

Developing Data-Intensive Cloud
Applications with Iterative Quality

Enhancements

Monitoring and data warehousing tools
– Initial version
Deliverable 4.1

Ref. Ares(2016)529011 - 01/02/2016

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 2

Deliverable: D4.1
Title: Monitoring and data warehousing tools – Initial version

Editor(s): Daniel Pop (IEAT)
Contributor(s): Daniel Pop (IEAT), Gabriel Iuhasz (IEAT)

Reviewers: Darren Whigham (FLEXI), Ilias Spais (ATC)
Type (R/P/DEC): Demonstrator

Version: 1.0
Date: 31-January-2016

Status: Final version
Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/
Copyright: Copyright © 2016, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre
FLEXI: Flexiant Limited

IEAT: Institutul E Austria Timisoara
IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA
PMI: Politecnico di Milano
PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.
ZAR: Unversidad De Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 3

Executive summary

This deliverable documents the monitoring and data warehousing platform, namely DICE Monitoring
Platform (DMon), developed in T4.1. This component is central to DICE architecture being used by
simulation, optimization, verification and quality enhancement tools. The initial version of the platform is
powered by a suite of open-source frameworks (Elasticsearch - for storage and indexing, LogStash – for
log processing, and Kibana - for visualization) and provides its services through a RESTful API. In the
initial version, the platform is able to collect, store, index and query logs produced by the following popular
Big Data technologies: Apache YARN, HDFS and Spark.

The document is structured as follows: the Introduction section highlights the objectives and features of
DMon platform and describes the contributions of the platform to DICE objectives and DICE innovation
objectives. This is followed by the presentation of the position of DMon inside overall architecture and its
interfaces to other DICE tools. First section highlights in its last sub-section the achievements of the period
under report. The second section connects the DICE Monitoring platform to DICE use cases and
requirements identified and presented in deliverable D1.2. The third section, Architecture and design of the
tool, details the constituent components of the platform and its microservices, while the deployment and
validation of the DMon platform are tackled in section 4. Section 5 – Documentation – provides additional
references to REST API documentation and deployment and installation guides. Last section draws final
conclusions and sets the future development plans for DICE Monitoring platform.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 4

Table of contents

EXECUTIVE SUMMARY ... 3
TABLE OF CONTENTS .. 4
LIST OF FIGURES .. 5
LIST OF TABLES .. 5
1. INTRODUCTION ... 6

1.1. Relation to DICE innovation objectives .. 6
1.2. Relation to DICE objectives .. 7
1.3. Relation to other DICE tools ... 8
1.4. Achievements of the period under report .. 9

2. REQUIREMENTS AND USE CASES .. 11
2.1. Use cases .. 11
2.2. Requirements ... 15

3. ARCHITECTURE AND DESIGN OF THE DICE MONITORING PLATFORM 17
3.1. Core Components .. 18
 Node-level components ... 19
3.2. .. 19
 DMon Services .. 20
3.3. .. 20
 Core-level services ... 20
3.3.1. ... 20
 Node-level services .. 22
3.3.2. ... 22
3.4. Performance Metrics .. 23

4. DEPLOYMENT AND VALIDATION .. 25
4.1. Deployment on FCO .. 26
4.2. DMon validation against Cloudera Distribution for Hadoop CDH 5.4.7 and Oryx2 26
4.3. Deployment using Vagrant .. 28

5. DOCUMENTATION .. 29
6. CONCLUSION AND FUTURE PLANS ... 30
REFERENCES .. 31
APPENDIX A. REST API STRUCTURE .. 33

Overlord (Monitoring Management API) .. 33
Monitoring Core Resources ... 33
Monitoring auxiliary .. 46

Observer (Monitoring Query API) ... 49
NOTICE ... 52
APPENDIX B. INSTALLATION .. 53

Cloud .. 53
Vagrant ... 54

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 5

List of figures

Figure 1 DICE Overall architecture ... 9
Figure 2 DMon sequence diagrams ... 11
Figure 3 DMon architecture ... 18
Figure 4 dmon-controller: Swagger interface for REST API ... 20
Figure 5 dmon-agent: Swagger interface for REST API .. 22
Figure 6 OSLC Perf. Monitoring v2.0 Diagram .. 24
Figure 7 DMon Dashboard .. 25
Figure 8 DMon Metrics Representation ... 25

List of tables

Table 1 Relation to DICE objectives ... 7
Table 2 UC4.1.1 Metrics specification on application model .. 12
Table 3 UC4.1.2 Monitoring agents’ registration .. 12
Table 4 UC4.1.3 Monitoring data storage .. 13
Table 5 UC4.2 Querying the DMon platform .. 13
Table 6 UC4.3 Data cleaning ... 13
Table 7 UC4.4 Metrics visualization ... 14
Table 8 Use cases status ... 14
Table 9 Requirements for DMon platform .. 15
Table 10 Requirements status .. 16
Table 11 Example of query (JSON format) ... 21
Table 12 DMon deployment on FCO .. 26
Table 13 CDH and Oryx2 deployment on FCO .. 27

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 6

1. Introduction
This deliverable presents the initial release of the DICE Monitoring Platform (DMon), whose main goal is
to collect, store and provide access to monitoring data collected from various Big Data technologies, such
as Apache Hadoop, Spark or Storm. The Monitoring Platform is being developed in the task T4.1, part of
WP4 work package, and its main objectives are:

● Collect, store and query monitoring data collected from various Big Data technologies
● Scalability, extensibility and high-availability platform
● Easily deployable on Cloud environment using DICE tool chain

Main features of the platform:

● Distributed architecture (Microservices)
● Deployable on Cloud environment, as well as on bare-metal
● High availability
● Access through RESTful API
● Easy installation
● Vagrant scripts for development and testing phases
● Integrates data from multiple Big Data platforms in a unique platform
● Horizontal scaling

The remaining of this section presents the positioning of DMon relative to DICE innovation objectives,
DICE objectives and relation to other tools from DICE tool-chain.

1.1. Relation to DICE innovation objectives

The focus of the DICE project is to define a quality-driven framework for developing data-intensive
applications that leverage Big Data technologies hosted in private or public clouds. DICE will offer a
novel profile and tools for data-aware quality-driven development. The methodology will excel for its
quality assessment, architecture enhancement, agile delivery and continuous testing and deployment,
relying on principles from the emerging DevOps paradigm. The DICE Monitoring Platform contributes to
all core innovations of DICE, as follows:

● Innovation 1: Tackling skill shortage and steep learning curves in quality-driven development of data-
intensive software through open source tools, models, methods and methodologies.

The Monitoring platform’s automatic deployment and support of key Big Data technologies enable end-
users to install and monitor existing infrastructures just by executing a Vagrant script that does all the job,
or integrate the platform into Chef infrastructure. The platform provides a rich Web user interface where
users can visualize the status of their resource usage.

● Innovation 2: Shortening the time to market for data-intensive applications that meet quality
requirements, thus reducing costs for ISVs while at the same time increasing value for end-users.

Optimization, verification, simulation and iterative quality enhancement tools use the collected monitoring
data in their initial step.

● Innovation 3: Decreasing costs to develop and operate data-intensive cloud applications, by defining
algorithms and quality reasoning techniques to select optimal architectures, especially in the early
development stages, and taking into account SLAs.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 7

Thanks to Monitoring platform easy deployment, integration with Chef configuration management system,
support of key Big Data technologies and open-source delivery model, the costs of monitoring data-
intensive Cloud applications are highly reduced. Monitoring data can serve as a valuable starting iteration
of reasoning techniques for architecture optimization.

● Innovation 4: Reducing the number and severity of quality-related incidents and failures by leveraging
DevOps-inspired methods and traditional reliability and safety assessment to iteratively learn application
runtime behaviour.

The Runtime application behaviour is collected and stored by the Monitoring platform. Connected tools of
DICE toolchain, such as Enhancement tools, Trace Checking tools, Anomaly Detection tools, will query
the platform to get the data they need either in real-time, or offline.

1.2. Relation to DICE objectives
The following table highlights the contributions of DICE Monitoring platform to DICE objectives.

Table 1 Relation to DICE objectives

DICE Objective Description Relation to Monitoring Platform

DICE profile and methodology

Define a data-aware profile and a data-aware
methodology for model-driven development of
data-intensive cloud applications. The profile will
include data abstractions (e.g., data flow path
synchronization), quality annotations (e.g., data
flow rates) to express requirements on reliability,
efficiency and safety (e.g., execution time or
availability constraints).

None

Quality analysis tools

Define a quality analysis tool-chain to support
quality related decision-making through
simulation and formal verification.

Simulation and verification tools (WP3) use
quality metrics computed by Monitoring platform
as initial iteration of their analysis.

