
Developing Data-Intensive Cloud
Applications with Iterative Quality

Enhancements

DICE simulation tools - Initial version

Deliverable 3.2

Ref. Ares(2016)528784 - 01/02/2016

Deliverable 3.2. DICE simulation tools - Initial version

Deliverable: D3.2
Title: DICE simulation tools - Initial version

Editor(s): Abel Gómez (ZAR)
Contributor(s): Simona Bernardi (ZAR), Giuliano Casale (IMP), Abel

Gómez (ZAR), Shuai Jiang (IMP) and José Merseguer (ZAR)
Reviewers: Darren Whighman (FLEX), Marc Gil (PRO)

Type (R/P/DEC): Report
Version: 1.1

Date: 1-February-2016
Status: Final version

Dissemination level: Public
Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright c© 2015, DICE consortium – All rights reserved

The DICE project (February 2015-January 2018) has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

Copyright c© 2016, DICE consortium – All rights reserved 2

Deliverable 3.2. DICE simulation tools - Initial version

Executive summary

This document presents the initial results of the development of the Simulation Tools and describes the
relationships with previous deliverables – mainly D1.2, which presents the requirements and use case
scenarios –. This deliverable also serves as a baseline for upcoming deliverables – mainly D1.3 (Archi-
tecture definition and integration plan, initial version, to be released in M12 too) and D1.4 (Architecture
definition and integration plan, final version). Additionally, this document provides a comprehensive
description of the Simulation Tool, currently as a prototype, its architecture and the interactions among
its internal components.

All the artifacts presented in this document are publicly available in the so-called DICE-Simulation
Repository [dice:simulation:repo], whose structure and components are described in the Appendix A
of this document.

Copyright c© 2016, DICE consortium – All rights reserved 3

Deliverable 3.2. DICE simulation tools - Initial version

Glossary

DIA Data-Intensive Application
DICE Data-Intensive Cloud Applications with iterative quality enhancements
IDE Integrated Development Environment
M2M Model-to-model Transformation
M2T Model-to-text Transformation
MARTE Modeling and Analysis of Real-time Embedded Systems
MDE Model-Driven Engineering
OSGi Open Services Gateway initiative
PNML Petri Net Markup Language
QVT Meta Object Facility (MOF) 2.0 Query/View/Transformation Standard
QVTc QVT Core language
QVTo QVT Operational Mappings language
QVTr QVT Relations language
UML Unified Modelling Language

Copyright c© 2016, DICE consortium – All rights reserved 4

Deliverable 3.2. DICE simulation tools - Initial version

Contents

Executive Summary . 3

Glossary . 4

Table of Contents . 5

List of Figures . 6

List of Tables . 6

1 Introduction and Context . 7
1.1 Objectives of WP3 . 7
1.2 Objectives of Task 3.2 . 7
1.3 Objectives of this Document . 7
1.4 Structure of the Document . 7

2 Requirements and Usage Scenarios . 9
2.1 Tools and Actors . 9
2.2 Use Cases . 9
2.3 Requirements . 10

3 The Simulation Tools . 12
3.1 Components Interaction . 12
3.2 Tool Architecture . 13

4 Tool Overview and Usage . 16

5 Simulation Formalisms and Extensions . 25
5.1 DICE Extensions for JMT . 25

5.1.1 QN Expressiveness . 26
5.1.2 Extensibility via Templates . 26

6 Conclusions . 28
6.1 Further Work . 28

References . 30

Appendix A. The DICE-Simulation Repository . 30

Copyright c© 2016, DICE consortium – All rights reserved 5

Deliverable 3.2. DICE simulation tools - Initial version

List of Figures

1 Sequence diagram depicting the interactions between the components of the Simulation
Tools . 13

2 High-level architecture of the Simulation Tools . 14
3 General view of the Papyrus modeling perspective in Eclipse/DICE-IDE 16
4 Host demand tagged value of the M1 element, prototyped as GaStep from MARTE . . . 17
5 Prob tagged value of the control flow between M2 and R3, prototyped as GaStep from

MARTE . 17
6 Open the Run Configurations. . . window . 18
7 Create a new Simulation launch configuration . 18
8 The Run Configurations window showing the Simulator GUI (Configurator module) . . 18
9 Create a new Simulation launch configuration from a workspace model 19
10 A newly created Simulation launch configuration with the intial values 19
11 A Simulation launch configuration ready to be executed 20
12 Running a simulation in the Debug perspective . 21
13 Detail of the stop button, which force terminates a simulation 21
14 A finished simulation in the Debug perspective . 22
15 Properties of a finished simulation . 23
16 The workspace, showing the result of the simulation . 24
17 A JMT Queueing Network Model with a Fork and a Join operator. 26
18 JMT Variable Fork-Join Extension . 27
19 JMT Templates . 27

