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Executive summary 

This deliverable is a report to accompany the initial version of the DICE delivery and configuration 

tools. These tools handle the transition from writing code and running off-line analysis and checks 

to having an actual running data-intensive application in the test bed. In this way, they automate 

tasks, which would exceed the skills of the users who are new to the development of the data-

intensive applications, and which are also too complex to be performed manually. 

The suite of delivery tools consists of three components: a deployment tool, a continuous integration 

tool, and a configuration optimization tool. Each of the tools can work in a stand-alone mode to 

accomplish a specific task. However, they show their strength when used together in a larger DICE 

workflow. By this we mean the use of the OASIS TOSCA (Topology and Orchestration 

Specification for Cloud Applications) format for describing deployments from models (the DICE 

DeploymentSpecific Model or DDSM, to be precise), the availability of the monitoring platform for 

measuring performance of the application's runtime, and other services such as the enhancement 

tools. 

The DICE Deployment Tool's purpose is to materialise an application described in a TOSCA 

document, also named a blueprint, in the designated test bed. We developed a thin wrapper service 

around the existing cloud application orchestration tool Cloudify, which already provides TOSCA 

blueprint parsing and deployment on common platforms. This let us to focus on supporting the 

building blocks (i.e., the technologies such as Hadoop, Yarn, Kafka, etc.), and as a result the users 

experience deploying their applications as a fully automated process. This solution saves a 

Deployment Tool user a lot of time required for learning and experimenting with installation of 

individual services. In the DICE solution, we also provided the essential functionality for deploying 

blueprints in the project's test bed platform of choice, the Flexiant Cloud Orchestrator (FCO).  

For the DICE Continuous Integration, we again chose a solid base solution, the Jenkins Continuous 

Integration tool. This gives us a service for scheduling complex and long jobs while ensuring 

continuous building, deployment and testing of the application being developed. The DICE 

contribution to the process is to record and visualize the measured quality aspects of the application 

development history. This gives the users an insight into the non-functional properties of the 

application on top of the typical success/failure of unit testing. 

Finally, the DICE Configuration Optimization tool acts as an expert, which examines the 

application's DDSM, measures iteratively its runtime, and in the given time and budget provides a 

recommended optimal configuration for the application. In this way it helps the users to improve 

their application's performance without having to understand arcane service configurations. The tool 

is also efficient in that it only examines a subset of all the possible configurations, which normally 

form a prohibitively large search space. 
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Glossary 

DDSM DICE Deployment Specific Model 

DICE Data-Intensive Cloud Applications with iterative quality enhancements 

DPIM DICE Platform Independent Model 

DTSM DICE Technology Specific Model 

FCO Flexiant Cloud Orchestrator 

TOSCA Topology and Orchestration Specification for Cloud Applications 

IDE Integrated Development Environment 

CI Continuous Integration 
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1. Introduction 

The DICE toolset aims to provide a complete support for developers of data-intensive applications 

covering all stages of the development process from application design to the deployed fully 

working application in the pre-production environment. DICE also offers a number of tools in order 

to monitor the operational environment and refactor the architectural designs [23] based on 

performance feedback. In other words, DICE enables performance-oriented DevOps [24][24] for 

data intensive applications. The role of the delivery and configuration tools in the development 

workflow is to substantially reduce the manual effort needed for installing and configuring the 

application in the test bed or a pre-production environment by automating the process. It also helps 

the agile software development teams to take advantage of the automation of the builds and 

deployments, speeding up the design-release cycles. There are a number of tools on the market that 

can help the development teams in this respect. 

The goal of the DICE tools is two-fold. First, it aims to simplify the development and deployment 

of the data-intensive applications so that it becomes more accessible to the new and less experienced 

programmers. Second, the emphasis is on the tools’ ability to provide recommendations on how the 

vital application components should be configured in order to achieve efficient and reliable 

application runtime. Existing tools require users’ expertise and an extensive set of tweaking the 

configuration to find the optimal solution. Finally, the DICE tools aim to provide feedback on the 

quality of the application being developed.  

In the first year of the DICE project we have defined and outlined the basic capabilities the tools 

should possess in order to achieve the stated goal. They include: 

 Adoption of the Cloudify [4] tool as a core of the deployment tool. This solution provides 

the tool with support for deploying applications described in TOSCA (Topology and 

Orchestration Specification for Cloud Applications) [7] formatted models. 

 Creation of a thin wrapper service for a simplified management of the deployments provided 

by Cloudify. 

 Basic support for the Flexiant Cloud Orchestrator (FCO) [9] platform for the Cloudify. 

 Implementation of a tool for actively testing and optimizing the configurations of the 

applications. 

 Implementation of a prototype of the Configuration Optimization tool. 

 Support for the initial technologies: Storm [10], Spark [13], Zookeeper [11], Kafka [12], 

Yarn [14]. 

This document describes the tools, their usage and the benefits that the tool brings to the users. It 

provides both non-technical and technical aspects of their implementation and use. The rest of the 

section discusses the motivation for individual tool in the DICE delivery toolset. The Section 2 

summarizes the requirements for the DICE delivery tools, extracted from the D1.2 [2]. In the Section 

3, we present the top-level architecture of the delivery and configuration tools. In Section 4 we 

present each tool in a deeper technical level, also presenting their usage and preliminary results. 

Finally, in Section 5 we present the conclusions. 
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1.1. Motivation for the tools 

1.1.1. DICE Deployment Tool 

For beginners in the world of data-intensive applications and their support services, one of the major 

obstacles is preparation of the environment to support the runtime of the application. Modern data 

storage and processing services require a number of time-consuming steps to install, configure and 

connect the services into an inter-dependent mesh of a functional application. With every 

application, the topology of services and components is different to address the specific data flows 

and workflows particular to each application. 

A well-established rule in industry is that manual installation and deployment of any application 

services is not recommended for anything beyond learning and simple testing of the technologies. 

