

Developing Data-Intensive Cloud

Applications with Iterative Quality

Enhancements

Demonstrators implementation plan

Deliverable 6.1

Version: Final

Ref. Ares(2016)2516924 - 31/05/2016

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 2

Deliverable: D6.1

Title: Demonstrators implementation plan

Editor(s): George Giotis (ATC), Christophe Joubert (PRO), Youssef Ridene

(NETF)

Contributor(s): Ilias Spais (ATC), Matej Artac (XLAB).

Reviewers: Giuliano Casale (IMP), Matteo Giovanni Rossi (PMI)

Type (R/P/DEC): Report

Version: 1.0

Date: 31/05/2016

Status: Final version

Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright © 2016, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre

FLEXI: Flexiant Limited

IEAT: Institutul E Austria Timisoara

IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA

PMI: Politecnico di Milano

PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.

ZAR: Unversidad De Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreement No. 644869

http://www.dice-h2020.eu/deliverables/

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 3

Executive summary
Stemming from the initial requirements in T1.1, this deliverable defines a concrete implementation plan

for the demonstrators. Building on top of D1.2 “Requirement specification” results, DICE demonstrators

revised their real-life industrial scenarios with respect to the objectives of WP6. In addition to, DICE

demonstrators have the chance to familiarize themselves with DICE tools, identify advantaged and

disadvantages and subsequently revise the list of demonstrator’s requirements define in M6.

The current report is also addressing some comments received by project’s EC reviewers during the 1st

official Review Meeting that was performed at 18/05/2016 in Brussels. DICE demonstrators analysed the

useful comments/suggestions perceived and addressed them from their case study point of view. The

following recommendations were addressed:

 Recommendation 1: Privacy and Security. As it is detailed in Section A.3, DICE will deal with

security aspects primarily in terms of access control

 Recommendation 2: Requirement Analysis. DICE demonstrator requirements were updated

and the latest version is included in Sections B.4, C.4 and D.4.

 Recommendation 4: Measuring project impact. DICE consortium defined several KPIs to

ensure that DICE objectives are met. Three of them (KPI-RI-2, KPI-RI-3, KPI-RI-7) will be

validated by DICE demonstrators. In order to ensure that project’s impact would be measured,

DICE demonstrators and DICE technical team defined metrics (one per DICE tool) with respect

to these the KPIs (Section A.2)

The current report consist of the following sections:

 Section A, which provides an overview of WP6 objectives and activities, and positions

demonstrators in the context of DICE. Furthermore, details the metrics that will be used to

validate DICE framework and refers to privacy and security aspects related to DICE. Finally, the

sections describes the four milestones that have been set by DICE demonstrators.

 Section B, which details the ATC demonstrator focusing on: a) its business and technical goals,

b) the current and future status, c) how the demonstrator is mapped to DICE architecture, d) the

revised scenario and requirements update. Finally, the section provides an implementation plan

that will guide the technical team of the demonstrator.

 Section C, which details the Prodevelop demonstrator focusing on the same aspects as in the

previous section and

 Section D, which details the NETF demonstrator focusing on the same aspects as in the previous

section.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 4

Table of contents

EXECUTIVE SUMMARY .. 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES ... 5

LIST OF TABLES ... 5

A. INTRODUCTION ... 6

A.1. Demonstrator’s overview and challenges ... 6

A.2. Indicators of evaluation .. 8

A.3. Security and privacy aspects .. 9

A.4. Roadmap ... 9

B. THE ATC DEMONSTRATOR: NEWSASSET ... 11

B.1. Introduction .. 11

B.1.1 Business goals .. 11

B.1.2 Technical goals ... 11

B.2. Mapping DICE tools to ATC demonstrator ... 12

B.2.1 Current status .. 14

B.2.2 Future plans .. 15

B.3. Scenarios revision – The News Orchestrator Application .. 16

B.3.1 Current status .. 16

B.3.2 Proposed scenario ... 18

B.4. Requirements update .. 19

B.5. Implementation plan ... 20

C. PRODEVELOP DEMONSTRATOR: POSIDONIA OPERATIONS .. 25

C.1. Introduction .. 25

C.1.1 Business goals .. 25

C.1.2 Technical goals ... 26

C.2. Mapping DICE tools to Prodevelop demonstrator ... 26

C.2.1 Current status .. 28

C.2.2 Future plans .. 29

C.3. Scenario revision .. 30

C.4. Requirements update .. 37

C.5. Implementation plan ... 40

D. NETF DEMONSTRATOR: EGOV TAX FRAUD DETECTION - BIG BLU .. 45

D.1. Introduction .. 45

D.1.1 Business goals .. 45

D.1.2 Technical goals ... 45

D.2. Mapping DICE tools to NETF demonstrator ... 46

D.2.1 Current status .. 46

D.2.2 Future plans .. 50

D.3. Scenarios revision ... 54

D.4. Requirements update .. 57

D.5. Implementation plan ... 61

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 5

List of figures

Figure 1. WP6 activities ... 6

Figure 2. DICE demonstrators and challenges ... 8

Figure 3. DICE demonstrators roadmap ... 10

Figure 4. The ATC demonstrator. .. 13

Figure 5. DICE toolset in the ATC demonstrator ... 13

Figure 6. DMON platform operated by ATC demonstrator ... 14

Figure 7. ATC demonstrator: the DySCO workflow ... 17

Figure 8. ATC demonstrator: The News Orchestrator Application ... 18

Figure 9. ATC demonstrator: The news-orchestrator components/modules .. 18

Figure 10. ATC demonstrator: Roadmap ... 21

Figure 11. DICE toolset in the Prodevelop demonstrator .. 27

Figure 12. Prodevelop Demonstrator: Posidonia Operations general architecture 30

Figure 13. Prodevelop Demonstrator: A Storm – like model ... 31

Figure 14. Prodevelop Demonstrator: The port operator console .. 32

Figure 15. Prodevelop Demonstrator: Events detection ... 33

Figure 16. Prodevelop Demonstrator: Workflow configuration interface.. 34

Figure 17. Prodevelop demonstrator: Roadmap ... 40

Figure 18. NETF demonstrator: General architecture of the Big Blu .. 46

Figure 19. NETF demonstrator: Homepage ... 47

Figure 20. NETF demonstrator: Fraud detection list (status and results) ... 48

Figure 21. NETF demonstrator: Taxpayers generation .. 48

Figure 22. NETF demonstrator: Taxpayers metamodel ... 49

Figure 23. NETF demonstrator: Part of our DPIM model built using the DICE profile 50

Figure 24. DICE toolset in the NETF demonstrator ... 51

Figure 25. NETF demonstrator: Overview ... 55

Figure 26. NETF demonstrator: Social aid fraud ... 55

Figure 27. NETF demonstrator: Relocation fraud .. 56

Figure 28. NETF demonstrator: Detailed architecture ... 57

Figure 29. NETF demonstrator: Roadmap ... 62

List of tables

Table 1. DICE KPIs and tool metrics addressed by demonstrators .. 8

Table 2. DICE tools and ATC demonstrator .. 15

Table 3. DICE tools and Prodevelop demonstrator .. 27

Table 4. DICE tools and NETF demonstrator .. 51

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 6

A. Introduction

The current report is the first deliverable of Work Package 6 “Validation and Demonstrators” focusing on

the demonstrator’s implementation plan. The ultimate goal of WP6 activities is the realization of real

industrial demonstrators by operating DICE framework. Three data intensive applications (a media

system, an e-Government application and a Geo-fencing framework) are using the DICE framework in

order to validate its capability of facilitating the production of high-quality real-life applications in a

variety of business domains.

Being the core part of WP6 (Figure 1 presents WP6.), the selected industrial applications will not only act

as the proof of concept demonstrators of what DICE is offering, but will validate and verify project’s

objectives by continuously providing rapid feedback and thus steering the research direction of DICE. In

addition to, demonstrators are bringing in the business and industrial requirements ensuring project’s

long-term sustainability.

Figure 1. WP6 activities

Work Package 6 objectives are the following:

 Provide multiple feedback to the project:

o Business requirements with respect to the selected industrial scenarios;

o Functional and non-functional requirements;

o Evaluation remark, ensuring that DICE will not end up with an obsolete framework. The

goal for the demonstrators is to validate 80% of tools.

 Ensure that DICE can quickly react to the requirements of the market:

o Desirable and usable offerings for the stakeholders.

 Long-term sustainability:

o Proof of concept realization of the “DICE innovation” ecosystem.

A.1. Demonstrator’s overview and challenges
There are three demonstrators (case studies) in the context of DICE project:

 Distributed data-intensive media system: News as an Asset - NewsAsset (Section B) is an

end-to-end multimedia cross-channel solution for evolving news agencies, broadcasters and

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 7

publishers, branded by ATC (Athens Technology Centre). To keep up with the demands of the

news and media domain, the services and application provided by NewsAsset need a constant

expansion to incorporate new data sources and new distribution channels from social media,

mobile phones or sensor networks. DICE is focusing on this scenario on addressing the challenge

of managing the complexity of large software and data-intensive systems like NewsAsset, by

handling features like data velocity, volume, rate of update and granularity.

 DICE-based Geo-fencing for the Maritime Sector: Posidonia Operations (Section C).

Posidonia Operations is an Integrated Port Operation Management System highly customizable

that allows a port to optimize its maritime operational activities related to the flow of vessels in

the port service area, integrating all the relevant stakeholders and computer systems. In technical

terms, Posidonia Operations is a real-time and data intensive platform able to connect to AIS

(Automatic Identification System), VTS (Vessel Traffic System) or radar, and automatically

detect vessel operational events like port arrival, berthing, unberthing, bunkering operations,

tugging, etc. This use case is aimed at providing a DICE-based geo-fencing enabler with certain

complex event processing and streaming capabilities for the maritime sector, using location

awareness technologies to extend them for geo-location and geo-fencing. This is a data-intensive

scenario for DICE as the streaming and complex event processing engine needs to analyse and

offer a reactive decision support system for hundreds of position messages per second with

complex event processing based on geographical positions.

 Big Data for e-Government: Big Blu (Section D). NETF use case aims to facilitate the task of

filtering and gathering data for fiscal agents in order to increase productivity. Utilizing Big

Data and Cloud processing technologies through DICE will be the key feature of the

demonstrator. In fact, exploring and analyzing high volumes of data from various

heterogeneous sources should be scalable in order to address the complexity of this data-

intensive configuration. Our implementation plan, requirements, current and future plans are

discussed in this document.

The objectives of the DICE demonstrators are:

 Address the challenge to manage the complexity of large software and data-intensive systems

o e.g. analyze and evaluate different architecture alternatives for different quality and

performance indicators

 Provide a realization of quality-driven processes in the Big Data domain

o throughput, availability, security, fault tolerance and response time

o give insights on current quality and performance metrics to iteratively improve them

The following figure provides an overview of the case study challenges that will be addressed by DICE

framework.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 8

Figure 2. DICE demonstrators and challenges

A.2. Indicators of evaluation
In order to operate experiments that will result in useful evaluation remarks for the DICE technical team,

DICE consortium defined at the beginning of the project a number of Key Performance Indicators (KPIs)

to guide the validation activities. In sequence, DICE technical team and case study providers defined

metrics for all DICE tools so as to ensure that KPIs will be addressed and DICE objectives will be

achieved.

The following three DICE KPIs will be addressed by the DICE demonstrators.

 KPI-RI-2: Productivity increase by at least 30% compared to today, verified on at least 1

demonstrator.

 KPI-RI-3: Reduction of quality issues by 50% after quality enhancement iterations

 KPI-RI-7: Implementation of 3 demonstrators, together validating at least 80% of tools.