List of Tables

1 Level of compliance of the prototype with the initial set of requirements 28

Copyright c© 2016, DICE consortium – All rights reserved 6

Deliverable 3.2. DICE simulation tools - Initial version

1 Introduction and Context

The focus of the DICE project is to define a quality-driven framework for developing data-intensive
applications that leverage Big Data technologies hosted in private or public clouds. DICE offers a novel
profile and tools for data-aware quality-driven development. DICE-profiled models are fed into a set of
simulation, analysis and optimization tools to obtain high-quality applications. One of these tools within
the DICE framework is the so-called Simulation Tool, which allows evaluating quality properties of data-
intensive applications, in particular efficiency and reliability metrics. This document describes the initial
version of the Simulation Tool prototype, developed in the scope of WP3 as Task 3.2, and published as
an open source tool in the DICE-Simulation repository [dice:simulation:repo].

1.1 Objectives of WP3

The goal of WP3 is to develop a quality analysis tool-chain that will be used to guide the early design
stages of the data intensive application and guide quality evolution once operational data becomes avail-
able. The main outputs of these tasks are tools for simulation-based reliability and efficiency assessment,
for formal verification of safety properties related to the sequence of events and states that the application
undergoes, and numerical optimization techniques for search of optimal architecture designs.

In WP3 are also defined Model-to-model (M2M) transformations that accept as input design models
defined in T2.1 and T2.2, and produce as outputs the analysis models used by the quality tools.

1.2 Objectives of Task 3.2

Task 3.2 focus on the development of a hybrid simulation framework that combines black-box and white-
box models, to evaluate quality properties of data-intensive applications, in particular efficiency and
reliability metrics. White-box models based on colored Stochastic Petri nets are used to describe the
abstract properties of application models developed according to the DICE profile, which is proposed in
WP2.

Colored Stochastic Petri nets are good abstractions for data-intensive applications, since a token
circulating in the model represents a request being processed and atomic fork/join operations and colors
can be easily used to express at the same time the memory, disk read/write operations, network/stream
traffic and other concurrent operations that a single request implies on the resources.

A second major challenge addressed by this task is the inclusion in simulation of black-box models to
describe the execution characteristics of hosted Big Data services, such as Amazon Elastic MapReduce.
Where possible, techniques to accelerate the evaluation of rare events (e.g., failures) will be integrated in
the simulation framework, in order to reduce the time needed to accurately assess reliability metrics.

1.3 Objectives of this Document

This document serves as an initial demonstration of the tools to be developed within Task 3.2. Specifi-
cally, this demonstrator provides a fully-working prototype of the DICE Simulation Tool. This prototype
is able to cover all the steps of the simulation workflow (i.e., model, transform, simulate, retrieve results).

This document also provides an architectural and behavioral description of the tool, serving as a
baseline for D1.3 and D1.4 (i.e., Architecture definition and integration plan, initial version and final
version, respectively).
1.4 Structure of the Document

The structure of this deliverable is as follows:
• Section 2 summarizes the involved actors, use cases and requirements that Task 3.2 aims to cover.

• Section 3 presents the proposed tool architecture and the interactions among its internal compo-
nents.

• Section 4 shows the current prototype, its interface from the users’ point of view and its usage.

Copyright c© 2016, DICE consortium – All rights reserved 7

Deliverable 3.2. DICE simulation tools - Initial version

• Section 5 summarizes the goals achieved, and outlines the future work.

• Appendix A provides details on the Simulation Tool repository.

Copyright c© 2016, DICE consortium – All rights reserved 8

Deliverable 3.2. DICE simulation tools - Initial version

2 Requirements and Usage Scenarios

Deliverable D1.2 [dice:d1.2, dice:d1.2:companion], released on month 6, presented the requirements
analysis for the DICE project. The outcome of the analysis was a consolidated list of requirements and
the list of use cases that define the project’s goals that guide the DICE technical activities.

This section recapitulates, for Task T3.2, these requirements and use case scenarios and explains how
they have been fulfilled in the current Simulation Tool prototype.

2.1 Tools and Actors

As specified in D1.2, the data-aware quality analysis aims at assessing quality requirements for DIAs and
at offering an optimized deployment configuration for the application. The assessment starts from the
DIA UML design, which includes not only the functionality of the system but also the quality require-
ments and corresponding parameters. The assessment is accomplished making use of the following tools:

Transformation Tools — These tools take as input a UML DICE-profiled design representing a DIA
and produce suitable formal models.

