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Executive summary

Data intensive applications are rapidly becoming key enablers for any industry, from automotive to en-
tertainment to aerospace. However, requires continuous architectural design, framework/infrastructure
configuration and deployment-testing to fine tune software and underlying resources by means of (re-
)configuration. The goals behind the DICE project are to support the above scenarios with model-driven,
DevOps-fashioned tools and methods for actionable and continuous data-intensive design and deploy-
ment.

This technical report presents a salient part of DICE, i.e., its own model-driven deployment tool
called DICER, that stands for “DICE Rollout".

DICER speeds up the key phases of data intensive continuous architecting by aiding the configuration
of data intensive frameworks and underlying infrastructures while fully automating the generation of
deployment blueprints from design models.

DICER produces actionable blueprints in TOSCA, the “Topology and Orchestration Specification for
Cloud Applications" to guarantee executability on any TOSCA-enabled orchestrator (including our own
deployment service). This report also outlines the key foundations behind DICER and its technological
tenets, namely, the MODACloudsML modelling notation for cloud applications as well as the TOSCA
standard meta-model of our own device.

Finally, evaluating DICER with case-study research, we concluded that it does speed up consider-
ably the work of data intensive software designers but much work still lies ahead for fully-automated
continuous data intensive architecting.
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Glossary

DICE Data-Intensive Cloud Applications with iterative quality enhancements
IDE Integrated Development Environment
MDE Model-Driven Engineering
UML Unified Modelling Language
DICER DICE Rollout Tool
TOSCA Topology and Orchestration Specification for Cloud Applications
DPIM DICE Platform Independent Model
DTSM DICE Technology Specific Model
DDSM DICE Deployment Specific Model
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1 Introduction

Big Data technologies have rapidly achieved widespread adoption thanks to their versatility and their
ability to foster innovative products. Paraphrasing from Behm et al. [1]: “Be it large IT enterprises
to web companies to researchers, virtually everyone is either experiencing or anticipating the benefits
from harnessing Big Data technologies". Also, according to the “Worldwide Big Data Technology and
Services, 2012-2015 Forecast" by IDC [2], Big Data services are expected to grow worldwide at an
annual growth rate of 40% — about seven times that of the ICT market as a whole.

However, the adoption of big data technologies is not simple to achieve. At the moment there are
no simple-to-use tools that support designers and operators in configuring a data intensive application
to use one or more of the available big data frameworks, and in deploying it on proper resources. The
result is that such designers and operators have to go through a cumbersome trials and errors continuous
architecting process where they iteratively tune the configurations of data intensive applications [3] and
of their underlying infrastructure [4] until they reach satisfactory results. These exercises are, at the
same time, very expensive — e.g., ad-hoc infrastructure needs to be rented and exploited for thousands
of euros — very complex — e.g., they have to combine the complexity of the technological framework
with concerns such as privacy, legal issues, data quality, etc. — and, finally, very slow — e.g., the
execution of said exercises is reportedly still carried out mostly manually and by trial-and-error [5].

Of course, things become even more complicated when we need to re-design and re-configure our
application to change the underlying used technology. For example, consider the scenario in which you
want to change your big data streaming framework, let’s say Apache Storm1 altogether, opting for a
new one, let’s say Spark2. In this scenario, the application design and development constraints change
considerably and would force you at least to: (a) completely redesign the data intensive application using
the new concepts from the new framework, i.e., Spark; (b) install the new framework according to its
deployment and configuration details; (c) configure said framework and the underlying infrastructure via
an orchestration engine; (d) iteratively, test the application on the infrastructure; (e) improve incremen-
tally both the application and the deployment configurations; (f) finally, repeat points (d) and (e) until
satisfactory performance manifests. In this scenario, a number of artefacts would have to be (re-)coded
and/or synched manually, for example, the code of the application or the configuration scripts needed to
setup the infrastructure.

This and similar scenarios also reflect the peculiar form of data intensive applications whose non
functional properties depends heavily on the many framework configuration parameters and the chosen
deployment structure. For example, fine-tuning a Storm application requires experimenting on 120+
framework configuration parameters3 - these need to be configured and experimented jointly with the
deployment structure of both the Storm framework and the applications/other frameworks using it. To
the best of our knowledge, no tool support exists to date that allows the manipulation of data intensive
applications architecture (e.g., the set of architecture elements and frameworks part of the application),
framework configuration parameters and the architecture’s deployment structure.

The DICE project argues that this and similar scenarios can be supported by combining two ingredi-
ents:

(a) Model-Driven Engineering principles and tools as they may allow designers to use models for
analysing and optimizing their architectural configuration, and to abstract from the specific details of big
data technologies delegating to some automation steps the generation of needed code and scripts;

(b) An integrated infrastructure-as-a-code [5] approach as from such kind of code — possibly au-
tomatically generated from the aforementioned models — it is possible to provide precise instructions
to management tools that support the automatic deployment and configuration of applications on the
specified resources.

In this deliverable we present the DICE approach and the connected results along the lines described
above.

1http://storm.apache.org/
2http://spark.apache.org/
3https://github.com/apache/storm/blob/v0.10.0/conf/defaults.yaml

Copyright c© 2016, DICE consortium – All rights reserved 8



Deliverable 2.3. Deployment abstractions - Initial version.

In particular, we contribute to the state of the art in automated software engineering with: (a) a
model-driven continuous architecting and deployment automation framework based on a set of mod-
elling notations [6] needed to capture the necessary concepts, relations and constraints and a set of
model-transformations; (b) a supporting tool called DICER that accelerates the continuous constraints-
based (re-)deployment of data intensive applications by means of model-transformation automation; (c)
a supporting library of reusable infrastructure-as-a-code components that can be exploited to deploy big
data frameworks by using modern orchestration engines such as Cloudify4 or Brooklyn5.

Evaluating these key contributions through case-study research [7], we observed that our solution
simplifies and partially automates several time-consuming activities and let us conclude that the combi-
nation of our two ingredients (model-driven engineering and infrastructure-as-a-code) play a key role in
providing big data engineering with speed by automation in a DevOps fashion.

1.1 Objectives

This deliverable has the following objectives:

Objective Description

DDSM Meta-Models
elaborate on the meta-modelling foundations with which we support
automated continuous deployment of DIAs.

DICER Tool
elaborate the transformation logic behind the automation for
deployment of DICE-supported DIAs.

1.2 Structure of the deliverable

The rest of this deliverable is structured as follows. First, Section 2 outlines the main DICE achieve-
ments addressed in this deliverable. Second, Section 3 outlines a state of the art overview for us to
contextualise the DICE results addressed in this deliverable. Further on, Sections 4, 5 and 6 outline our
research solution, namely the DDSM DICE meta-model layer, the DICER tool and the methods in which
they were obtained, while Section 7 evaluates our solution by means of case-study research [7]. Further
on, Section 8 concludes the deliverable by elaborating on the future work we intend on the DDSM layer
and DICER tool, respectively.

Finally, the appendices provide a complete reference over the DDSM meta-modelling notations, the
DICER tool, and the transformational logic behind it.

4http://getcloudify.org/
5https://brooklyn.apache.org/
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2 Achievements

This section briefly describes the main achievements of this deliverable.

2.1 Achievement 1

We have achieved a stable version of the DICE Deployment Modelling abstractions (DDSM) by
combining an edited and updated version of the MODACloudsML language grammar (called MODA-
Clouds4DICE) with the TOSCA standard v 1.0 grammar. The DDSM model has been tested on several
technologies and it contains the necessary concepts required for DICE deployment modelling.

These abstractions allow designers to produce a deployable map for the implementable view of the
big data application design realised and refined within the DTSM component. Said map essentially relies
on core-constructs that are common to any cloud-based application (of which big data is a subset). Sim-
ilarly to the related DTSM abstraction layer (see Deliverable D2.1), DDSM abstractions come with ad-
hoc deployment configuration packages which are specific per every technology specified in the DTSM
component library. Designers that are satisfied with their DTSM model may use this abstraction layer
to evaluate several deployment alternatives, e.g., matching ad-hoc infrastructure needs. For example, the
MapReduce framework typically consists of a single master JobTracker and one slave TaskTracker per
cluster-node. Besides configuring details needed to actually deploy the MapReduce job, designers may
change the default operational configurations behind the MapReduce framework. Also, the designer and
infrastructure engineers may define how additional Hadoop Map Reduce components such as Yarn may
actively affect the deployment.

Appendix A contains an overview of all concepts and relations captured within the DDSM-specific
meta-models, namely, the MODAClouds4DICE notation as well as the TOSCA standard v1 meta-model
of our own design. Both meta-models are outlined in tabular form.

2.2 Achievement 2

We have achieved an initial working implementation of (a) Model-To-Model transformations that
transmute models from a DTSM specification stereotyped with DDSM constructs into a TOSCA inter-
mediate and editable format (e.g., for experienced and ad-hoc fine-tuning) as well as (b) a Model-2-Text
transformation to produce an actionable TOSCA blueprint. We named this joint set of transformations
the DICER tool and evaluated them by means of case-study research.

Our evaluation shows that DICER is a successful initial implementation of MDE applied to contin-
uous modelling and continuous deployment of Data-Intensive Applications to be supported in the DICE
project.

The DICER model transformation engine covers the scenario in which the designers are satisfied
with their DTSM objectives and need deployment assistance. In this scenario, DICER shall create a
deployable TOSCA blueprint by matching the frameworks and technologies used in the DTSM model,
with the actual deployment needs, restrictions and constraints of their runtime platforms.

Appendix B contains a general overview of the DICER tool and its internal logic using snippets of
commented code.