Quality enhancement tools

An approach leveraging on DevOps tools to
iteratively refine architecture design and
deployment by assimilating novel data from the
runtime, feed this information to the design time
and continuously redeploy an updated application
configuration to the target environment.

Data from runtime is collected, processed and
served by the Monitoring platform. Thus,
enhancement tools will query the platform to
obtain the input data they need.

Deployment and testing tools

Define a deployment and testing toolset to
accelerate delivery of the application.

In this initial version, all components of the
platform (core and monitoring agents) are
automatically deployed using simple Vagrant
script, respectively scripts executed via SSH on

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 8

monitored nodes. Its deployment will be
integrated with Deployment tools (WP5).

IDE

Release an Integrated Development Environment
(IDE) to simplify adoption of the DICE
methodology.

None

Open-source software

Release the DICE tool-chain as open source
software.

Monitoring platform relies on open-source
software (Elasticsearch, Logstash, Kibana,
collectd) and is made available as open-source.

Demonstrators

Validate DICE productivity gains across industrial
domains through 3 use cases on data-intensive
applications for media, e-government, and
maritime operations.

Applications provided by ATC and NETF will be
using the Monitoring platform.

Dissemination, communication, collaboration
and standardisation

Promote visibility and adoption of project results
through dissemination, communication,
collaboration with other EU projects and
standardisation activities.

Monitoring platform is being presented in Big
Data and innovation events (e.g. Romanian
BigData Roadshow, InnoMatch 2015), as well as
in scientific publications.

Long-term tool maintenance beyond life of
project.

The project coordinator (IMP) will lead
maintenance of tools, project website and user
community beyond DICE project lifespan.

Monitoring platform source code and homepage
are stored using Github publicly, as open-source
software. Community is welcome to contribute to
the platform, during and after DICE end.

1.3. Relation to other DICE tools

Figure 1 illustrates the interfaces between the DICE Monitoring platform (DMon), namely Monitoring in
the figure, and the other DICE tools. The main goal of DMon is to provide a flexible yet lightweight
platform that enables the fine grained monitoring of big data applications by various actors: developers,
architects or software engineers. It must also be able to serve in near real-time monitoring metrics to other
DICE tools comprising the DICE tool-chain, such as Configuration optimization, Enhancement tool and
Quality testing tool.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 9

Figure 1 DICE Overall architecture

It can be easily seen from Figure 1 that DMon supplies monitoring data to various DICE tools. The deepest
level of integration will be with the Anomaly Detection Tool. This is because the DMon and the anomaly
detection tool will be part of a Lambda Architecture. DMon will be used as a serving layer. More details on
this can be found in section 3.3.

Other tools such as the Enhancement and Configuration Optimization tools will query DMon. These tools
will then use the returned metrics to monitor the current big data framework status and the impact of the
modifications enacted by them. They can also use historical data available in DMon to create and validate
various predictive models. Each tool will have to know the endpoint of DMon.

The trace-checking tool requires logs from big data frameworks as traces. It will parse these logs in order to
extract valuable insight into the current status of the framework. These logs will be collected and indexed
by DMon.

1.4. Achievements of the period under report

Overview of the main achievements in the reported period:

● Collect monitoring data from Apache YARN, Apache HDFS and Apache Spark via their metrics
systems.

● Collect system resource (CPU, memory, network) usage thanks to specific collectd plugins

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 10

● Store collected data in a unique storage platform powered by the ELK stack (Elasticsearch,
Logstash, Kibana)

● Provide access to collected data via RESTful API.
● Visualize collected data in Web GUI using Kibana dashboard extensions.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 11

2. Requirements and Use Cases

This section reviews the requirements and use case scenarios of the monitoring platform, which were
already presented the deliverable “D1.2 Requirements specifications” and its annexes [11, 12] released on
month 6, and it expands on how these were addressed in the current DMon version.

2.1. Use cases

Figure 2 DMon sequence diagrams

The first interaction illustrates the deployment of the Monitoring platform, scenario in which the
Deployment tool (DS) is responsible to deploy the Monitoring Platform Core and the Monitoring Agent on
each monitored node of the infrastructure. The entire deployment process may be triggered by different
classes of end-users (DEVELOPER, ARCHITECT) via DICE IDE and Continuous Integration (CI)
framework.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 12

Once DMon is provisioned, various tools of DICE tool-chain may query the platform for needed metrics
supplying the time interval of interest.

In an end-to-end scenario, the DESIGNER/ARCHITECT/DEVELOPER starts by loading the model in
DICE IDE and annotates various components of the model with his/her metrics of interest (see Table 2
UC4.1.1). The DEPLOYMENT_TOOLS then deploy the application on the infrastructure, registers the
monitoring agents (see Table 3 UC4.1.2) and configures them to collect the user-defined metrics. During
the execution of the application, monitoring agents collect and send runtime data to the DMon platform
(see Table 4 UC4.1.3). Using the Web-based user interface the end-users are able to visualize collected
metrics (see Table 7 UC4.4). Alternatively, other DICE tools (such as SIMULATION_TOOLS,
ENHANCEMENT_TOOLS, OPTIMIZATION_TOOLS) will query the DMon platform to retrieve; either
at on-the-fly (online) or offline, data they need to perform their specific tasks (see Table 5 UC 4.2). If need,
external actors may run data cleaning tasks (see Table 6 UC4.3) as a preliminary step before querying the
platform.

The tables below are based on the usage scenarios included in D1.2 [11, 12] and they have been updated to
include latest changes in tools terminology.

Table 2 UC4.1.1 Metrics specification on application model

Actors DEVELOPER, ARCHITECT

Priority REQUIRED

Flow of Events 1. The actor loads the model in DICE IDE

2. Annotates the model with metrics of interest (e.g. Arrival rate, throughout)

3. Deploys the model using DEPLOYMENT_TOOLS

4. DEPLOYMENT_TOOL configures the monitoring agents with user-defined
metrics

5. Monitoring agents sends monitoring data to Monitoring Platform Core

Pre-conditions A UML model for the application has been defined.

Post-conditions The application UML model is annotated with requirements on the metrics to be
collected.

Table 3 UC4.1.2 Monitoring agents’ registration

Actors MONITORING_TOOLS (Node Agents)

Priority REQUIRED

Flow of Events Each Monitoring agent, which is running on a monitored node, will:

1. Discover the the Data Warehousing component

2. Send its identifier and the list of available roles to the Data Warehousing
component

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 13

3. Negotiate the monitored metrics and acknowledge

Pre-conditions Test application MUST be successfully deployed on test environment.

Monitoring Platform Core (ELK) installed.

Table 4 UC4.1.3 Monitoring data storage

Actors MONITORING_TOOLS

Priority REQUIRED

Flow of Events 1. Monitoring agents connects to the Monitoring Platform Core

2. Compute the metrics by performing ETL (extract-transform-load) type jobs.

3. Store resulting metrics in the Monitoring Platform Core

Pre-conditions Existence of data collection tools.

Post-conditions Recorded and computed metrics stored and available in Monitoring Platform Core

Table 5 UC4.2 Querying the DMon platform

Actors SIMULATION_TOOLS, ENHANCEMENT_TOOLS,
OPTIMIZATION_TOOLS

Priority REQUIRED

Flow of Events 1. Actors send a query to the Monitoring Platform for specific metrics and
timeframe

2. MP validates the query

3. If the query is malformed then the actor receives an error message

4. If the query is correct then the actor receives a dataset as a result

Pre-conditions Monitoring Platform available

Table 6 UC4.3 Data cleaning

Actors ANOMALY_TRACE_TOOLS

Priority RECOMMENDED

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 14

Flow of Events 1. ANOMALY_TRACE_TOOLS connect to the Monitoring Platform

2. ANOMALY_TRACE_TOOLS specifies an event window

3. ANOMALY_TRACE_TOOLS specifies a data cleaning algorithm to be
applied on selected window

4. ANOMALY_TRACE_TOOLS launches the data cleaning task(s)

Pre-conditions A UML model for the application has been defined.

Post-conditions The application UML model is annotated with requirements on the metrics to be
collected.

Table 7 UC4.4 Metrics visualization

Actors DEVELOPER, ARCHITECT, ADMINISTRATOR

Priority REQUIRED

Flow of Events 1. Actors access the Monitoring Platform WUI (Kibana)

2. Actors choose what metrics want to visualize

3. Actors choose the visualization form

Table 8 presents the status of the use cases’ implementation at the end of this reporting period (M12).