Simulation Tools — The simulation tools take as input the models produced by the Transformation
Tools and validate the performance and reliability requirements of the DIA.

Verification Tools — The verification tools aim at checking the so-called safety properties for the DIA.

Optimization Tools — The optimization tools apply at DDSM level and evaluate the corresponding
Petri net models for deciding which deployment is the optimal one regarding to a predefined crite-
ria.

In the remaining of this document, we will focus on tools related to Tasks T3.1 and T3.2, i.e., the
Transformation Tools and the Simulation Tools. Regarding these tools, D1.2 specifies that the following
stakeholders use them directly:

QA Engineer — The application quality engineer uses the Simulation Tools through the DICE IDE.

Simulation Tools — The Transformation Tools are not used by human actors directly but internally for
the rest of the WP3 tools.

2.2 Use Cases

The requirements elicitation of D1.2 considers a single use case1 that concerns the Simulation Tools
component, the UC3.1. This use case can be summarized as2:

ID UC3.1
Title Verification of reliability or performance properties from a DPIM/DTSM DICE

annotated UML model
Priority Required
Actors QA Engineer, IDE, Transformation Tools, Simulation Tools
Pre-conditions There exists a DPIM/DTSM level UML annotated model.
Post-conditions The QA Engineer gets information about the predicted metric value in the techno-

logical environment being studied

1UC3.1.1 (Verification of throughput from a DPIM DICE annotated UML model) is a specialization of UC3.1, and as such
will not be considered in the present document

2For detailed information, refer to the Requirement Specification document [dice:d1.2]

Copyright c© 2016, DICE consortium – All rights reserved 9

Deliverable 3.2. DICE simulation tools - Initial version

2.3 Requirements

To support the previous use case scenario of the Simulation Tools component, the following (summa-
rized) requirements were defined:

ID R3.1
Title M2M Transformation
Priority Must have
Description The Transformation Tools MUST perform a model-to-model transformation taking

the input from a DPIM or DTSM DICE annotated UML model and returning a formal
model [. . .].

ID R3.2
Title Taking into account relevant annotations
Priority Must have
Description The Transformation Tools MUST take into account the relevant annotations in the

DICE profile [. . .] and transform them into the corresponding artifact [. . .]

ID R3.3
Title Transformation rules
Priority Could have
Description The Transformation Tools MAY be able to extract, interpret and apply the transforma-

tion rules from an external source.

ID R3.4
Title Simulation solvers
Priority Must have
Description The Simulation Tools will select automatically [. . .] the right solver [. . .]

ID R3.5
Title Simulation of hosted big data services
Priority Must have
Description The Simulation Tools MUST be able to describe the execution characteristics of hosted

big data services.

ID R3.6
Title Transparency of underlying tools
Priority Must have
Description The Transformation Tools and Simulation Tools MUST be transparent to users. [. . .]

ID R3.10
Title SLA specification and compliance
Priority Must have
Description [. . .] Simulation Tools [. . .] MUST permit users to check their outputs against SLA’s

included in UML model annotations. [. . .]

ID R3.13
Title White/black box transparency
Priority Must have
Description For the Transformation Tools and the Simulation Tools there will be no difference

between white box and black box model elements.

Copyright c© 2016, DICE consortium – All rights reserved 10

Deliverable 3.2. DICE simulation tools - Initial version

ID R3.14
Title Ranged or extended what if analysis
Priority Could have
Description The Simulation Tools will be able to cover a range of possible values for a parameter

and run a simulation for every different scenario [. . .]

ID R3IDE.1
Title Metric selection
Priority Must have
Description The DICE IDE MUST allow to select the metric to compute from those defined in the

DPIM/DTSM DICE annotated UML model. [. . .]

ID R3IDE.2
Title Timeout specification
Priority Should have
Description The IDE SHOULD allow the user to set a timeout and a maximum amount of memory

to be used when running the Simulation Tools and the Verification Tools. [. . .]

ID R3IDE.3
Title Usability
Priority Could have
Description The Transformation Tools and Simulation Tools MAY follow some usability, er-

gonomics or accesibility standard [. . .]

ID R3IDE.4
Title Loading the annotated UML model
Priority Must have
Description The DICE IDE MUST include a command to launch the Simulation Tools [. . .] for a

DICE UML model that is loaded in the IDE

Copyright c© 2016, DICE consortium – All rights reserved 11

Deliverable 3.2. DICE simulation tools - Initial version

3 The Simulation Tools

Use case UC3.1 specifies that, from an existing DPIM/DTSM level UML annotated model (pre-condition),
the QA Engineer gets information about the predicted metric value in the technological environment be-
ing studied (post-condition).