A much better approach to the problem is to treat both infrastructure and the components deployed 

on top of the infrastructure as software [6]. This has a great benefit of being able to version the 

changes, trace any changes, and provide repeatable and predictable results with each deploy. 

To achieve this goal, a number of tools exist that automate configuration of individual nodes (e.g., 

virtual machines) at the lowest level, including Chef [5], Puppet [15], Ansible [16], etc. But 

deploying and running applications takes coordination at a higher level to ensure that 

interdependencies are set up in a proper order and configured to properly discover each other. For 

instance, a web application needs a web server to be configured first, and a database set up and 

running on another node. This is done by the orchestrator tools, representatives of which include 

Ubuntu Juju [17], Apache Brooklyn [18], Flexiant Cloud Orchestrator [9] and Cloudify [4]. 

The listed tools themselves are not enough, because the configuration tools need cookbooks, recipes 

or other configuration definitions to be able to install and configure useful services. The 

orchestration tools then need application blueprints on top of the cookbooks and recipes. Many 

cookbooks are available from the open source community, but their usage requires at least some 

expertise on the technologies, they do not always work out of the box, and even if they do, they 

could be incompatible with each other. 

In DICE, we aim at building tools that are transparent and as easy to use as possible. They need to 

fit into the model-driven development approach, where the most detailed level of the model – the 

DDSM – is represented according to the OASIS [19] TOSCA standard [7]. The deployment tool 

also needs to be simple to use, granting it a good usability as a stand-alone tool. Most of the users 

will not use it directly, however, therefore we also designed it to be easy to integrate with the other 

tools. 

The models involving the DICE supported building blocks also need to work when instructed to 

deploy. That is why we provide cookbooks and predefined TOSCA types that they are tested to be 

compatible for arbitrary (but sensible) topologies that the users might model. 

With the DICE Deployment Tool, we believe that the users will gain a well-rounded and complete 

solution. It will be easy and quick to set up, yet powerful enough to autonomously install almost 

any application, which uses one or more technologies from a growing library of the DICE building 

blocks. The users will not have to handle the configuration recipes, but instead invest the time into 

developing their own applications. 
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1.1.2. DICE Continuous Integration Tool 

Software development teams decide for agile development in order to speed up the process of 

designing, developing, testing and deploying their products. An important part of this speed-up is 

the ability of the whole development toolset to build, test and deploy the application, on a schedule 

or whenever the developers make an update of their code. Doing this automatically releases the 

developers from performing complex, possibly long-lasting tasks. 

Continuous Integration is a practice [20][23][24], which has two aspects. First, the developers, who 

normally develop their updates and new features in isolation from the currently stable main 

development branch, have to be disciplined and merge their changes with the main development 

branch on a daily basis. This assures that the incremental changes that require merging are smaller 

and less complex. This way any conflicts are caught early and can be easily resolved. 

The second aspect is that a supporting toolset exists, which tests and evaluates the changes, assesses 

the stability of the main branch, packages and deploys the changes. The glue to the processes 

provided by these tools is a common tool, which is both a portal for managing continuous integration 

jobs and a central record place for the current and past integration executions. 

In DICE, the Continuous Integration tool takes over the complex and repetitive processes, which 

are an integral part of the quality-driven development methodology. It also provides a visual 

representation of the history of the application’s performance, helping the developers assess the 

progress of the application development. 

1.1.3. DICE Configuration Optimization 

The main objective of the configuration optimization tool is to find the optimum configuration for 

big data applications within limited budget. This limited budget can be specified by either limited 

time or pre-determined experimental time. 

Configuration parameters internal to the services used by the data-intensive application provide a 

way to significantly change the performance of the application. Finding appropriate configuration 

options is a difficult task specifically for big data systems.  These can employ several frameworks 

such as Apache Storm [10], Kafka [12], Spark [13] and many more in order to develop a robust 

application that is able to process large amount of data. Each of these frameworks has hundreds of 

configuration parameters and tuning them to get the best performance is not a trivial task.  The 

difference between a tuned framework versus an un-tuned framework is several orders of magnitude 

in terms of performance. However, the problem of finding the optimum configuration is time 

consuming and requires an experimental test bed. For example, if we consider 10 configuration 

parameters, each of which have 4 configuration options, we require to perform 4^10=1M tests and 

if for each test we consider 10 minutes, in total we require to spend ≈19 years to find the best 

configuration if we would follow a naive full factorial design for testing. Notice that 10 out of 

hundreds is only a small subset of the available configuration parameters in such systems.   

The DICE Configuration Optimization tool therefore takes over the task of an automated expert, 

which can experimentally arrive at a good set of configuration parameters. This helps move the 

application away from the default parameters, which may not always work optimally. It also 

improves any configuration that the users have arrived at through manual testing and tweaking. As 
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a result, DICE provides deployments, which are tuned to the specific user's’ requirements, 

environment and application. 
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2. Requirements 

In Deliverable D1.2 [2], we presented the requirement analysis for the DICE project. This section 

summarises the requirements related to the DICE Delivery tools. The actors involved include 

CI_TOOLS, which represent the DICE Continuous Integration tools, the DEPLOYMENT_TOOLS, 

which represent the DICE DICE deployment tool 

ID R5.3 

Title Continuous integration tools deployment 

Priority Must have 

Description The ADMINISTRATOR MUST manually install and configure 

CI_TOOLS MUST upon installation of the CI_TOOLS and can be updated 

later on. The configuration MUST enable CI_TOOLS to access the 

TESTBED. 

 

ID R5.4 

Title Translation of TOSCA models 

Priority Must have 

Description The DEPLOYMENT_TOOLS MUST be able to translate TOSCA models 

from WP2 into the supported target configuration manager’s DSL for 

orchestration 

 

ID R5.4.1 

Title Deployment plan support 

Priority Must have 

Description The DEPLOYMENT_TOOLS MUST be able to deploy all the DICE 

supported core building blocks. 

