) or par (for parallel execution paths).

UML::Interactions::InteractionOperan — As previously introduced, an InteractionOperand is a
region within a CombinedFragment.
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UML::Interactions::ExecutionSpecification (abstract) — An ExecutionSpecification is a speci-
fication of the execution of a unit of Behavior or Action within the Lifeline. The duration of
an ExecutionSpecification is represented by two OccurrenceSpecifications, the start
OccurrenceSpecification and the finish OccurrenceSpecification.

UML::Interactions::BehaviorExecutionSpecification — An ExecutionSpecification linked to a
Behavior.

UML::Interactions::ActionExecutionSpecification — An ExecutionSpecification linked to an
Action.

UML::Interactions::OccurrenceSpecification — An OccurrenceSpecification is the basic se-
mantic unit of Interactions. The sequences of occurrences specified by them are the meanings
of Interactions.

UML::Interactions::ExecutionOccurrenceSpecification — An ExecutionOccurrenceSpecific-
ation represents moments in time at which Actions or Behaviors start or finish.

UML::Interactions::MessageOccurrenceSpecification — A MessageOccurrenceSpecification
specifies the occurrence of Message events. A MessageOccurrenceSpecification is a kind of
MessageEnd. Messages are generated either by synchronous Operation calls or asynchronous
Signal sends.

UML::Interactions::MessageEnd — MessageEnd is an abstract specialization of NamedElement that
represents what can occur at the end of a Message.

UML::Interactions::Message — A Message is simply the trace between a message send event and a
receive event.

Figure 28 shows an example sequence diagram using the standard notation. It describes the interac-
tion of a user with a two tier application. The figure contains three Lifelines represented by dotted
lines: one for user (which is an instance of the User classifier), a second one for ui (which represents
and instance of UI) and a third one for backend (which is an instance of the Backend classifier). The
three white boxes drawn on top the lifelines represent ExecutionSpecifications (either Action-
ExecutionSpecifications or BehaviorExecutionSpecifications). The arrow labeled with dis-
playReport(id) represents a message from user to ui requesting the operation displayReport defined by
the UI classifier. The operation takes as an argument the id value. Similarly, the arrow labeled
with getReport represents a message from ui to backend. Finally, the dashed arrows labeled with report,
represent the reply messages from the backend to the ui, and from the ui to the user.

user : User ui : UI backend : Backend

displayReport(id)

getReport()

report

report

Figure 28: Sample Sequence Diagram
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The DICE Profile, Non Functional Properties (NFP) and the Value Specification Language
(VSL)

The DICE Profile [3, 35] is an extension mechanism that allows converting the Unified Modeling Lan-
guage into a domain specific modeling language for quality evaluation of data-intensive applications. For
quality assessment, the DICE profile relies on two already existing UML profiles, namely the standard
MARTE profile [15] and the DAM profile (Dependability Analysis and Modeling) [20]. From MARTE,
DICE applies the NFPs and VSL sub-profiles, while from DAM it imports the DAM Library which also
imports the MARTE Library. The MARTE NFP modeling framework [15, Chapter 8] provides the capa-
bility to describe various kind of values related to physical quantities (e.g., Time, Frequency, Energy. . . ).
These values are used to describe the non-functional properties of a system. As aforementioned, DICE
makes use of the MARTE VSL subprofile, which provides a textual language for specifying the values
of constraints, properties, and stereotype attributes, particularly related to Non Functional Properties
(NFP). The VSL is a complex language that, in fact, can be used by profile users in tagged values, body
of constraints, and in any UML element associated with value specifications. A complete reference of
the MARTE NFP types can be found in Appendix B, and a complete description of the VSL language
can be found in Annex B of the MARTE standard [15].

VSL expressions are used in DICE-profiled models with two main goals: (i) to specify the values of
NFP that must be used during the simulation (i.e., to specify input data) and (ii) to specify the NFP that
must be calculated by a given simulation (i.e., to specify the output results). An example VSL expression
for a tagged value t of type NFP_Frequency is:

(expr=2*$freq, unit=Hz, statQ=mean, source=est)
(1) (2) (3) (4)

This expression specifies that, when analyzing the anotated model containing the tagged value t, t
will be a frequency specified in Hertz (2), whose mean value (3) will be twice the value of the variable
$freq (1). That value will be obtained from an estimation (4).