To obtain such information, the following steps need to be performed:

1. The QA Engineer models a DPIM/DTSM model applying the DICE profile to a UML model using
the DICE-IDE.

2. The QA Engineer starts a new simulation using the DICE-profiled UML models as input.

3. The DICE-profiled UML models are translated within the simulation process to formal models,
which can be automatically analysed, using M2M and M2T transformations.

4. The simulation process is configured, specifying the kind of analysis to perform and the additional
input data required to run the analysis.

5. The simulation process is executed, i.e., the formal models are analysed using open-source evalu-
ation tools (in particular GreatSPN [greatspn] and Java Modelling Tools [JMT]).

6. The result produced by the evaluation tool is processed to generate a tool-independent report,
conformant to a report model, with the assessment of performance and reliability metrics.

7. The tool-independent report is fed into the DICE-IDE and is shown to the user in the GUI.

From this description, we can identifiy the following core components:

The DICE-IDE is an integrated development environment used by the QA Engineer to develop DPIM/DTSM
models. It provides to the end-users all the functionality provided by the DICE framework.

The Simulator is a DICE component in charge of executing the simulation.

The M2M Transformation Engine executes model-to-model transformations. It handles transforma-
tions between technical spaces3.

The M2T Transformation Engine executes model-to-text transformations. It handles tool-specific trans-
formations within the same technical space.

The Evaluation Tool (e.g. GreatSPN) performs an evaluation of a specific formal model (e.g., a Petri
net).

3.1 Components Interaction

Based on the previous core components, we have modeled their interactions as depicted in Fig. 1. For the
sake of maintainability, the Simulator component has been split up in UI and non-UI components (i.e.,
Simulator-GUI and Simulator respectively).

Specifically, the sequence diagram depicted in the Fig. 1 describes the specific steps to simulate a
DICE-profiled UML diagram using for example the GreatSPN tool as the underlying evaluation tool.

As it can be seen in the figure, the modeling step is outside the scope of the Simulation phase, and
the model to be analysed is supposed to pre-exist and is managed by the DICE-IDE. When the user
wants to simulate a model, he/she invokes the Simulator-GUI, which parses the model and asks the user
any additional required information. When this information is obtained, the Simulator-GUI calls the
Simulator that will handle the simulation in background.

3A technological space is a working context with a set of associated concepts, body of knowledge, tools, required skills, and
possibilities [kurtev:tech˙spaces].

Copyright c© 2016, DICE consortium – All rights reserved 12

Deliverable 3.2. DICE simulation tools - Initial version

sd: Simulate

User DICE-IDE Simulator M2M M2T GreatSPNSimulator-GUI

extract_options

process_raw_results

parse

simulate(URI model.uml, URI configuration.xml)

model.pnml

results.xml

model.gspn

simulate(File model.gspn, Map options)

select_uml_model

simulate(URI model.uml)

results.raw

configuration

process_raw_results(URI results.raw)

transform(URI model.pnml)

model.uml

get_configuration

transform(URI model.uml, URI configuration.xml)

parse(URI model.uri)

visual_results

extract_options(URI configuration.xml)

Figure 1: Sequence diagram depicting the interactions between the components of the Simulation Tools

The Simulator will then orchestrate the interaction among all the different modules: first, the M2M
transformation module will create an intermediate representation, which for GreatSPN is the PNML [pnml:primer]
representation of the DICE-profiled model; second, the PNML file will be transformed to a GreatSPN-
specific Petri net description file; third, the Simulator will start the analysis of the Petri net using Great-
SPN; and finally, when the analysis ends, the raw results produced by GreatSPN will be converted into
a formatted results file. These formatted results will be processed by the DICE-IDE that will show them
to the user in a visual form.

3.2 Tool Architecture

Figure 2 shows the simplified architecture of the Simulation Tools and the internal data flows. This figure
depicts the actual modules that implement the sequence diagram shown in Fig. 1 and realize the use case
UC3.1 described in Section 2.

Next, we provide a description of the different modules, the data they share, and their nature:

1. The DICE-IDE is an Eclipse-based environment in which the different components are integrated.

2. A simulation process starts by defining a set of DICE-Profiled UML models. For this stage, a
pre-existing modeling tool is used.