Copyright c© 2016, DICE consortium – All rights reserved 10
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3 DDSM and deployment modelling: State of the art overview

There are several works that offer foundational approaches we considered in developing the meta-
modelling and domain-specific notations required to support the DDSM meta-modelling layer and the
supporting DICER tool. Said works mainly reside in model-driven engineering as well as deployment
modelling & automation domains.

3.1 Model-Driven Engineering for data intensive applications

Model Driven Development (MDD) is a well known approach and has been widely exploited in
many areas of software engineering. Examples are the web and mobile application development, see
for instance the WebRatio6 approach, and the development of multi-cloud applications, see for instance
the MODAClouds project [8], that offers a modelling approach, called MODACloudsML, to specify the
constructs and concepts needed to model and deploy cloud applications and their infrastructure needs
(e.g., VMs, resources, etc.).

Also, recently in the literature a number of works have been proposed which attempt to take ad-
vantage from MDD concepts and technologies within the context of Big Data application. In [9] an
interesting approach is proposed with the aim to allow MDD of Hadoop MR applications. After defining
a meta-model for a Hadoop MR application, which can be used to define a model of the application, the
approach offers an automatic code generation mechanism. The output is a complete code scaffold, which
has to be detailed by the developer of data intensive applications with the implementation of the main
application-level Hadoop MR components, the Map and Reduce functions, according to placeholders
in the generated code. The main goal is to demonstrate how MDD allows to dramatically reduce the
accidental complexity of developing a Hadoop MR application. Similar support is offered by Stormgen
[10] which aims to provide a DSL for defining Storm-based architectures, called topologies.

While these approaches provide a first evidence of the utility of MDD in the context of data intensive
applications, they are both focused on relying on a single underlying technology. Moreover, they focus
on the development phase and do not target the deployment aspects, which would require the develop-
ment and operation teams to reason on the platform nodes supporting the execution of technological
components and on their allocation to concrete computational and storage resources.

3.2 Deployment Modelling and Automation

The infrastructure as a code approach is supported today by a number of tools that offer some script-
ing languages to describe the configuration of complex systems and enable the execution of the resulting
configuration scripts to enable the deployment, configuration, runtime management, compliance check-
ing and the like. Two important representatives of frameworks supporting such approach are Puppet7 and
Chef8. Such tools, that are often called orchestrators and configuration managers, however, solve only a
part of the problem, because the actual infrastructure as a code they execute have to be provided by the
users or the community.

TOSCA (“Topology and Orchestration Specification for Cloud Applications”) [11] is an OASIS stan-
dandization effort that aims at providing easily deployable specifications for cloud applications in all
their aspects, including, but not limited to, Network Function Virtualisation, Infrastructure Monitoring
and similar. Essentially, quoting from the TOSCA specification 1.0, “TOSCA [...] uses the concept of
service templates to describe cloud workloads as a topology template, [...]. TOSCA further provides a
type system of node types to describe the possible building blocks for constructing a service template,
as well as relationship type to describe possible kinds of relations”. Figure 1, extracted from the original
standard9 outlines the essential concepts within TOSCA and their respective relation. A TOSCA speci-
fication, also called TOSCA blueprint is an aggregate of topology templates, that compose together node
templates through relationship templates. A node can represent an application-level component or an

6http://www.webratio.com/site/content/it/home
7https://puppet.com
8https://www.chef.io/
9http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
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Figure 1: TOSCA specification, core constructs

infrastructural element. Its properties are defined in the node type specification. Relationships can have
various semantics, e.g., node A uses node B, or node A is running on top of node B that are defined as
part of the relationship type specification.

The growing interest around TOSCA is withnessed by the initiatives that are being developed around
it. For instance, Cloudify10 by GigaSpaces and Brooklyn11 by CloudSoft are two ongoing projects that
enable cloud application orchestration (deployment, configuration and execution) of topologies described
in a TOSCA blueprint. Alien4Cloud12, instead, offers simple features for modeling TOSCA topologies
in a graphical way and takes care of the generation of blueprints ready to be orchestrated by Cloudify.
CAMF13 uses TOSCA to focus on three distinct management operations, particularly application descrip-
tion, application deployment and application monitoring14. Similarly, technologies such as CELAR [12]
or Open-TOSCA [13], try to tackle the problem of combining model-driven solutions with TOSCA to
automate deployment and speed-up the continuous architecting exercises needed for cloud applications.
However, neither CELAR nor Open-TOSCA offer mature and fully usable frameworks. In general, all
above frameworks have been conceived to support the definition and/or execution of blueprints of simple
cloud applications. They do not offer specific support to the deployment of big data frameworks. These
last ones, require specific fine-tuning of configuration parameters and constraints such as, for example,
the replication factor of architectural elements.

The only approach we are aware of that offers technological parameters continuous configuration
support is presented in [14]. In this paper authors show the capabilities of TOSCA to automate the
deployment of scientific workflows, a specific kind of data intensive application, that can be executed in a
parallel fashion according to the Map Reduce paradigm. The approach, however, is focusing exclusively
on Hadoop clusters and does not consider general data intensive applications relying on different kinds
of big data technologies.

In contrast to the presented approaches, we have defined in TOSCA proper node and relationship
types and templates to model the specific elements associated to the most prominent big data technologies
and, based on these, we offer the possibility to automatically derive TOSCA blueprints from the high
level design models associated to a data intensive application. Such blueprints are then executed by our
deployment service and the configuration manager that extend Cloudify and Chef tools.

10http://getcloudify.org/
11http://brooklyn.apache.org
12http://alien4cloud.github.io/
13https://projects.eclipse.org/projects/technology.camf
14https://projects.eclipse.org/proposals/cloud-application-management-framework
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Figure 2: DDSM Research Method, a general overview.

4 DICE Approach for Deployment Modeling

From a methodological point of view, the deployment modelling and automation layer (i.e., the DDSM)
and its tool support (i.e., the DICER tool) were developed harnessing a combination of (a) reverse engi-
neering, (b) systematic mapping, (c) heavy-weight profiling and, finally, (d) explorative prototyping. Fig.
2 shows a general overview of our research methods where boxes identify either material we worked on
or produced and block arrows identify research methods and approaches.

First, we applied reverse engineering principles and practices to obtain an editable meta-model for
both the modelling baselines we chose to target in the scope of DDSM, namely, the MODACloudsML
and the TOSCA meta-models. These baselines were selected since, on one hand, MODACloudsML
represents a key result of the MODAClouds project in terms of an actionable language to fully describe
and characterise quality-aware cloud applications in the scope of multi-cloud infrastructure descriptions
and interoperability. On the other hand, TOSCA represents the de-facto and de-iure standard for topol-
ogy and orchestration specification for cloud applications. Our research argument was that the sum of
MODAcloudsML and TOSCA would yield a perfect combination of expressive power, multi-cloud tool
support, interoperability and quality-awareness — these are the key principles we devised to drive the
development of the DDSM layer and the prototyping of the DICER tool.

The initial working draft of said meta-models were reverse engineered from original working drafts
inherited from their creators (i.e., the MODACloudsML project group and the TOSCA Technical Com-
mittee). Both meta-models were obtained in standard XMI 2.11 format and were reverse engineered
using Eclipse Reflective Modelling and Model Discovery capabilities. In so doing, we obtained EMF
representations of both modelling formats for the purpose of their examination and further refinement /
extension within the goals and purposes of the DICE project.

Second, we conducted a systematic mapping study of concepts to be addressed within the DDSM
layer and the concepts contained in the MODACloudsML and TOSCA notation meta-models. Our goal
by means of this study was to determine any conceptual gaps within either notation to be addressed in
the scope of DICE. As a consequence of this analysis, we applied heavy-weight profiling, that is, adding
concepts to a meta-model in line with the rest of the meta-model’s content, much like UML’s standard
heavy-weight profiling techniques [15]. In the scope of our profiling exercise, we extended both the
MODACloudsML and TOSCA meta-models with concepts, notations and abstractions necessary to sup-
port Data-Intensive Applications’ continuous architecting and deployment - these additional extensions
were also packeted in the form of technology-specific deployment structure extensions (see bottom-left
of Fig. 3).

Finally, to devise tool support and automation behind the DDSM layer towards continuous deploy-
ment we operated by means of explorative prototyping [16]. We analysed our deployment automation
requirements and gave precedence to least understood and clarified requirements. Said requirements
were implemented using Model2Model and Model2Text transformations featuring ATL-based DTSM
models manipulation and XText auto-grammar generation (see mid-figure in Fig. 3). Following action
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research principles, these automations were then showcased to DICE partners in WP5 and WP6, i.e.,
deployment automation colleagues and case-study owners respectively.

Given that the TOSCA format is in the process of emerging, the existing vendors supporting the
format cannot be fully compliant with the standard yet. Instead they do their best to cover a large part
of the standard, and adapt certain aspects in their own ways. At the time of the first DICE survey
[dice-d11], Cloudify was the strongest candidate due to its level of maturity, good community support
and active development - for this very reason, we, the WP2 and WP5 team chose Cloudify as the reference
technology to be further elaborated within DICE. Others include Alien4Cloud, which itself relies on
Cloudify, and Apache Brooklyn, which has only recently obtained the TOSCA support.

Our aim is to have actionable blueprints, which produce real application deployments. To this end,
we iterated through several phases from purely Cloudify-centric dialect of TOSCA to an increasing level
of abstracting Cloudify’s specifics away from the blueprints. This reverse process of implementation
worked towards bringing a transformation that we could apply to other engines as well. A consequence
of our action research exercise is that the notations and automation devices were refined incrementally
until the preliminary maturity reported in this deliverable was achieved.
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5 Modelling for Deployment

Before describing into details the various components and in order to get a wider understanding of the
motivation behind the DICE solution, it is worth to remind that, even if in this work we are dealing with
the deployment aspects and automation of data intensive technologies and applications, in the context
of Model-Driven engineering there are also two higher level modelling layers that, simply put, allow to
design the architecture (i.e., the DPIM in DICE) and the technological characteristics (i.e., the DTSM
in DICE) of a data-intensive application, e.g., following standard MDA approaches15 or ad-hoc data
intensive continuous design methods such as the one introduced by us in the scope of DICE and published
in [17]. Figure 3 shows our high-level solution architecture in support of this reasoning.