A.2 Petri Net Modeling
Petri nets [36] are one of the mathematical formalisms chosen to specify the analysis models in the
Simulation Tool. Basic Petri nets (also known as Place/Transition Nets) are graphically represented as
a directed graph composed by places, transitions and arcs. Arcs run from a place to a transition or vice
versa. Places may be marked by a set of tokens. Finally, transitions may be fired when all its preceding
places have enough tokens. When a transition is fired, it consumes tokens in all the preceding places and
creates tokens in the following places.

Petri nets are well suited for modeling concurrent systems, and some extensions to the basic Place/-
Transition Nets even allow to model, analyse, and evaluate quality properties of the systems under study
in a quantitative way. In this section, first we focus on the particular type of Petri nets that are finally
used as performance models for the simulation; and second, we present the Petri Net Markup Language
(PNML), an intermediate format for representing Petri nets that is used during the transformation pro-
cess.

A.2.1 Colored and Stochastic Petri Nets
Among all the possible variants of Petri nets in the literature, two of them are suitable for the simulation
of UML diagrams annotated with the DICE profile for the Big Data technologies under consideration:
Generalized Stochastic Petri Nets and Stochastic Well-formed colored Nets. A Generalized Stochastic
Petri Net (GSPN) [25] is a Petri net extended with a temporal interpretation. A GSPN has places and
transitions like Place/Transition Nets. In this case, places represent the intermediate steps of the process-
ing and transitions are fired when certain conditions are met; or a temporal delay is reached. Transitions
can be immediate, those that fire in zero time; or temporal, which fire following an exponential distribu-
tion whose rate λ is the mean of the distribution. Immediate transitions can have a probability of firing;
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they are depicted as black bars while temporal ones are depicted as white bars. This kind of Petri net
is useful for the transformation process of UML diagrams at DPIM level; and UML diagrams of Storm
applications at DTSM level.

In addition to GSPNs, we include Stochastic Well-formed colored Nets (SWN) [21]. A SWN is a
Petri net that complements the GSPN extension with data types. Data types are defined as colors in the
Petri net. The tokens of a certain color only move to compatible places, that is, the colors restrict the
places and transitions where a token can be moved. This kind of Petri net is useful for the transformation
process of UML diagrams for Hadoop MapReduce applications at DTSM level.

A.2.2 The Petri Net Markup Language (PNML)
The Petri Net Markup Language (PNML) [37] is an ISO standard for XML-based interchange format
for Petri nets. It enables the transformation of the UML diagrams annotated with the DICE profile into
an intermediate and standard notation for Petri nets before serializing them into the specific format of a
Petri net tool.

The standard contemplates three kinds of Petri Nets: Place/Transition Nets, Symmetric Nets, and
High-Level Petri Net Graphs (HLPNGs) as defined in ISO/IEC 15909-1, where Symmetric Nets are a
restricted version of High-Level Petri Net Graphs. In this sense, it is noteworthy to highlight that PNML
does not provide native support for any stochastic (e.g., timed) Petri net variant – such as GSPNs and
SWNs. Nevertheless, PNML is flexible enough to represent them: the standard provides the extension
mechanisms that allow complementing any Petri net element with any non-standard metadata. Thanks
to this extensibility, PNML becomes the best candidate for a pivot Petri net format in DICE.

PNML Framework [38] is a free and open-source prototype implementation of the PNML standard,
and serves as the reference implementation. It has been designed following the MDE techniques, and as
such, a metamodel describing its abstract syntax has been implemented. Figure 29 shows the metaclasses
of the PNML Framework metamodel used to define Place/Transition Nets. The main Petri net concepts
(Places, Arcs, Transitions, etc.) are depicted on the left-hand side of the figure, while the corresponding
graphical primitives are depicted on the right-hand side of the figure.

The most relevant elements from the transformation to analysis models point of view are:

PNML::PetriNetDoc — A PetriNetDoc is a document that meets the requirements of the PNML Core
Model is called a Petri Net Document. It contains one or more Petri nets (PetriNet).

PNML::PetriNet — A PetriNet consists of one or more Pages that in turn consist of several objects.
These objects represent the graph structure of the Petri net.

PNML::Page — As aforementioned, a Page is a container for Petri net objects (PnObject). Since a
Page is an object itself, it may even contain other pages, thus defining a hierarchy of subpages.