Copyright c© 2016, DICE consortium – All rights reserved 13

Deliverable 3.2. DICE simulation tools - Initial version

(Eclipse-based) DICE IDE

Papyrus UML Modeler DICE Simulation Tools

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

DICE-Profiled
UML

DPIM Model

DICE-Profiled
UML

DTSM Model

DICE-Profiled
UML

DDSM Model

Simulator GUI Simulator
————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

DICE-Profiled
UML Model

Configuration
Model

Assesment of
Performance &

Reliability Metrics

————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

GreatSPN
files

GreatSPN

Simulation
Configuration
Component

GreatSPN
result files

M2M (QVTo)

M2T (Acceleo)

Solution Builder

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

PNML
File

Figure 2: High-level architecture of the Simulation Tools

Papyrus UML [papyrus:starters] is one of the open source UML modeling tools that support
the MARTE (Modeling and Analysis of Real-time Embedded Systems) profile [omg:marte], in
which the DICE profile is based on. As proposed in the Deliverable D1.1 (State of the art analy-
sis) [dice:d1.1], this component/tool is used to perform the initial modeling stage.

3. When the user (the QA Engineer) wants to simulate a model, he/she uses the Simulator GUI to
start a simulation.

The Simulator GUI is an ad hoc Eclipse component that contributes a set of graphical interfaces to
the DICE-IDE. These interfaces are tighly integrated within the DICE-IDE providing a transparent
way for interacting with the underlying analysis tools.

The Simulation Configuration Component is a sub-component of the Simulator GUI. It is in
charge of: (i) asking for the model to be simulated (using the DICE-IDE infrastructure, dialogs,
etc.); and (ii) asking for any additional data required by the Simulator.

4. When the user has finished the configuration of a simulation, the Configuration Tool passes two
different files to the Simulator: the DICE-profiled UML model (i.e., the model to be analysed) and
the Configuration model.

The Simulator is an ad hoc OSGi component that runs in background. It has been specifically
designed to orchestrate the interaction among the different tools that perform the actual analysis.

5. The Simulator executes the following steps: (i) transforms the UML model into a PNML file using
a M2M transformation tool; (ii) converts the previous PNML file to a GreatSPN-readable file using
a M2T transformation tool; (iii) evaluates the GreatSPN-readable file using the GreatSPN tool; and
(iv) builds a tool-independent solution from the tool-specific file produced by GreatSPN.

To execute the M2M transformations we have selected the eclipse QVTo transformations engine.
QVT [omg:qvt] is the standard language proposed by the OMG (the same organism behind the
UML and MARTE standards) to define M2M transformations. QVT proposes three possible lan-
guages to define model transformations: operational mappings (QVTo, imperative, low-level),
core (QVTc, declarative, low-level) and relations (QVTr, declarative, high-level). However, al-
though there are important efforts to provide implementations for all of them, only the one for
QVTo is production-ready, and as such is the chosen one.

To execute the M2T transformations we have selected Acceleo [acceleo]. Starting from Acceleo
3, the language used to defined an Acceleo transformation is an implementation of the MOFM2T
standard [omg:mtl], proposed by the OMG too. In this sense, we have selected Acceleo to make
all our toolchain compliant to the OMG standards, from the definition of the initial (profiled) UML
models to the 3rd party analysis tools (which use a proprietary format).

Copyright c© 2016, DICE consortium – All rights reserved 14

Deliverable 3.2. DICE simulation tools - Initial version

The analysis is performed using the GreatSPN tool. GreatSPN is a complete framework for the
modeling, analysis and simulation of Petri nets. This tool can leverage those classes of Petri nets
needed by our simulation framework, i.e., Generalized Stochastic Petri Nets (GSPN) and their
colored version, namely Stochastic Well-formed Nets (SWN). GreatSPN includes a wide range
of GSPN/SWN solvers for the computation of performance and reliability metrics (the reader can
refer to the ”State of the art analysis” deliverable D1.1 for details about the GreatSPN functionali-
ties).

6. Finally, the tool-independent report produced by the Simulator is presented in the DICE-IDE
using a graphical component of the Simulator GUI. This component provides a comprehensive
Assesment of Performance and Reliability Metrics report in terms of the concepts defined in the
initial UML model.

Copyright c© 2016, DICE consortium – All rights reserved 15

Deliverable 3.2. DICE simulation tools - Initial version

4 Tool Overview and Usage

This section shows what the Simulation Tool looks like from the users’ point of view, and provides a
quick description on how to use it in combination with GreatSPN.

First, it is worth to recall that the modeling phase is done using Papyrus. Since there exists extensive
documentation on how to use this tool to create profiled UML models [papyrus:starters, papyrus:profiles,
papyrus:activity, papyrus:collab, papyrus:sequence, papyrus:stylesheets], we will not provide de-
tails on the usage of this specific tool.