 

ID R5.4.2 

Title Translation tools autonomy 

Priority Must have 

Description The DEPLOYMENT_TOOLS MUST take all of its input from the TOSCA 

model and therefore MUST NOT require any additional user's input. 

 

ID R5.4.7 

Title Deployment of the application in a test environment 
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Priority Must have 

Description The DEPLOYMENT_TOOLS MUST provision the resources required by 

the application 

 

ID R5.4.8 

Title Starting the monitoring tools 

Priority Must have 

Description The DEPLOYMENT_TOOLS MUST start the MONITORING_TOOLS 

for the application. 

 

ID R5.5 

Title User-provided initial data retrieval 

Priority Must have 

Description CI_TOOLS MUST retrieve from the artifact repository or use input from 

the code versioning system any user-provided initial data 

 

ID R5.7 

Title Data loading support 

Priority Must have 

Description DEPLOYMENT_TOOLS and QTESTING_TOOLS MUST support bulk 

loading and bulk unloading of the data for the core building blocks. 

 

ID R5.16 

Title Provide monitoring of the quality aspect of the development evolution 

(quality regression) 

Priority Must have 

Description The CI_TOOLS MUST record the results of each test and map them to the 

momentary project's (model, code etc.) version. 

 

ID R5.19 

Title Deployment configuration review 

Priority Must have 
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Description The CI_TOOLS MUST enable that ADMINISTRATOR assigns one or 

more users (including self) for reviewing the deployment configuration 

 

ID R5.20 

Title Build acceptance 

Priority Must have 

Description The CI_TOOLS MUST NOT run the deployment of the application to pre-

production if the quality test fail or the reviewers have not provided a 

positive score. 

 

ID R5.27 

Title Recommender Engine and Optimization 

Priority Must have 

Description DEPLOYMENT_TOOLS (recommender engine) MUST retrieve from the 

OPTIMIZATION_TOOLS initial deployment parameters and recommend 

the vaules of the parameters that have not yet been set. 

 

ID R5.27.2 

Title Recommender Engine API 

Priority Must have 

Description DEPLOYMENT_TOOLS MUST provide APIs to access recommender 

system (push data, get recommendations, etc) 
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3. Architecture 

3.1. High level architecture 

The DICE delivery and configuration tools are an important part of the DICE tools workflow. They 

receive the code and design (the model) of the application after the developer has used off-line tools 

(IDE, formal analysis tools, optimization). Their goal is to bring the application to life as a 

deployment in a test bed. Effectively, they represent the Ops part of the DevOps. The full DICE 

architecture is available in [3], and the tools described here are represented as: Configuration 

Optimization and Delivery tools. 

In this document, we focus on the architecture and interactions between these two top-level 

components and the components they depend on. The Figure 1 illustrates this in more detail. Each 

component can work stand-alone, but they were created to interoperate in an integrated toolset. 

 

Figure 1: DICE delivery and configuration tools architecture. Delivery and configuration tools are represented 

in blue boxes, while external components are in grey boxes 

In the architecture, we consider the IDE as an external component, where the developers author 

most of the content and the input to the other tools. The Repository is another external component, 

which keeps the code, models and artifacts created by the developers in a versioned form and 

available for retrieval and updates. 

We represent the Delivery tools as two components: the Continuous Integration Tool and the 

Deployment Tool. The Continuous Integration depends on the Repository to provide the 

information about the project’s updates. It also provides the code and models themselves. The 

Continuous Integration service then triggers Deployment Tool or Configuration Optimization when 

needed.  

The Deployment Tool uses the external Monitoring to properly set up the individual nodes’ 

monitoring agents, enabling the stream of the monitoring data to flow to the monitoring platform.  

Finally, the Configuration Optimization uses the Repository to receive the current model, and to 

deposit the updated model with the recommended optimal configuration after it is done running. It 

also depends on the Monitoring to measure and provide the runtime performance metrics. 



Deliverable 1.1. State of the art analysis. 

 

Copyright © 2016, DICE consortium – All rights reserved 16 

 

3.2. Stakeholders and use cases 

Stakeholders are the actors who interact with the components and tools. They either require the 

features that the components and tools provide, or are involved in the workflow mandated by the 

components and tools. We have so far identified the following stakeholders: 

● System Administrator: involved only for a short time when the delivery and configuration 

tools need to be installed or reconfigured. 

● Developer: this is the main stakeholder, who uses the majority of the tools' features. 

Developers write code of the application and design the application models. They 

continuously update the application, requiring constant updates to the deployment of the 

application in the test bed. Developers occasionally require the optimal configuration of their 

applications' topologies. 

● Architect: similar actor to developer, except that they interact with the tools less frequently 

and normally only focus on the topology and optimal configuration of the application's 

design. 

● Quality assurance tester: they rely on the Continuous Integration tool to run the functional 

tests that they prepare as well as the non-functional tests. They also take advantage of the 

applications' deployment in the test bed, where they can, for example, perform A/B testing. 
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4. Tools 

4.1. DICE Deployment Tool 

4.1.1. Main components 

The main goal of the DICE deployment tool is to accept a TOSCA document, and deploy the 

application in the target environment. The core component would therefore be a cloud application 

orchestration tool, which needs to: 

● Be capable of translating the topology described in the TOSCA document into a deployment 

plan of the application. 

● Be as compliant as possible with the TOSCA YAML standard. 

● Support or use Chef recipes to handle the actual configuration management of the individual 

nodes. 

● Run as a multi-tenant service. 

● Offer a management and usability interface by exposing RESTful or SOAP services, or 

respond to topics of a messaging bus. 

● Support IaaS managers such as OpenStack, EC2 and Eucalyptus, and the ability to 

implement support for additional environments. 