The following table

Table 1. DICE KPIs and tool metrics addressed by demonstrators

DICE Tool Metrics Target KPI

Delivery tool
Time from deployment modelling to

deployment the DIA

<=50% of no-

modelling approach

Productivity

Verification
Violations of timing constraints

identified by verification tool

>=2 Quality

(Verification)

Simulation
Prediction error of response time =30% (median) Quality

(Performance)

Optimization
Cost prediction error =30% (median) Quality

(Performance)

Monitoring
Time to configure the monitoring across

the DIA; monitoring overhead

<=30% decrease;

<5% overhead

Productivity

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 9

Anomaly

detection

False positives <10% Quality

Trace

checking

Number of violations found in traces >=2 Quality

(Verification)

Enhancement

Demand estimation error with respect to

complete information traces; Number of

antipatterns detected in one demonstrator

<20%; >=1 Quality

Quality testing
Manual time required in a test cycle >30% reduction Quality

(Performance)

Configuration

optimization

Difference in latency or throughput

compared to default config

>30% Quality

(Performance)

Fault injection
Manual time required in a test cycle >30% reduction Quality

(Reliability)

DICE IDE
Number of DICE tools used in each

demonstrator

4 Productivity

Regarding KPI-RI-7 it has already been planned that the three demonstrators will use and subsequently

validate more than 80% of DICE tools (Figure 5, Figure 11and Figure 24)

A.3. Security and privacy aspects
Data privacy, also called information privacy, is the aspect of information technology that deals with the

ability an organization or individual has to determine what data in a system can be shared with third

parties, how that information is used, or if that information is used to track users. Privacy concerns exist

wherever personally identifiable information or other sensitive information is collected, stored, used, and

finally destroyed or deleted. Privacy is not an option in Data-Intensive Applications. Indeed, it must be

considered both at the infrastructure and the software levels. This stored and/or processed data is by

essence a valuable data which may interest hackers especially when it is related to personal information.

The challenge of data privacy is to utilize data while protecting individual's privacy preferences and their

personally identifiable information. Although Big Data technologies have some built-in privacy

enhancing features, we still need to deal with privacy at the design level since the Big Data ecosystem is

highly evolving and new platforms are emerging and cannot provide the same level of privacy guarantees.

From the point of view of a DIA designer some basic requirements must be shared at the design level

such as data encryption for some databases or some nodes.

Moreover DICE will deal with security aspects primarily in terms of access control. The developer will

be able through DICE models to design roles/permissions with various accreditation levels. All DICE

tools will be deployed in such a way that access control lists will be automatically generated at

instantiation time so to fulfil the security of the DIA designed in the DICE IDE.

DICE plans to investigate the applicability of such methods primarily in the NETF demonstrator, which

has important privacy/security requirements related to the tax data.

A.4. Roadmap
This section provides an overview of the milestones that DICE demonstrators have defined for the

following months. Milestones will guide the activities for the four releases that are planned for all

demonstrators, M20 internal release and M24, M30 and M36 official submissions. Besides the immediate

actions which are detailed in Sections B.5, C.5 and D.5, the DICE demonstrators have defined the

following four milestones:

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 10

 M20 – Architecture Validation. This release will focus on the architecture validation. The

demonstrators have designed an initial DPIM version for their case studies. This Papyrus UML

model will be the central element in order to validate their DIA architecture, detect anti-pattern

design and simulate the correctness of the whole system. DICE tools was and will be utilized in

the future in order to validate the architecture of each application and the expected outcomes will

be a validated, corrected and enhanced architecture model.

 M24 – Quality Assurance: In M24 the initial implementation of the three demonstrators

prototypes will be released with respect to the scenarios defined in D1.2 and in the current

document (Sections B.3, C.3 and D.3). Indicative activities are:

o The demonstrators will deliver an augmented version of the validated DPIM, after using

this DPIM to automatically generate the DTSM and DDSM models. These models will

be annotated using the DICE Profile properties mainly related to data (source,

restrictions…) and using the MARTE properties related to quality properties (MTTR,

response time…). These profiled-UML models will be simulated, verified and checked

by other DICE tools in order to assess and analyze each application from a quality point

of view. This quality will be made at the technological and deployment levels. The

expected outputs of this initial draft implementation are mainly new models with much

focus on quality requirements.

 M30 – DICE advanced features. In M30 the demonstrators will release the second version of

their prototypes. At this stage an iterative enhancement of the application quality will be

performed with respect to the initial version released at M24. The demonstrators will obtain an

enhanced, validated and corrected architecture which puts the quality at the center of the whole

models. M30 deliverable will put in evidence the iterative quality enhancement, while each

application will be continuously updated, i.e. adding new features.

 M36 – Productivity Enhancement: In M36 the demonstrators will release the final version of

their prototypes. The final prototype will include all the results achieved in the demonstrators and

will highlight the industrial impact arising from them. M36 release will put in evidence the

productivity growth inherited from the automation offered by the DICE tools.

Figure 3. DICE demonstrators roadmap

DICE demonstrators will of course be releasing minor versions which will include bug fixes and new

features. Their goal is to obtain, by month 30, a highly available running DIA (Sections B.5, C.5 and D.5).

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 11

B. The ATC demonstrator: NewsAsset

B.1. Introduction
NewsAsset is a commercial product positioned in the news and media domain, branded by Athens

Technology Center, an SME located in Greece. The NewsAsset suite constitutes an innovative

management solution for handling large volumes of information offering a complete and secure electronic

environment for storage, management and delivery of sensitive information in the news production

environment. The platform proposes a distributed multi-tier architecture engine for managing data storage

composed by media items such as text, images, reports, articles, videos, etc.

Innovative software engineering practices, like Big Data technologies, Model-Driven Engineering (MDE)

techniques, Cloud Computing processes and Service-Oriented methods have penetrated in the media

domain. News agencies are already feeling the impact of the capabilities that these technologies offer (e.g.

processing power, transparent distribution of information, sophisticated analytics, quick responses, etc.)

facilitating the development of the next generation of products, applications and services. Especially

considering interesting media and burst events which is out there in the digital world, these technologies

can offer efficient processing and can provide an added value to journalists.

At the same time, heterogeneous sources like social networks, sensor networks and several other

initiatives connected to the Internet are continuously feeding the world of Internet with a variety of real

data at a tremendous pace: media items describing burst events, traffic speed on roads; slipperiness index

for roads receiving rain or snowfall; air pollution levels by location; etc. As more of those sources are

entering the digital world, journalists will be able to access data from more and more of them, aiding not

only in disaster coverage, but being used in all manner of news stories. As that trend plays out, when a

disaster is happening somewhere in the world, it is the social networks like Twitter, Facebook, Instagram,

etc. that people are using to watch the news ecosystem and try to learn what damage is where, and what

conditions exist in real-time. Many eyewitnesses will snap a disaster photo and post it, explaining what’s

going on. Subsequently, news agencies have realized that social-media content are becoming increasingly

useful for disaster news coverage and can benefit from this future trend only if they adopt the

aforementioned innovative technologies. Thus, the challenge for NewsAsset is to catch up with this

evolution and provide services that can handle the developing new situation in the media industry.

B.1.1 Business goals

The following three business goals have been defined for NewsAsset use case:

1. Keep up with the demands of the news and media domain. Constantly upgrade NewsAsset to

meet the challenges of nowadays

2. Incorporate new data sources and new distribution channels, like social media, sensor

networks/IoT, etc.

3. Monitor what is discussed in the social media in real time and on various levels of granularity

B.1.2 Technical goals

The following technical goals have been defined for NewsAsset use case:

1. Facilitate the implementation of services that cope with high rates of data

a. handle efficiently features like data velocity, volume, rate of update, granularity

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 12

2. Adopt runtime scalability methods to manage temporal peaks of high computational demand (i.e.

during the peaks of a bust event)

3. Realization of quality-driven processes in the Big Data domain

a. throughput, availability, fault tolerance, response time

B.2. Mapping DICE tools to ATC demonstrator
The NewsAsset demonstrator will validate and verify how the DICE framework can be utilized to design

and deploy a Data Intensive Application that efficiently gather big streams of media data (text, images,

web links, etc.) from heterogeneous sources (Social Networks, web sources, RSS feeds, etc.), processes

them to relax redundancy and digest information so as to discover trends, burst events and interesting

media content.

While the news item is the main entity in the news editing workflow, the upgraded version of the

application to be developed in DICE wishes to enhance it in order to incorporate state-of-the-art

technologies, such as the ones offered by Big Data technologies, Model-Driven Engineering (MDE)

techniques, Cloud Computing processes and Service-Oriented methods. It is envisioned that NewsAsset

will be able to monitor what is discussed in the social media (Twitter, Facebook etc.) in real time and on

various levels of granularity. The enhancements for NewsAsset will be to monitor trending topics and

events, as well as to extract other relevant information discussed in their context, such as locations etc.

The ATC demonstrator builds on of the achievements of another EU-funded project, namely

SocialSensor, with the ultimate goal to modernize the existing commercial product that is branded by

ATC (NewsAsset). SocialSensor deployed an open source platform capable of collecting, processing, and

aggregating big streams of social media data and multimedia. However, the ATC team identified a lot of

functional and non-functional quality-driven requirements that are not addressed by the current status of

the platform.

Thus, the following three high level challenges (a detailed analysis can be seen in “D1.2. Requirement

Specification”) will be addressed by DICE framework:

 Refactoring of the old-fashioned engine

o related to cloud processing and Big Data technologies

 Reconfiguration

o revise obsolete architecture with respect to quality-driven metrics

 Manage complexity

o real-time responsiveness for temporal peaks of high computational demand

The following figure (Figure 4) provides an overview of ATC demonstrator

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 13

Figure 4. The ATC demonstrator.

The DICE framework will be used to achieve the aforementioned three challenges. The following figure

(Figure 5) presents the DICE toolset and highlights which parts have been used so far (M1-M12 of DICE

lifecycle, solid circles) and which will be used in the future (dashed circles). As it can be seen it is

envisioned that almost the DICE framework as a whole will be utilized.

Figure 5. DICE toolset in the ATC demonstrator

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 14

B.2.1 Current status

With respect to demonstrator’s challenges (“D1.2. Requirement Specification”) we defined a list of

requirements that are guiding ATC implementation activities. During the period M1-M12 of project’s

lifecycle the following have been achieved:

 ATC team analyzed the existing SocialSensor platform, run performance tests and identified

quality-oriented bottlenecks and malfunctions in terms of availability, fault tolerance and

performance. The part of SocialSensor’s framework (Orchestrator Application creates a major

bottleneck) that must be revised;

 WP4: Integration of DMon platform in operative SocialSensor environment. Due to absence of

any Big Data technology in operational Social Sensor environment we focused on collecting and

analyzing system resources (CPU, memory, network usage). We Identified which nodes are

memory intensive and which are CPU-bound as evidences for potential code refactoring/

optimization (Figure 6);

 WP2: we created a topology and component diagram of SocialSensor framework as a whole.

Thus, we identified the key components and we run experiments to identify gaps and bottlenecks;

 WP2: The WP2 models showed the need to elaborate further on Storm Focused Crawler, which

wasn’t considered in the existing operational environment;

 WP3: Verification experiments on Storm Focused Crawler;

 WP5: Experimenting with Configuration Optimizer by utilizing it for various deployment set-ups

of Storm Focused Crawler, one node Storm cluster and multi node Storm cluster;

Figure 6. DMON platform operated by ATC demonstrator

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 15

B.2.2 Future plans

The following table provides an overview of DICE tools that are mapped to ATC demonstrator. We are

referring to the current status of the implementation (described in details in the previous sub-section) and

the future plans according to the status of the tools development. It also includes which demonstrator

requirements are being addressed by a specific tool (ATC.X).

Table 2. DICE tools and ATC demonstrator

Tool Current status Future plans

IDE

The DICE IDE has been used

mainly for designing the

various models using the

Papyrus plugin.

The DICE IDE will be heavily used in the

design as well as the implementation process of

the topic detection algorithm by creating DPIM,

DTSM and DDSM models.

DICE Profile

We used DICE Profile for

creating topology and

component DPIM and DTSM

diagram models, regarding the

News Orchestrator, in order to

identify any bottlenecks and

better understand which parts

should be re-engineered.

The same process will be performed for the

topic detection algorithm.

Simulation Not used yet

Measure the impact of different architecture

alternatives based on quality driven metrics

defined by the demonstrator.

ATC.6

Optimization Not used yet

Measure the impact of different architecture

alternatives based on quality driven metrics

defined by the demonstrator.

ATC.6

Verification

Some preliminary experiments

with regard to the bottleneck

analysis have been carried out,

related to ATC.9 requirement

The plan is to integrate the Verification Tool

more systematically in the development not only

of the re-engineered version of News

Orchestrator but in the topic detection algorithm

too.