In essence, the result of the DPIM and DTSM modelling phase is given as input to the ATL Config
Transformation shown at the top of Fig. 3. In this work we are not interested in looking at these higher
level modeling packages neither at the details of the Config Transformation, but it is relevant to the
general understanding to briefly explain what this transformation does. Basically given a description
of a data intensive application, in terms of its architecture and of the adopted technologies, the Config
Trasformation is responsible to instantiate a first deployment solution of the application, linking all the
required dependencies and deploying all the required runtime platforms. Just to make an example, if
the modeled application is an Hadoop Map Reduce application, which have to retrieve the input dataset
from an Apache Cassandra cluster, the Config Transformation will use the DDSM framework (that we are
going to explain in a while) instantiating and configuring all the nodes for both Hadoop and Cassandra
(i.e. the Hadoop’s master node and at least a slave node) and properly linking said nodes. Moreover
the transformation generates nodes for the application itself, that in the previous example will be just a
single node representing the application client which submits data intensive jobs to the deployed Hadoop
platform. The Config Transformation uses the DDSM framework according to the DICE methodology,
but nothing excludes that this can be used as a component in its own right.

The DDSM framework is a modelling framework composed of the following meta-models:

First, the MODAClouds4DICE meta-model (top of the DDSM dotted box on the left-hand side of
Fig.3) — this meta-model16 is a transposition and an extension of the MODACloudsML meta-model
adapted for the intents and purposes of data intensive deployment. MODACloudsML [18] is a lan-
guage that allows to model the provisioning and deployment of multi-cloud applications exploiting a
component-based approach. The main motivation behind the adoption of such a language on top of
TOSCA is that we want to make the design methodology TOSCA-independent, in such a way that the
designer have not to be a TOSCA-expert, nor even to be aware about TOSCA, but she should just follow
the proposed methodology. Moreover the MODACloudsML language has basically the same purpose
of the TOSCA standard, but it exhibits a higher level of abstraction and so results in being more user
friendly. Figure 5 shows an extract of the MODAClouds4DICE meta-model. The main concepts are in-
herited directly from MODACloudsML. A MODACloudsML model is a set of Components which can be
owned by a Cloud provider (ExternalComponents) or by the application provider (InternalComponents).
A Component can be either an application, a platform or a physical host. While an ExternalCompo-
nent can just provide Ports and ExecutionPlatforms, an InternalComponent can also require them, since
it is controlled by the application provider. Ports and ExecutionPlatforms serve as a way to connect
Components to each other. ProvidedPorts and RequiredPorts can be linked by mean of the concept
of Relationship, while ProvidedExecutionPlatforms and RequiredExecutionPlatforms can be linked by
mean of the concept of ExecutionBinding. The latter could be seen as a particular type of relationship
between two Components which tells that one of them is executing the other. MODACloudsML has
been adapted extending elements in order to capture data intensive specific concepts, e.g. systems that
are usually exploited by data intensive applications such as NoSQLStorage solutions and ParallelPro-
cessingPlatforms, which are typically composed of a MasterNode and one or many SlaveNodes.

15http://www.omg.org/mda/specs.htm
16A complete overview of the meta-model is discussed in the appendix and can be seen online:PLACETHEFIGURE
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Figure 3: An architecture for automated deployment blueprint creation for of data intensive applications.

Figure 4: Exemplification of how the packaged structure is achieved in the DDSM frameworks.

Second, several data intensive deployment packages (bottom of the DDSM dotted box on the left-
hand side of Fig. 3 and example extension to MODACloudsML in Fig. 4) are then used to model the
deployment architectures of the data intensive technologies currently supported by our solution. Each
package mainly captures the nodes, along with their configurations, that make up the runtime infras-
tructure of a given technology. For example, the Hadoop deployment package allows to instantiate an
Hadoop master node and an Hadoop worker node. The packaged structure is employed in order to
achieve modularity and to ease future extensions that may occur. These packages can be regarded as a
further extension of the MODACloudsML language. After we identified common data intensive nodes
extending the general concept of node that we have in the MODACloudsML language, each technology
has its own runtime architecture composed by nodes belonging to one of the common node types defined
in the MODAClouds4DICE meta-model. For example, Hadoop is composed of the HadoopMaster that
is the MasterNode of a ParallelProcessingPlatform and one of many HadoopWorker that are Slave nodes
of a ParallelProcessingPlatform (see Fig. 5). It is worth to notice that each technological node has its
own corresponding node type in the TOSCA Technological Library used by the Deployment Tool, so
that TOSCA node templates of such a type can be declared.

Third, the TOSCA meta-model (See the mid-right of Fig. 3) — this meta-model captures the TOSCA

Copyright c© 2016, DICE consortium – All rights reserved 16



Deliverable 2.3. Deployment abstractions - Initial version.

grammar to enable a mapping of concepts with MODAClouds4DICE and the technological packages
that specialise it. The TOSCA meta-model was obtained through reverse engineering and refined through
industrial action research. Since in this work we are first of all targeting Cloudify as the supported
orchestration engine, which is able to process blueprints specified not exactly using the standard TOSCA
notation, but rather a dialect, we had to adapt the meta-model we derived from the standard into what
we called the TOSCA@Cloudify meta-model17. Figure 6 shows and excerpt of the TOSCA@Cloudify
meta-model, focusing of the parts that are relevant to our discussion. Here we assume the reader to be
familiar at least with the basic TOSCA constructs and we don’t go into details of the meta-model.

The ingredients above are vital for creating the DDSM model of any data-intensive application that
aggregates the currently supported technologies. As previously mentioned, the composition of data-
intensive applications is already addressed in the state of the art, e.g., in [17], and therefore is beyond
the scope of this paper. Conversely, we aim at specifying the DICER tool, whose key goal is to allow
model-driven continuous architecting and (re-)deployment of a data-intensive application in an IDE such
as Eclipse.

17A complete graphical overview of the meta-model is impossible but more details on the TOSCA concepts and their relations
are available in the Appendix A.
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Figure 5: An excerpt of the MODACloudsML4DICE meta-model.
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Figure 6: An excerpt of the TOSCA@Cloudify meta-model.
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6 Generating TOSCA Blueprints with Model to Text Transformations

From an automation perspective, DICER and the Deployment Service (i.e., matter of WP5) are essen-
tially counterparts. On one hand, the DICE DDSM and DICER outlined in Fig. 3 offer the basis with
which an actionable TOSCA blueprint is generated and fine-tuned. On the other hand, Figure 7 refines
the solution architecture in Fig. 3 clarifying the relation between said solution (see Top half of Fig. 7)
and the deployment service counterpart from WP5 which consumes TOSCA blueprint in its deployment
and continuous integration process (see bottom-half of Fig. 7).

In summary, the overall DICE deployment architecture comprises two main components, the Mod-
eling Environment (elaborated in this deliverable) and the Deployment Service (from WP5, Deliverable
D5.1).

From a modelling perspective, through the Modelling Environment Dashboard a user (e.g., an in-
frastructure engineer) can drag and drop deployment elements and properly link and configure them
according to the MODAClouds4DICE meta-model for the deployment specification of data-intensive
applications. In this work, when we refer to deployment model of a data-intensive application, this in-
cludes the deployment of all the required services, technologies and of the jobs to be run over resulting
platforms.

From a deployment perspective, the TOSCA model output of the Deploy Transformation is finally
serialized, using an Xtext model-to-text transformation, into a deployable TOSCA YAML blueprint.
This, in turn, is automatically sent to the Deployment Service in order to be processed for deployment,
e.g., on the Flexiant test-bed. The result of this step is a working application deployed according to the
topology defined in the deployment diagram.

In summary, the sole assumption behind using DICER is that data intensive designers have already
prepared a component-based representation of their data intensive architecture using state-of-the-art tools
and methodologies [3, 17] and featuring the MODAClouds4DICE concepts and abstractions. Conversely,
the DICER Tool focuses on automatically translating said models built by the designer, into a TOSCA
blueprint deployable with the Cloudify engine.

Along this path the DICER tool performs two main steps:
• Deploy Transformation: at this step the tool executes an ATL model-to-model transformation,

which realises a translation from the MODAClouds4DICE language to the TOSCA@Cloudify lan-
guage. As the source and target languages describe the same domain but adopting different no-
tations and level of abstraction, the adopted approach in designing the Deploy Transformation
was to look at the entities in the two meta-models describing the the same domain concept. Of

Copyright c© 2016, DICE consortium – All rights reserved 20



Deliverable 2.3. Deployment abstractions - Initial version.

course not always we found an exact one-to-one mapping between pairs of concepts. We don’t
want to go here into the implementation details, since this would lead into a too technical and
actually not so interesting discussion, but let’s just introduce an example of one main mapping
that has been designed, keeping in mind the two meta-models shown in the previous Section. In
the considered TOSCA@Cloudify meta-model we have the concepts of NodeTemplate, which can
be used to express any kind of node, without caring about who is owning that node. Then the
concept of Relationship can be used to link pairs of nodes and can be of different types. Thus, the
Deploy Transformation has to treat ExternalComponents and InternalComponents of a MODA-
Clouds4DICE instance model using different strategies. Among the ExternalComponent possible
extentions, we just considered VMs, since the rental of computing resources is the Cloud service in
which we are interested in the context of the deployment of data intensive technologies and appli-
cations. We mapped each ExecutionBinding into a ContainedIn relationship and each Relationship
into a ConnectedTo relationship. Then, ContainedIn and ConnectedTo relationships are instanti-
ated and attached only to NodeTemplates generated from InternalComponents, according to the
ExecutionBindings and Relationships found in the source MODAClouds4DICE model. Listing 1
reports the ATL rule that generates a NodeTemplate from an InternalComponent. NodeTemplates
generated from ExternalComponents have instead no attached Relationships. The full ATL code
is available as open source from the DICE models repository18.