● Be open source. 

According to our survey [1], a number of existing solutions cover some of the listed requirements, 

but we found that only Cloudify [4] fulfilled all of them. 

With the TOSCA standard gaining in popularity, we can expect that other tools will emerge, 

providing an improved set of features that users of the DICE deployment tool could benefit from 

(e.g., a simple ability to reuse parts of an existing deploy when updating the application with small 

changes in configuration). Hence, we plan to re-evaluate our decision of using Cloudify at later 

project milestones.  

In case we do decide to replace our core component with one from another vendor, we still want to 

preserve the way other DICE tools access the deployment. We also want to provide an access to the 

deployment tool that is simple for the users and for integration with other services, focusing only 

on the frequently used workflows and functionalities. To implement this simplification, the DICE 

tools consist also of a thin front-end service. In this way it will also be a relatively simple matter 

to implement client authentication and access restrictions.  

Another essential component of the DICE deployment tool is the Chef server. The component 

comes from a third party [5], but it serves both as the supported technologies’ cookbook repository 

and the manager of the Chef cookbook workflow executions at the target nodes. DICE also provides 

the content side in the shape of the Chef cookbook library, which provide recipes for all the 

supported technologies. We tailor made the cookbooks so that their recipes take advantage of the 

parameters supplied by the Cloudify’s Chef plug-in. Conversely, we added the recipes, which 

support crucial events in the application orchestration workflow. 
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Figure 2: Service components making up the DICE deployment tool 

In the Figure 2, we can see a diagram of the deployed services, which make up the DICE deployment 

tool. The clients are either users, which use a command-line interface to access the front-end service, 

or other DICE tools such as the DICE Continuous Integration tool or the DICE Configuration 

Optimization tool, which directly use the RESTful interface of the Front-end Service. The Front-

end service interacts with the Cloudify Manager, which in turn accesses the test bed’s IaaS API to 

manage the lifetime of the virtual machines. From each of the managed nodes (i.e., virtual 

machines), Cloudify’s Chef plug-in retrieves the cookbooks specified in the TOSCA blueprint for 

the node, and runs its recipes to install, configure, connect or clean up the application components. 

4.1.2. TOSCA documents for describing applications 

The components described in the previous section represent the infrastructural framework of the 

DICE Deployment Tool. In principle, the users could interact with this tool by submitting fully-

functional and valid TOSCA blueprints in order to deploy their applications. However, this would 

require recipe and blueprint preparation and enough knowledge of the TOSCA, recipes and services. 

With DICE, we want to simplify the blueprint preparation process as much as possible. 

To do this, we provide the content aspect of the DICE Deployment Tool, which takes form of a set 

of prepared TOSCA node types corresponding to the classes in the DDSM. These come as a set of 

importable YAML files, covering all of the generic and reusable constructs that the users’ 

applications will need. In particular, the following modules are available: 

● DICE supported technology types. These define the nodes, which correspond to the DICE 

supported building blocks. They inherit from a generic Chef node, provide definitions of the 

parameters for configuring each nodes along with reasonable default values. They also 

define the cookbook recipes needed to be run when Cloudify creates and configures the 

node, then connects it to the other nodes based on their dependences, and starts the node. 

They also define the steps needed when destroying the node. 

● Target IaaS vendor DICE definitions. To provide an abstraction from the underlying hosting 

environment (e.g., OpenStack, FCO, EC2…), we provide the node types, which correspond 

to virtual machines of various flavours and sizes. 
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● A template for the blueprint inputs. These define operational parameters of the DICE 

deployment tool, and are thus a responsibility of the administrator, who sets up the 

deployment tool. 

 

In practice, the user should then only provide the blueprint in a form of a set of node templates and 

relationships, each of which instantiates one of the prepared types. In this way, the details of the 

implementation (such as the scripts needed to run to establish relationships between nodes) are kept 

to a minimum in the end-user’s blueprint. 

The Figure 3 illustrates the package that the deployment service needs to receive in order for the 

application to be successfully deployed. The blueprint.yaml is the only document that the user 

needs to provide, while all the others are effectively a fixed part of the DICE Deployment Tool. 

Note that in the integrated environment of the DICE tools, even the blueprint itself will be an 

outcome of a model-to-text transformation, so effectively the user should not have to edit it in the 

first place. 

 

Figure 3: Contents of a TOSCA blueprint package 

Nevertheless, the DICE Deployment Tool can be used as a stand-alone tool, so the users are able to 

manually prepare their application’s blueprints. The Figure 4 shows an example YAML document, 

which describes a topology for deploying Storm. The same topology is represented graphically in 

the Cloudify’s GUI shown in the Figure 5. 
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Figure 4: An example TOSCA blueprint for a Storm topology 

 

tosca_definitions_version: cloudify_dsl_1_1 
 
imports: 
  # common imports 
  - http://www.getcloudify.org/.../types.yaml 
  - http://www.getcloudify.org/.../chef.yaml 
  - types/dice.yaml 
 
  # OpenStack imports 
  - http://www.getcloudify.org/.../openstack.yaml 
  - types/dice-openstack.yaml 
 
# The inputs are fixed.  
inputs: 
 
  # omitted for brevity 
 
node_templates: 
 
  # one medium-sized instance host for zookeeper 
  zookeeper_host: 
    type: dice.medium_host 
    instances: 
      deploy: 1 
 
  # 1 med-sized instance hosting the Storm Nimbus 
  storm_nimbus_host: 
    type: dice.medium_host 
    instances: 
      deploy: 1 
    relationships: 
      - type: […]server_connected_to_floating_ip 
        target: storm_floating_ip 
      - type:  […]_connected_to_security_group 
        target: storm_security_group 
 