Table 8 Use cases status

UC Title Status at M12

UC4.1.1 Metrics specification on application model NOT STARTED

UC4.1.2 Monitoring agents registration DONE

UC4.1.3 Monitoring data storage DONE

UC4.2 Querying the monitoring platform ON-GOING (Initial version of RESTful
API implemented)

UC4.3 Data cleaning NOT STARTED

UC4.4 Metrics visualization ON-GOING (Initial visualization
supported using Kibana user interface)

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 15

2.2. Requirements

This section overviews requirements expressed by the users of DICE monitoring platform and how are
these addressed in the implementation of the DMon platform.

Table 9 Requirements for DMon platform

Requirement Implementation details

R4.1: Monitoring data warehousing Monitoring agents running on each node of the cluster
forward the logfile data (exported by various Big Data
frameworks or by custom applications) to the DMon
platform that performs ETL.

R4.2: Monitoring data warehouse schema DMon platform’s input/output format is JSON; no fixed
schema is possible due to the diversity of monitored
technologies, but common attributes are recorded for each
data item stored in the platform, such as timestamp, node id,
or source.

R4.2.1: Monitoring data versioning Application build number is handled via tags attached on
collected data.

R4.2.2: Supplying the version number Build number is provided by the Deployment tool as tag.

R4.3: Monitoring data extractions Logstash server performs ETL on incoming data before
sending data to Elasticsearch for storage and indexing.

R4.4: Monitoring data format
transformations

Data is stored internally as JSON messages and it’s
transformed to requested format upon delivery.

R4.5: Monitoring data retention policy Elasticsearch indexes are archived and deleted after some
time interval.

R4.6: Monitoring data access restrictions User authentication using user name and password, or SSL
certificates

R4.7: Monitoring tools REST API REST API interface implemented as a microservice in
Python offers access to management and query of DMon
platform.

R4.8: Monitoring Visualization Visualization is supported by Kibana framework.

R4.9: Data Warehouse replication Elasticsearch, which powers the data warehouse, is natively
highly available and supports replication; Supporting high
incoming rate is achieved using a queuing service handling
requests addressed to Logstash.

R4.22: Time-based ordering of monitoring
data entries

Domain assumption; data is consistently ordered when
collected from different nodes

R4.34: Monitoring for quality tests Using Monitoring Query API, QTESTING_TOOL queries
DMon for metrics of interest (high-level metrics, such as
arrival rate, throughput are supported).

R4.35: Tag monitoring data with OSLC
tags

DMon exports metrics in RDF format using OSLC Perf Mon
2.0 vocabulary.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 16

Table 10 presents the status of requirements’ implementation at the end of reporting period (M12).

Table 10 Requirements status

Requirement Status at M12

R4.1: Monitoring data warehousing ON-GOING (technologies supported at M12:
HDFS, YARN, Spark)

R4.2: Monitoring data warehouse schema DONE

R4.2.1: Monitoring data versioning NOT STARTED

R4.2.2: Supplying the version number NOT STARTED

R4.3: Monitoring data extractions ON-GOING

R4.4: Monitoring data format transformations ON-GOING

R4.5: Monitoring data retention policy NOT STARTED

R4.6: Monitoring data access restrictions NOT STARTED

R4.7: Monitoring tools REST API ON-GOING

R4.8: Monitoring Visualization ON-GOING

R4.9: Data Warehouse replication NOT STARTED

R4.22: Time-based ordering of monitoring data entries DONE

R4.34: Monitoring for quality tests ON-GOING

R4.35: Tag monitoring data with OSLC tags NOT STARTED

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 17

3. Architecture and design of the DICE Monitoring Platform

The DICE Monitoring platforms (DMon) architecture is designed as a web service that enables the
deployment and management of several subcomponents which in turn enable the monitoring of big data
applications and frameworks. In contrast to other monitoring solutions [1, 2], DMon aims to provide as
much data as possible about the current status of the big data framework subcomponents. This intent brings
a wide array of technical challenges, not present in more traditional monitoring solutions, as serving near
real-time fine grained metrics entails a system that should exhibit a high availability, as well as easy
scalability.

Traditionally, web services have been built using a monolithic architecture where almost all components of
a system ran in a single process (traditionally JVM) [30]. This type of architecture has some key
advantages such as: deployment and networking are trivial while scaling such a system requires running
several instances of the service behind a load-balancer instance.

On the other hand, there are some severe limitations to this type of monolithic architecture, which would
directly impacts the development of DMon. Firstly, changes to one component can have an unforeseen
impact on seemingly unrelated areas of the application [30], thus adding new features or any new
development can be potentially costly both in time and resources. Secondly, individual components cannot
be deployed independently. This means that if one only needs a particular functionality of the service this
cannot be decoupled and deployed separately thus hindering reusability. Lastly, even if components are
designed to be reusable these tend to focus more on readability than on performance.

Considering these limitations of a monolithic architecture, we decided to use the so called microservice
architecture [25] for DMon, which is widely used in large Internet companies [14]. This architecture
replaces the monolithic service with a distributed system of lightweight services, which are by design
independent and narrowly focused. These can be deployed, upgraded and scaled individually. As these
microservices are loosely coupled, it better enables code reusability, while changes made to a single service
should not require changes in a different service. Integration and communication should be done using
HTTP (REST API) or RPC requests. We also want to group related behaviours into separate services. This
will yield a high cohesion, which enables us to modify the overall system behaviour by only modifying or
updating one service instead of many.

DMon uses REST APIs for communication between different services with request payload encoded as
JSON message. This makes the creation of synchronous or asynchronous messages much easier.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 18

Figure 3 DMon architecture

Figure 3 shows the overall architecture of the DMon platform, which will be part of a lambda architecture
[24] together with the anomaly detection and trace checking tools. In order to create a viable lambda
architecture we need to create 3 layer: speed, batch and serving layers. Elasticsearch will represent the
serving layer responsible for loading batch views of the collected monitoring data and enabling other
tools/layers to do random reads on it. The speed layer will be used to look at recent data and represent it in
a query function. In the case of anomaly detection this will mean using unsupervised learning techniques or
using pre-trained models from the batch layer. The batch layer needs to compute arbitrary functions on
large sections of the dataset stored in Elasticsearch. This means running long running jobs to train
predictive models that than can be instantiated on the speed layer. All trained models will then be stored
inside the serving layer and accessed via DMon queries.

The core components of the platform are Elasticsearch, for storing and indexing of collected data, and
Logstash for gathering and processing logfile data. Kibana server provides a user-friendly graphical user
interface. The main services composing DMon are the following: dmon-controller, dmon-agent, dmon-
shipper, dmon-indexer, dmon-wui and dmon-mas. These services will be used to control both the core and
node-level components.

3.1. Core Components

The core components make up the backbone of the entire monitoring platform. They will be used to collect,
process, aggregate and transform all incoming monitoring data. All of these components have to be easily
configurable, scalable and should support a high throughput.

Elasticsearch [15] is an open-source, RESTful search engine based on top of Apache Lucene [16]. It is an
inherently (horizontally) scalable solution which can perform near real-time processing with up to 5-second
latency. It also provides support for multi-tenancy, streamlined backup procedures as well as insuring data
integrity. One of the most important capabilities of Elasticsearch is its ability to handle high throughput of
tens or even hundreds of thousands of messages per second.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 19

Logstash [31] is a tool developed in order to collect, process and forward events and log messages.
Basically, it handles Extract, Transform and Load (ETL) operations. It uses configurable plugins for input,
output and filters in order to collect, process and load data. The input plugins can be configured to accept a
wide range of inputs starting from TCP/UDP to Kafka [22] topics. The input plugins then send the data for
processing to the filter worker plugins. Finally, the processed data is routed to one or more output plugins
such as Elasticsearch, Kafka, InfluxDB etc. One important property of Logstash is that is essentially
stateless thus making it extremely scalable. For example it is possible for two Logstash instances to serve
the same Elasticsearch endpoint.

Kibana [15] serves the role of browser based analytics and search interface for Elasticsearch. It was
primarily developed to view Logstash processed events.

All of the above mentioned components are part of the so called ELK stack. This setup provides a very
robust base for DMon and will be used as a proof-of-concept implementation.

3.2. Node-level components
DMon has to monitor a wide range of Big Data technologies each of which have different metrics and
metrics systems. Because of this we had to choose collectors that are flexible enough to accommodate these
technologies and they also have to have a small computational footprint. By doing this we hope to limit the
amount of “noise” the presence of these data collectors might have on the collected data. Also they have to
be easy deployable and configurable on thousands of physical or virtual machines.

Collectd [10] is an open-source POSIX daemon that collects, transfers and stores performance and network
related data. One of the main features of collectd is its wide array of available plugins [10]. In DMon we
use collectd to collect system metrics (CPU utilization, memory, hard disk, network etc.).