PNML::PnObject (abstract) — PnObject is the base class for any object playing a role in the Petri net
structure. Each PnObject has a unique identifier which can be used for referring to this object.

PNML::Node (abstract) — A Node is an entity that can be connected by Arcs.

PNML::PlaceNode (abstract) — A PlaceNode is Node representing a place in the Petri net. It can be
either a regular Place or a RefPlace.

PNML::Place — A Place is PlaceNode representing a regular place in the Petri net.

PNML::RefPlace — A RefPlace is PlaceNode that acts as a proxy for a regular Place.

PNML::TransitionNode (abstract) — A TransitionNode is Node representing a transition in the Petri
net. It can be either a regular Transition or a RefTransition.

PNML::Transition — A Transition is TransitionNode representing a regular transition in the Petri
net.
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PNML::RefTransition — A RefTransition is TransitionNode that acts as a proxy for a regular
Transition.

PNML::Arc — An Arc represents a connection from a source Node to a target Node, i.e., from a
PlaceNode to a TransitionNode or vice versa.

PNML::PTMarking — A PTMarking determines de initial marking of the referenced containerPlace.

PNML::ToolInfo — ToolInfo elements store tool specific information. The internal structure of the
tool specific information depends on the tool and is not specified by PNML, thus ToolInfo ele-
ments can be used to store information not considered by the standard. This is the basic metaele-
ment that we use to represent GSPNs and SWNs using PNML.

A.3 DTSM Technologies
In this deliverable, we study Hadoop MapReduce and Storm technologies. We have selected them as the
initial ones for the transformation process to performance and formal verification models because they
are well-established Big Data technologies and they are representatives for processing a set of jobs in
batch or streaming mode, which are two of the main processing modes. In particular, we consider UML
profiled diagrams for Hadoop MapReduce and Storm technologies at DTSM level for the transformation
to performance models; and UML profiled diagrams for the Storm technology at DTSM level for the
transformation to formal verification models. In this section, we present the basic concepts of these
technologies that will serve as basis for the definition and comprehension of the transformations in the
rest of the document.

A.3.1 Hadoop MapReduce Basics
The Hadoop MapReduce technology was designed for processing large amounts of datasets in highly
parallelizable problems [39]. It extends the map/reduce functions from the functional programming
paradigm to cluster environments. Hadoop MapReduce divides the execution of a job into two successive
phases, namely Map and Reduce. The first one consists of the distribution, filtering and sorting of data
by a set of small and potentially parallel tasks called mappers. The second phase processes all the partial
values and composes the final result. The execution of the reducing phase is carried out by a certain
number of tasks called reducers. The tasks are executed in batch mode within a cluster according to the
scheduling policy selected by the administrator.

More in detail, Hadoop MapReduce is a fault-tolerant technology that automatically relaunches the
tasks when they are timed out. Initial data and partial results (intermediate step between the mapping and
reducing phases) are stored in a Hadoop Distributed File System (HDFS), which makes the information
transparently accessible to all the cluster nodes. A shuffle operation efficiently redistributes the output
data produced by mappers and send it to the reducers. It takes into account the locality of the data in a
working node in order to minimize the transference of data among computers and the network latency.

Hadoop MapReduce has several scheduling policies depending on the organization and assignation
of jobs to the resources. By default, all the jobs are piped into a single common FIFO queue for all users
(FIFO Scheduler) and the cluster runs them in order. In this context, a job (or user) may consume all the
available resources without any limitation. The solution proposed in the literature to this starvation prob-
lem is two kind of schedulers for multi-user workloads: the Fair Scheduler and the Capacity Scheduler.
They organize jobs into pools, and divide resources fairly between these pools. There is a separate pool
for each user (institution) so that each user gets an equal share of the cluster. Within each pool, jobs are
scheduled using either fair sharing (Fair Scheduler) or FIFO scheduling (Capacity Scheduler) in order to
easily control resource allocation at different granularity levels. Therefore, the computational cores of
the cluster are partitioned according to the number of separated pools. The computer cores are assigned
to each task depending on the class of job (e.g., user identifier) and execution phase. The division of jobs
in multiple categories allows the identification and classification of users in the system. In summary, a

Copyright c© 2016, DICE consortium – All rights reserved 73



Deliverable 3.1. Transformations to Analysis Models

Hadoop-based cluster is highly configurable by various parameters ranging from the number of map and
reduce tasks to the selection of the scheduling policy.