  # 3 med-sized instances for hosting Storm 
  storm_host: 
    type: dice.medium_host 
    instances: 
      deploy: 3 
 
  # The node templates defining actual services. 
  # Their definition is fixed except for the  
  # properties some of the services might have. 
  zookeeper: 
    type: dice.zookeeper 
    # zookeeper service properties, which 
    # can be set explicitly; if omitted their 
    # default values will be used implicitly 
    properties: 
      tickTime: 1500 
      initLimit: 10 
      syncLimit: 5 
    relationships: 
      - type: cloudify.relationships.contained_in 
        target: zookeeper_host 
        source_interfaces: 
          # omitted for brevity 
    interfaces: 
      # implementation detail, which can be reused 
      cloudify.interfaces.lifecycle: 

        create: scripts/configure_hosts.sh 
 
  # this node template defines the Storm  
  # Nimbus service 
  storm_nimbus: 
    type: dice.storm_nimbus 
    relationships: 
      - type: cloudify.relationships.contained_in 
        target: storm_nimbus_host 
      - type: cloudify.relationships.connected_to 
        target: zookeeper 
 
  # node template to define regular Storm service 
  storm: 
    type: dice.storm 
    relationships: 
      - type: cloudify.relationships.contained_in 
        target: storm_host 
      - type: cloudify.relationships.connected_to 
        target: zookeeper 
      - type: cloudify.relationships.connected_to 
        target: storm_nimbus 
 
  # platform-specific node templates 
  storm_floating_ip: 
    type: cloudify.openstack.nodes.FloatingIP 
 
  storm_security_group: 
    type: cloudify.openstack.nodes.SecurityGroup 
    properties: 
      security_group: 
        name: ma_cloudify_storm 
      rules: 
        - remote_ip_prefix: 0.0.0.0/0 
          port: 8080 
        - remote_ip_prefix: 0.0.0.0/0 
          port: 22 
 
outputs: 
  storm_nimbus_gui: 
    description: URL of the Storm nimbus gui 
    value: { concat: [ 'http://', { get_attribute: 
[storm_floating_ip, floating_ip_address] }, 
':8080' ] } 
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Figure 5: A graphical representation of the example TOSCA blueprint for a Storm topology 

To briefly describe the blueprint, we can see that each of the top-level node templates use a type 

called dice.medium_host, which represents a medium-sized virtual machine (i.e., with 2 GB of 

RAM, 2 virtual CPUs and 10 GB of storage). Other flavours are available for larger or smaller 

nodes.  

The services themselves are then represented as node templates connected with the “contained in” 

relationship to their respective hosts. These services include Zookeeper, which orchestrates the 

services during their runtime, Storm Nimbus, which coordinates the Storm cluster, and a regular 

Storm services. The related services are, in turn, connected with “connected to” relationships. 

The blueprint also specifies the infrastructure-related properties of the topology. The Storm Nimbus 

node needs to expose its network interfaces to the public in order to provide the status web GUI 

functionality. Thus, we define a node representing a floating IP, and a node for the security group, 

regulating the traffic between the public Internet and the Storm Nimbus node. 

4.1.3. Tools usage 

The Deployment Tool will work with deployments or blueprints. We use the terms blueprint and 

deployment as synonyms here, because there exists 1:1 mapping between them (we consider each 

blueprint submission as its own deployment). The deployment is described in the deployment 

documents (blueprints), complete with all the services and applications needed to run independently 

of any other instance of the same application or any other application. The definition is based upon 

one Cloudify's deployment: "a virtual environment on your Cloudify manager with all of the 

software components needed to execute the application lifecycle described in a blueprint, based on 

the inputs provided in the cfy deployments create command."1 

                                                 
1
 Cloudify’s deployment definition: http://getcloudify.org/guide/3.2/quickstart.html  

http://getcloudify.org/guide/3.2/quickstart.html


Deliverable 1.1. State of the art analysis. 

 

Copyright © 2016, DICE consortium – All rights reserved 22 

 

Another abstraction offered by deployment tool is virtual container that can contain zero or one 

deployment. Main purpose of virtual container is to offer a stable endpoint for scenarios where 

redeployments happen often (e.g., automatic testing). 

We implemented the DICE deployment tool as a service, exposing a RESTful web service interface 

as its front-end. The service is a thin layer, which uses a third party orchestration solution such as 

Apache Brooklyn or Cloudify for its back-end. 

The Figure 6 illustrates the sequence of steps in the typical use of the tool: 

 

Figure 6: Basic Deployment Tool service sequence 

● User creates new virtual container that will hold deployment. 

● User uploads blueprint to the previously created virtual container and receives back an 

identifier that can be used in subsequent interactions with this deployment. 

● After receiving the blueprint, virtual deployment tool initiates deploy using backend 

orchestrator. Users can monitor the progress by querying deployment tool using previously 

received deployment identifier. 

● User updates blueprint and uploads it to the same virtual container as before. 

● After receiving an updated blueprint, the virtual deployment tool initiates a teardown of 

existing deployment and deploy of updated blueprint (possibly in parallel). 



Deliverable 1.1. State of the art analysis. 

 

Copyright © 2016, DICE consortium – All rights reserved 23 

 

● To tear down an existing deployment, user simply requests deletion from deployment tool 

using deployment identifier. 

4.1.4. Deployment tool REST API 

In order to support the previously described functionality, the deployment tool exports the following 

API endpoints: 

1. POST /containers 

Create a new virtual container. Call response contains container identifier (UUID) and 

status information (initially, container is empty). 

2. GET /containers 

List all virtual containers and their status information. 

3. GET /containers/{identifier} 

Display the status information about the selected virtual container. 

4. DELETE /containers/{identifier} 

Remove the selected virtual container. 

5. POST /containers/{identifier}/blueprints 

Upload a new blueprint to the selected container and start a deploy. If the container already 

contains a deployment, teardown is first initiated. The call’s response contains the 

deployment identifier and status. 

6. GET /blueprints 

List all blueprints and their statuses. 