The Logstash server (detailed in the previous section) is able to collect metrics and logfiles directly from
the machine it is installed on. That would mean to have a Logstash instance on each monitored node. In the
DICE context, this is not feasible as Logstash has a substantial computational footprint especially when
using specialized filters such as grok [17]. Because of this in DMon we use logstash-forwarder [23] which
is designed to forward logs to one or more logstash server instances, eliminating node side processing of
logs and the computational cost this processing would require.

At this point it is important to note that there are several alternatives to logstash-forwarder and even
collectd. Most notably there are the Beats data shippers for Elasticsearch [6]. Although today this provides
an interesting alternative, they were not available when implementation started on the current DMon
prototype.

Since most of Big Data frameworks are Java tools, we can use Java Management Extensions (JMX) to
extract valuable metrics related to the JVM. In fact, a large number of Big Data frameworks already
support exporting metrics via JMX. Thus, jmxtrans [20] tool is used in our architecture to collect attributes
exported at JVM level.

It’s worth mentioning that both the core and node-level components of DMon may not be final. There is a
lot of tools that could be used in the DICE context. For example, it is possible to use rsyslog [29] instead of
Logstash to process and load data into Elasticsearch. There are alternatives to Elasticsearch as well, such as
NoSQL databases that support handling of time series data, InfluxDB [19] being an emerging technology.

Of particular interest is the collection of JMX metrics using collectd via a plugin. Although there are some
available collectd plugins [21] that are able to accomplish this task, they have proven to be either slow or
very resource hungry in preliminary tests.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 20

3.3. DMon Services
All components described in the previous sections have to be deployed and configured. This is
accomplished by a number of Web services wrapping the core and the node-level components. This
section details these services.

3.3.1. Core-level services
There are in total 3 core services: dmon-controller, dmon-shipper and dmon-indexer. All have been
implemented using the Python programming language. Specifically with the Flask microframework [13].
The interface used by the services to communicate with each other takes the form of JSON encoded
messages.

dmon-controller

The dmon-controller service is essentially the service with which all other components will communicate.
It is in fact the main point of integration with the rest of the DICE solution. In particular, it will be used by
all DICE components that require monitoring data. The REST API is split into two main parts: Monitoring
Management API and Monitoring Query API. Figure 4 shows a swagger based web UI of the REST API
defined for this service.

The Monitoring Management API, namely Overlord, is used to register nodes, change configuration
parameters and current status of all node-level components. It can also be used to deploy and configure
node-level metrics on to registered nodes. Because of this, when registering nodes it is required that
credentials for each node be supplied (username, password or key). If node-level components and services
have already been deployed by other tools (such as WP5 delivery tools) they only have to register the
already deployed node-level service endpoints. In this scenario credentials are not needed.

Figure 4 dmon-controller: Swagger interface for REST API

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 21

Long term storage of metrics is of course a problem that has to be dealt with in all data warehousing
solutions. In the case of DMon one may use the management API to create new indexes which store
monitoring data. We can also export these indexes or even dump the entire dataset into a different format.
By default, DMon creates an index every 24 hours. These indexes can be queried either on at a time or all
at once. The exported indexes can be at any given time be reloaded into DMon or into a different
Elasticsearch deployment for truly offline processing.

Metrics version annotation is also supported by the dmon-controller. By this we mean that metrics
pertaining to a specific application version can be annotated using tags. This way we can more easily
query, aggregate or even compare metrics of the application. Creation of a separate index for each
application version is also possible however, it is not as versatile a solution and makes comparison of
different application version performance more difficult.

The dmon-controller is also responsible for generating and enacting configurations for all core components
(Elasticsearch, Logstash and Kibana). The configuration is largely dependent on the data provided during
the registration of each node. This data is then used to configure each component of DMon.

As already mentioned, the type of node-level component needed for monitoring is based on the Big Data
service that run on each machine. During registration a list of services that are deployed on each node can
be defined which is then used to setup and manage node-level services and components.

Querying DMon is done using the Monitoring Query API, namely Observer. In contrast to the
Management API, this one doesn’t require authentication. A query example is included in Table 11,
showing attributes that can be specified: the size of the returned response, its ordering, or start and stop
dates (in UTC). The queryString, which follows the same format and rules as Kibana queries, actually
defines the predicate to be run on the Elasticsearch and can be used to aggregate data, or perform additional
operations on the stored data [15]. Query’s response may be returned in several formats, currently
supported are: CSV, JSON, or plain text. The next version of the DMon platform will also support
RDF+XML encoding using OSLC Perf. Mon 2.0 vocabulary [27]. The CSV and RDF+XML query
responses are generated using the dmon-controller service, which takes the JSON response from
ElastiSearch and converts it to the target format.

Table 11 Example of query (JSON format)

dmon-shipper and dmon-indexer

The dmon-shipper microservice is meant to deploy,
manage and configure logstash instances. In contrast
to dmon-controller service, this service has to be
located on the same machine with the controller
logstash instance is located. This service is not meant
to be used by external tools and services, being an
internal component of DMon platform. The dmon-
indexer microservice is used to control nodes
comprising the Elasticsearch cluster.

Splitting the control of various core and node-level
components into microservices we can easily separate
the application logic of DMon from the code that
actually drives and enacts them. Another important

point is that all services besides the dmon-controller are essentially stateless. For example neither service
stores the current state of the components it controls, rather it has to poll the status of the component. The
dmon-controller stores some basic state and node-level information inside a relational database, which can
be exported, imported, versioned or even backed up.

{	

		"DMON":{	

				"query":{	

						"size":"<SIZEinINT>",	

						"ordering":"<asc|desc>",	

						"queryString":"<query>",	

						"tstart":"<startDate>",	

						"tstop":"<stopDate>"	

				}	

		}	

}

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 22

Queuing service

In some instances of DMon platform, metrics that are sent by the node-level components might exceed the
capabilities of Logstash to process them effectively. This might lead to data loss. There are ways to
mitigate this problem. First, we could increase the number of workers assigned to the filter plugin. In the
Logstash documentation it is specified that some filters (specifically grok) might cause slowdown in
metrics ingestion. Second, if increasing the number of workers is not an option we could create a second
instance of Logstash which can handle some of the load.

The third variant is to use a queuing service that receives all metrics and from which the Logstash instances
can consume data. Certainly, this will mitigate the data loss problem but could potentially increase the time
it takes for a specific metrics reading to be processed and indexed inside Elasticsearch. This service is
pictured in Figure 3, possible candidates for its implementation ranging from Kafka, or Redis to a
combination of MongoDB [8] and RabbitMQ [7]. The full technical stack is still an open question and will
be addressed in future versions of DMon.

3.3.2. Node-level services
dmon-agent

dmon-agent service is used to manage and configure all node-level components. Similarly to the dmon-
shipper and dmon-indexer services, it is also stateless. The dmon-controller service issues request to each
dmon-agent service with a JSON payload that contains all required information for controlling the node-
level components. Each monitored node has to have a dmon-agent instance running on it. Figure 5 dmon-
agent: Swagger interface for REST API shows the swagger UI of the REST API defined for this service.

Figure 5 dmon-agent: Swagger interface for REST API

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 23

As of writing this report, the dmon-agent supports collectd, logstash-forwarder and jmxtrans. It is able to
install all of the supported components. The installation is based on the type of big data services and the
roles assigned to the node where the dmon-agent service is installed. In short the dmon-controller is not
responsible for picking what component each dmon-agent is deploying and managing, it only send the list
of roles each node has. It is also able to interact with Hadoop, Spark and Storm deployments. This
interaction is required to change or activate the metrics system for the supported big data services.

dmon-wui

DMon, as many monitoring solutions, will have a web user interface from which the current layout of the
monitoring platform can be seen and managed. It will also have an overview of the metrics collected from
the current Big Data deployment. This service is not scheduled for release in this prototype version of
DMon, instead the dmon-controller service can be used to generate a dashboard in Kibana [15]. This
dashboard contains systems metrics as well as some basic big data framework specific metrics. The type of
metrics can vary based on the framework being monitored.

dmon-mas

The dmon-mas service will be in fact a multi-agent system that will enable automatic scaling and
management of the entire DMon platform. It will monitor the current deployment of the monitoring
solution and scale different components and service based on the current performance of the platform. This
will aid in the overall performance and resiliency and add self-healing capabilities to the DMon platform.

There will be specialized agents that monitor the current deployment, to reason on the gather data and
agents to enact the changes required by the performance analysis. Most likely there will be one or more
specialized agents that will be able to provision VMs on a variety of cloud platforms (Flexiant Cloud
Orchestrator (FCO), Amazon, OpenStack).

Most of the configuration and management task will be accomplished using the dmon-controller service.
Because of this separation of roles the dmon-mas service is not crucial to the correct functioning of DMon.
It will not be mandatory to start this service in order to use DMon.