Figure 3 shows a general view of the Papyrus modeling perspective. On the left of the figure, the
different explorers (Project Explorer, Model Explorer and Outline) are shown. The rest of the figure
shows the Model Editor and the Properties view.

Figure 3: General view of the Papyrus modeling perspective in Eclipse/DICE-IDE

The model itself is depicted in the canvas of the Model Editor. Profiles, stereotypes and tagged values
are defined using the Properties view.

Figs. 4 and 5 show in the Properties view some tagged values (of the GaStep MARTE stereotype)
that are applied to some model elements. Specifically, Fig. 4 shows the host demand tagged value of
the M1 element (defined as (value=0.5,unit=s,statQ=mean,source=assm)4), while Fig. 5 shows
the prob tagged value of the control flow between M2 and R3 ((value=$p1,source=assm)). As it can
be seen, a variable ($p1) has been used for the latter (we will explain more on variables later on this
section).

4Tagged values are specified in Papyrus-MARTE using the so-called Value Specification Modeling language. Details on this
language can be found on the MARTE Standard [omg:marte].

Copyright c© 2016, DICE consortium – All rights reserved 16

Deliverable 3.2. DICE simulation tools - Initial version

Figure 4: Host demand tagged value of the M1 element, prototyped as GaStep from MARTE

Figure 5: Prob tagged value of the control flow between M2 and R3, prototyped as GaStep from MARTE

Copyright c© 2016, DICE consortium – All rights reserved 17

Deliverable 3.2. DICE simulation tools - Initial version

Figure 6 shows the drop-down button that is used to open the Launch Configurations. . . window, in
which the Simulator GUI has been integrated.

Figure 6: Open the Run Configurations. . . window

Figure 7 shows how a new launch configuration – which controls a Simulation process – is created
from scratch, while Fig. 8 shows what the Simulator GUI (Configurator module) looks like.

Figure 7: Create a new Simulation launch configuration

Figure 8: The Run Configurations window showing the Simulator GUI (Configurator module)

Copyright c© 2016, DICE consortium – All rights reserved 18

Deliverable 3.2. DICE simulation tools - Initial version

It is possible to directly create a new launch configuration from an existing model using the contex-
tual menu shown in Fig. 9.

Figure 9: Create a new Simulation launch configuration from a workspace model

The pre-configured launch configuration that is created is shown in Fig. 10.

Figure 10: A newly created Simulation launch configuration with the intial values

Copyright c© 2016, DICE consortium – All rights reserved 19

Deliverable 3.2. DICE simulation tools - Initial version

As it can be seen, the launch configuration is initialized with the input model. This model is analysed
searching for variables that need to be initialized. The table shown at the bottom of the figure is then
used to customize the variables’ values.

Figure 11: A Simulation launch configuration ready to be executed

Figure 11 shows a launch configuration ready to be executed. In this case, all the intermediate files
will be saved in the workspace. This is, however, only an option since all the intermediate transformation
steps are executed in a transparent way. Once the user clicks on the Run button, the simulation starts.

The simulation can be tracked and controlled using the Debug perspective as shown in the Fig. 12.
In the figure, two key views can be identified: the Debug view and the Console view. The former shows
information about the Simulation process (identifier, state, exit value, etc.); while the latter shows the
messages that the simulation process dumps into the standard out and the standard error streams. In the
case of GreatSPN, these messages allow to monitor the accuracy achieved by the running process and
the number of simulation steps that have been already performed.

Copyright c© 2016, DICE consortium – All rights reserved 20

Deliverable 3.2. DICE simulation tools - Initial version

Figure 12: Running a simulation in the Debug perspective

As Fig. 13 shows, it is also possible to stop the simulation process at any moment by using the Stop
button of the GUI.

Figure 13: Detail of the stop button, which force terminates a simulation

When the simulation finishes, the user can still access the simulation console and the simulation
process information (until he/she cleans the Debug view using the button). As Fig. 14 shows, the
simulation process has finished correctly (exit value is 0).

Copyright c© 2016, DICE consortium – All rights reserved 21

Deliverable 3.2. DICE simulation tools - Initial version

Figure 14: A finished simulation in the Debug perspective

Copyright c© 2016, DICE consortium – All rights reserved 22

Deliverable 3.2. DICE simulation tools - Initial version

Form the Debug view is also possible to open a window with the simulation process properties.
Fig. 15 shows the properties of an example simulation. In this screenshot we can observe relevant data
such as date/time in which the process was launched, process id, and raw results of the simulation.