Monitoring

DMON platform has been

utilized to collect and analyze

system resources (CPU,

memory, network usage) of the

existing News Orchestrator

operational environment.

The same platform will be used to collect logs of

the updated deployment and compare them with

values of the old one.

ATC.1, ATC.9

Anomaly

detection
Not used yet N/A

Trace checking Not used yet

The plan is to check the consistency of the

model used by the Verification Tool with the

actual implementation by running trace checking

on executions of the News Orchestrator

application. Related to ATC.9.

Enhancement Not used yet

The Enhancement Tool will help us with regard

to the bottleneck detection in the components of

the News Orchestrator application. ATC.9.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 16

Quality testing Not used yet

ATC plans to use the Quality Testing tool to test

the real performance of our stack and also to

give us a sense regarding the scalability of our

deployment.

Configuration

optimization

Utilized to optimize two

deployment set-ups of Storm

Focused Crawler (an existing

News Orchestrator

component), one node Storm

cluster and multi node Storm

cluster.

The plan is to evaluate the performance outcome

by using the tool, provide feedback and involve

it in News Orchestrator workflow. Related to

ATC.8.

Fault injection Not used yet

With the help of Fault Injection tool ATC wants

to evaluate how the News Orchestrator

application behaves when an unexpected loss of

a node on our cluster happens and if the cluster

is still available when part of it goes dark.

Repository Not used yet
ATC plans to implicitly use the Repository

through adoption of DICE methodology.

Delivery tool Not used yet

We expect from DICE Delivery tool to help us

improve the DevOps process in our use case

development and provide us with a deployed

environment to experiment on.

With regard to ATC.7 we expect to be able to

include in our workflow a step of evaluating

progress throughout application development by

visually inspecting the history of performance

metrics in Jenkins CI. Regarding ATC.8 the plan

is to take advantage of the WP2’s model

transformation tool by creating a TOSCA

document usable by the Delivery tool. Should

test if the models have the expressiveness that

we need and if it deploys all the necessary

components.

B.3. Scenarios revision – The News Orchestrator Application
The News Orchestrator Application is part of SocialSensor project which managed to develope a new

framework for enabling real-time multimedia indexing and search in the Social Web. To do this, the

SocialSensor project has developed and introduced the concept of Dynamic Social COntainers (DySCOs),

a new layer of online multimedia content organisation with particular emphasis on the real-time, social

and contextual nature of content and information consumption. Through the proposed DySCOs-centered

media search, SocialSensor integrates social content mining, search and intelligent presentation in a

personalized, context and network-aware way, based on aggregation and indexing of both UGC and

multimedia Web content.

B.3.1 Current status

The news-orchestrator acts as the monitoring and controlling entity of the analysis and indexing phase of

the workflow. Its role is to trigger in a sequential way the various modules that participate in the DySCO

formulation. DySCOs can be considered as sets of social strem items related to some topic/entitiy of

interest. It starts by synchronizing the stream manager’s output to mongoDB with the analysis workflow

http://www.socialsensor.eu/project/dyscos
http://www.socialsensor.eu/project/dyscos

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 17

(Figure 8), acting as an intermediate buffer that pushes content in batches to the various analysis modules.

Once the analysis modules interact to fill in the different metadata fields of items and DySCO objects, the

orchestrator encodes the objects into Solr-compatible documents and feeds them into the Solr server. After

this point, all DySCOs and Items are available to be retrieved and visualized at the presentation layer

through the available User Interfaces.

Figure 7. ATC demonstrator: the DySCO workflow

The storage layer acts as either temporary or permanent storage for all the data retrieved or generated by

the News Orchestrator system. It consists of a centralized MongoDB instance and a Solr full-text-search

engine. Each of these storages serves different purposes of the platform: MongoDB acts as object storage,

maintaining all the generated and retrieved (enriched by the system) JSON files. Moreover, in certain

cases, it plays the role of the intermediate buffer, used for synchronising the various processes and

modules of the backend. Finally, the Solr server is a powerful full-text-search engine used for browsing

and searching among the millions of indexed documents that reside in the system (Figure 8).

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 18

Figure 8. ATC demonstrator: The News Orchestrator Application

The backend of the system consists of several processes running continuously on a 24/7 basis as persistent

loops. These processes perform a set of steps for the three following basic stages: a) retrieval of data from

social networks and other sources, b) enrichment and processing of this data and c) indexing of data in

visualisable and searchable format.

More specifically, the following components are operated by the news-orchestrator (Figure 9):

 Entity Extractor: For each incoming Item, the Entity Extractor detects references to named

entities. This is based on the Stanford CoreNLP library.

 Sentiment Analyzer: The Sentiment Analyzer is responsible for the detection of sentiment labels

(positive/neutral/negative) for each incoming Item.

 TopicClusterer: The DySCO clusterer clusters incoming Items based on the BN-gram method.

 DyscoMatcher: This matches the newly created DySCOs with DySCOs created in previous

timeslots (provided their similarity exceeds a certain threshold).

 Aggregator: This aggregates the different elements that were extracted per Item (n-grams,

keywords, named entities) on a per DySCO basis.

 Title Extractor: This uses a set of business rules and heuristics to extract a human readable title

for each new DySCO.

 Ranker: This component will associate importance weights to the discovered DySCOs.

 Query Creator: This will be responsible for (a) forming appropriate SolrQueries that are used

for the retrieval of Items, MediaItems and WebPages related to a DySCO of interest, and (b)

forming appropriate queries that are used by the stream-manager to fetch (from the wrapped

online social networks) additional Items and MediaItems that are related to the newly created

DySCO.

Figure 9. ATC demonstrator: The news-orchestrator components/modules

B.3.2 Proposed scenario

In the architecture described it is worth mentioning that although the News Orchestrator application deals

with big streams of social networks data the use of Big Data technologies in the processing layer is quite

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 19

limited. The idea is to re-engineer the architecture and introduce Big Data technologies where this is

possible. By identifying and addressing quality-driven metrics we expect to isolate bottlenecks in the

architecture and revise/redesign those parts by introducing Big Data technologies. More specifically, the

revised architecture should satisfy the following requirements:

 High Availability

o The system should be stable on a 24/7 basis

 Fault tolerance

o The system should recover automatically in case of failure without losing significant data

 Performance

o The system should be able to scale up in terms of throughput

The time behavior of the News Orchestrator application is quite critical since the analysed information

regarding the trending topics extracted should be indexed and exposed by the User Interface in almost

real time, enhancing in this way the importance of the identified news topics. The idea of replacing the

batch processing, that is now the basic and only approach, with stream processing would definitely affect

the time accuracy of the system. The goal is to optimize the existing processing time slot of 7 minutes by

means of not only minimizing the timeslot duration to reflect almost real time processing but also by

maximizing the crawling capacity of the social networks crawler, giving us the potential to collect and

analyze as much social networks content as possible. Another limitation that we focus on overcoming is

the fact that the license of the topic detection module that is currently used, called “DyscoCreator”, does

not allow for any use and modification.

In order to address the aforementioned requirements the ATC team will focus on two directions (sub-

scenarios):

 Sub - scenario 1: parallelization of the current operational workflow of News Orchestrator

application, which is now taking place sequentially for each user’s list.

 Sub - scenario 2: implementation of a topic detection module from scratch, utilizing most of the

tools offered by the DICE tools chain.

A number of activities have been identified for both the aforementioned sub-scenarios that are presented

in the following section.

B.4. Requirements update
Following the recommendations of the 1st year review report, the ATC team revised the ATC

demonstrator’s requirements that were defined in the first months of project’s lifetime. In addition to, it

was decided that the team will be continuously monitoring the requirements in order to first and for most

guide the technical activities, secondly revise following project’s DICE objectives and vision and finally

make sure that they reflect the real life industrial DICE scenarios. With respect to D.1.2. “Requirements

Specification” which was submitted at M6, the following two tables include requirements ATC.8 which

was revised, and a new requirements ATC.13.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 20

ID: ATC.8

Title: Cloud Deployment models

Priority of accomplishment: Could have

Type: Requirement

Description: As an ARCHITECT/DEVELOPER I want to model cloud

deployment configuration to automatically deploy through

generated scripts

Rationale: N/A

Supporting material: D6.1 (M16)

Other comments: Involves TRANSFORMATION_TOOLS,

DEPLOYMENT_TOOLS

ID: ATC.13

Title: Data availability

Priority of accomplishment: Must have

Type: Requirement

Description: As an Architect/Developer i want to design/implement a system by

eliminating any single point of failure and by ensuring at the same

time that the system is resilient in a network partition case.

Rationale: Data availability and network partition tolerance

Supporting material: N/A

Other comments: N/A

B.5. Implementation plan
In order to achieve the envisioned scenario, ATC has created a number of high-level activities to be

executed with respect to the information aggregated so far. ATC team will continuously monitor the DICE

tool’s evolution and update the activities accordingly. This will be an on-going task.

The following figure (Figure 10) provides an overview of the short-term activities that are planned for the

following months.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 21

Figure 10. ATC demonstrator: Roadmap

Following the model-driven analysis of SocialSensor platform (May 2016), the ATC team identified the

Orchestrator application as the most critical one to be re-factored in the DICE concept. Subsequently, the

modelling analysis of the Orchestrator application revealed the need first and foremost to parallelize the

process (sub-scenario 1) and secondly to implement a topic detection module from scratch (sub-scenario

2).

The first step is to optimize the topology configuration of storm-focused-crawler. In sequence, use

monitoring platform to identify if the updated topology is better than the old one. Continuous integration

and automated deployment of the refactored News Orchestrator application will follow (November 2016).

It is envisioned to have a draft release of the new topic detection algorithm end of December and the

revised by DICE tools News Orchestrator Application at the end of January 2017 (1st release).

The following tables provide a detailed view of the implementation activities defined by ATC team in the

context of News Orchestrator Application scenario.

Activity/Task

short name
Refactoring of the old-fashioned commercial engine (NewsAsset)

Description

SocialSensor existing operation environment (News Orchestrator Application)

must be refactored to incorporate Big Data and Cloud computing technologies.

Functional and non-functional challenges envisioned to be addressed by the

updated engine are reported in D1.2 “Requirement Specification”.

DICE tools

utilized
DICE IDE

Position in DICE

methodology
DICE methodology as a whole

Part of scenario The Orchestrator Application scenario (both sub-scenarios)

Requirements

addressed
ATC.1.

Envisioned

outcome

A NewsAsset plugin/service capable of pushing/importing news/media

processed (not raw) data to the NewsAsset core engine

No. of releases 1

Delivery dates M30

Activity/Task

short name
Reconfiguration of SocialSensor architecture

Description

Quality-driven metrics will be used to revise the obsolete architecture of News

Orchestrator Application.

Performance
Being able to process in real time more than 2000 tweets/min and 84.000 item

batch each timeslot.

Time behavior

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 22

Batch Processing: optimize existing processing timeslot in terms of minimizing

duration to reflect almost real-time processing
maximizing the crawling capacity (number of items collected)
UI - Slow response times due to Solr capacity

Fault tolerance
Due to sequential pipeline, timeslot discarded in case of failure in initial steps
no parallelization in batch processing

Availability
Single point of failure – Data not available if a node is down (we only use

sharding but not replication)
No load balancing

Scalability
real-time responsiveness for temporal peaks of high computational demand
From 1 list of users to 3 lists of users
From 5.000 users to 15.000 users
From max 2000 tweets/min to 12000 tweets/min
From 28.000 item batch each timeslot to 84.000 item batch each timeslot

DICE tools

utilized
DICE IDE

Position in DICE

methodology
DICE methodology as a whole

Part of scenario The Orchestrator Application scenario (both sub-scenarios)

Requirements

addressed
ATC.1

Envisioned

outcome

Manage the complexity of an existing DIA, handle (aggregate and process)

streams of data produced by Social Networks

No. of releases 2

Delivery dates M24-M30

Activity/Task

short name
Implementing topic detection algorithm

Description

Implementing an algorithm for identifying trending topics from a corpus of

social stream items in real time. The input is the content collected by the crawler

that monitors the social streams (Twitter, Facebook etc).