3.4. Performance Metrics

In DICE most tools require a smaller subset of metrics that DMon can collect. One notable exception will
be the Anomaly Detection Tool which, in order to detect contextual anomalies might require a significant
variety of metrics. The precise number or type of metrics that are required will be discussed in the
deliverables from Year 2 of the project.

Other tools such as the Enchantment and Configuration Optimization tools require a subset of the collected
metrics. These metrics can be split up into 3 categories. The first category is represented by Resource-Level
Metrics. They represent CPU, Memory and Network utilization at the VM level. Also in this category we
can include a metric related to failure rates of specific VMs and the services running on them.

The second category is related to system level metrics. These metrics are metrics specific to each Big Data
framework supported by DICE. These metrics include: Job arrival rate, job throughput, job parallelism, job
response time, waiting buffer occupancy. We can easily see that these metrics are designed to monitor how
the framework executes and schedules jobs. Each job is decomposed into different tasks. The third category
focuses on worker level metrics focusing on task metrics.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 24

As mentioned before DMon will be able to export some metrics using the OSLC Performance Monitoring
v2.0 specification. This specification uses RDF+XML representation for metrics. There are several metrics
categories such as: CPU, Disk, Memory, Network, Request (both Failure and Time), Resource Availability,
Resource Usage, Thread pool and Virtualization metrics. All metrics can be represented in a tree structure.

Figure 6 OSLC Perf. Monitoring v2.0 Diagram

Figure 6 represents an overview of this tree like structure. The problem we face in DICE is that some
metrics, which are required by DICE tools, have no direct analogue in OSLC Perf. Mon v2.0. The most
practical solution to this problem is to expand this specification (more precisely ems:metric from Figure 6)
with the required metrics. This however is out of the scope of this deliverable and will be the subject of
future updates of DMon.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 25

4. Deployment and validation

During the period covered by this report, we have been focusing on the development of the platform, its
deployment on Flexiant Cloud Orchestrator (FCO) and its validation against Big Data technologies
available in Cloudera’s Distribution for Hadoop (CDH 5.4.7) and Oryx2 [26].

Integration with other tools comprising DICE tool-chain will be defined and performed in the second year
of the project.

Figure 7 DMon Dashboard

Figure 8 DMon Metrics Representation

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 26

The first release of DMon doesn’t have bespoken metrics visualization facilities. Nevertheless we can use
Kibana to create a dashboard for any number of metrics. In Figure 6 we can se an example of such a
dashboard. It represents CPU, Memory and Network metrics of 4 VMs. These visualizations are based on
ElasticSearch queries (y-axis), which are aggregated and plotted using a histogram (x-axis is represented by
timestamps). Figure 7 shows an overview of how DMon stores the collected metrics. The before mentioned
figure shows a small portion of metrics collected related to HDFS distributed data store.

4.1. Deployment on FCO

The DICE Monitoring platform has been deployed on one VM on Flexiant Cloud Orchestrator. The Table
12 details this installation.

Table 12 DMon deployment on FCO

Property Value

Number of nodes / VMs 1

Total number of CPU-cores 4

Total amount of RAM in Gbytes 8 GB RAM / VM

Storage system/layer 250 GB

Operating System Ubuntu 14.04.3

Available Services * Elasticsearch
* Logstash
* Kibana
* Marvel

Programmatic access details The default ports for all services are available for programmatic
access

In the second year of the project deployment using chef recipes will also be considered. These recipes
enable the deployment of DMon using the Deployment Service developed in WP5.

4.2. DMon validation against Cloudera Distribution for Hadoop CDH 5.4.7 and
Oryx2

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 27

In order to validate the platform against state-of-the-art Big Data technologies, we have deployed Cloudera
Distribution for Hadoop (CDH) 5.4.7 and Oryx2 on a cluster of 14 nodes on FCO as well. The details of
the cluster are provided in Table 13.

It is important to note that Oryx 2 is treated in this setup as a collection of different Big Data services not as
a big data service. This means that Oryx2 metrics are comprised of metrics from HDFS, Yarn, Spark and
Kafka (Kafka monitoring is still in early development). No Oryx2 specific metrics is monitored.

Table 13 CDH and Oryx2 deployment on FCO

Property Value

Number of nodes / VMs 14

Total number of CPU-cores 56

Total amount of RAM in Gbytes 8 GB RAM / VM

Storage system/layer 2.92 TB

Operating System Ubuntu 14.04.3

Available Services * HDFS
* YARN
* Spark
* Hive
* Kafka (1 brokers)
* Zookeeper (1 servers)
* Hue
* Oozie
* Oryx2 - beta-2

Programmatic access details The default ports for all services are available for programmatic
access

Each time a new node is added to the DMon platform for monitoring, the platform automatically installs
the monitoring agent on it. The monitoring agents collect the data from the local files and sends the data to
logstash server in the DMon. Currently, logs produced by the following technologies are collected: Apache
HDFS [3], Apache YARN [4], and Apache Spark [5]. System metrics (CPU, memory, network) are also
collected using collectd plugins.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 28

4.3. Deployment using Vagrant

For development purposes, Vagrant [28] deployment scripts for DMon, CDH and Storm were also created.
The first script installs and configure a distribution of DMon where all core components and services are
collocated on the same VM.

The second vagrant script provisions 4 VMs on which it installs the newest version of the CDH together
with a version of Oryx 2 toy application. It is important to note that some additional manual configuration
steps are still required. Namely the Big Data service distribution on the 4 Nodes. Lastly, we have a vagrant
script that provision 4 VMs that are used to create a Storm Cluster. No additional setup steps are required.
Once the installation is complete the Storm deployment can be used.

The usage of all Vagrant scripts documentation can be found in the Github repository
(https://github.com/dice-project/DICE-Monitoring/blob/master/src/). Using these scripts anybody can
create a standard development/demo environment, which contains not only the latest version of DMon but
also a Cloudera deployment on which to test it out. By default, all VMs are provisioned with 2 CPUs, 4 GB
RAM and a HDD of 50 GB. These values can be adjusted in order to accommodate less powerful
computers.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 29

5. Documentation

Further details about the platform are available online on DICE Monitoring Platform’s Github repository
(https://github.com/dice-project/DICE-Monitoring/blob/master/src/README.md), quick links being
provided below:

1. Installation / deployment guide:
https://github.com/dice-project/DICE-Monitoring/blob/master/src/README.md#installation
2. REST API:
https://github.com/dice-project/DICE-Monitoring/blob/master/src/README.md#rest-api-structure

A version of the documentation can also be found at the end of this deliverable as Appendix A (REST
API structure) and Appendix B (Installation). It is important to note that these appendices refer to v0.1.4-
alpha of DMon. The overall REST API structure may suffer changes and additions. All changes will be
detailed inside the Changelog from the official DICE github repository.

Versioning for DMon will use a 3-digit schema. The first digit represents the current major beta version
of DMon. The second digit represents the current major alpha build of the platform while the last digit
represents minor platform build.

The first major beta version of DMOn will be released once all required features are implemented at the
end of the project. Until then only the major alpha build digit will be incremented.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 30

6. Conclusion and future plans

This document presents the initial version of DICE Monitoring platform, which is a distributed, highly
available platform for monitoring Big Data technologies. The goal of the first prototype of the platform (at
M12) is to demonstrate a working Proof-of-Concept that collects, stores and processes monitoring data
from state-of-the-art Big Data technologies. DMon is integrating monitoring data from a number of Big
Data technologies, the first prototype of the platform supporting Apache HDFS, Apache YARN and
Apache Spark. Engineered using a microservices architecture, the platform is easy to deploy, and operate,
on heterogeneous distributed Cloud environments. We reported successful deployment on Flexiant Cloud
Orchestrator using Vagrant scripts.

The development plan of the platform’s next releases include features and extensions:

• Queuing service
• Finalize the querying options, such as aggregates
• Finalize the metrics visualization user interface, providing a customizable dashboard
• Metrics specification on application model
• Data cleaning
• Cover additional Big Data technologies
• Integrate with DICE Deployment tool (Cloudify and Chef based)

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 31

References

[1] Aceto, G.; Botta, A.; De Donato, W. & Pescapè, A. Survey Cloud Monitoring: A Survey Comput.
Netw., Elsevier North-Holland, Inc., 2013, 57, 2093-2115

[2] Alhamazani, K.; Ranjan, R.; Mitra, K.; Rabhi, F.; Jayaraman, P. P.; Khan, S. U.; Guabtni, A. &
Bhatnagar, V. An Overview of the Commercial Cloud Monitoring Tools: Research Dimensions, Design
Issues, and State-of-the-art Computing, Springer-Verlag New York, Inc., 2015, 97, 357-377

[3] Apache HDFS Documentation, January 2016 - https://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/HdfsDesign.html

[4] Apache YARN Documentation, January 2016 -

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

[5] Apache Spark Documentation, January 2016 -

http://spark.apache.org/docs/latest/

[6] Beats Platform, January 2016 - https://www.elastic.co/guide/en/beats/libbeat/1.0.1/index.html

[7] Boschi S. and Santomaggio G., RabbitMQ Cookbook. Packt Publishing, 2013.