7. GET /blueprints/{identifier} 

Get status of the selected blueprint. 

8. DELETE /blueprints/{identifier} 

Tear down the selected deployment and delete the accompanying blueprint. 

 

Note that creating and deleting deployments are time consuming operations. Each of the call is 

therefore asynchronous, meaning that it returns as soon as it successfully records and initiates an 

operation, but does not wait for the end of the operation. In order to monitor the progress, the user 

can continually poll the deployment tool about the deployment status. 

4.1.5. Obtaining the Deployment Tool 

The DICE Deployment Tool is available on GitHub in multiple components: 

 https://github.com/dice-project/DICE-Deployment-Service – the thin wrapper and the 

RESTful web service interface of the DICE Deployment Tool. 

 https://github.com/dice-project/DICE-FCO-Plugin-Cloudify – the client for the FCO and the 

plug-in used by the Cloudify TOSCA blueprints for orchestrating deployments in the FCO. 

 https://github.com/dice-project/DICE-Deployment-Cloudify – this repository contains the 

TOSCA definitions and the scripts for supporting the configuration of the supported Big 

Data services. 

 https://github.com/dice-project/DICE-Chef-Repository – Chef repository with the 

cookbooks that the TOSCA definitions refer to. 

https://github.com/dice-project/DICE-Deployment-Service
https://github.com/dice-project/DICE-FCO-Plugin-Cloudify
https://github.com/dice-project/DICE-Deployment-Cloudify
https://github.com/dice-project/DICE-Chef-Repository
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4.2. DICE Continuous Integration Tool 

4.2.1. Main components 

The DICE Continuous Integration tool has the following main functions and purposes: 

● To periodically, on certain events (such as a new commit into the project) or when triggered 

manually, perform continuous integration jobs. 

● To host the continuous integration jobs, which consist of a sequence of steps, including: 

fetching the latest commit, compilation, verification (e.g., via user-provided unit tests), and 

deployment of an application. 

● To schedule and run long tasks, such as configuration optimization. 

● To record the progress of a project and present a visual representation of the project 

execution history. 

To accommodate for these functional requirements, the DICE Continuous Integration tool consists 

of the following components: 

● Jenkins [21] Continuous Integration tool is the basis for the DICE Continuous Integration 

tool. It is an open-source solution, which is both popular with many software teams as well 

as a tool of choice for the DICE use cases [2]. 

● A DICE plug-in for Jenkins. This plug-in specialises in collecting the results and 

performance metrics from the quality test runs of the application. 

● A set of sample jobs, which can be easily adapted and reused in the actual projects, which 

use DICE tools. 

4.2.2. Tool usage 

Once the Administrator installs a Jenkins service with the DICE plug-in installed and configured, 

the DICE Continuous Integration tool can be used like any standard Jenkins tools. The users log 

into the portal, and the more privileged users can then create continuous integration jobs, specifying 

in each job the details such as the source of the code in a versioning system of choice (e.g., a 

Subversion or a GIT server), the repository and the branch to be monitored. They also specify the 

sequence of actions, which can be copied from one of the DICE sample jobs.  

When a job is set, the developers can then use the system as normal: by committing their changes 

to the Versioning Control System such as Subversion, Jenkins will execute the job. The outcome of 

the job execution gets recorded in Jenkins. 

The users can then visit the details page of the job, which shows the history of the past job 

executions. Figure 7 shows an example view. As the example shows, the view shows a chart of the 

selected metric as well as the tabular representation of the build history. If multiple performance 

metrics are available for the builds, the links under the chart enable switching between them. 
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Figure 7: DICE plug-in for Jenkins displays a history of the measured performance metrics (e.g., latency) as a 

chart, and the history of the builds as a table 

Configuring of the DICE Continuous Integration plug-in is possible in the post-build actions of the 

job settings, as Figure 8 shows. The administrator can provide the path pattern in the application’s 

workspace where the test tools deposit the results. The “Retain long standard output/error” option 

enables or disables preserving and displaying in the job history of all the job’s output. The Health 

report amplification factor influences how the overall job’s health is computed.  

 

Figure 8: Options available when configuring a continuous integration job for the DICE Continuous 

Integration plugin 
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Health of the build is represented as a percentage, with 100% meaning a fully stable job, and 0% 

representing a fully failing job. 

● A factor of 0.0 will disable the test result contribution to build health score.  

● A factor of 0.1 means that 10% of tests failing will score 99% health. 

● A factor of 1.0 means that 10% of tests failing will score 90% health. This is the default 

setting. 

● A factor of 5.0 means that 10% of tests failing will score 50% health. 

● A factor of 10.0 means that 10% of tests failing will score 0% health. 

The use of the jobs in Continuous Integration will effectively be asynchronous. This means that 

either the user or a software client (e.g., an IDE plug-in) initiates a long-running job, but the action 

doesn’t block any other workflow to wait for the job to be finished. Instead, the Continuous 

Integration tool enables the retrieval of the current status of the job (e.g., scheduled, running, 

finished), so that the client should periodically or occasionally poll for the status. 

4.2.3. Obtaining Continuous Integration Tool 

The DICE Continuous Integration tool consists of the standard Jenkins [21] install and a plug-in, 

which is available at the GitHub: 

 https://github.com/dice-project/DICE-Jenkins-Plugin 

4.3. Configuration Optimization Tools 

Once a data-intensive system approaches its final stages of deployment for shipping to the end users 

it becomes increasingly important to tune its performance and reliability [24]. This is a time-

consuming operation, since the number of candidate configurations can grow very large. 

Configuration optimization tool guides this phase in order to find optimum configuration to be set 

for the real system. There are currently a number of mathematical methods and approaches that can 

be used in the search for optimal configuration. The Configuration optimisation tool presented 

below employs BO4CO [25], a machine learning algorithm that facilitates iterative search for the 

best configuration settings. The description of the tool and its behaviour, along with potential use 

cases and initial experimental results is presented in the sections below. 