DICE tools

utilized

DICE IDE, DICE profile, Simulation/Optimization/Verification, Anomaly

Detection/Trace Checking, Quality Testing, Configuration Optimization and

DICE Delivery tools

Position in DICE

methodology
DICE methodology as a whole

Part of scenario The News Orchestrator Application scenario (sub-scenario 2)

Requirements

addressed
ATC.1

Envisioned

outcome

A topic detection module implemented with Apache Spark/Storm technologies

as part of the Orchestrator application that can handle arbitrary big streams of

social networks data.

No. of releases 2

Delivery dates M23-M30

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 23

Activity/Task

short name
Optimize topology configuration of storm-focused-crawler module

Description
Override default values in topology configuration with optimal values to boost

performance.

DICE tools

utilized

Monitoring Platform, Configuration Optimization and Configuration and

Optimization tool

Position in DICE

methodology
Interaction with WP4 and WP5 DICE tools

Part of scenario The News Orchestrator Application scenario (both sub scenarios)

Requirements

addressed
ATC.13

Envisioned

outcome

Analysis performed by storm-focused-crawler module should be fine-tuned to

reduce response time.

No. of releases 1

Delivery dates M17

Activity/Task

short name
Redesign Orchestrator application in terms of scalability

Description

The processing layer of News Orchestrator Application should be parallelized on

a per user list basis. Currently the execution of processing modules is performed

sequentially for all user lists thus limiting the near real time requirement

(milliseconds) for trending topics extraction. Moreover, News Orchestrator

Application should be able to cope with temporal peaks in the input rate of

crawler.

DICE tools

utilized

DICE IDE, DICE profile, Simulation/Optimization/Verification, Anomaly

Detection/Trace Checking, Quality Testing and Configuration Optimization tool

Position in DICE

methodology
DICE methodology as a whole

Part of scenario The News Orchestrator Application scenario (sub-scenario 1)

Requirements

addressed
ATC.1, ATC.2, ATC.9, ATC. 5, ATC.13

Envisioned

outcome

A refactored version of Orchestrator application in terms of scalability and

performance.

No. of releases 2

Delivery dates M24-M30

Activity/Task

short name

Enhance the testing of Orchestrator application by adopting Continuous

integration/Continuous deployment practices.

Description

A build job should be created in the Jenkins CI environment to support the

continuous integration of News Orchestrator Application, automatically

triggered on each commit.

DICE tools

utilized
Delivery Tool

Position in DICE

methodology
Interaction with WP5 tools

Part of scenario The News Orchestrator Application scenario (sub scenario 1)

Requirements

addressed
ATC.6, ATC.7, ATC.8

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 24

Envisioned

outcome
An automatic build mechanism for continuous integration purposes.

No. of releases 2

Delivery dates M20-M30

Activity/Task

short name
Monitor Orchestrator logs through DICE Monitoring platform

Description

Feed Orchestrator application logs into DICE Monitoring platform using

logstash-forwarder. This would allow developers to create graphs based on

runtime performance metrics with regard to response time and crawling input

rate.

DICE tools

utilized
Monitoring platform

Position in DICE

methodology
Interaction with WP4 tools

Part of scenario The News Orchestrator Application scenario (both sub-scenarios)

Requirements

addressed
ATC.7, ATC.8

Envisioned

outcome

The ability to monitor Orchestrator application logs at runtime focusing on

identifying potential bottlenecks.

No. of releases 2

Delivery dates M19-M30

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 25

C. Prodevelop demonstrator: POSIDONIA OPERATIONS

C.1. Introduction
This section provides a detailed implementation plan of the Posidonia Operations use case.

Posidonia Operations is an Integrated Port Operation Management System highly customizable that

allows a port to optimize its maritime operational activities related to the flow of vessels in the port service

area, integrating all the relevant stakeholders and computer systems.

In technical terms, Posidonia Operations is a real-time and data intensive platform able to connect to AIS

(Automatic Identification System), VTS (Vessel Traffic System) or radar, and automatically detect vessel

operational events like port arrival, berthing, unberthing, bunkering operations, tugging, etc.

Posidonia Operations is a commercial software solution that is currently tracking maritime traffic in Spain,

Italy, Portugal, Morocco and Tunisia, thus providing service to different port authorities and terminals.

Having this scenario, several business and technical goals have been identified as a result of the future

application of the DICE methodology and tools to the Posidonia Operations use case.

C.1.1 Business goals

Three main business goals have been identified for the Posidonia Operations use case.

1. Lower deployment and operational costs.

Posidonia Operations is offered in two deployment and operational modes: on-premises and on a virtual

private cloud.

When on-premises, having a methodology and tools to ease the deployment process will result in a

shortened time to production, thus saving costs and resources.

In the case of a virtual private cloud deployment it is expected that the monitoring, analysis and iterative

enhancement of our current solution, will result in better hardware requirements specifications that in the

end are translated in lower operational costs..

2. Lower development costs

Posidonia Operations is defined as a “glocal” solution for maritime operations. By “glocal” we mean that

it offers a global solution for maritime traffic processing and analysis that can be configured, customized

and integrated according to local requirements.

In addition it is a solution that operates in real-time making tasks like testing, integration, releasing, etc.

more complicated.

By the application of the DICE methodology an improvement of different phases of the development

process is expected, thus resulting in shortened development lifecycles and lower development costs.

3. Better service quality policies

Several quality and performance metrics have been considered of interest for the Posidonia Operations

use case.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 26

Monitoring, predictive analysis or reliability among versions will end in an iterative enhancement of the

service quality policies to our current clients.

C.1.2 Technical goals

DICE aims at providing a methodology and tools that applied to a data intensive application (DIA) result

in an enhancement of the application development lifecycle. As a use case provider our main goal is the

knowledge acquisition that will allow us to build a DICE-based version of Posidonia Operations and at a

higher level any DIA.

Apart from this general topic, the Posidonia Operations use case technical goals can be mapped to the

business goals and are summarized in these two aspects:

1. Adopt a DevOps methodology

One of the DICE core values is the DevOps approach. This emphasizes the collaboration of different

stakeholders during the software development process, automating delivery of software and infrastructure

and promoting an environment for frequent and reliable development lifecycle.

Posidonia Operations lacks of processes for automating deployment and infrastructures, either for

production, test, development, etc. so adopting the DICE methodology will produce a technical benefit at

different stages.

2. Iterative enhancement of the product development lifecycle

This technical goal is a direct outcome from some of the DICE tools when applied to the Posidonia

Operations use case.

Being able to simulate and predict some functional properties for different configurations, monitor, extract

and analyze performance metrics, identify bottlenecks, etc. will help to enhance at the end the Posidonia

Operations development lifecycle.

C.2. Mapping DICE tools to Prodevelop demonstrator
This section aims at describing the current work done for each DICE tool regarding the Posidonia

Operations use case and the future plans in order to fulfil some of the tools’ and use case requirements.

As a reference, the next figure shows the general DICE architecture diagram. It shows the different

artifacts that compose the DICE Profile, the DICE tools (plugins) and their relationships among them, the

big data technologies of interest and the use case providers. In solid lines are represented the DICE tools

that have already started to be applied to the POSIDONIA OPERATIONS use case after year 1 of the

project. In dashed lines are represented the DICE tools that will be tested in the context of the

POSIDONIA OPERATIONS use case.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 27

Figure 11. DICE toolset in the Prodevelop demonstrator

Next table summarizes the current status (solid circles) and future plans (dashed circles) for each DICE

tool regarding the Posidonia Operations use case.

Table 3. DICE tools and Prodevelop demonstrator

Tool Current status Future plans

IDE Not used yet

Test and enhance IDE to model

Posidonia Operations

PO.4

DICE Profile

DPIM diagram

DTSM diagram

Identified technologies of interest

Validated Storm meta-model

Storm-based model of Posidonia

Operations

Provided real-world deployment

diagram

Test, validate and enhance models to

support Posidonia Operations

PO.4

Simulation

AIS parser sequence diagram

AIS parser activity diagram

Provided execution logs for

analysis/simulation tools

Provided sequence diagram for

analysis/simulation tools

Test tool to support requirements

(PO.1, PO.2)

Optimization Not used yet Collaborate to support PO.8

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 28

Verification
Provided spout and bolt parameters for

verification tools

Build the POSIDONIA topology

model and apply the verification tool

to support PO.5

Monitoring Focus group + questionnaire

Integrate POSIDONIA infrastructure

with monitoring tool and provide

access to logs (simulated or runtime)

to support PO.2, PO.3, PO.12, PO.13

Anomaly

detection
Not used yet

PO.13 - Anomaly tool first release is

due M18

Trace checking Not used yet PO.13

Enhancement Not used yet PO.5

Quality testing Not used yet
PO.3, PO.7, PO.9, PO.10, PO.11,

PO.12, PO.13

Configuration

optimization
Not used yet Collaborate for PO.8

Fault injection Not used yet N/A

Repository Not used yet Test and validate

Delivery tool

Provided a description of our

development and deployment lifecycle

Focus group + questionnaire

Deployment of TOSCA documents

transformed from deployment diagrams

(DDSM)

Support for deploying Storm topologies

in the FCO

Continuous Integration jobs for

deployment

Create deployment model, test and

validate PO.4, PO.9, PO.16

 Enable pool of nodes

deployment

 Graphical representation in the

Continuous Integration of

performance metrics vs.

versions

C.2.1 Current status

Posidonia Operations use case has focused its efforts during this period on 4 DICE tools: DICE profile,

simulation, verification and delivery tools.

Regarding the DICE profile tool: DPIM, DTSM and deployment diagrams of Posidonia Operations have

been done. On the other hand, several big data technologies of interest for Posidonia Operations have

been identified: Storm for real time streaming processing, Cassandra and HDFS for big data storage and

MapReduce or Spark for batch processing.

Since at this moment Posidonia Operations is not based on Storm, a mapping between a Storm topology

model and the Posidonia Operations architecture components has been done thus producing a Storm-like

model of Posidonia Operations.

Posidonia Operations’ execution logs have been provided to the Simulation tool in order to their leaders

start working on them. The Simulation Tool team derives some models directly from the log files since

they provide timestamps for the start/end of each relevant phase in the execution. As a result, an activity

and sequence diagram have been produced to have a more detailed description of the internals of

Posidonia Operations streaming process.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 29

Having mapped Posidonia Operations as a Storm-like topology model; spot and boult parameters (those

that define inputs and outputs of the topology) of Posidonia Operations streaming process have been

provided to the Verification tool.

Regarding the Delivery tool, a real world deployment diagram has been provided.

Finally, several focus groups have been held among use case providers and tools’ leaders in order to better

map use case requirements and tools’ features and extract common needs.

C.2.2 Future plans

Future plans for Posidonia Operations use case can be summarized on three iterative stages:

1. Collaborate with DICE tools’ leaders to provide the inputs necessary for their tools

2. Test, validate and enhance DICE tools

3. Adapt if necessary Posidonia Operations technologies to match the selected ones for DICE tools

Our future plans contemplate the initial long list of use case requirements that will be refined in order to

focus on the most profitable for both tools leaders and use case providers or those that fulfill a common

need for different use cases.

At this moment, a map between every requirement and each tool has been done (see table above) and

some of the necessary inputs from tools leaders have been collected in order to start working on fulfilling

those initial inputs.

A dissection of future plans per tool is as follows:

IDE and DICE Profile

As soon as tools will be integrated in the IDE we will test and validate them to produce the needed models

or give the inputs necessary for Posidonia Operations.

As stated in the general architecture diagram, DPIM, DTSM, DDSM and TOSCA models will be

produced from the DICE Profile tool in order to benefit from the DICE tools integrated in the IDE.

Simulation and Optimization

We plan to use the Simulation tool to support two requirements that are related to simulation of the

behaviour of the system for different configurations and the predictive analysis of new business rules in

Posidonia Operations.

Some of these requirements overlap Simulation and Optimization tool.

Monitoring

We will work on connecting the POSIDONIA Operations infrastructure and logs with the monitoring tool

in order to get performance and execution metrics along with other deployment metrics, availability, etc.

Anomaly detection, trace checking, verification and quality testing tools

We are interested in obtaining reliability metrics for different versions and configurations of Posidonia

Operations, that means, given an input (a streaming dataset) ensure that the outputs are the same (the same

events have been detected).