[8] Chodorow, Kristina and Dirolf, Michael. MongoDB - The Definitive Guide: Powerful and Scalable
Data Storage.. : O'Reilly, 2010.

[9] Cloudera Quickstart VM, January 2016 - http://www.cloudera.com/content/www/en-
us/downloads/quickstart_vms/5-5.html

[10] Collectd Documentation, January 2016 - https://collectd.org/documentation.shtml

[11] DICE Consortium, D1.2 Requirements specification, 2015. http://wp.doc.ic.ac.uk/dice-h2020/wp-
content/uploads/sites/75/2015/08/D1.2_Requirement-specification.pdf

[12] DICE Consortium, D1.2 Requirements specification companion, 2015.

http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2015/08/D1.2_Requirement-
specification_Companion.pdf

[13] Flask Framework, January 2016, http://13.pocoo.org/

[14] Fowler, M., Microservice overview, January 2016, http://martinfowler.com/articles/microservices.html

[15] Gormley, Clinton, and Zachary Tong. Elasticsearch: The Definitive Guide, ISBN 1449358543

[16] Gospodnetić, Otis, and Erik Hatcher. Lucene in Action. Greenwich, CT: Manning Publications, 2005.

[17] Grok filter, January 2016 - https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

[18] Hortownworks Sandbox, January 2016 - http://hortonworks.com/products/hortonworks-
sandbox/#install

[19] InfluxDB Documentation, January 2016 - https://influxdb.com/docs/v0.9/concepts/key_concepts.html

[20] jmxtrans Documentation, January 2016 - https://github.com/jmxtrans/jmxtrans/wiki

[21] JMX plugin for collectd, January 2016, https://collectd.org/wiki/index.php/Plugin:GenericJMX

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 32

[22] Kreps, J., Narkhede, N. and Rao J., Kafka: A distributed messaging system for log processing. In
Proceedings of 6th International Workshop on Networking Meets Databases (NetDB), Athens, Greece,
2011.

[23] Logstash-forwarder, January 2016 - https://github.com/elastic/logstash-forwarder

[24] Marz N. and Warren J., Big Data: Principles and Best Practices of Scalable Realtime Data Systems
(1st ed.), 2015, Manning Publications Co., Greenwich, CT, USA.

[25] Newman, S., 2015. Building microservices : Designing fine-grained Systems.
http://www.worldcat.org/isbn/9781491950357

[26] Oryx 2 Documentation, January 2016 - http://oryx.io/docs/endusers.html

[27] OSLC Perf. Mon. v2.0, January 2016 - http://open-services.net/wiki/performance-monitoring/OSLC-
Performance-Monitoring-Specification-Version-2.0/

[28] Michael Peacock, Creating Development Environments with Vagrant, Packt Publishing, 2013.

[29] rsyslog Documentation, January 2016 - http://www.rsyslog.com/doc/v8-stable/

[30] Stubbs, J.; Moreira, W.; Dooley, R., "Distributed Systems of Microservices Using Docker and
Serfnode," in Science Gateways (IWSG), 2015 7th International Workshop on , vol., no., pp.34-39, 3-5
June 2015 doi: 10.1109/IWSG.2015.16

[31] Turnbull, J. The Logstash Book., ISBN 0988820226, dec. 2014

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 33

Appendix A. REST API Structure

There are two main components from this API:

• First we have the management and deployment/provisioning component called Overlord
(Monitoring Management API).

o It is responsible for the deployment and management of the Monitoring Core components:
ElasticSearch, Logstash Server and Kibana.

o It is also responsible for the auxiliary component management and deployment. These
include: Collectd, Logstash-forwarder

• Second, we have the interface used by other applications to query the Data Warehouse represented
by ElasticSearch. This component is called Observer.

o It is responsible for the returning of monitoring metrics in the form of: CSV, JSON, simple
output.

NOTE: Future versions will include authentication for the Overlord resources. This is a preliminary
structure of the REST API. It may be subject to changes!

Overlord (Monitoring Management API)
The Overlord is structured into two components:

• Monitoring Core represented by: ElasticSearch, LogstashServer and Kibana
• Monitoring Auxiliary represented by: Collectd, Logstash-Forwarder

Monitoring Core Resources

GET /v1/log

Return the log of DMon. It contains information about the last requests and the IPs from which they
originated as well as status information of various sub components.

GET /v1/overlord

Returns information regarding the current version of the Monitoring Platform.

GET /v1/overlord/framework

Returns the currently supported frameworks. Currently only Apache Yarn, HDFS and Spark are supported.

{

 Supported Frameworks:[<list_of_frameoworks>]

}

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 34

GET /v1/overlord/framework/{fwork}

Returns the metrics configuration file for big data technologies. The response will have the file mime-type
encoded. For HDFS, Yarn and Spark it is set to 'text/x-java-properties' while for Storm it is 'text/yaml'.

PUT /v1/overlord/application/{appID}

Registers an application with DMON and creates a unique tag for the monitored data. The tag is defined by
appID..

NOTE: Scheduled for future versions!

POST /v1/overlord/core

Deploys all monitoring core components provided they have values pre-set hosts. If not it deploys all
components locally with default settings.

NOTE: Currently the '-l' flag of the start script dmon-start.sh does the same as the later option.

GET /v1/overlord/core/database

Return the current internal state of Dmon in the form of an sqlite2 database. The response has
application/x-sqlite3 mimetype.

PUT /v1/overlord/core/database

Can submit a new version of the internal database to dmon. It will replace the current states with new
states. The old states are backed up before applying the new ones. Database should take the form of sqlite3
database file and sent unsing the application/x-sqlite3 mimetype.

GET /v1/overlord/core/status

Returns the current status of the Monitoring platform status.

{

 "ElasticSearch":{

 "Status":"<HTTP_CODE>",

 "Name":"<NAME>",

 "ClusterName":"<CLUSTER_NAME>",

 "version":{

 "number":"<ES_VERSION>",

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 35

 "BuildHash":"<HASH>",

 "BuildTimestamp":"<TIMESTAMP>",

 "BuildSnapshot":"<BOOL>",

 "LuceneVersion":"<LC_VERSION>"

 }

 },

 "Logstash":{

 "Status":"<HTTP_CODE>",

 "Version":"<VNUMBER>"

 },

 "Kibana":{

 "Status":"<HTTP_CODE>",

 "Version":"<VNUMBER>"

 }

}

NOTE: Only works for local deployments. It returns the current state of local ElasticSearch Cluster,
Logstash server and Kibana status information.

GET /v1/overlord/core/chef

Returns the status of the chef-client of the monitoring core services.

FUTURE WORK: This feature will be developed for future versions. A chef server is deployed as part of
Deployment Service (WP5). Because of this this resource is at this point superfluous. It could be cut in
future versions.

GET /v1/overlord/nodes/chef

Returns the status of the chef-clients from all monitored nodes.

FUTURE WORK: This feature will be developed for future versions. Same situation as before.

GET /v1/overlord/nodes

Returns the current monitored nodes list. It is the same as /v1/observer/chef.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 36

{

 "Nodes":[

 {"<NodeFQDN1>":"<NodeIP1>"},

 {"<NodeFQDN2>":"<NodeIP2>"},

 {"<NodeFQDNn>":"<NodeIPn>"}

]

 }

PUT /v1/overlord/nodes

Includes the given nodes into the monitored node pools. In essence nodes are represented as a list of
dictionaries. Thus, it is possible to register one to many nodes at the same time. It is possible to assign
different user names and passwords to each node.

Input:

{

 "Nodes":[

 {

 "NodeName":"<NodeFQDN1>",

 "NodeIP":"<IP>",

 "key":"<keyName|null>",

 "username":"<uname|null>",

 "password":"<pass|null>"

 },

 {

 "NodeName":"<NodeFQDNn>",

 "NodeIP":"<IP>",

 "key":"<keyName|null>",

 "username":"<uname|null>",

 "password":"<pass|null>"

 }

]

}

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 37

NOTE: Only username and key authentication is currently supported. There is a facility to use
public/private key authentication, which is currently undergoing testing.

POST /v1/overlord/nodes

Bootstrap of all non-monitored nodes. Installs, configures and start collectd and logstash-forwarder on
them. This feature is not recommended for testing, the usage of separate commands is preferred in order to
detect network failures.

NOTE: Duplicate from ../aux/.. branch

GET /v1/overlord/nodes/roles

Returns the roles currently held by each computational node.