4.3.1. Main components of Configuration Optimization Tool 

The high-level structure of the configuration optimization tool consists of three separate 

components, as shown in Figure 9: (i) configuration optimizer (the machine learning algorithm), (ii) 

configuration testing (the coordinator), (iii) performance repository (for storing performance data 

that feed the algorithm). The tester specifies the parameters of interest and possible values for each 

parameter. The configuration optimization tool then based on currently available performance 

measures select the next configuration of the stream topology to be tested by the configuration 

testing component. Once the performance of the topology with the currently selected configuration 

has been measured, it will be stored to the performance data repository in order to be retrieved by 

the BO4CO algorithm. This sequential process (of configuration selection and experimental 

measurement) will be continued until the maximum number of allowed test is performed. 

https://github.com/dice-project/DICE-Jenkins-Plugin


Deliverable 1.1. State of the art analysis. 

 

Copyright © 2016, DICE consortium – All rights reserved 27 

 

 

Figure 9: Configuration optimization architecture 

4.3.2. Behaviour of the Configuration Optimization Tool 

Logic of the tool is iterative (left part of Figure 10). The configuration optimizer automatically 

selects a configuration at each iteration employing BO4CO [25] that determines the best 

configuration to test next in the procedure. BO4CO estimates the response surface [26] of the system 

using observed performance data. It selects the next configuration to test using the estimated data 

searching for points that has a good chance of being the optimum configuration.  

The configuration testing then automatically deploys the topology on a testbed (e.g., Storm cluster), 

then the end-to-end performance of the topology determined by the configurations is measured and 

stored in a data repository to be used by configuration optimizer. Configuration optimizer exploits 

the historical data to fit a model in order to decide which configuration to select next. Finally, after 

the predetermined number of iterations, the optimal configuration with the lowest latency or highest 

throughput depending on the user preference is selected as the main output of the tool. Note that the 

internal machine learning model will be then used for performance configuration for regions that 

we have not performed any experiments. In the results section, we provide experimental results 

comparing the prediction power of our internal model with polynomial fits. 

 

Figure 10: Internal behaviour of configuration optimization tool 

Internally, the configuration testing automatically deploys (via DICE deployment tool) a topology 

on a multi-node cluster, like the one represented in Figure 11 with 1 Nimbus node, 2 Zookeeper 

nodes and 3 Supervisors. Two major entities are involved in quality testing tool: (i) the configuration 

file, (ii) the performance data. The configuration template is retrieved by the tool through model 

repository in a YAML file. The appropriate configurations are then set in the template by appropriate 

values. In order to perform model fitting, the tool requires to retrieve the performance data and 
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augment new points in the repository. This performance data serves as the main ingredient for 

reasoning where to test next in the tool. Also further internal entities are used in the model for storing 

the historical configurations and also storing the machine learning model and its estimates. We are 

also able to automatically communicate the configuration parameters that needs to be changed and 

its associated values through the configuration optimizer. The DICE monitoring tool also provides 

end to end throughput and latency measurements.  

 

Figure 11: Storm architecture 

4.3.3. Configuration Optimization Tool usage 

The tools usage is as follows: 

1. Tester provides a list of configuration parameters and potential (exhaustive) set of 

configuration options for each parameter in a YAML file. The tester also provides the 

maximum number of experiments for which she has the budget for. 

2. The tester then starts the tool via IDE. 

a. The tool then starts the test by retrieving the configuration template from model 

repository. 

b. Prepares the testing scripts and the test bed and loads the historical data from data 

repository. 

c. The tool then sequentially performs the experiments and after the budget is finished 

it gives the optimum configuration as well as the internal machine learning model 

for performance predictions in use cases for example, A/B testing or other scenarios 

as mentioned above. For doing so it performs the following steps: 

i. It deploys the configuration by specific parameter settings by using CI and 

DS tools. 

ii. It builds and runs the topology on the test bed. 

iii. It queries the monitoring and augments the experimental data to the data 

repository. 

iv. It performs the model refitting on the updated historical data and reason 

where to test next using the model prediction of the good locations (good 

location means low estimates of latency or high estimates of throughput using 

the internal machine learning model). 

3. The configuration optimization tool then provides the optimum configuration in different 

formats: (i) text file, (ii) xml file, (iii) console, (iv) html format, (v) directly to the YAML 

configuration file associated to the running topology on the cluster it is running for end users. 
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4.3.4. Results 

We performed several experiments with different Apache Storm topologies. WordCount (Figure 

12) is an Apache Storm topology that we used in our experiments. The objective of the experiment 

is to show that configuration optimization tool is able to find the optimum configuration with few 

iterations.  

 

Figure 12: WordCount topology 

We considered 13 parameters in our experiments mainly because they affect the latency 

considerably. However, configuration optimization tool is not dependent on these parameters and 

can work with any Storm based configuration [25][25]. 

● topology.max.spout.pending. The maximum number of tuples that can be pending on 

a spout. 

● topology.sleep.spout.wait.strategy.time.ms. Time in ms the 

SleepEmptyEmitStrategy should sleep for. 

● storm.messaging.netty.min_wait_ms. The min time netty waits to get the control 

back from OS. 

● spouts, splitters, counters, bolts. The level of parallelisms of different Processing 

Elements (PEs). 

● heap. The size of the worker heap. 

● storm.messaging.netty.buffer_size. The size of the transfer queue between Storm 

deployment nodes. 

● topology.tick.tuple.freq.secs. The frequency at which tick tuples are received. 

● top_level. The length of a linear topology. 

● message_size, chunk_size. The size of tuples and chunk of messages sent across PEs 

respectively. 