• Rollout Transformation: at this step the DICER tool executes an Xtext model-to-text transfor-
mation that performs a serialization of a model specified in the TOSCA@Cloudify language into a
deployable TOSCA blueprint. The Xtext grammar has been adapted to generate a JSON document
that is then converted into the YAML format.

Listing 1: An excerpt of the ATL Deploy Tranformation
l a z y r u l e ge tNodeTempla te sFromIn te rna lComp {

from
s : DDSM! I n t e r n a l C o m p o n e n t

t o
t : TOSCA! Node templa t e (

nodeTemplateName <− s . name ,
t y p e <− s . oc lType ( ) . t o S t r i n g ( ) ,
h a s R e l a t i o n s h i p <−
s . r e q u i r e d e x e c u t i o n p l a t f o r m −>
c o l l e c t ( p l a t f o r m |
t h i s M o d u l e . g e t C o n t a i n e d I n F r o m E x e c B i n d i n g (
DDSM! E x e c u t i o n B i n d i n g . a l l I n s t a n c e s ( ) −>
any ( b i n d i n g |
b i n d i n g . r e q u i r e d e x e c u t i o n p l a t f o r m . p l a t f o r m I d =
p l a t f o r m . p l a t f o r m I d
) ) ) . union (
s . r e q u i r e d p o r t −>
c o l l e c t ( p o r t |
t h i s M o d u l e . g e t C o n n e c t e d T o F r o m R e l a t i o n s h i p (
DDSM! R e l a t i o n s h i p . a l l I n s t a n c e s ( ) −>
any ( r e l a t i o n s h i p |
r e l a t i o n s h i p . r e q u i r e d p o r t . p o r t I d = p o r t . p o r t I d
) ) ) ) ,

. . .
}

18https://github.com/dice-project/DICE-Models
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In our solution a user (i.e. the infrastructure engineer) can build a deployment model of her data in-
tensive application leveraging the DDSM framework. Then, exploiting the described automation mech-
anisms, she can automatically get a deployable TOSCA-based blueprint, suitable for the DICE Deploy-
ment Service.

6.1 Deploying DICER Blueprints: DICER Deployment Service

The DICE Deployment Service [19] is the component, which enables the whole modeling approach in the
DICE methodology to end in the live instances of technologies described in the model. Technically, it is
the result of the effort in WP5, where they focus on building a technology library capable of configuring
technologies supported in DICE. Methodologically, it is a natural extension of the DICER tool. This is
apparent because the deployment tool is tuned to receive the kind of input that the DICER outputs.

The TOSCA blueprint produced by the DICER contains a) general declarations, which are platform-
dependent, b) topology of nodes and their relationships, describing what services and applications need
to be in the topology and what specific configuration parameters should apply, c) and a set of output
parameters from the topology’s instanciation (e.g., URLs of the applications, service access points, etc.).
This effectively means that the blueprint contains only the declaration of the topology to be deployed.
We offload all the responsibility of implementing the procedures for deploying the services to the WP5’s
DICE technology library.

In our proposed solution, the Deployment Service is a persistent service deployed and configured by
an administrator of the development team. As the Fig. 7 shows, it consists of the following components:
(1) a front-end service, (2) an orchestration engine, and (3) a technology library. The front-end service
responds to client requests, abstracting specifics of the cloud orchestration engine, i.e., the Cloudify19.
The technology library represents the main content of the Deployment Service, containing declarations
of the supported technologies and the recipes for their deployment, installation and configuration. The
technology library enables that DICER produces blueprints, which are largely engine agnostic. It can
therefore focus on representing the service topology declaration and the services’ parameters. As can be
seen in listing 2, the blueprint does not have to contain a single line of code or a script reference.

The cloud orchestrator parses the blueprint and constructs a directed acyclic graph representation of
the TOSCA topology in the blueprint. The relationships between nodes define the order in which the
individual nodes get provisioned, deployed and configured. For instance, for deploying a web applica-
tion, the orchestrator will first raise the virtual machines to host each of the services, then first install
and configure a database engine before proceeding to install and configure the web server and the web
application, which depends on the database to properly work.

The provisioning of the Cloud resources such as computation, networking and storage are a re-
sponsibility of specific platform’s plug-ins of the orchestrator. Subject to the extent of the support, the
orchestration is thus largely platform-agnostic. The installation and configuration of the services on top
of the virtual or physical hosts is then the work of a configuration manager. In the proposed solution,
we use Chef, which has an advantage of a powerful domain-specific language (DSL), which itself can be
highly platform independent. Also, the Chef community already supplies many ready-made cookbooks
for data intensive services. To properly work with the external orchestrator, however, we had to modify
and extend them to separate all the stages of configuration, including: (a) installation, which places the
executable files and libraries in their proper locations, but does not start the programs yet; (b) configu-
ration, which populates the configuration files with specific values dynamically collected in the process
of orchestration (e.g., a web application needs to know the address of the database engine); (c) starting
the services and programs; (d) stopping the services and programs, needed as the first step of the scaling
down or cleaning up actions, and removing the executable files, libraries and configuration files.

To the best of our knowledge, most of the community-provided cookbooks only provide installation
and configuration steps, while the other steps (including in some cases the starting of the services) are
left to the user to perform manually or using some other means.

It is worth to note that the nodes a user can instantiate while using the Modeling Environment strictly
19http://getcloudify.org/
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reflect the TOSCA node types defined in the Technological Library of the Deployment Service. As a
result, the Modeling Environment can produce blueprints, which declare only the topology of the appli-
cation and some deployment configuration parameters, while all the deployment steps implementation is
hidden away.

When the orchestrator finishes with the deployment, it returns any output information specified by
the application. This includes information such as the address of the web application and any other
important information, which cannot be known in advance before the proper resources materialise in the
deploy.

6.2 Application deployments from methodological perspective

The concept of the Deployment Service is simple: in the scope of the developers’ environment it repre-
sents a service specialized in handling the parts of the applications’ life-cycle which are concerned with
initialization and dismantling of the deployment. Therefore it counts as a support service, similar to code
repository, issue tracker or Continuous Integration services. With the support of the underlying testbed
platform (OpenStack, FCO etc.), the users (e.g., developers, system architects and others) have available
a small number of actions: deploy an application according to given blueprint, re-deploy the applica-
tion, reconfigure the application without undeploying it, or undeploy the application. In other words, the
number of manual actions involved is at the minimum. The users do not have to ask the administrators to
manually start up virtual machines or install parts of the service in each virtual machine whenever they
want to perform a deployment.

To get these benefits, there is however an inital cost of using the DICE Deployment Service, and
that is the need to deploy (or, bootstrap) the service itself into the development environment. Unlike
the DICER tool, which itself is a relatively simple tool to install and use from the user’s depelopment
machine20, the DICE Deployment Service requires the Cloudify engine to be installed first. This, in turn,
needs to be able to converse with the testbed platform’s API, enabling it to handle creation or deletion
of the computational, network, storage and other resources. The bootstrapping of the deploment service
therefore requires a moderate number of steps to perform, in particular the collection of the platform’s
parameters.

Arguably, this process could be more arduous when compared with setting up a simple Storm clus-
ter. However, in the long term the investment pays off as soon as the users deploy or redeploy their
applications more than a couple of times.

For the teams employing agile principles and following the DevOps approaches, this threshold will
be quickly crossed. There is a great benefit in using the DICER and the DICE Deployment Service in the
Continuous Integration workflow using Jenkins or Atlassian Jira where the tool helps perform repeatable
and frequent deployments of the applications. The topology of the application could stay the same or,
more likely, gradually evolve as new features are added.

The deployment tool, further, enables other DICE functionality such as the Configuration Optimiza-
tion and Quality Testing. Therefore it doesn’t represent the final tool in the methodology, but supports
further processes, which feed the results back to the earlier stages of the DICE methodology.

20a hosted version with a RESTful interface is available as well
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Listing 2: An excerpt of the generated TOSCA blueprint for Apache Hadoop.
# Impor t s , i n p u t s and o u p u t s s e c t i o n s o m i t t e d .
n o d e _ t e m p l a t e s :

# Hadoop name node s e t u p
n a m e n o d e _ f i r e w a l l :

t y p e : d i c e . f i r e w a l l _ r u l e s . hadoop . namenode
namenode_host :

t y p e : d i c e . h o s t s . medium_host
r e l a t i o n s h i p s :
− t y p e : d i c e . r e l a t i o n s h i p s . p r o t e c t e d _ b y

t a r g e t : n a m e n o d e _ f i r e w a l l
namenode :

t y p e : d i c e . components . hadoop . namenode
r e l a t i o n s h i p s :
− t y p e : d i c e . r e l a t i o n s h i p s . c o n t a i n e d _ i n

t a r g e t : namenode_host

# Hadoop r e s o u r c e manager
r e s o u r c e m a n a g e r _ h o s t :

t y p e : d i c e . h o s t s . medium_host
r e s o u r c e m a n a g e r :

t y p e : d i c e . components . hadoop . r e s o u r c e m a n a g e r
r e l a t i o n s h i p s :
− t y p e : d i c e . r e l a t i o n s h i p s . c o n t a i n e d _ i n

t a r g e t : r e s o u r c e m a n a g e r _ h o s t

# Workers ( d a t a node + node manager combined )
w o r k e r _ h o s t :

t y p e : d i c e . h o s t s . l a r g e _ h o s t
i n s t a n c e s :

de p l oy : 3
d a t a n o d e :

t y p e : d i c e . components . hadoop . d a t a n o d e
r e l a t i o n s h i p s :
− t y p e : d i c e . r e l a t i o n s h i p s . c o n t a i n e d _ i n

t a r g e t : w o r k e r _ h o s t
− t y p e : d i c e . hadoop . d n _ c o n n e c t e d _ t o _ n n

t a r g e t : namenode
nodemanager :

t y p e : d i c e . components . hadoop . nodemanager
r e l a t i o n s h i p s :
− t y p e : d i c e . r e l a t i o n s h i p s . c o n t a i n e d _ i n

t a r g e t : w o r k e r _ h o s t
− t y p e : d i c e . hadoop . nm_connected_to_rm

t a r g e t : r e s o u r c e m a n a g e r
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7 DDSM and DICER in Action: Evaluation

In this Section we show the experiments in deploying the Apache Storm Framework21 using the
DDSM and DICER together. Later on, we show our early evaluation and assessment of the DICER tool
in combination with the DCIE Deployment service for the purpose of establishing its usefulness in the
scope of DICE.