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 30

Configuration optimization, continuous integration and delivery tool

We plan to improve our delivery and continuous integration processes. We will provide as much inputs

necessary to automate our current configuration, integration and deployment processes in order to adopt

a DevOps approach.

C.3. Scenario revision
Posidonia Operations is an integrated port operations management system. Its mission consists on

“glocally” monitor vessels’ positions in real time to improve and automatize port authorities operations.

Figure 12 shows the general architecture of Posidonia Operations. The architecture is based on

independent Java processes that communicate with each other by means of a middleware layer that gives

support to a Message Queue, a Publication and Subscription API and a set of Topics to exchange data

among components.

Figure 12. Prodevelop Demonstrator: Posidonia Operations general architecture

For the implementation plan we will focus our efforts on three core components where DICE tools can be

of interest:

1. The stream processor or AIS Parser

2. The message broker

3. The complex event processing engine or CEP

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 31

These core components follow patterns that can be matched to some of the big data technologies that are

of interest for the DICE project.

 AIS Parser: Storm spout

 CEP: Storm bolt

 Message broker (RabbitMQ): Apache Kafka

Figure 13 shows the general architecture diagram expressed as a Storm-like model in which a Spout is a

streaming node, a Bolt a processing node and the RabbitMQ Exchange corresponds to the middleware

layer.

Figure 13. Prodevelop Demonstrator: A Storm – like model

A summary of the main scenario for Posidonia Operations would be:

1. Vessels in the service area of a port send AIS messages that include their location and other

metadata to a central station. (This is out of the scope of the architecture diagram)

2. An AIS Receiver (a spout) receives those messages and emits them through a streaming channel

(usually a TCP connection)

3. The AIS Parser (a bolt) is connected to the streaming channel, parses the AIS messages into a

middleware topic and publishes it to a RabbitMQ exchange.

4. Other components (bolts) subscribe to the RabbitMQ exchange to receive messages for further

processing. As an example, the Complex Event Processing engine receives AIS messages in order

to detect patterns and emit events to a different RabbitMQ exchange.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 32

Use cases

Posidonia Operations is a commercial product already in production in several port authorities and

terminals in Europe.

Given the general scenario of the previous section, several use cases are offered to port operators for

different purposes:

1. Traffic visualization

 Description

This functionality allows port operators to visualize the traffic of a port in real time in a web application

or reproduce historical situations.

 How it works?

The stream of AIS messages is processed and finally sent to a web client application. The web application

represents the current maritime traffic in the port service area.

On the other hand, AIS messages are logged and daily tracks of each vessel are calculated for visualizing

in the web application.

 Components involved

AIS Parser, RabbitMQ (middleware), CEP, AIS logger, Event dispatcher

Figure 14 shows a real screenshot of the port operator console in which he/she can visualize the current

maritime traffic and list of vessels in the port’s service area, operations detected and to be attended and

the track of vessels.

Figure 14. Prodevelop Demonstrator: The port operator console

2. Events detection

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 33

 Description

Real world events related to vessels operations are detected and emitted to the message broker: Bunkering,

berthing, anchorage, etc. for being integrated into the port management service.

 How it works?

The complex event processing engine subscribes to the RabbitMQ AIS exchange, receives the stream of

AIS messages and applies a set of rules to identify patterns that can be matched to port operations.

Components involved

AIS Parser, RabbitMQ (middleware), CEP

Figure 15 shows in green dots the arrival track of a vessel to a berth. The red circle represents the instant

of detection of a berthing operation. The track in blue dots is the vessel’s leaving track and the blue square

represents the detection of the unberthing operation.

Figure 15. Prodevelop Demonstrator: Events detection

3. Integration with the port operations information system

 Description

Real world events detected by the CEP are mapped to the operations and billing information system of a

port authority to automate them.

How it works?

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 34

Once events are detected by the CEP, they are emitted to a RabbitMQ exchange. En event integrator is

subscribed to that exchange to apply different business workflows that integrate the information from the

real world to the port management system.

Components involved

CEP, RabbitMQ (middleware), Event Integrator

Figure 16 is a screenshot of the workflow configurator user interface. It allows users to configure different

business processes that will be triggered by a particular event detected by the CEP.

Figure 16. Prodevelop Demonstrator: Workflow configuration interface

4. Berth planning and occupation

Description

A web application to visualize the current and historical occupation of berths in order to better plan

operations resources

 How it works?

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 35

Once AIS messages have been streamed, parsed, processed, events have been detected and integrated;

different tools can be developed in order to extract insights from the maritime traffic and operations of a

port authority.

One example among other is the tool depicted below for berth planning and occupation visualization. This

tool provides a web interface to visualize the distribution of vessels along a berth (x axis) and time (y

axis).

This tool allows port operators to have a real time and historical view of the occupation of berths, to detect

empty time slots and improve future planning.

Scenarios

Once described the general scenario for Posidonia Operations, we have found different usual scenarios

where our current product development lifecycle can benefit from DICE. These scenarios are based on a

small subset of real world use cases and our current experience delivering a data intensive application to

port authorities and terminals.

1. Deployment

Currently Posidonia Operations can be deployed in two fashions:

 On-premises: The port authority provides its own infrastructure and the platform is deployed on

Linux virtual machines

 On the cloud: Posidonia Operations is also offered as a SaaS for port terminals. In this case we

use the Amazon Virtual Private Cloud (VPC) to deploy an instance of Posidonia Operations that

gives support to different port terminals.

Apart from this, configuration varies depending on the deployment environment:

Deployment environment Stream speed (messages per second) Artifacts deployed

On-premises #1 40 10

On-premises #2 5 7

On-premises #3 7 7

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 36

On the cloud #1 8 3

On the cloud #2 15 10

The Posidonia Operations deployment lifecycle presents different issues that DICE tools can help to

improve:
 Hardware requirements for a deployment of Posidonia Operations (number of nodes, CPU, RAM,

DISK) is based on the team experience rather than on real needs based on data. For each

deployment the team knows the input data speed (messages per second) and the algorithms (rules)

to be applied for each message. DICE tools can help to tune hardware requirements to deploy

Posidonia Operations.

 Posidonia Operations deployment and configuration is done by a system administrator and a

developer and it varies depending on the port authority. Although deployment and configuration

is documented DICE tools can help to adopt a DevOps approach, where deployment and

configuration can be modeled in order not only to better understand the system by different

stakeholders, but also to automate some tasks.

 A DevOps approach can help to provide also test and simulation environments that will improve

our development lifecycle.

2. Support vessels traffic increase for a given port

Posidonia Operations core functionality is based on analyzing a real time stream of messages that

represent vessels positions to detect and emit events that occur on the real world (a berthing, an anchorage,

a bunkering, etc.).

Different factors can make the marine traffic of a port increase (or decrease), namely:

 Weather conditions

 Time of the day

 Season of the year

 Current port occupation

 etc.

That means that the number of messages per second to be analyzed is variable and can affect performance

and reliability of the events detected if the system is not able to process the streaming data as it arrives.

When this is not possible, messages are queued and this is a situation to be avoided.

We currently have tools to increase the speed of the streaming data in order to validate the behaviour of

the system in a test environment. However the process of validate and tune the system for a traffic increase

is a tedious and time consuming process where DICE tools can help to improve our current solution.

3. Add new business rules (CEP rules) for different ports

Analysis of the streaming data is done by a Complex Event Processing engine. This engine can be

considered as a “pattern matcher”, for each vessel position that arrives it computes different conditions,

that when satisfied produce an event.

The number of rules (computation) to be applied to each message can affect on the overall performance

of the system. Actually, the number and implementation of rules vary from one deployment to other.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 37

DICE tools can help on different quality and performance metrics, simulation and predictive analysis,

optimization, etc. in order to tune our current solution.

4. Give support to another port in the cloud instance of Posidonia Operations

Give support to another port (or terminal) in the cloud instance of Posidonia Operations usually means:

 An increase of the streaming speed (more messages per second)

 An increase on computation (more CEP rules executed per second)

 Deployment and configuration of new artefacts and/or nodes

In this case DICE tools can help improve Posidonia Operations also on estimating the monetary cost of

introducing a new port on the cloud instance.

5. Run a simulation to validate performance and quality metrics among versions

CEP rules (business rules) evolve from one version of Posidonia Operations to another. That means that

performance and quality of the overall solution could be affected by this situation among different

versions.

Some examples of validations we currently do (manually):

 Performance: New version of CEP rules don’t introduce a performance penalty on the system

 Performance: New version of CEP rules don’t produce queues

 Reliability: New version of CEP rules provide the same output as prior version (they both detect

the same events)

DICE tools can help to improve validation of performance and quality metrics.

C.4. Requirements update
With respect to D.1.2. “Requirements Specification” which was submitted at M6, the following changes

have been made to the requirements related to Posidonia Operations. Requirements PO.6, PO.10, PO.14

and PO.15 were deleted.

ID: PO.5

Title: Bottleneck detection

Priority of accomplishment: Could have

Type: Requirement

Description:

As a developer I want to know the bottlenecks of my CEP rules, AIS

data parsing implementation so that I can fix them for better

performance

Supporting material:

See: DICE-based Geo-fencing for the Maritime Sector

(POSIDONIA OPERATIONS)

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 38

ID: PO.7

Title: Test simulation

Priority of accomplishment: Should have

Type: Requirement

Description: As a DEVELOPER I want to simulate my implementation with

different datasets to validate the correctness of the results

Supporting material: See: DICE-based Geo-fencing for the Maritime Sector

(POSIDONIA OPERATIONS)

Tools affected: Involves CI_TOOLS, MONITORING_TOOLS

ID: PO.8

Title: Performance impact

Priority of accomplishment: Must have

Type: Requirement

Description: As a DEVELOPER I want to know the impact on the performance

metrics when I change the implementation of a CEP business rule so

that I can improve the implementation for better performance

Supporting material: See: DICE-based Geo-fencing for the Maritime Sector

(POSIDONIA OPERATIONS)

Tools affected: Involves MONITORING_TOOLS, TRACE_CHECKING_TOOL

ID: PO.9

Title: Model continuous integration jobs

Priority of accomplishment: Could have

Type: Requirement

Description: As a QA_ENGINEER I want to model continuous integration to

automatically generate and configure continuous integration jobs

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 39

Supporting material: See: DICE-based Geo-fencing for the Maritime Sector

(POSIDONIA OPERATIONS)

Tools affected: Involves DEPLOYMENT_TOOLS, CI_TOOLS

ID: PO.11

Title: Run simulation environments

Priority of accomplishment: Must have

Type: Requirement

Description: As a QA_ENGINEER I want to automatically run isolated

simulation environments to validate integration tests

Supporting material: See: DICE-based Geo-fencing for the Maritime Sector

(POSIDONIA OPERATIONS)

Tools affected: Involves CI_TOOLS

ID: PO.13

Title: Reliability results comparison

Priority of accomplishment: Must have

Type: Requirement

Description: As a QA_TESTER I want to know the reliability of the results of the

system among versions testing with different datasets so I can

validate the correctness of the development

Supporting material: See: DICE-based Geo-fencing for the Maritime Sector

(POSIDONIA OPERATIONS)

Tools affected: Involves MONITORING_TOOLS, ANOMALY_TRACE_TOOLS,

TRACE_CHECKING_TOOLS

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 40

ID: PO.16

Title: Deployment scripts

Priority of accomplishment: Should have

Type: Requirement

Description: As an ADMINISTRATOR I want to get deployment scripts for a

given cloud environment. It has to be possible to have a full

POSIDONIA Operations deployment environment. This includes:

VM infrastructure, middleware deployment (Java Virtual Machine,

RabbitMQ, others...), application jars and configuration

Supporting material: See: DICE-based Geo-fencing for the Maritime Sector

(POSIDONIA OPERATIONS)

Tools affected: Involves DEPLOYMENT_TOOLS

C.5. Implementation plan

Figure 17. Prodevelop demonstrator: Roadmap

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 41

Activity/Task

short name
Extracting KPIs from Posidonia Operations log files

Description

Determining which KPIs can be extracted from the POSIDONIA

OPERATIONS main components (CEP and parser), mostly from the log files.