{

 "Nodes": [

 {

 "dice.cdh5.mng.internal": [

 "storm",

 "spark"

] },

 {

 "dice.cdh5.w1.internal": [

 "unknown"

] },

 {

 "dice.cdh5.w2.internal": [

 "yarn",

 "spark",

 "storm"

] },

 {

 "dice.cdh5.w3.internal": [

 "unknown"

]}

]}

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 38

If the node has an unknown service installed, or the roles are not specified the type is set to unknown.

PUT /v1/overlord/nodes/roles

Modifies the roles of each nodes.

POST /v1/overlord/nodes/roles

Generates metrics configuration files for each role assigned to a node and uploads it to the required
directory. It returns a list of all nodes to which a configuration of a certain type (i.e. yarn, spark, storm etc)
has been uploaded.

{

 'Status':{

 'yarn':[list_of_yarn_nodes],

 'spark':[list_of_spark_nodes],

 'storm':[list_of_storm_nodes],

 'unknown':[list_of_unknown_nodes]

 }

}

NOTE: The directory structure is based on the Vanilla and Cloudera distribution of HDFS, Yarn and
Spark. Custom installtions are not yet supported. As yarn and HDFS have the same metrics system their
tags (i.e. hdfs and yarn) are interchangable in the context of D-Mon.

GET /v1/overlord/nodes/{nodeFQDN}

Returns information of a particular monitored node identified by nodeFQDN.

Response:

{

 "NodeName":"nodeFQDN",

 "Status":"<online|offline>",

 "IP":"<NodeIP>",

 "OS":"<Operating_Systen>",

 "key":"<keyName|null>",

 "username":"<uname|null>",

 "password":"<pass|null>",

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 39

 "chefclient":"<True|False>",

 "CDH":"<active|inactive|unknown>",

 "CDHVersion":"<version>",

 "Roles":"[listofroles]"

}

FUTURE Work: A more fine grained node status will be implemented. Currently it is boolean -
online/offline. The last three elements are not implemented. These are scheduled for future versions.

PUT /v1/overlord/nodes/{NodeFQDN}

Changes the current information of a given node. Node FQDN may not change from one version to
another.

Input:

{

 "NodeName":"<nodeFQDN>",

 "IP":"<NodeIP>",

 "OS":"<Operating_Systen>",

 "key":"<keyName|null>",

 "username":"<uname|null>",

 "password":"<pass|null>"

}

POST /v1/overlord/nodes/{NodeFQDN}

Bootstraps specified node.

DELETE /v1/overlord/nodes/{nodeFQDN}

Stops all auxiliary monitoring components associated with a particular node.

NOTE: This does not delete the nodes nor the configurations it simply stops collectd and logstash-
forwarder on the selected nodes.

PUT /v1/overlord/nodes/{nodeFQDN}/roles

Defines the roles each node has inside the cluster.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 40

Input:

{

 "Roles":"[list_of_roles]"

}

POST /v1/overlord/nodes/{nodeFQDN}/roles

Redeploys metrics configuration for a specific node based on the roles assigned to it.

DELETE /v1/overlord/nodes/{nodeFQDN}/purge

This resource deletes auxiliary tools from the given node. It also removes all setting from D-Mon. This
process is irreversible.

GET /v1/overlord/core/es

Return a list of current hosts comprising the ES cluster core components. The first registered host is set as
the default master node. All subsequent nodes are set as workers.

{

 "ES Instances": [{

 "ESClusterName": "<clustername>",

 "HostFQDN": "<HostFQDN>",

 "IP": "<Host IP>",

 "NodeName": "<NodeName>",

 "NodePort": "<IP:int>",

 "OS": "<host OS>",

 "PID": "<ES component PID>",

 "Status": "<ES Status>",

 "Master":"<true|false>"

 }, ]}

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 41

POST /v1/overlord/core/es

Generates and applies the new configuration options of the ES Core components. During this request the
new configuration will be generated.

NOTE: If configuration is unchanged ES Core will not be restarted! It is possible to deploy the monitoring
platform on different hosts than ElasticSearch provided that the FQDN or IP is provided.

FUTURE Work: This process needs more streamlining. It is recommended to use only local deployments
for this version.

GET /v1/overlord/core/es/config

Returns the current configuration file of ElasticSearch in the form of a YAML file.

NOTE: The first registered ElasticSearch information will be set by default to be the master node.

PUT /v1/overlord/core/es/config

Changes the current configuration options of ElasticSearch.

Input:

{

 "HostFQDN":"<nodeFQDN>",

 "IP":"<NodeIP>",

 "OS":"<Operating_Systen>",

 "NodeName":"<ES host name>",

 "NodePort":"<ES host port>",

 "ClusterName":"<ES cluster name>"

}

NOTE: The new configuration will not be generated at this step.

DELETE /v1/overlord/core/es/<hostFQDN>

Stops the ElasticSearch instance on a given host and removes all configuration data from DMon.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 42

GET /v1/overlord/core/ls

Returns the current status of all logstash server instances registered with D-Mon.

Response:

{

 "LS Instances":[

 {

 "ESClusterName":"<name>",

 "HostFQDN":"<Host FQDN>",

 "IP":"<Host IP>",

 "LPort":"<port>",

 "OS":"<Operating_System>",

 "Status":"<status>",

 "udpPort":"<UDP Collectd port>"

 },

]

}

POST /v1/overlord/core/ls

Starts the logstash server based on the configuration information. During this step the configuration file is
first generated.

FUTURE Work: Better support for distributed deployment of logstash core service instances.

DELETE /v1/overlord/core/ls/{hostFQDN}

Stops the logstash server instance on a given host and removes all configuration data from DMON.

GET /v1/overlord/core/ls/config

Returns the current configuration file of Logstash Server.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 43

PUT /v1/overlord/ls/config

Changes the current configuration of Logstash Server.

Input:

{

 "HostFQDN":"<Host FQDN>",

 "IP":"<Host IP>",

 "OS":"<Operating_Systen>",

 "LPort":"<Lumberjack Port>",

 "udpPort":"<UDP Collectd port>",

 "ESClusterName":"<ES cluster Name>"

}

FUTURE Work: Only for local deployment of logstash server core service. Future versions will include
distributed deployment.

GET /v1/overlord/core/ls/credentials

Returns the current credentials for logstash server core service.

Response:

{

 "Credentials": [

 {

 "Certificate":"<certificate name>",

 "Key":"<key name>",

 "LS Host":"<host fqdn>"

 }

]

}

NOTE: Logstash server and the logstash forwarder need a private/public key in order to establish secure
communications. During local deployment ('-l' flag) a default public private key-pair is created.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 44

GET /v1/overlord/core/ls/cert/{certName}

Returns the hosts using a specified certificate. The certificate is identified by its certName.

Response:

{

 "Host":"[listofhosts]",

}

Note: By default all Nodes use the default certificate created during D-Mon initialization. This request
returns a list of hosts using the specified certificate.

PUT /v1/overlord/core/ls/cert/{certName}/{hostFQDN}

Uploads a certificate with the name given by certName and associates it with the given host identified by
hostFQDN.

NOTE: The submitted certificate must use the application/x-pem-file Content-Type.

GET /v1/overlord/core/ls/key/{keyName}

Retruns the host associated with the given key identified by keyName parameter.

Response:

{

 "Host":"<LS host name>",

 "Key":"<key name>"

}

PUT /v1/overlord/core/ls/key/{keyName}/{hostFQDN}

Uploads a private key with the name given by keyName and associates it with the given host identified by
hostFQDN.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 45

NOTE: The submitted private key must use the application/x-pem-file Content-Type.

GET /v1/overlord/core/kb

Returns information for all Kibana instances.

{

 KB Instances:[{

 "HostFQDN":<FQDN>,

 "IP":<host_ip>,

 "OS":<os_type>,

 "KBPort":<kibana_port>

 "PID":<kibana_pid>,

 "KBStatus":<Running|Stopped|Unknown>

 },

]}

POST /v1/overlord/core/kb

Generates the configuration file and Starts or restarts a Kibana session.

NOTE: Currently supports only one instance. No distributed deployment.

GET /v1/overlord/core/kb/config

Returns the current configuration file for Kibana. Uses the mime-type 'text/yaml'.

PUT /v1/overlord/core/kb/config Changes the current configuration for Kibana

Input:

{

 "HostFQDN":<FQDN>,

 "IP":<host_ip>,

 "OS":<os_type>,

 "KBPort":<kibana_port>

}

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 46

Monitoring auxiliary

GET /v1/overlord/aux

Returns basic information about auxiliary components.

GET /v1/overlord/aux/agent

Returns the current deployment status of dmon-agents.