7.1 Deploying TOSCA Storm Blueprints

Since Storm is one of the currently supported technologies in DICER, both the Technology Library of
the Deployment Service and the MODAClouds4DICE meta-model (along with the Deploy Transforma-
tion) offer an ad-hoc Storm deployment package, containing Storm deployment nodes and their relation.
It is then possible for a user to instantiate said node, using the DDSM framework, in her deployment
model. In the case of Storm, a typical application deployment is composed of a master node called
Nimbus and slave nodes called Supervisor, that have to be connected with the master node. Moreover
Storm depends on Zookeeper, which has to be deployed too. A simple DICER model for this scenario is
shown in Figure 8, which includes 3 InternalComponents, the StormNimbus, one StormSupervisor and
Zookeeper (single-instance), and 3 MediumHosts. The 3 ExecutionBindings model the hosting of each
InternalComponent on one of the available nodes, while the 3 Relationships connect the 3 InternalCom-
ponents. In particular StormSupervisor have to be connected to StormNimbus and both of them have to
be connected to Zookeeper. The model in question can be further refined configuring (if needed) ad-hoc
framework operations, options and defaults.

Once the user has completed this refinement, she can run the Deploy Transformation, obtaining the
TOSCA model22 exemplified in Figure 9 and, finally, using the Rollout Transformation, she can get the
deployable TOSCA blueprint (in YAML format23), which can be sent to the DICER Deployment Service
in order to start the actual deployment. An extract of the output blueprint is shown in Listing 3.

The DICER Deployment Service invokes Cloudify, which interprets the nodes and their relationships
as a directed acyclic graph. As a part of the orchestration, it executes a set of pre-defined steps in the
order of their dependencies. The Listing 4 shows an excerpt from the log that Cloudify emits during a
typical installation run. It normally first starts the virtual machines (labelled storm_vm, zookeeper_vm
and storm_nimbus_vm). This happens concurrently, because the nodes representing virtual machines
have no interdependencies, thus the logs show them in an arbitrary order. Next, the services get installed,
starting with the zookeeper service, proceeding with the storm_nimbus service and finishing with the
storm service. The steps in the Listing 4 labeled with two node names (e.g., storm_nimbus->storm_nim-
bus_vm) indicate some relation between the depending nodes got implemented. This could be a note for
Cloudify to install a service on a specific virtual machine, or a signal to Chef to configure a depending
service to connect to a target service.

When the deployment tool finishes, the user receives, e.g., a functional Storm cluster ready to receive
Storm topologies. The deploys also include a HDFS node on top of zookeeper and storm — entire
deployment from blueprint feeding to up-time took only 20 minutes on the FCO infrastructure.

7.2 Evaluation Objectives and Methods

The objective of our evaluation efforts was twofold.
On one hand, we concentrated on understanding the length of time saved by using our research

solution (i.e., the DDSM framework together with the DICER tool) with respect to deploying and incre-
mentally refining big-data applications without such support.

On the other hand, jointly with industrial stakeholders part of DICE we wanted to understand to what
degree does this version of the DDSM layer and supporting DICER tool satisfy (a) our initial DDSM

21http://storm.apache.org/
22A complete overview of the model is available online:PLACEFIGUREHERE
23http://yaml.org/
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Figure 8: The MODAClouds4DICER model representing the Cloudify deployment of Apache Storm.

Figure 9: The TOSCA model representing the deployment of Apache Storm, output of the Deploy Transformation
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Listing 3: An excerpt of the generated TOSCA blueprint for Apache Storm.
# Impor t s , i n p u t s and o u p u t s s e c t i o n s o m i t t e d .
n o d e _ t e m p l a t e s :

s to rm_nimbus :
t y p e : d i c e . s to rm_nimbus
r e l a t i o n s h i p s :
− t y p e : c l o u d i f y . r e l a t i o n s h i p s . c o n t a i n e d _ i n

t a r g e t : storm_nimbus_vm
s o u r c e _ i n t e r f a c e s : . . .

− t y p e : c l o u d i f y . r e l a t i o n s h i p s . c o n n e c t e d _ t o
t a r g e t : z o o k e e p e r
s o u r c e _ i n t e r f a c e s : . . .

z o o k e e p e r :
t y p e : d i c e . z o o k e e p e r
r e l a t i o n s h i p s :
− t y p e : c l o u d i f y . r e l a t i o n s h i p s . c o n t a i n e d _ i n

t a r g e t : zookeeper_vm
s o u r c e _ i n t e r f a c e s : . . .

s t o rm :
t y p e : d i c e . s to rm
r e l a t i o n s h i p s :
− t y p e : c l o u d i f y . r e l a t i o n s h i p s . c o n t a i n e d _ i n

t a r g e t : storm_vm
− t y p e : c l o u d i f y . r e l a t i o n s h i p s . c o n n e c t e d _ t o

t a r g e t : z o o k e e p e r
s o u r c e _ i n t e r f a c e s : . . .

− t y p e : c l o u d i f y . r e l a t i o n s h i p s . c o n n e c t e d _ t o
t a r g e t : s to rm_nimbus
s o u r c e _ i n t e r f a c e s : . . .

s torm_nimbus_vm : . . .
storm_vm : . . .
zookeeper_vm : . . .

requirements as mapped to our industrial stakeholders’ scenario and concerns and (b) any emerging
deployment automation priorities and concerns from DICE case-study owners.

As a consequence, our evaluation was twofold.
First, through self-ethnography [20] we captured the tasks we carried out in deploying and improving

big-data applications without any external tool and/or automation. For said tasks, we captured the average
chronometric cost from two perspectives: (a) unexperienced students (two students were involved); (b)
very experienced professionals and infrastructure engineers (two infrastructure engineers were involved).
Subsection 7.3 outlines evaluation results from this perspective.

Second, we conducted case-study research featuring 7 interviews and 2 focus groups with partners in
PRO and ATC. Our case-study exercise was aimed at establishing the validity of our research solution in
the DDSM and supporting tool DICER against industrial concerns part of the DICE consortium and in
line with requirements for DevOps-based industrial-strength solutions aimed at increasing market-speed
and quality-aware continuous integration for the partners in question. Subsection 7.4 outlines evaluation
results from this second perspective.

7.3 Evaluation by Self-Ethnography

Self-ethnography is the qualitative empirical evaluation of personal experience concerning the elabo-
ration of a treatment [20]. In our case, self-ethnography meant to systematically capture every task
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Listing 4: An excerpt of Storm topology orchestration steps.
[ zookeeper_vm ] C r e a t i n g node
[ storm_vm ] C r e a t i n g node
[ storm_nimbus_vm ] C r e a t i n g node
[ storm_vm ] C o n f i g u r i n g node
[ storm_vm ] S t a r t i n g node
[ zookeeper_vm ] C o n f i g u r i n g node
[ zookeeper_vm ] S t a r t i n g node
[ storm_nimbus_vm ] C o n f i g u r i n g node
[ storm_nimbus_vm ] S t a r t i n g node

[ z o o k e e p e r ] C r e a t i n g node
[ zookeeper−>zookeeper_vm | p r e c o n f i g u r e ] Task

s u c c e e d e d
[ z o o k e e p e r ] C o n f i g u r i n g node
[ z o o k e e p e r ] S t a r t i n g node
[ s to rm_nimbus ] C r e a t i n g node
[ s torm_nimbus−>storm_nimbus_vm | p r e c o n f i g u r e ]

Task s u c c e e d e d
[ s torm_nimbus−>z o o k e e p e r | p r e c o n f i g u r e ] Task

s u c c e e d e d
[ s to rm_nimbus ] C o n f i g u r i n g node
[ s to rm_nimbus ] S t a r t i n g node
[ s to rm ] C r e a t i n g node
[ s torm−>storm_vm | p r e c o n f i g u r e ] Task s u c c e e d e d
[ s torm−>s torm_nimbus | p r e c o n f i g u r e ] Task

s u c c e e d e d
[ s torm−>z o o k e e p e r | p r e c o n f i g u r e ] Task s u c c e e d e d
[ s to rm ] C o n f i g u r i n g node
[ s to rm ] S t a r t i n g node

required to build a simple data intensive application and deploy it in action on a simple cluster without
the intervention of any external tooling beyond tools similar to DICER. For every such task, we sys-
tematically reported the chronometric cost required to carry out the task. We operated this exercise on
three technologies, namely, Storm, Hadoop Map Reduce and Oryx 2. This exercise offered a baseline to
compare with DICER to find out where and how does DICER automated support actually help. In the
following we report our experiments focusing on Hadoop Map Reduce and Oryx 2. Subsequently, we il-
lustrate a Storm deploy in further detail. As a general note to allow further comparisons, it is work noting
that producing a deployable blueprint using DICER without any ad-hoc configuration of the deployment
structure or technological models previously elaborated is virtually instantaneous (depending on the size
of architecture and resulting models). Conversely, the process of turning a component-based design into
a deployable blueprint with ad-hoc configurations of technological parameters and deployment lasted up
to an entire day with our industrial stakeholders.