Figure 13 shows the improvements of Storm topology end to end latency (the difference between 

the timestamp once the job arrives to the topology and the time it has been processed and leaves the 

topology) when we find optimal configuration comparing with the default values, note that the 

default values [22] is typically used in Storm topologies. This shows an improvement of 3 orders of 

magnitudes comparing with the default values. The results show that the tool finds the optimum 

configuration only within first 100 iterations. The full factorial combination of the configuration 

parameters in this experiment is 3840 and 100 experiments is equal to 2% of the total experiments. 

Note that in order to measure the difference between the optimum configuration found by the 

configuration optimization tool we performed the full factorial experiments (i.e., 3840 experiments 

each for 8 minutes over 3480*8/60/24=21 days). 
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Figure 13: Distance to optimum configuration, error is in milliseconds 

 

4.3.5. Obtaining Configuration Optimization Tool 

The configuration optimization tool will be provided at the following address: 

 https://github.com/dice-project/DICE-Configuration-BO4CO 

https://github.com/dice-project/DICE-Configuration-BO4CO
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5. Conclusion 

Teams developing data-intensive applications inevitably have to deal with stacks of third-party 

services of varying complexity. A case in point is the Lambda architecture exemplified in the Oryx 

2 framework, which is composed of at least 5 different services. Their set-up and configuration can 

be intimidating to inexperienced teams, and can thus be a deterring factor when deciding for the 

application’s underlying technology or experimenting with various topologies. As a result, the 

applications created in a traditional way have a long Time-to-Market (TTM) stage. 

Modern software market is highly competitive thus necessitating the quick delivery of the quality 

product. Therefore, it is no longer enough to build an application that is eventually brought to the 

environment where it can be tested, validated and, ultimately, used. Instead, it is important that the 

application is deployed in the test bed as soon as possible. That is, as soon as offline tools such as 

compilers, simulation tools and optimization declare the design and code to be valid. The best 

approach to achieve this is to streamline the whole development process. In this way, the developers 

feel as little traction as possible. 

The DICE Deployment Tool and the DICE Continuous Integration Tool resolve the problem of 

complexity of deploying stacks of services in a test bed as well as the need to carry these tasks 

frequently. Our DICE Deployment Tool readily consumes the TOSCA documents, which contain 

the application’s topology description. By using the supported building blocks’ node types and 

cookbook recipes, the application deployment is a trivial matter. 

Bringing the application to a working state is, then, only one part of the goal when designing data-

intensive applications. It is then equally important that the application performs efficiently. It is 

often a matter of tuning the configuration values of the various services to the application and the 

deployment topology. Rather than leaving the application to the default parameters set in the Big 

Data frameworks such as Apache Storm, Apache Spark or Apache Hadoop, DICE framework 

includes the Configuration Optimization Tool. This tool is the result of an on-going research, 

involving suitable optimization techniques and machine learning approaches such as the BO4CO. 

Given a number of constraints such as time, the tool finds the optimum configuration under which 

the application performs with lower latency and higher throughput compared to default settings. 

The downside of the DICE Deployment Tool initial version is that it currently has no capability to 

perform incremental updates of the deployments. This means that even small changes in the 

configuration or the overall topology of the application require a full redeployment and reinstallation 

of the application. This can become time consuming. To speed up the redeployments, we will look 

into solutions for shortening the most expensive operations (such as extensive package downloads 

and repository updates) by using caches or whole machine snapshots. 

Staying on the edge of the newest technology as a toolset means that the users of the DICE tools 

will also be able to experiment with, experience and take advantage of the trending data storage and 

processing engines. This is why we will support additional technologies to be available with the 

upcoming versions of the DICE delivery and configuration tools. 
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5.1. DICE Requirement compliance 

In the Section 2 we provided a summary of the requirements. The Table 1 indicates the level that 

the DICE Delivery Tools comply in their initial release. The Level of fulfilment column has the 

following values: 

 ✗ - not supported in the initial version yet 

 ✔ - initial support 

 ✔ - medium level support 

 ✔ - fully supported 

Table 1: Level of compliance of the initial version of the DICE delivery tools with the initial set of requirements 

Requirement Title Priority Level of fulfilment 

R5.3 Continuous integration tools deployment MUST ✔ 

R5.4 Translation of TOSCA models MUST ✔ 

R5.4.1 Deployment plan support MUST ✔ 

R5.4.7 Deployment of the application in a test 

environment 

MUST ✔ 

R5.4.8 Starting the monitoring tools MUST ✔ 

R5.5 User-provided initial data retrieval MUST ✔ 

R5.7 Data loading support MUST ✗ 

R5.16 Provide monitoring of the quality aspect of the 

development evolution (quality regression) 

MUST ✔ 

R5.19 Deployment configuration review MUST ✗ 

R5.20 Build acceptance MUST ✔ 

R5.27 Recommender Engine and Optimization MUST ✔ 

R5.27.2 Recommender Engine API MUST ✔ 

 

As a part of our future work, we will continue to work towards fully supporting the requirements. 

In particular: 

 R5.4 is an on-going collaboration between WP5 and WP2 to ensure that the model-to-text 

transform, which transforms the DDSM into a corresponding TOSCA document, produces 

a workable TOSCA blueprint. 

 R5.4.8 will be the effort with the WP4 at the beginning of year 2. 

 R5.5 is in the process of being defined and should be implemented in year 2. 

 R5.7 depends on the definition for R5.5. 

 R5.16 is in the stage of being tested and should be validated by the use cases in the beginning 

of year 2. 

 R5.19 will be designed in year 2. 
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 R5.27 is subject of integration, which is planned for M18. 
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https://puppetlabs.com/puppet/what-is-puppet
http://www.ansible.com/home
http://www.ubuntu.com/cloud/tools/juju
https://brooklyn.incubator.apache.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=camp#technical
http://www.martinfowler.com/articles/continuousIntegration.html
https://jenkins-ci.org/
https://github.com/apache/storm/blob/master/conf/defaults.yaml
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