Figure 15: Properties of a finished simulation

Figure 16 shows the normal workspace perspective once the simulation has finished. As it can be
observed, in the Test/temp folder a set of files have been created. These are the intermediate files we
previously choose to save in the workspace. These files are:

dump.pnconfig — The configuration model. This file is automatically generated by the Configuration
module of the Simulator GUI.

net.pnml.xmi — An EMF representation of the PNML file that represents the Petri net corresponding
to the model to be analysed. This file is automatically generated using the M2M transformation.

net.gspn.net — A GreatSPN-specific representation of the Petri net corresponding to the model to be
analysed. This file is automatically generated using the M2T transformation.

net.gspn.def — A GreatSPN-specific file corresponding to the model to be analysed. This file is auto-
matically generated using the M2T transformation.

result.txt — The result of the analysis. This file is automatically generated by GreatSPN.

Copyright c© 2016, DICE consortium – All rights reserved 23

Deliverable 3.2. DICE simulation tools - Initial version

Figure 16: The workspace, showing the result of the simulation

Copyright c© 2016, DICE consortium – All rights reserved 24

Deliverable 3.2. DICE simulation tools - Initial version

5 Simulation Formalisms and Extensions

In order to broaden the DICE Simulation support and its community, we have also worked in the direction
of extending the range of simulation formalisms that can be targeted by the DICE Simulation Tool.
The main reason for doing this is to support multiple trade-offs between computational complexity,
expressiveness of the formalism, and licensing of the external tools.

In DICE we focus in particular on two simulation formalisms:

• Stochastic Petri Nets (SPNs), which allow to describe a set of tokens moving across places and
that require synchronized transitions. The reference tool used in DICE to analyze SPNs is Great-
SPN, developed by a third-party (University of Turin) and released under an open source license.

• Queueing Networks (QNs), which allows to describe a set of jobs moving across queues and
characterise their mutual contention at these queues. The reference tool used in DICE to analyze
QNs is Java Modelling Tools (JMT) [JMT], maintained by IMP.

Historically, the SPN and QN formalisms have been mainstream in performance and reliability anal-
ysis. GSPNs are generally considered more flexible and better suited for formal analysis than QNs. In
contrast, QNs are more efficient to analyze large-scale models and better suited to describe the effects of
scheduling policies.

In order to ensure that DICE users will be in condition to run simulations on large-scale models,
which are also important for the DICE Optimization Tool, we have therefore decided to develop a basic
support for JMT, in addition to the GreatSPN one. Even though the primary target of the Simulation
Tool will remain GreatSPN, JMT offers scalability properties that reduce the risk of incurring in com-
putational bottlenecks on large models or across the repeated invocations invoked by the Optimization
Tools. Furthermore, since JMT is developed within the consortium, it leaves us the freedom to integrate
specific constructs or analyses that may not be available in GreatSPN, which we cannot change since this
is developed by a third party. Below we report on some of the initial work we have done on preparing
the integration of JMT with DICE.

5.1 DICE Extensions for JMT

In order to make JMT useful for DICE, we have examined its main modelling features available with the
latest version (v0.9.2). We have identified in particular two main shortcomings with respect to integration
with DICE:

• QN expressiveness. Lack of certain synchronization primitives that are important to model Big
Data technologies. These include, for example, fork-join constructs with differentiated parallelism
levels among job classes. These constructs are important to model certain technologies, e.g.,
Apache Storm, Apache Spark, and columnar databases, where different jobs can require different
parallelism levels.

• Extensibility. JMT is lacking a plug-in mechanism for a third-party to contribute extensions to the
JMT environment. Such extensions are of practical relevance to DICE. For example, we would
like to develop a plug-in to support the loading of DICE-generated models into JMT. Moreover,
in order to foster interest by the performance and reliability analysis community around some of
the DICE modelling results, we believe that this mechanism could be used to integrate templates
of models of Big Data technologies that we have defined and validated within DICE. Lastly, as
technologies may change models unforeseen at this stage may need to be simulated from the DICE
profile. Therefore, extensibility of the JMT tool could guarantee a better long-term sustainability
for the DICE simulation capabilities, since third-parties will be able to contribute their extensions.

We describe below our work to address the two shortcomings listed above.

Copyright c© 2016, DICE consortium – All rights reserved 25

Deliverable 3.2. DICE simulation tools - Initial version

Figure 17: A JMT Queueing Network Model with a Fork and a Join operator.