7.3.1 Evaluating DICER with Hadoop Map Reduce Applications

Based on our experience, (re-)architecting and (re-)deploying Map Reduce applications without the in-
tervention of DICER requires, at least: (a) creating and properly configuring virtual machines — 1 hour;
(b) installing Hadoop files with requirements — 30 minutes per VM; (c) configuring machines to work
in union and functioning according to Hadoop — 10 minutes per VM.

Following the above estimates, installing a small cluster of five virtual machines (name node, re-
source manager and three worker nodes) takes approximately 4 hours. Note that this estimate as-
sumes that user is experienced and using some form of assisted installation procedure/script available
for Hadoop files and is familiar with various settings that are needed to be set when connection all of the
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Hadoop components together. Conversely, the same exercise carried out by students without any prior
knowledge, required up to a full day of effort (i.e., around 12 hours).

Adding DICER in the mix: Installing the same cluster, running the application and modify both
after several runs, takes around 30 minutes and requires little or no user interaction at all with the inter-
vention of the DICER tool, i.e., up to 8x times faster. The crucial parts of the produced blueprint are
shown in listing 2.

7.3.2 Evaluating DICER with Oryx 2 Applications

In addition to working an Hadoop installation (see Sec. 7.3.1), a minimalistic Oryx installation depends
on (a) a functioning Zookeeper service (b) a Kafka broker and (c) assumes Spark is available to be run
on Hadoop cluster. All this amounts to: (a) familiarise with technological requirements of all of the
above; (b) setting up three additional virtual machines; (c) placing Spark files on all worker nodes of
Hadoop cluster; (d) setting up Zokeeper, Kafka and Oryx; (e) configuring service to work in a cohesive
and collaborative union.

Using the assumptions and estimates from previous section, we estimated that an experienced user
can prepare a small cluster of 8 virtual machines with the above contents and default configurations in
approximately 6 hours. The same tasks took two days worth of effort when performed by students with
no prior knowledge.

Adding DICER in the mix: Installing the same 8 virtual machines cluster with the help of the
DICER tool takes approximately 35 minutes and requires no user interaction apart from the data inten-
sive applications design and modelling efforts previously mentioned [17, 3] needed to specify an Oryx 2
application logic. Note that, from the DICER perspective, it is sufficient that any Oryx 2 application is
modelled within a model-driven design tool — all DICER needs to find in the application model is the
necessary technological decisions (in the form of standard UML stereotypes) and/or any ad-hoc techno-
logical configuration. Lastly, the modelling activities intended in our evaluation amount to instantiating
and optionally fine-tuning a predefined series of stereotypes and constructs part of a technological meta-
model already within DICER. The duration of this activity is at the discretion of the designer and may
last from minutes (i.e., by directly instantiating the technological packages required without any manual
configuration) or hours/days (in case more ad-hoc configurations and parameters are required).

7.4 Evaluation by Case-Study Research

To evaluate further the validity of our results, we applied case-study research by means of interviews
of our industrial partners in DICE. The goal of our case-study was to understand the possible industrial
impact of DICER and its automation possibilities in terms of continuous architecting. For the purpose of
case-study research we produced component-based UML models as well as blueprints for two industrial
case-studies featured in the DICE consortium and owned by our partners within DICE. The exercise of
modelling was carried out while keeping track of the actual time to deploy, modify and re-deploy said
blueprints for the purpose of continuous architecting. These models and blueprints were discussed in
several open-ended interviews and focus-groups. The results of these exercises can be summarised in
three key evaluation points, outlined below:

• First, DICER does in fact speed-up (re-)deployment and continuous architecting up to 10x–15x
times (i.e., even faster than our original estimates — see Sec. 7.3.1), since industrial deployment
times reported by interviewing our industrial partner at ATC and Prodevelop in DICE currently
range from 1 up to 3 full days of deployment work, however, for scenarios where interopera-
tion with previous deployment technologies is critical, the DICER tool slows down considerably
the deployment process due to the difficult contiguity with previously existing deployment tech-
nologies. For example, Prodevelop often faces the problem of blending pre-existing infrastructure
assets with their own solution - adding DICER in this mix regardless of previously existing formats
and notations may compromise and make deployment efforts even longer. Further research should
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be invested in procuring more fine-grained identification of improvement “hotspots" on produced
TOSCA blueprints — this is reportedly needed for several reasons but especially since migrat-
ing from a previous deployment solution to DICER requires comparing the benefits of DICER
blueprints with previous scripts — this comparison needs to be instrumented with more ad-hoc
mechanisms for easier identification of TOSCA scripts to be modified.

• Second, DICER and the rest of our deployment stack offer speed at the expense of heavy UML
modelling which may be expensive in small-medium enterprises (SMEs). For example NETF
declared that their tax-fraud detection application is supposed to be installed on client premises
and never actually migrated. As a consequence, part of the effort of modelling using familiar yet
elaborate notations for DTSM and DDSM may go wasted due to lack of further and incremen-
tal use of the models themselves. Further research should be invested in studying and refining
model2model transformations that increase the automation and convenience behind using DICER,
e.g., to increase interoperation between previously existing artefacts and other modelling tech-
nologies. This effort could try to address seamless and possibly effortless migration or modelling
information interchange with DICER.

• Third, finally, DICER offers a very valuable component-based solution that (a) aids the compo-
sition of big-data designs in a component-based fashion (b) encourages avoiding expensive trial-
and-error big-data architecting exercises (c) does in fact assist automated continuous big data ar-
chitecting, however, the framework biases the adoption of continuous big data architecting towards
technologies currently supported in DICER. A number of other technologies are not addressed but
are currently being used or considered by our use-case owners, e.g., Drools, RabbitMQ and Flink.
Further research should be invested in making the extension of DICER as effortless as possible so
that the inclusion of more technologies is made easier.
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8 Discussion and Observations

This section outlines discussions, observations and limitations for the current Deployment Modelling
and transformation technology we developed as part of DICE.

8.1 Lessons Learned

First, we learned that no currently available orchestrator engine supports the full TOSCA standard but
rather continuous architecting in technologies such as Cloudify or Brooklyn is assisted by means of
TOSCA “dialects". Consequently, for example, we were forced to design DICER so that it works with
mainstream technology (i.e., Cloudify and Brooklyn) capturing differences and deviations where pos-
sible24. For this reason, the current version cannot claim 100% TOSCA standard compliance. On the
other hand, we prepared a version of the DICER tool which does in fact produce 100% TOSCA-standard
blueprints. However, this version of DICER is used for experimental purposes only since it does not
produce “actionable" blueprints.

Second, we learned that automated solutions need to cope heavily with previously existing artefacts
and solutions. In designing DICER we were questioned several times as to the degree of compatibility
between DICER and its modelling framework with technologies such as Chef recipes25 or similar previ-
ously existing deployment technology. Although we are also using Chef recipes as part of DICER, we
bring our own cookbooks, the use of which is completely transparent to the DICER end-user. Including
users’ cookbooks is at the time of writing not possible without changing the internal logic of DICER.

Third, since deployment tools can execute most of the operations in parallel, the time to deploy a
distributed application is only dependent on the number of logical parts of the application that rely on
each other. For a Hadoop cluster, for example, there are basically only two groups of tasks: installation
of management nodes and installation of worker nodes. Number of nodes in each group is not important,
since all of the virtual machines can be prepared in parallel. There might be some limitations present in
the underlying infrastructure that will host the deployed application, but the deployment tools by itself
do not impose any limitation on parallel execution of independent tasks.

Fourth, the DDSM framework and DICER tools were designed for extensibility which is one of the
key advantages of the DDSM framework altogether. As previously elaborated (see Sec. 6.1), different
data intensive technologies are represented by independent meta-models, so one can add as many as new
technologies needed on top of the technologies already in the package library. First, following the logic
outlined in [17], designers need to add a package specifying the technological implementation details
needed to design application logic with the desired technology. Subsequently, designers need to extend
the MODAClouds4DICE meta-model with an additional meta-model for the technology to be added. A
new meta-model needs to contain: (a) compute nodes and relationships needed for the technology in
question; (b) Chef recipes that correspond to the configuration of these compute nodes. For instance, in
case of Hadoop MR, we extended the MODAClouds4DICE computeNode to specify a MasterNode and
a SlaveNode as computational nodes. The DDSM framework26 currently provides an extension template
that can be used as a start for the above extension exercise.

8.2 DDSM and DICER Limitations

First of all, DICER was evaluated by means of qualitative evaluation alone — this type of evaluation
does confirm its usefulness but cannot be generalised to any possible DICER application scenario for
several reasons: (a) it involves the biases intrinsic to human intervention; (b) it does not rely on accurate
machine-based time-estimations but on chronometric observations; (c) it uses interviews and opinion-
based observations by industry stakeholders. More ad-hoc industrial validation, perhaps involving larger
companies and larger product lines based on big data frameworks should be invested to confirm and

24a running-work document is being shared and maintained between WP2 and WP5 leaders and can be inspected here:
http://tinyurl.com/zgl5ff3

25https://www.chef.io/chef/
26available here:https://github.com/dice-project/DICE-Models
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generalise the validity of DICER.
Second, DICER is limited by the technological stack and assumptions that entail its design. Even

our own evaluation reports on its limitations in biasing big data solutions towards the frameworks and
technologies currently supported. To mitigate this limitation, we structured the DDSM Framework part
of DICER in a clear-cut packaged structure and prepared guidelines to extend this package library. Also,
we plan to extend ourselves the library (a) with technological refinements such as TEZ or further big
data technologies such as Cassandra or HBase.