Some modifications in the source code will be needed in order to print the

relevant values in the logs files. Some examples of these KPI are: AIS messages

processed per hour; average time needed to parse an AIS message; correctness

rate (0-1 index indicating how correct the results are in terms of port events

detected); cost of each rule in terms of computational time; amount of time when

the component is not working (downtime); % of messages that are processed by

each CEP (due to geographic filters).

DICE tools

utilized

The goal of this task is being able to use the following DICE components:

Simulation Tool, Monitoring Platform, Continuous Integration Tool,

Verification Tool and Enhancement Tool

Position in DICE

methodology

This is one of the tasks needed to obtain a demonstrator. It is focused on the

interaction with WP5 (DICE Deployment and Quality Testing Tools)

Part of scenario

The scenarios involved include: "Adding new business rules (CEP rules) for

different ports", "Run a simulation to validate performance and quality metrics

among versions", “Support vessels traffic increase for a given port“

Requirements

addressed
PO.1, PO.2, PO.3, PO.5, PO.7

Envisioned

outcome

A list of relevant KPI, their significance and where and how they can be

computed

Activity/Task

short name
Integration of log files into DICE Monitoring Platform

Description
Using logstash-forwarder or FileBeat to convert our parser/CEP log files into a

format usable by the DICE Monitoring Platform.

DICE tools

utilized

The goal of this task is being able to use the following DICE components:

Monitoring Platform.

Position in DICE

methodology

This is one of the tasks needed to obtain a demonstrator. It is focused on the

interaction with WP5 (DICE Deployment and Quality Testing Tools)

Part of scenario
The scenarios involved include: "Run a simulation to validate performance and

quality metrics among versions"

Requirements

addressed
PO.3, PO.15

Envisioned

outcome

A simple converter to dump the log files into a database or format that is

readable by the Monitoring Platform

Activity/Task

short name
Choosing and analyzing real-world data to conduct performance test

Description

Choosing a particular port(s) and date(s) and visually determine the events and

their timestamps. The resulting event lists will be used to compute the

correctness rate of each CEP execution. We will probably use an example using

the ports of the Balearic Islands: Palma, Ibiza, Mahón, Alcudia and La Savina,

so the model will include the geographic filters applied by each CEP.

DICE tools

utilized

The goal of this task is being able to use the following DICE components:

Simulation Tool, Monitoring Platform, Continuous Integration Tool, Quality

Testing Tool.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 42

Position in DICE

methodology

This is one of the tasks needed to obtain a demonstrator. It is focused on the

interaction with WP5 (DICE Deployment and Quality Testing Tools)

Part of scenario

The scenarios involved include: "Adding new business rules (CEP rules) for

different ports", "Run a simulation to validate performance and quality metrics

among versions", “Support vessels traffic increase for a given port“

Requirements

addressed
PO.1, PO.2, PO.3, PO.6, PO.7

Envisioned

outcome

A list of ports, dates and events (including their details) that must be detected by

the different Parser/CEP configurations. The comparison will result in a

"correctness rate"

Activity/Task

short name
Implementing correctness rate algorithm

Description

Implementing an algorithm which computes the correctness index of a CEP

execution. It will take as input the CEP log file and a list of events that should

have been detected. The comparison will be based on: Presence/absence of

expected events in log file; Time accuracy (when the event happened); Spatial

accuracy (where the event happened). Ideally, this algorithm will be implemented

within the Trace Checking Tool.

DICE tools

utilized

The goal of this task is being able to use the following DICE components:

Simulation Tool, Monitoring Platform, Continuous Integration Tool.

Position in DICE

methodology

This is one of the tasks needed to obtain a demonstrator. It is focused on the

interaction with WP5 (DICE Deployment and Quality Testing Tools)

Part of scenario
The scenarios involved include: "Run a simulation to validate performance and

quality metrics among versions"

Requirements

addressed
PO.1, PO.2, PO.3, PO.6, PO.7

Envisioned

outcome

A simple Java application that computes the correctness rate after reading the CEP log

file and the list of real-world events that must be detected.

Activity/Task

short name
Preparing script for Continuous Integration Tool

Description

Preparing the script in the DICE Continuous Integration Tool (Jenkins-based) to

execute tests and obtain performance metrics. Ideally, this process will be

triggered by a commit to the source code repository and the result will be a report

indicating some key performance indicators (KPIs).

DICE tools

utilized

The goal of this task is being able to use the following DICE components:

Continuous Integration Tool

Position in DICE

methodology

This is one of the tasks needed to obtain a demonstrator. It is focused on the

interaction with WP5 (DICE Deployment and Quality Testing Tools)

Part of scenario
The scenarios involved include: "Deployment", "Run a simulation to validate

performance and quality metrics among versions"

Requirements

addressed
PO.7, PO.8, PO.9

Envisioned

outcome

A Jenkins-based mechanism to easily perform test deployments which provides

performance reports after each deployment.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 43

Activity/Task

short name
Describe the Posidonia Operations performance and quality metrics

Description

Several requirements aim to monitor or analyze different performance and

quality metrics, but there is no clear definition of exactly which metrics are

going to be measured.

DICE tools

utilized

The goal of this task is being able to use the following DICE components:

Simulation Tool, Monitoring Platform

Position in DICE

methodology

This is one of the tasks needed to obtain a demonstrator. It is focused on the

interaction with WP5 (DICE Deployment and Quality Testing Tools)

Part of scenario

The scenarios involved include: "Adding new business rules (CEP rules) for

different ports", "Run a simulation to validate performance and quality metrics

among versions", “Support vessels traffic increase for a given port“

Requirements

addressed
PO.1, PO.2, PO.3, PO.7

Envisioned

outcome
In this task we will define a list of metrics to be monitored and analyzed.

Activity/Task

short name
Describe the Posidonia Operations reliability properties

Description Describe the reliability properties we want to analyze

DICE tools

utilized

The goal of this task is being able to use the following DICE components:

Qtesting tool, Monitoring Platform

Position in DICE

methodology

This is one of the tasks needed to obtain a demonstrator. It is focused on the

interaction with WP5 (DICE Deployment and Quality Testing Tools)

Part of scenario
The scenarios involved include: "Run a simulation to validate performance and

quality metrics among versions"

Requirements

addressed
PO.13

Envisioned

outcome
In this task we will define reliability properties

Activity/Task

short name
Generate deployment models of Posidonia Operations

Description
Study if the current deployment configuration of Posidonia Operations fits with

the deployment tools and create the deployment of Posidonia Operations

DICE tools

utilized

The goal of this task is being able to use the following DICE components:

Deployment tools, transformation tools, Continuous Integration tools

Position in DICE

methodology

This is one of the tasks needed to obtain a demonstrator. It is focused on the

interaction with WP5 (DICE Deployment and Quality Testing Tools)

Part of scenario The scenarios involved include: "Deployment"

Requirements

addressed
PO.4, PO.11, PO.14, PO.16

Envisioned

outcome

A deployment model of Posidonia Operations that can be transformed in

deployment recipes and hardware requirements for the given model

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 44

Activity/Task

short name
Connect our infrastructure with the Monitoring Tool

Description
Connect our infrastructure with the Monitoring Tool in order to extract

performance, execution and system metrics

DICE tools

utilized

The goal of this task is being able to use the following DICE components:

Monitoring Platform.

Position in DICE

methodology

This is one of the tasks needed to obtain a demonstrator. It is focused on the

interaction with WP5 (DICE Deployment and Quality Testing Tools)

Part of scenario The scenarios involved include: "All"

Requirements

addressed
PO.3, PO.12, PO.13, PO.15

Envisioned

outcome
Performance, execution and system metrics to monitor Posidonia Operations

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 45

D. NETF demonstrator: eGov Tax Fraud Detection - Big Blu

D.1. Introduction
Tax frauds represent a huge problem for governments, causing them a big loss of money each year. The

European Union has estimated the fiscal loss lost due to tax evasion to be of the order of 1 trillion euros.

In France, this loss represented approximately between 60 billion and 80 billion euros in 2015; which is

huge since the state deficit is about 85 billion euros. For more than 145 governments impacted by this

phenomenon—most of them suffering from repetitive economic crisis—the issue is the protection of

billions of euros of revenue streams. However, when we step back to see the overall picture, we realize

that tax fraud is not only about money. It is just the tip of the iceberg which hides many threats.

Governments need to have a more efficient control on how money circulates, and, to a greater extent, how

it is used.

Governments are increasingly using Big Data in multiple sectors to help their agencies manage their

operations, and to improve the services they provide to citizens and businesses. In this case, Big Data has

the potential to make tax agencies faster and more efficient. However, detecting fraud is actually a difficult

task because of the high number of tax operations performed each year and the differences inherent in the

way the taxes are calculated.

D.1.1 Business goals

Today the Big Data market become mature and our customers started asking NETF for prototypes. That’s

why the company is working to internally acquire new skills in order to release this new product dealing

with tax fraud detection. NETF is also working in parallel to propose new architectures in Blu Age such

as modernizing applications from legacy to Big Data targets. It's time for governments to start capitalizing

on proven Big Data technologies which are already revolutionizing business efficiency across industries

from healthcare to education and retail.

A survey recently made by Information Week1 shows that the main barrier SMEs are facing about using

Big Data Software is that the expertise is scarce and expensive. And NETF does not make exception!

Hadoop, MapReduce and Cassandra are not point-and-click technologies. There is quite a bit of Linux

configuration, some Java coding and a set of frameworks to make smoothly work together. Unless you

get hands-on experience with each of those parts in a use-case context, the climb will be steep. And

actually, DICE aims to relieve users of a big part of this burden by proposing a set of tools in order to

facilitate the adoption of Big Data technologies and accelerate the time to market.

D.1.2 Technical goals

The above definition of the appellation Big Data fits well our use case. It actually highlights 8 Vs related

to datasets which are:

 Volume when we deal with too much data for instance millions of tax operations made daily and

combined within historical information,

 Variety when data is diverse – in our use case data are coming from different sources (incomes,

VAT, banks…),

1 http://www.informationweek.com/big-data/software-platforms/big-data-worries/d/d-id/1316857

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 46

 Velocity when data arrive too fast – for example during tax declaration periods,

 Variability and volatility when data change too rapidly – in our case we have to deal with

relocations, updated banking details, etc.

 And finally Veracity, Validity and Value when data contains too much noise and in our use case

we have to filter the data and take into account for example the authorized exemptions.

Because of the complexity of our use case, we have a lot of requirements to consider while building our

demonstrator. In fact:

 System must be reliable especially in terms of availability because we are targeting data store

behind applications that manage a country wide taxes (1% error is still billions €),

 The Security and Privacy of data are of course fundamental for us and for our future customers,

 We also need an iterative design process which is actually available in DICE thanks to the

adoption of DevOps paradigm. For instance, we are looking for quick design time and quick

production feedback.

Last but not least, today governmental systems have reached the limit both technically and functionally

and they absolutely need to move to fault tolerant and horizontally scalable systems.

D.2. Mapping DICE tools to NETF demonstrator

D.2.1 Current status

NETF demonstrator, aka “Big Blu”, is being developed from scratch, i.e., there is no existing solution to

be directly used in the DICE context. We divided the technical realization of our demonstrator in 3 main

parts (technical layers):

 bGUI: a web based application which will be the unique interface between the user and the whole

system.

 bServer: a Web Service acting as a bridge between the user interface and the Big Data

environment.

 bBig: the engine of the application dealing with data storage and processing.

Figure 18. NETF demonstrator: General architecture of the Big Blu

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 47

The implementation of our demonstrator is made using the DICE IDE (Integrated Development

Environment) built on the Eclipse Platform. Indeed, we managed to get a complete IDE allowing the

design and the implementation of any Big Data application using common frameworks and programming

languages. It’s also possible to enrich the IDE by adding any external tool or feature using the update site

built-in mechanism.

bGUI - Frontend (User Interface):

Our end-users will be tax agents working in various treasury departments. In order to provide them a user-

friendly tool, we started building a solution with a rich web GUI (Graphical User Interface) using HTML5,

CSS and JQuery technologies. This user interface includes menus, navigation/exploration pages,

configuration tools, etc. So far, we implemented some key features:

 The main pages and menus of the user interface were designed and implemented (Figure 19)

 The fraud detection page (Figure 20) is now available in order allows the user:

o Launch Apache Spark jobs (i.e, fraud detection processings) above the Cassandra Cluster.