Response:

{

 "Agents": [

 {

 "Agent": false,

 "NodeFQDN": "dice.cdh5.mng.internal"

 },

 {

 "Agent": false,

 "NodeFQDN": "dice.cdh5.w1.internal"

 },

 {

 "Agent": false,

 "NodeFQDN": "dice.cdh5.w2.internal"

 },

 {

 "Agent": false,

 "NodeFQDN": "dice.cdh5.w3.internal"

 }

]

}

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 47

POST /v1/overlord/aux/agent

Bootstraps the installation of dmon-agent services on nodes who are note marked as already active. It only
works if all nodes have the same authentication.

GET /v1/overlord/aux/deploy

Returns monitoring component status of all nodes.

Response:

{

 {

 "NodeFQDN":"<nodeFQDN>",

 "NodeIP":"<nodeIP>",

 "Monit":"<True|False>",

 "Collectd":"<status>",

 "LSF":"<status>"

 },

}

POST /v1/overlord/aux/deploy

Deploys all auxiliary monitoring components on registered nodes and configures them.

NOTE: There are three statuses associated with each auxiliary component.

• None -> There is no aux component on the registered node
• Running -> There is the aux component on the registered node an it is currently running
• Stopped -> There is the aux component on the registered node and it is currently stopped

If the status is None than this resource will install and configure the monitoring components. However if
the status is Running nothing will be done. The services with status Stopped will be restarted.

All nodes can be restarted independent from their current state using the --redeploy-all parameter.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 48

POST /v1/overlord/aux/deploy/{collectd|logstashfw}/{NodeName}

Deploys either collectd or logstash-forwarder to the specified node. In order to reload the configuration file
the --redeploy parameter has to be set. If the current node status is None than the defined component
(collectd or lsf) will be installed.

FUTURE Work: Currently configurations of both collectd and logstash-forwarder are global and can't be
changed on a node by node basis.

GET /v1/overlord/aux/{collectd|logstashfw}/config

Returns the current collectd or logstashfw configuration file.

PUT /v1/overlord/aux/{collectd|logstashfw}/config

Changes the configuration/status of collectd or logstashforwarder and restarts all aux components.

POST /v1/overlord/aux/{auxComp}/start

Starts the specified auxiliary component on all nodes.

POST /v1/overlord/aux/{auxComp}/stop

Stops the specified auxiliary components on all nodes.

POST /v1/overlord/aux/{auxComp}/{nodeFQDN}/start

Starts the specified auxiliary component on a specific node.

POST /v1/overlord/aux/{auxComp}/{nodeFQDN}/stop

Stops the specified auxiliary component on a specific node.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 49

Note: Some resources have been redesigned with parallel processing in mind. These use greenlets (gevent)
to parallelize as much as possible the first version of the resources. These parallel resources are marked
with ../v2/... All other functionality and return functions are the same.

For the sake of brevity these resources will not be detailed. Only additional functionality will be
documented.

GET /v2/overlord/aux/deploy/check

Polls dmon-agents from the current monitored cluster.

{

 "Failed": [],

 "Message": "Nodes updated!",

 "Status": "Update"

}

If nodes don't respond they are added to the Failed list together with the appropriate HTTP error code.

Observer (Monitoring Query API)

GET /v1/observer/applications

Returns a list of all YARN applications/jobs on the current monitored big data cluster.

NOTE: Scheduled for future release.

GET /v1/observer/applications/{appID}

Returns information on a particular YARN application identified by {appID}. The information will not
contain monitoring data only a general overview. Similar to YARN History Server.

NOTE: Scheduled for future release.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 50

GET /v1/observer/nodes

Returns the current monitored nodes list. Listing is only limited to node FQDN and current node IP.

NOTE: Some cloud providers assign the UP dynamically at VM startup. Because of this D-Mon treats the
FQDN as a form of UUID. In future versions this might change, the FQDN being replaced/augmented with
a hash.

Response:

{

 "Nodes":[

 {"<NodeFQDN1>":"NodeIP1"},

 {"<NodeFQDN2>":"NodeIP2"},

 {"<NodeFQDNn>":"NodeIPn"}

]

 }

GET /v1/observer/nodes/{nodeFQDN}

Returns information of a particular monitored node. No information is limited to non confidential
information, no authentication credentials are returned.

Response:

{

 "<nodeFQDN>":{

 "Status":"<online|offline>",

 "IP":"<NodeIP>",

 "Monitored":"<true|false>",

 "OS":"Operating_Systen"

 }

}

GET /v1/observer/nodes/{nodeFQDN}/roles

Returns roles the node identified by 'nodeFQDN'.

Response:

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 51

{

 'Roles':['yarn','spark','storm']

}

NOTE: Roles are returned as a list. Some elements represent in fact more than one service, for example
'yarn' represents both 'HDFS' and 'Yarn'.

POST /v1/observer/query/{csv/json/plain}

Returns the required metrics in csv, json or plain format.

Input:

{

 "DMON":{

 "query":{

 "size":"<SIZEinINT>",

 "ordering":"<asc|desc>",

 "queryString":"<query>",

 "tstart":"<startDate>",

 "tstop":"<stopDate>"

 }

 }

}

Output depends on the option selected by the user: csv, json or plain.

NOTE: The filter metrics must be in the form of a list. Also, filtering currently works only for CSV and
plain output. Future versions will include the ability to export metrics in the form of RDF+XML in
concordance with the OSLC Performance Monitoring 2.0 standard. It is important to note that we will
export in this format only system metrics. No Big Data framework specific metrics.

From Version 0.1.3 it is possible to omit the tstop parameter, instead it is possible to define a time window
based on the current system time:

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 52

{

 "DMON":{

 "query":{

 "size":"<SIZEinINT>",

 "ordering":"<asc|desc>",

 "queryString":"<query>",

 "tstart":"now-30s"

 }

 }

}

where s stands for second or m for minutes and h for hours.

NOTICE

The REST API detailed in this appendix is only for v0.1.4-alpha of the DICE Monitoring Platform.
Because this is only a proof of concept build changes frequent chances and/or updates are to be expected.

Up to date REST API specification can be found at the official DMon github page1. Also on github there is
the repository change log where all changes between versions are logged.

1 https://github.com/dice-project/DICE-Monitoring
2https://github.com/igabriel85/IeAT-DICE-Repository/tree/master/Vagrant CDH Cluster

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 53

Appendix B. Installation

In this version of DMon, installation is largely based on bash scripts. Future versions will most likely be
based on chef recipes and/or deb or rpm packages. There are 2 types of installation procedures currently
supported.

Cloud

This type of installation is for client/cloud deployment. It will install all python modules as well as the ELK
(ElasticSearch, Logstash and Kibana 4) stack. Only local deployment is currently supported.

Download the installation script to the desired host and make it executable

wget https://github.com/igabriel85/IeAT-DICE-Repository/releases/download/v0.1-install/install-dmon.sh
&& sudo chmod +x install-dmon.sh

After which execute the installation script

sudo ./install-dmon.sh

Note: This script will clone the DMon repository into /opt and change the owner of this directory to
ubuntu.ubuntu!

Next go inside the cloned repository and run

sudo ./dmon-start.sh -i -p 5001

The '-i' flag will install all Core components of the monitoring platform (i.e. ELK) as well as setting the
appropriate permissions for all folders and files. The '-p' flag designates the port on which DMon will be
deployed.

In order deploy D-Mon locally execute:

./dmon-start.sh -l -p 5001

The '-l' flag signals the service that this is a local deployment of both ElasticSearch and Logstash server.
The service will start logging into stdout.

Note: Do not execute this command as root! It will corrupt the previously set permissions and the service
will be inoperable.

Deliverable 4.1. Monitoring and data warehousing tools – Initial version

Copyright © 2016, DICE consortium – All rights reserved 54

If you do not wish to create a local deployment run the command.

./dmon-start.sh -p 5001

This will only start the service and not load the local deployment module.

Note: By default all the IP is set to 0.0.0.0. This can be change using the '-e' flag.

Observation: Kibana 4 service is started during the bootstrapping process. You can check the service by
running:

sudo service kibana4 status

For starting stoping the service replace the status command with start, stop or restart.

Vagrant

There are two vagrant files in this repository. The first2 one creates a deployment of 4 VM on which it
automatically installs the Cloudera Manager suite.

The second3 script installs DMon as well as the ELK stack, essentially taking the place of the '-i' flag in the
above mentioned instructions. The procedure for creating a local deployment of D-Mon is the same as
before.

Note: These vagrant scripts should only be used for development or as a small demonstration. They are not
meant for an exploitable deployment of the monitoring solution.

2https://github.com/igabriel85/IeAT-DICE-Repository/tree/master/Vagrant CDH Cluster
3https://github.com/igabriel85/IeAT-DICE-Repository/tree/master/Monitoring