Third, although DICER is set within a DevOps way of working, it is currently still limited in its
ability to provide direct operations feedback models. For example, it is currently not possible for DICER
to modify directly TOSCA blueprints or MODACloudsML models with feedback from operations. Nev-
ertheless, within the DICE project, we are currently working to refine a direct DevOps continuous feed-
back, assisting DevOps in a more actionable way.
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9 Conclusions

9.1 Summary

Summarising, the main achievements of this deliverable in relation to its initial objectives:

Objective Achievement

DDSM Meta-Models

We have achieved a stable version of the DICE Deployment
Modelling abstractions (DDSM) by combining an edited and
updated version of the MODACloudsML language grammar (called
MODAClouds4DICE) with the TOSCA standard v 1.0 grammar.
The DDSM model has been tested on several technologies and
indeed it contains the necessary concepts required for DICE
deployment modelling.

DICER Tool

We have achieved an initial working implementation of (a)
Model-To-Model transformations that transmute models from a
DTSM specification stereotyped with DDSM constructs into a
TOSCA intermediate and editable format (e.g., for experienced and
ad-hoc fine-tuning) as well as (b) a Model-2-Text transformation to
produce an actionable TOSCA blueprint. We named this joint set of
transformations the DICER tool and evaluated them by means of
case-study research.

9.2 Further work

As further steps of the work we intend in DICE, we plan to further the evaluation of the DICER
tool and DDSM thus tackling the discussed limitations about qualitative evaluation. Second, we plan
to extend the technological support currently offered by the DDSM and DICER to cover the remaining
technologies to be addressed within DICE as much as possible, with a focus on data-base technology
which is ancillary to our current technological support, i.e., Hadoop Map Reduce, Oryx 2 and Storm.

Finally, we plan to integrate and re-evaluate the DICER tool as a means to support the end-to-end
data-intensive design and continuous improvement workflow intended behind DICE. In so doing, we are
currently working to refine DICER and the underlying DDSM notations as stand-alone solutions. This
action serves two purposes: (a) DICER may be integrated within the IDE in no stretch from the rest of
the DICE consortium’s efforts; (b) DICER may be posted as a separate, de-facto model-driven DevOps
support tool to big data design and development, e.g., as an Apache Project in its own accord. We
are currently investigating the above actions and have achieved a decent understanding of the necessary
effort required to move DICER forward. More in particular, we are discussing jointly with partners
in WP5 (Deployment Services) and WP5 (case-study owners) to elaborate further minute planning. In
concrete, however, DICER technological extension with a focus on DB will receive priority 1 while
DICER integration with DICE IDE will receive priority 2.
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Appendix A.1 DDSM Metamodels

A.1 The DiceDomainModel::DDSM metamodel

Table 1: ddsm data types

Name Kind Values or Description
VMSize Enumeration Small, Medium, Large

Table 2: The ddsm package

DICE ddsm Metamodel Element Description Attributes
CloudElement Abstract class, inherit from MODACloudsML

which capture common concepts shared by
most of the classes specified in meta-model.
For example a class extending CloudElement
can have Properties and Resouces associated.

1. Attributes:
• cloudElementId: String

2. Compositions:
• resource: Resource
• property: Property

Property Represents a generic properties, specified by a
pair of <id,value> and owned by a CloudEle-
ment.

1. Attributes:
• value: String
• propertyId: String

Resource Represents a resource associated to an element
which might be used to support the deploy-
ment and configuration of the such element.
For instance a Resource may detail the deploy-
ment script of a CloudElement (e.g. an Inter-
nalComponent or an ExecutionBinding).

1. Attributes:
• name: String
• resourceId: String
• value: String

Component inherits from:
ddsm::CloudElement

Inherit from MODACloudsML, it represents a
reusable type of cloud component (e.g. a vir-
tual machine or an application).

1. Compositions:
• providedport: ProvidedPort
• providedexecutionplatform:

ProvidedExecutionPlatform
InternalComponent inherits from:
ddsm::CloudElement,
ddsm::Component

Inherit from MODACloudsML, this represents
a component that is managed by the applica-
tion provider, or the developer (e.g. a Big Data
application).

1. Compositions:
• requiredport: RequiredPort
• internalcomponent: InternalComponent
• requiredexecutionplatform:

RequiredExecutionPlatform
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ExecutionPlatform inherits from:
ddsm::CloudElement

Inherited from MODACloudsML, it represents
an generic hosting interface of a Component.

Port inherits from:
ddsm::CloudElement

Represents an interface (provided or required)
of a Component. It is tipically used to link
components in order to enable communica-
tion.

RequiredPort inherits from:
ddsm::CloudElement,
ddsm::Port

A specific type of Port which specify that a
Component requires to communicate and con-
sume a features (e.g.access to a database) pro-
vided by another Component.

ProvidedPort inherits from:
ddsm::CloudElement,
ddsm::Port

A specific type of Port which specify that a
Component provides features (e.g.access to a
database) which can be accessed by another
Component.

RequiredExecutionPlatform inherits
from:
ddsm::CloudElement,
ddsm::ExecutionPlatform

A specific type of ExecutionPlatform provid-
ing hosting facilities (e.g. an execution envi-
ronment, like a VM or a web server) to a Com-
ponent.

ProvidedExecutionPlatform inherits
from:
ddsm::CloudElement,
ddsm::ExecutionPlatform

A specific type of ExecutionPlatform which
requires hosting (e.g. a Big Data application
requires a Big Data platform) from a Compo-
nent.

Relationship inherits from:
ddsm::CloudElement

test generation 1. Attributes:
• name: String
• relationshipId: String

2. Associations:
• providedport: ProvidedPort
• requiredport: RequiredPort

ExecutionBinding inherits from:
ddsm::CloudElement

Represents a binding between a RequiredEx-
ecutionPlatform and a ProvidedExecutionPlat-
form of two components, meaning that the first
component will be hosted on the second one
according to the specified binding.

1. Attributes:
• name: String
• bindingId: String

2. Associations:
• requiredexecutionplatform:

RequiredExecutionPlatform
• providedexecutionplatform:

ProvidedExecutionPlatform
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ExternalComponent inherits from:
ddsm::CloudElement,
ddsm::Component

Inherit from MODACloudsML, this represents
a component that is managed by an external
provider, for instance a AWS EC2 virtual ma-
chine.

1. Associations:
• provider: Provider

Provider inherits from:
ddsm::CloudElement

Represents a generic provider of Clouds ser-
vices.

1. Attributes:
• credentialsPath: String

VM inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::ExternalComponent

It is an specific ExternalComponent represent-
ing the well know concept of virtual machine.
It is possible to the size of the VM in terms
of RAM and CPU and Storage size ranges, the
preferred operating system, the enabled ports,
the desired public address and the number of
executing instances, or the replication factor. It
as been customized in the context of DICE to
be able to specify DICE specific type of VM.

1. Attributes:
• is64os: String
• imageId: String
• maxCores: String
• maxRam: String
• maxStorage: String
• minCores: String
• minRam: String
• minStorage: String
• os: String
• privateKey: String
• providerSpecificTypeName: String
• securityGroup: String
• sshKey: String
• publicAddress: String
• instances: String
• genericSize: VMSize
• location: String

DDSM test generation 1. Attributes:
• name: String
• modelId: String

2. Compositions:
• cloudelement: CloudElement

LifeCycle inherits from:
ddsm::Resource

test generation 1. Attributes:
• downloadCommand: String
• installCommand: String
• startCommand: String
• stopCommand: String
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StormSupervisor inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Specilization of an InternalComponent intro-
duced in the context of DICE which captures
the deployment and configuration details of
the Storm supervisor slave process.

StormNimbus inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Specilization of an InternalComponent intro-
duced in the context of DICE which captures
the deployment and configuration details of
the Storm nimbus master process.

Zookeeper inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Specilization of an InternalComponent intro-
duced in the context of DICE which captures
the deployment and configuration details of a
Zookeeper cluster.

Kafka inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Specilization of an InternalComponent intro-
duced in the context of DICE which captures
the deployment and configuration details of a
Kafka cluster.

Cluster inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::ExternalComponent

Inherited from MODACloudsML, it represents
a collection of virtual machines on a particular
Provider. One Provider can host several Clus-
ters..

1. Associations:
• hasVm: VM

ClientNode inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

test generation 1. Attributes:
• type: String
• artifactUrl: String
• mainClass: String

ChefResource inherits from:
ddsm::Resource

Specific type of Resource introduced to sup-
port Chef as a configuration management sys-
tem that could be used by supporting orches-
tration engines (e.g. the DICE Deployment
Service based on Cloudify) to install and con-
figure applications and platforms on VMs.