A.3.2 Storm Basics
Storm is a distributed real-time computation system for processing large volumes of high-velocity data
[40]. In the following we describe those concepts of Storm needed to understand our proposal. A Storm
application is usually designed as a directed acyclic graph (DAG) whose nodes are the points where the
information is generated or processed, and the edges define the connections for the transmission of data
from one node to another. A Storm application is defined by the topology of the DAG. Two classes of
nodes are considered in the topology. On the one hand, spouts are sources of information that inject
streams of data into the topology. On the other hand, bolts elaborate input data and produce results
which, in turn, are emitted towards other nodes of the topology. In a generic sense, the topology is a
data transformation pipeline. The main difference between Storm and MapReduce technologies is that a
Storm application processes the data in real-time while a MapReduce application works with individual
batches of tasks. By default, a Storm topology runs indefinitely until killed, while a MapReduce job must
eventually end. The notion of tuples, streams and messages are used interchangeably in this part.

A Storm application is configurable by several parameters ranging from the level of parallelism of
the nodes (i.e., spouts or bolts) to the multiplicity of the edges (i.e., number of tuples from a certain
source that a node requires for producing a message). One of the main characteristics of Storm is the
possibility of defining the number of instances or replications (i.e., execution threads) of a node. This
value represents the internal parallelism of the element and it is constrained by the available number of
cores of the computing machine during the deployment. The multiplicity of the edges determines the
message passing. By default, a message generated by a node of the graph is copied and propagated to
every successor in the topology. If the message is received by a bolt with a parallelism greater than 1, it
selects to either internally redirect the tuple to any of the multiple instances randomly (shuffle policy) or
copy the same message to all of them (all policy). This policy is determined by the also called grouping
factor. More grouping options are available, but we consider now only these two policies for simplicity
because they are the more representative. The grouping policy is assigned to the connection between two
nodes.

Figure 30 shows a small Storm topology with a spout (S1) connected to two bolts (B1, B2). S1 has
parallelism 1, B1 has parallelism 2 and connection with shuffle policy, and B2 has parallelism 3 and
connection with all policy. The parallelism is represented by N internal buffers for incoming messages
where the messages M1, M2 and M3 sent by S1 are placed according to the grouping attribute. As spouts
and bolts are theoretically independent and asynchronous tasks, the connection between spouts and bolts
is buffered. The size of the message queue is not considered because it will not usually influence the
model or the performance predictions except for the situations in which the system is saturated. In that

Figure 30: Storm topology with parallelism 2 and shuffle grouping (B1), and parallelism 3 and all
grouping (B2)
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Figure 31: Multiplicity of the connections in Storm

case, it will be enough to limit the representation of the buffer in the performance model. Each buffer
has a one-to-one mapping with an execution thread.

A bolt represents a generic processing element that takes inputs and produces outputs. One of the
direct consequences of such generality is that each bolt operation may have a different ratio of output/in-
put tuples. This asymmetry is captured by the weights in the arcs of the topology. Besides, different
synchronization policies shall be considered. A bolt receiving messages from two or more sources can
select to either 1) progress if at least a tuple from any of the sources is available (or policy), or 2) wait
for a message from all the sources (and policy).

Figure 31 shows a small example of Storm topology with two spouts (S1, S2) connected to a single
bolt (B1). The parallelism and grouping parameters are omitted in the image for simplicity. B1 requires
2 tuples from S1 and (or) 3 tuples from S2 for creating an output. The type synchronization is selected
by the box.

Finally, the Storm scheduling algorithm deploys the components (spouts or bolts) to the computa-
tional resources of the cluster statically at the beginning of the execution. The deployment remains un-
altered until a failure appears or a rebalance is explicitly requested by the user. By default, the scheduler
follows a Round-Robin distribution for mapping the different threads of a component to cluster devices.
More complex and user-defined schedulers may take into account the available resources and the soft-
ware requirements (memory and CPU consumption) for defining an optimal distribution of the tasks.
Internally to each computational device, the threads are managed by the OS scheduler. In summary, a
Storm topology is highly configurable by various parameters ranging from the internal parallelism of the
spouts and bolts to the selection of the message passing policy.
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B MARTE NFP Types

Figure 32: MARTE NFP Types (extracted from [15])
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Figure 33: MARTE Measurement Units (extracted from [15])
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