So far, the jobs are simply making trivial requests to the database and we are working on

more advanced algorithms dealing with concrete identified fraud indicators,

o Obtain details about the jobs’ status (running, killed, finished),

o Visualize the results of each detection job. Results are presented as a list of potential

fraudsters extracted from the database.

We have identified a plethora of features with high added-values which will be added in future release

iterations.

Figure 19. NETF demonstrator: Homepage

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 48

Figure 20. NETF demonstrator: Fraud detection list (status and results)

bServer - Web Service (Front-End <-> Back-End):

The glue between the user interface (bGUI) and the Big Data application (bBig) is made thanks to a web

service based on JSON. This web service is deployed on a Tomcat server running on Flexiant’s testbed.

This technical component is mainly made of custom implementation of RESTful HTTP verbs (POST,

DELETE…). This service is enriched according to the new implementations made mainly at the level of

the back-end.

bBig - Back-End (Databases and Data Processing Units):

This part includes the biggest and most important part of the demonstrator. In fact, it includes the core

feature of the tool which is in charge of the data processing in order to detect fraudulent conducts. In order

to avoid any privacy and/or confidentiality issue, we decided to process imaginary but realistic data. Thus,

we implemented a piece of software we called “Taxpayers Random Generator Module” which is able to

generate, according to our needs, information describing millions of taxpayers (Figure 21).

Figure 21. NETF demonstrator: Taxpayers generation

The taxpayer’s random generator module produces realistic information using 3 main inputs:

 The first input is a “Generation configuration File” which contains various kinds of parameters

such as the number of taxpayers, the percentage of single or married taxpayers, the data, encoding,

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 49

data structure, schema, database locations, etc. This file will be replaced later in order to be

managed using the user interface.

 The second input is the taxpayer metamodel and its underlying constructs (discussed later).

 The last input for this module is a model of fraud indicators which is actually a list with known

fraudulent behaviours (for example: a huge change in incomes compared to last years). This fraud

indicators model will be extensible with any new identified fraud patterns.

Based on these 3 inputs, the Taxpayers Random Generator Module is able to generate millions of

inputs (i.e., taxpayers) to fill our Cassandra cluster. The generated data are the “raw material“ for the

whole demonstrator. The latter is based on a dedicated metamodel (Figure 22) conceived specifically for

being:

 realistic (features could apply to a real system),

 generic (features and data models could apply to multiple government agencies),

 neutral (data are generated in order to protect the privacy of citizens and businesses).

At this stage of the DICE project the metamodel describes a taxpayer, and the data generator produces

realistic information with hundreds of related attributes (name, address, ID card number, marital status,

birthday, social security number...).

Figure 22. NETF demonstrator: Taxpayers metamodel

For our use case, we opted for the Lambda Architecture (already supported by the DICE tools) which is

actually a reference architecture for Batch and Real-Time processing in the Big Data ecosystem. This

architecture relies on a Data Input Stream which is in our case a Cassandra Cluster filled with various

kind of information related to taxpayers. We started designing and implementing our use case dealing

with tax fraud detection. So far,

 We designed our Data-Intensive Application architecture.

 The technologies to be used have been identified (Cassandra, Spark, Kafka…).

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 50

 The technical infrastructure (clusters, frameworks…) has been installed and configured on

Flexiant’s testbed. This basic configuration will be of course fine-tuned later using the DICE tools

in order to get an optimal one for our specific needs. In fact, most requirements related to

deployment have already been fulfilled and this allows the definition of deployment-specific

views of the architecture containing technical infrastructure details.

 We have advanced prototypes both of the graphical user interface and the back-end solutions.

 The data generator is already implemented and tested.

 NETF built a complete DPIM (DICE Platform-Independent Model) using the beta version of the

DICE IDE and Profile. In fact, DICE requirement R2.10 has already been fulfilled and allows the

definition of a DIA architecture at DPIM and DTSM::Core level (i.e., with properties

specification).

Figure 23. NETF demonstrator: Part of our DPIM model built using the DICE profile

At this stage of the project, we have designed and deployed the minimum required building blocks of our

demonstrator. This version will be used as the basis of future planned versions to be enhanced and

optimized using the DICE ecosystem. In fact, in order to be able to use the DICE tools, we need a running

prototype (a minimal valuable product, MVP) using the chosen Big Data frameworks. So far, we have

successfully designed, implemented and deployed such a MVP which includes the whole chain. This

demonstrator will be now optimized and enhanced using the DICE tools especially for some already

identified issues (time-consuming tasks such as the packaging and deployment, complex infrastructure

configuration…). The DICE tools will be using the produced DPIM for early stage assessments,

optimization and configuration enhancement.

D.2.2 Future plans

During the initial phase of the prototype implementation, NETF was as any other novice SME in the field

of data-intensive applications. In fact, this prototype is our first Big Data application using such

frameworks and paradigms. Getting hands-on experience highlights concrete and actual issues which must

be addressed by the DICE tools. Furthermore, we have added-value inputs to fine-tune the DICE

methodology in order to capitalize on our learned lessons. We will continue this incremental work in order

to lead 3 parallel activities:

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 51

1. UCN-1: Enhance the DICE methodology in order to get it as simple and complete as possible. In

fact, we are convinced that the methodology, using the DICE tools, can facilitate the life of any

developer aiming to a rapid prototyping of a Data-Intensive Application.

2. UCN-2: Use, test and give feedbacks to tool providers is one of our priorities as a use case

provider in the DICE project. Like a beta-tester of the DICE ecosystem, NETF wants to support

our partners (tools providers) to release first-class useful products.

3. UCN-3: Add new features to our demonstrator and push the system to its limits to get real

execution situations. We will keep iterating internally in NETF in order to get feedbacks from our

stakeholders and especially partners interested in the project. In fact, we have planned some

demonstrations sessions to occur before the end of this year.

In order to achieve the aforementioned tasks, we have adopted an incremental development strategy based

on a feature-based approach. In fact, we release a new version each week by adding a new use case

scenario. The technical underlying implementations and configurations are made accordingly.

Task UCN-2 is one of our priorities in which we have already realized meaningful achievements. We can

see in that we have already used some of the DICE available tools and we plan to use, in near future, other

tools.

Figure 24. DICE toolset in the NETF demonstrator

The table below gives more details on our interaction with the DICE ecosystem.

Table 4. DICE tools and NETF demonstrator

Tool Current status Future plans

IDE

We are using the DICE IDE in

order to develop our

demonstrator using the

development features inherited

from the Eclipse environment

(Java, Scala, Web Services...)

We will keep using the DICE IDE for the

whole project development. We have

identified a list of interesting features which

must be included in order to rise the level of

automation and relieve the developer from

some technical tuning, e.g. creating a DICE

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 52

and also to design our models

using Papyrus.

project with already filled DPIM, DTSM and

DDSM using Papyrus, etc.

DICE Profile

We produced a DPIM diagram

using the beta version of the

DICE Profile. This DPIM was

shared with our partners

(especially tool providers)

mainly to start discussing about

the scope of the concepts we

must deal with and get early-

stage verification and

optimization regarding our

primary architecture.

This DPIM is also used in order

to identify how privacy and

security must be managed by the

DICE Profile and especially at

which level of abstraction.

We are now looking for feedbacks from our

partners in order to enhance this DPIM and

especially extract valuable outcomes in terms

of architecture refining, suitable tools

mapping, bottleneck identification, etc.

Simulation Not used yet

The simulation tool will be an excellent rapid

way to test the application without spending

time in clusters configuration. We will be able

to validate our architecture at early-stage at

very low cost in terms of time spent in

implementation and operations.

Optimization Not used yet

We have already identified issues with the

hand-made clusters configuration (memory

leaks, performance degradation…). We will be

using the optimization tool in order to

automatically get the best (most suitable)

cluster configuration for our Data-Intensive

Applications. We are mainly interested in

Spark and Cassandra.

Verification Not used yet N/A

Monitoring

The DICE Monitoring Platform

(DMon) is for sure the

cornerstone of DICE. Without

relevant information regarding

the in-situ environment (running

Data-Intensive Application in

situation), we won’t be able to

concretely enhance, change,

optimize. We need to get

realtime details on how things

happen especially to react

accordingly.

We started working with our partners from

IeAT in order to be autonomous regarding the

use of the tool. We started configuring the

environment on our cluster and we planned to

use the DMon provided API in order to

integrate the relevant information in our

demonstrator. This feature will be an added-

value addons for our end-users who have not

to deal with monitoring in general but will be

for sure interested to know how their

environment (including only their tools) is

behaving.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 53

Anomaly

detection
Not used yet

Our use case will be constantly evolving

especially in terms of fraud detection

algorithms which must be adapted to several

changes (laws, exemptions…). This results in

continuous delivery of new versions of the

whole system which must be of course reliable

and operates at a high level in terms of

performance and correctness. This requires to

perform statistical analysis to compare

monitoring data across versions which exactly

the goal of the anomaly detection tool.

Trace checking Not used yet

While implementing our use case, we have

rapidly seen that the debugging of a Big Data

application can be a nightmare. As a

developer, you have no choice except logging

and then read and extract valuable details

among the tremendous quantity of information.

The trace checking tool will do it for us

automatically and verify the application

behaviour.

Enhancement Not used yet

Building Big Data applications is, without

doubt, a complicated exercise during which the

developer can involuntary insert anti-patterns

which may highly impact the application’s

performance. Identifying such anti-patterns

and proposing concrete enhancement strategies

mainly in terms of runtime monitoring

measurements is welcome to ensure a high

quality application

Quality testing Not used yet

For our classical Java applications, we have

been used to automatically run JMeter in order

to load test functional behavior and measure

performance. For our Data-Intensive

Application, JMeter will not be sufficient. We

absolutely need tools which cover all the

frameworks we are using. This will be

definitely the role of the quality testing tool

Configuration

optimization
Not used yet

While testing our prototype we spent a huge

time setting-up a default configuration

environments for Cassandra, Spark, etc. They

are, for sure, not point-and-click technologies

and these vendor-provided configurations are

not the optimal ones which can be made in

order to make the best use of these

frameworks. This is exactly what we are

expecting from this tool, i.e., an optimal

configuration at the cost of some computation

and time in order obtain the best configuration

in terms of performance without having to rely

on vendor-provided defaults or (rare and

expensive) experts to tweak them.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 54

Fault injection Not used yet

Today we cannot talk about Big Data, Cloud

computing, Data-Intensive Applications... if

the loss of a node in the cluster or a high

memory usage or any other “abnormal”

infrastructure behavior, will lead to a whole

system breakdown. System disruption due to

faults is not an option, our application must be

resilient and must be able to recover and

continue to work correctly. This latter will be

tested using the fault injection tool.

Repository Not used yet

The repository will be used by tools that we

absolutely need for our demonstrator

(deployment…).

Delivery tool Not used yet

We are convinced that this tool will change our

lives since we are spending a huge time on

manual delivery. When the developer needs to

debug his application, he has to package, copy,

compile and deliver the application tens of

times per day. So if he can only push a button

to get all of this done, he will for sure get a

huge productivity growth.

The DICE tools will be used in order to release our application with a high level of quality. As explained

earlier, we will be intensively changing, enhancing, enriching and modifying our prototype in order to

release rapidly new augmented versions. We will heavily rely on the DICE ecosystem in order to be able

to proceed in an agile-DevOps approach without taking unmeasured risks regarding the reliability and the

performance of our application.

D.3. Scenarios revision
NETF plans to build a software prototype to demonstrate the capabilities of Big Data in e-government.

Our demonstrator aims to build a model of "fraudulent conduct" from the automatic operations on existing

tax data files such as business creation or bank accounts abroad which represent millions of data points.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 55

Figure 25. NETF demonstrator: Overview

Here is a list of some examples to be detected by our demonstrator:

 Identifying taxpayers who are registered in different regions in order to collect fraudulently social

aids (Figure 26). For example, the demonstrator can catch a non-existent address, a non-

residential address or an address that just does not compute.