1. Attributes:
• chefEndpoint: String
• accessKey: String

YarnResourceManager inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Specilization of an InternalComponent intro-
duced in the context of DICE which captures
the deployment and configuration details of a
the YARN ResourceManager master process.
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YarnNodeManager inherits from:
ddsm::CloudElement,
ddsm::Component,
ddsm::InternalComponent

Specilization of an InternalComponent intro-
duced in the context of DICE which captures
the deployment and configuration details of a
the YARN NodeManager slave process.
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Appendix A.2 TOSCA Metamodels

A.1 The DiceDomainModel::TOSCA metamodel

Table 3: tosca data types

Name Kind Values or Description
CloudifyRelationshipType Enumeration ContainedIn, ConnectedTo
CloudifyInterfaceType Enumeration RelationshipLifecycle,

Lifecycle
CloudifyCapabilityType Enumeration
CloudifyGroupType Enumeration

Table 4: The tosca package

DICE tosca Metamodel Element Description Attributes
NodeTemplate A Node Template specifies the occurrence of a manage-

able software component as part of an application’s topology
model. A Node template is an instance of a specified Node
Type and can provide customized properties, constraints or
operations which override the defaults provided by its Node
Type and its implementations. For the accurate description
refer to the TOSCA standard document [toscayaml]

1. Attributes:
• node_template_name: String
• type: String
• description: String

2. Compositions:
• interfaces: Interface
• properties: Property
• attributes: Attribute
• requirements: Requirement
• relationships: Relationship
• capabilities: Capability

3. Associations:
• interfaces: Interface
• properties: Property
• attributes: Attribute
• requirements: Requirement
• relationships: Relationship
• capabilities: Capability
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Interface An interface defines a named interface that can be associated
with a Node or Relationship Type. For the accurate descrip-
tion refer to the TOSCA standard document [toscayaml]

1. Attributes:
• name: String

2. Compositions:
• operations: Operation
• inputs: Input

Relationship A Relationship Template specifies the occurrence of a man-
ageable relationship between node templates as part of an
application’s topology model. A Relationship template is
an instance of a specified Relationship Type . For the ac-
curate description refer to the TOSCA standard document
[toscayaml].

1. Attributes:
• type: CloudifyRelationshipType

2. Associations:
• interfaces: Interface
• properties: Property
• attributes: Attribute

Requirement A Requirement describes a dependency of a TOSCA Node
Type or Node template which needs to be fulfilled by a
matching Capability declared by another TOSCA modelable
entity. For the accurate description refer to the TOSCA stan-
dard document [toscayaml]

1. Attributes:
• name: String
• node: String
• capabiity:

CloudifyCapabilityType

Operation An operation defines a named function or procedure that can
be bound to an implementation artifact (e.g., a script). For the
accurate description refer to the TOSCA standard document
[toscayaml].

1. Attributes:
• operation_name: String
• description: String
• script: String
• executor: String

2. Compositions:
• operation_hasInput: Input
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TopologyTemplate A Topology Template defines the topology of a cloud ap-
plication. The main ingredients of the topology template
are node templates representing components of the applica-
tion and relationship templates representing links between
the components. For the accurate description refer to the
TOSCA standard document [toscayaml]

1. Attributes:
• tosca_definitions_version:

String
2. Compositions:
• imports: Import
• outputs: Output
• inputs: Input
• nodeTemplates: NodeTemplate
• realtionships: Relationship
• groups: Group
• policies: Policy

3. Associations:
• imports: Import
• outputs: Output
• inputs: Input
• nodeTemplates: NodeTemplate
• realtionships: Relationship
• groups: Group
• policies: Policy

Import An import is used to locate and uniquely name another
TOSCA file which has type and template definitions to be im-
ported (included) and referenced. For the accurate descrip-
tion refer to the TOSCA standard document [toscayaml]

1. Attributes:
• import_name: String
• file: String
• repository: String
• namespace_uri: String
• namespace_prefix: String

Group A group definition defines a logical grouping of node tem-
plates, typically for management purposes. For the ac-
curate description refer to the TOSCA standard document
[toscayaml]

1. Attributes:
• name: String
• type: CloudifyGroupType
• description: String
• targets: String

2. Associations:
• properties: Property
• interfaces: Interface

Policy A policy definition defines a policy that can be associated
with a TOSCA topology. For the accurate description refer
to the TOSCA standard document [toscayaml]
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Capability A Capability defines a named, typed set of data that can be
associated with Node Type or Node Template to describe a
transparent capability or feature of the software component
the node describes. For the accurate description refer to the
TOSCA standard document [toscayaml]

1. Attributes:
• type: CloudifyCapabilityType
• description: String

2. Associations:
• properties: Property
• attributes: Attribute
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Appendix B. DICER Tool Snippets.

Find below a sample set of snippets extracted from the DICER source code. For the rest of the code
please refer to the DICE online GitHub repository.

-- Sample DDSM to TOSCA M2M Transformation

-- @path oryxTOSCA =/ DiceModelingProject /model/TOSCA/_12.ecore
-- @path OryxDDSM =/ DiceModelingProject /model/DDSM -oryx/Cloud.ecore

module OryxDDSM2TOSCA ;
create OUT : oryxTOSCA from IN : OryxDDSM ;

helper context OryxDDSM ! HMR_DDSM def: referenceRelationships (): Sequence
↪→ ( OryxDDSM ! NodeRelationsipComponent ) = self. hasRelationships .
↪→ asSequence ();

rule OryxDDSM2TOSCA {
from

s: OryxDDSM !Oryx2
to

t: oryxTOSCA ! TServiceTemplate (
id <- s.id ,
name <- s.oryxType ,
hasImports <- thisModule . getimports (s),
topologyTemplate <- thisModule .

↪→ getTopologyTemplate (s)
--hasRelationship <- s. referenceRelationships ()

↪→ -> collect ( relashtion | thisModule .
↪→ getserviceRelationShips ( relashtion )) --
↪→ this part is commented as Xlab requested
↪→ to move the relationships to Library

)
}

lazy rule gethadoopCluster {
from

i: OryxDDSM ! NodeRelationsipComponent
to

t: oryxTOSCA ! TRelationshipType (

name <- i. relationName
)

}

lazy rule getserviceRelationShips {
from

i: OryxDDSM ! NodeRelationsipComponent
to

t: oryxTOSCA ! TRelationshipType (

name <- i. relationName

)
}
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helper context OryxDDSM !Oryx2 def: reference (): Sequence ( OryxDDSM !input
↪→ ) = self. hasinputs . asSequence ();

helper context OryxDDSM ! HMR_DDSM def: referenceMaster (): OryxDDSM !
↪→ MasterNode = self. hasMasterNode ;

helper context OryxDDSM !Oryx2 def: referenceSlaves (): OryxDDSM ! SlaveNode
↪→ = self. usesHadoopCluster . hasSlaves ;

helper context OryxDDSM !Oryx2 def: referenceoutputs (): Sequence (
↪→ OryxDDSM ! output ) = self. hasoutputs . asSequence ();

lazy rule getTopologyTemplate {
from

i: OryxDDSM !Oryx2
to

t: oryxTOSCA ! TTopologyTemplate (

hasInputs <- i. reference () -> collect (inp |
↪→ thisModule . getinputs (inp)),

nodeTemplate <- thisModule . getMasterNodeTemplate (i.
↪→ usesHadoopCluster . hasMasterNode ),

nodeTemplate <- thisModule .
↪→ getMasterNodeConfigNode (i.
↪→ usesHadoopCluster . hasMasterNode .
↪→ contains_config ),

nodeTemplate <- i. referenceSlaves () -> collect (
↪→ slv | thisModule . getSlaveNodeTemplate (slv)
↪→ ),

nodeTemplate <- thisModule . getMasterNodechef (i.
↪→ usesHadoopCluster . hasMasterNode .
↪→ contains_master_chef ),

nodeTemplate <- thisModule . getMasterNodechef (i.
↪→ usesHadoopCluster . hasSlaves .first ().
↪→ contains_worker_chef ),

nodeTemplate <- thisModule . getOryxRunner (i.
↪→ usesHadoopCluster . hasMasterNode .
↪→ hasOryxRunner ),

hasoutPuts <- i. referenceoutputs () -> collect (
↪→ out | thisModule . getoutputs (out))

)
}

helper context OryxDDSM ! OryxRunner def: referenceNodeHasRelations ():
↪→ OryxDDSM ! relation = self. relationships ;

lazy rule getOryxRunner {
from

i : OryxDDSM ! OryxRunner
to

t: oryxTOSCA ! TNodeTemplate (

id <- i.name ,

-- nodeHasInterface <- thisModule .
↪→ getMasterNodeConfigInterface (i) ,-- interfaces are
↪→ commented by Xlab request

type <- i.type ,
nodeHasRelations <-i. referenceNodeHasRelations () ->

↪→ collect (rel| thisModule .

Copyright c© 2016, DICE consortium – All rights reserved 46



Deliverable 2.3. Deployment abstractions - Initial version.

↪→ getMasterNodeConfigRelationShips (rel))

)
}

helper context OryxDDSM ! worker_chef def: referenceNodeHasRelations ():
↪→ OryxDDSM ! relation = self. relationships ;

helper context OryxDDSM ! master_chef def: referenceNodeHasRelations ():
↪→ OryxDDSM ! relation = self. relationships ;

lazy rule getMasterNodechef {
from

i : OryxDDSM ! master_chef
to

t: oryxTOSCA ! TNodeTemplate (

id <- i.name ,

-- nodeHasInterface <- thisModule .
↪→ getMasterNodeConfigInterface (i),

type <- i.type ,
nodeHasRelations <-i. referenceNodeHasRelations () ->

↪→ collect (rel| thisModule .
↪→ getMasterNodeConfigRelationShips (rel)),

properties <- thisModule . getChefNodePropertiesType (i)

)
}

lazy rule getChefNodePropertiesType {
from

i : OryxDDSM ! master_chef
to

t: oryxTOSCA ! PropertiesType (

property <- thisModule . getchefNodePropertyversion (i),
property <- thisModule .

↪→ getchefNodePropertychef_server_url (i),
property <- thisModule . getchefNodePropertyenvironment (i

↪→ ),
property <- thisModule .

↪→ getchefNodePropertyvalidation_client_name (i),

property <- thisModule .
↪→ getchefNodePropertyvalidation_key (i),

property <- thisModule .
↪→ getchefNodePropertynode_name_prefix (i),

property <- thisModule .
↪→ getchefNodePropertynode_name_suffix (i),

property <- thisModule . getchefNodePropertyattributes (i)
↪→ ,

property <- thisModule . getchefNodePropertyrunlists (i),
property <- thisModule . getchefNodePropertychefCookBooks

↪→ (i)

)
}
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