Figure 26. NETF demonstrator: Social aid fraud

 The fictitious relocation of the taxpayer who improperly claims to be domiciled abroad in order

to not pay tax on income or wealth in France (Figure 27).

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 56

Figure 27. NETF demonstrator: Relocation fraud

 Companies normally collect VAT from their customers but "forget" to pay back to the Treasury

as they should by not filing for VAT return or by filing incomplete or inaccurate declarations

(with reduced VAT rates for example). Some companies do not hesitate to include the VAT debt

liabilities in their balance sheet, which proves the deliberate intention to evade taxes.

 We may even consider detecting ID tax fraud since it has been the most attractive type of identity

theft for years now. We can, for example, detect potential victims of ID theft and avoid them to

be asked to refund huge amounts of money.

The demonstrator will facilitate the task of filtering and gathering data for fiscal agents in order to increase

productivity. Utilizing Big Data and Cloud processing technologies through DICE will be the key feature

of the demonstrator. In fact, exploring and analyzing high volumes of data from various heterogeneous

sources should be scalable in order to address the complexity of this data-intensive configuration.

This demonstrator will process data record instances (millions) complying with the aforementioned

metamodel. All instances will be automatically generated using various algorithms. Each algorithm will

generate specific textual datasets using heterogeneous formats (flat files, legacy proprietary databases,

etc.). Therefore it is expected that confidentiality constraints will not be considered. Furthermore data will

be distributed both in spatial and temporal manners and will be heterogeneous:

 Spatial: data coming from different data stores (both physical storage and data access

technology).

 Temporal: new data input must be related to either oldest data or results of processed data, i.e.,

incremental map/reduce.

 Heterogeneous: different data structure must be correlated (RDBMS schema vs sequential

indexed files).

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 57

Figure 28. NETF demonstrator: Detailed architecture

We deliberately want to avoid “classical” batch processing, we need real time processing on already

processed data (Figure 28). For example, when a new detail about a taxpayer is updated, we need to

process it using already processed data. A kind of real time processing which use the processed data as an

input for the filtering algorithms. This functional need is the core concept behind the Lambda Architecture

we adopted. Our architecture is made of several layers:

 A Cassandra cluster to store data,

 A Kafka Cluster which is a scalable messaging system to handle massive amounts of data

published with a high flow rate.

 An Akka Cluster to exploit the actors programming paradigm in order to simplify the

implementation.

 A spark Core for the data processing which is the central element of our use case.

 And finally a Machine Learning module which aims to propose to the end-users (tax agents) new

potential fraud indicators in order to anticipate frauds.

Our Big Data application made of these technologies will be continuously running on Flexiant cloud. The

Cassandra databases will be filled with taxpayers detail, historical tax declarations, etc. The application

will be performing computation on all data including new generated inputs. These data have to be

processed using Fraud indicators. In the case a new Fraud Indicator, we have to proceed to a new batch

processing phase on all data, but we need to be able to answer any query using a merge between old batch

results and new real-time computations. The user will be notified on the graphical user interface about the

taxpayers who may be fraudulent.

D.4. Requirements update
Getting hands-on concrete experience while developing our prototype gave us the opportunity to discover

concrete issues which may be faced by any Big-Data application’s developer, and for which DICE tools

can do a lot to help the user; mainly by automating tasks, simplifying processes, or guiding him through

identified steps. Here are some updated expectations regarding DICE tools for our demonstrator:

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 58

ID: NETF.1

Title: Design

Priority of accomplishment: Must have

Description: DIA design guidelines through DICE: a kind of graphical

representation of the workflow - the methodology (showing

achieved/remaining steps). It can be either a specific editor or a

technical view (Eclipse part) comparable to the GMF Dashboard2.

This component must be interactive, i.e., can be used to navigate

automatically through diagrams, etc.

ID: NETF.2

Title: Performance impact

Priority of accomplishment: Must have

Description: We want to know the impact on the performance metrics when

using different architecture alternatives for different quality and

performance indicators.

ID: NETF.3

Title: Storage

Priority of accomplishment: Must have

Description: The key requirement of Big Data storage technologies is that they

can handle very large amounts of data. They have to be easily

scalable to accommodate data growth, and must deliver

sufficiently rapidly data to analytics tools. DICE must provide a

way to model them and express requirements about them in the

model.

2 https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_4

https://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_4

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 59

ID: NETF.4

Title: Deployment models

Priority of accomplishment: Could have

Description: We want to model deployment configuration to automatically

generate deployment scripts. Indeed, manual deployment is time-

consuming and needs a plethora of Linux and Apache frameworks

tuning.

ID: NETF.5

Title: DIA analysis and assessment

Priority of accomplishment: Must have

Description: Analyse and validate the application architecture using various

data sources and computational logic without spending time in

building runtime platforms which may have to be changed later.

ID: NETF.6

Title: Quality, performance and other metrics monitoring

Priority of accomplishment: Must have

Description: Automatically extract quality and performance metrics iteratively

to improve those metrics on following versions:

 monitoring data and logs to detect candidate anomalies

and report to user,

 detecting data design anti-patterns,

 estimate root-causes of quality anomalies

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 60

ID: NETF.7

Title: Scalability analysis

Priority of accomplishment: Should have

Description: Cloud deployment and scalability

 Evaluate cloud alternatives for deployment: Cost versus

performance.

 Automatically create cloud deployment configurations.

ID: NETF.8

Title: Design

Priority of accomplishment: Must have

Description: The DICE Profile must provide validation constraints in order to

help the user build “correct” models (DPIM, DTSM, DDSM)

which can be fully by DICE tools unless producing wrong models,

i.e., which can’t be used by tools, will be worthless.

ID: NETF.9

Title: Fault tolerance

Priority of accomplishment: Must have

Description: We identified a killer issue for any Big Data applications while

“playing” with our prototype: if a node in our cluster is no more

responding, the whole application is down. We need to express

such properties in the model which must be verified later in-situ.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 61

ID: NETF.10

Title: Data Consistency

Priority of accomplishment: Must have

Description: I need to be sure that my data is always consistent and any

occurring fault/error related to human or hardware failure will not

corrupt my data.

ID: NETF.11

Title: Privacy (Design)

Priority of accomplishment: Must have

Description: I need to express privacy on my data. For example in order to set

roles and permissions for different users with different accreditation

levels.

ID: NETF.12

Title: Security (Design)

Priority of accomplishment: Must have

Description: Some data must be encrypted so I need to explicitly mention this

feature in the model.

D.5. Implementation plan
As mentioned in the Future plan section, we have identified three main tasks which will be led in parallel:

 UCN-1: Enhance the methodology in order to get it as simple and complete as possible.

 UCN-2: Use, test and give feedbacks to tool providers.

 UCN-3: Add new features to our demonstrator and push the system to its limits to get real

execution situations.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 62

UCN-1 and UCN-2 will be performed during all the project life with respect to the DICE deliverables

scheduling and the tool providers’ availabilities. Regarding UCN-3, we have planned a set of tasks mainly

for the short and mid-terms:

 May 2016: Building the Spark core features dealing with batch processing (connection with the

Cassandra database, run user’s queries using the GUI).

 June 2016: Building the real-time features of Spark in order to deal with streaming processing.

 July & August 2016: Generate and validate the DTSM and DDSM models obtained from the

validated DPIM.

 September 2016: Deploy the application using the deployment tool.

 October 2016: Offers to the end-users more features regarding fraud indicators modeling.

 December 2016: Release of a beta version of the demonstrator which is able to run at least 2

kinds of fraud detections in order to start monitoring and optimization.

Figure 29. NETF demonstrator: Roadmap

Once the Beta release made and according to the primary results, we will prioritize added-value features

such as Deep Learning. In fact we will be looking for an intelligent solution which will propose, to the

end-users, identified fraudulent conducts. With respect to UCN-2, we already started using some DICE

tools and we have identified future needs which will be covered by other tools. The tables below give

more details about the identified implementation iterations.

Activity/Task

short name
Spark Batch Layer

Description

Instantiating the batch layer of the lambda architecture with Spark. This Spark

application will analyze the full dataset created by the taxpayer random

generator module, and identifies frauds.

DICE tools

utilized
IDE, DICE Profile.

Position in DICE

methodology

This corresponds to the platform and technology specific implementation

activity of the methodology.

Part of scenario
Running Spark SQL queries over Cassandra, combining the results thereof with

Spark joins, filter, map, and reduce transformations.

Requirements

addressed
NETF.1, NETF.3

Envisioned

outcome
Fraudulent tax declarations and tax fraudsters.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 63

Activity/Task

short name
Spark Speed Layer

Description

Instantiating the speed layer of the lambda architecture with Spark. This Spark

application will analyze every second the fresh data newly created by the

taxpayer random generator module, and use its knowledge of previously

identified frauds to classify them in real-time. This is achieved by using machine

learning algorithms.

DICE tools

utilized
IDE, DICE Profile

Position in DICE

methodology

This corresponds to the platform and technology specific implementation

activity of the methodology.

Part of scenario
Running machine learning algorithms that will be trained on a generated training

dataset. Running these algorithms with the Spark streaming framework.

Requirements

addressed
NETF.1, NETF.3

Envisioned

outcome
Fresh data about fraudulent tax declarations and tax fraudsters.

Activity/Task

short name
DTSM and DDSM

Description

Generate and validate the DTSM and DDSM models obtained from the validated

DPIM. Indeed, if we want take advantage of most of the DICE tools, we have to

produce such models.

DICE tools

utilized
DICE Profile and M2M Transformations

Position in DICE

methodology

The model-to-model transformations offered by the methodology facilitates the

creation of the DTSM and DDSM models by using the DPIM.

Requirements

addressed
NETF.1

Envisioned

outcome

The models are the cornerstone of DICE. They will be used by all the tools as an

input in order to asses the quality of the application, analyze its reliability,

optimize its environment, etc. The production of such models will allow us to

shift from functional POC (proof-of-concept) realization to high quality

application delivery.

Delivery dates August 2016

Activity/Task

short name
Continuous Deployment

Description

We need to automate the deployment process in order to be able to repeat it as

many as needed. In fact, today we manually deploy the application between 10

and 30 times per day using third party tools (ssh client, jar…). We will be using

the deployment tool in order to automate this step for rapid feedback and quick

debugging.

DICE tools

utilized
Deployment tool

Position in DICE

methodology

The DICE methodology is quality-centric and encourage the end-users to deploy

and run quality assessment tools (configuration, optimization…) as much as

possible in order to make an iterative enhancement of the application.

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 64

Requirements

addressed
NETF.4

Envisioned

outcome

We envision an important increase of our productivity and above all in reducing

the time required for manual deployment.

No. of releases Does not apply

Delivery dates Does not apply

Activity/Task

short name
Fraud Indicator Modeling

Description

Design a graphical or textual modeling language allowing users to define new

fraud indicators. It will be possible to integrate the models done with this

specific language into the Spark batch layer and speed layer described above.

DICE tools

utilized
DICE IDE

Position in DICE

methodology

This task is related to the business modeling and requirement analysis activity of

the DICE methodology.

Part of scenario
Defining the modeling language with a metamodeling language such as Ecore or

MOF. Defining a graphical or textual way to build models conform to it.

Requirements

addressed
NETF.3

Envisioned

outcome
A fully integrated tax indicator modeling language.

Activity/Task

short name
Monitoring and Optimization

Description
Release of a beta version of the demonstrator which is able to run at least 2 kind

of fraud detections in order to start monitoring and optimization.

DICE tools

utilized
Monitoring platform & Optimization

Position in DICE

methodology

This task corresponds to the runtime feedback analysis activity of the DICE

methodology.

Part of scenario Running DICE monitoring and configuration optimization tools.

Requirements

addressed
NETF.6, NETF.7

Activity/Task

short name
Analysis and Assessment

Description
Analyse and validate the application architecture using various data sources and

computational logic.

DICE tools

utilized
Simulation, Verification

Position in DICE

methodology

This task corresponds to the DTSM simulation and verification activity of the

DICE methodology.

Requirements

addressed
NETF.5

Deliverable 6.1. Demonstrators implementation plan.

Copyright © 2016, DICE consortium – All rights reserved 65