5.1.1 QN Expressiveness

In order to address the lack of more expressive fork-join constructs, we have added to JMT support for
probabilistic fork-join constructs. Figure 17 illustrates an example model, where a set of parallel servers
is represented to describe parallel processing across a set of threads (e.g., database threads). Requests
arrive from the external Source, and then enter the Fork element. In the current release of JMT, the
Fork element would immediately split the job in a deterministic number of tasks, equal to the number
of outgoing arcs from the Fork, and these tasks would be later reassembled at the Join element. This is
certainly useful, but lacks the flexibility of expressing more complex fork-join behaviours present in Big
Data systems.

We have therefore extended JMT to include Variable Fork and Variable Join elements, where the
number of jobs forked or joined is defined probabilistically, and so is the number of outgoing links on
which tasks are sent. Figure 18 illustrates the corresponding dialog window in JMT used to specify the
Variable Fork element: the user first assigns the intended fork behaviour to a class of jobs processed by
the system (step 1), then he/she assigns forking probabilities across the different output branches of the
fork (step 2), and lastly expresses for each branch the probability distribution for the number of tasks to
be created on that branch (steps 3/4).

As an initial proof-of-concept, we have experimentally shown in a recent paper [CNSM] that such
elements can be useful to model real-world in-memory columnar databases. However we expect them to
benefit other classes of systems such as Spark and Hadoop/MapReduce based applications.

5.1.2 Extensibility via Templates

In order to overcome the availability of a mechanism to install and manage third-party plug-ins, we have
contributed to the JMT codebase an extension called JMT Templates. An illustration of the result is given
in Figure 19. A JMT user can now download third-party extensions from a server hosted in the cloud.
Upon downloading the corresponding plug-in into JMT, the user is shown in a different dialog window
a list of such plug-ins, that can be activated by mouse click. The resulting behaviour of the plug-in is
arbitrary as it can be coded in the JAR file that described the plug-in using Java code.

Copyright c© 2016, DICE consortium – All rights reserved 26

Deliverable 3.2. DICE simulation tools - Initial version

Figure 18: JMT Variable Fork-Join Extension

Figure 19: JMT Templates

Copyright c© 2016, DICE consortium – All rights reserved 27

Deliverable 3.2. DICE simulation tools - Initial version

6 Conclusions

In this document, we have presented the demonstrator of the Simulation Tool prototype, the main out-
come of Task 3.2. At its current state, the prototype is able to cover all the steps of the simulation
workflow (i.e., model, transform, simulate and retrieve results), with full integration within the DICE-
IDE, and providing a user-friendly interface.

Table 1 summarizes the main achievements of this deliverable in relation to its initial objectives in
terms of compliance with the initial set of requirements presented in Section 2. In the table, the labels
specifying the Level of fulfillment could be: (i) 7 (unsupported: the requirement is not fulfilled by the
current prototype); (ii) 4 (partially-low supported: a few of the aspects of the requirement are fulfilled
by the prototype); (iii) 4 (partially-high supported: most of the aspects of the requirement are fulfilled
by the prototype); and (iv) 4 (supported: the requirement is fulfilled by the prototype and a solution for
end-users is provided).

Table 1: Level of compliance of the prototype with the initial set of requirements

Requirement Title Priority Level of fulfillment
R3.1 M2M Transformation MUST 4

R3.2 Taking into account relevant annotations MUST 4

R3.4 Simulation solvers MUST 4

R3.5 Simulation of hosted big data services MUST 7

R3.6 Transparency of underlying tools MUST 4

R3.10 SLA specification and compliance MUST 4

R3.13 White/black box transparency MUST 7

R3IDE.1 Metric selection MUST 4

R3IDE.4 Loading the annotated UML model MUST 4

R3.3 Transformation rules COULD 4

R3.14 Ranged or extended what if analysis COULD 4

R3IDE.2 Timeout specification SHOULD 4

R3IDE.3 Usability COULD 7

As it can be seen, most of the initial (both mandatory and optional) requirements are fully or partially
met. Furthermore, we have contributed extensions to the JMT tool to offer a richer simulation capability
for DICE, in addition to the support for analysis based on the GreatSPN tool.

6.1 Further Work

Task T3.2 will still produce two additional deliverables in upcoming months: (i) D3.3, the DICE simu-
lation tools - Intermediate version at month 24; and (ii) D3.4, the DICE simulation tools - Final version
at month M30. For these deliverables, the following issues still need to be addressed:

• Regarding requirement R3.4, the automatic selection of the solvers is only supported by the non-UI
components. Proper UIs still need to be implemented.

• Support for requirement R3.5 needs to be fully implemented.

• Regarding requirement R3.10, a proper result model together with a proper GUI to check the SLA
needs to be designed and implemented.

• Regarding requirement R3.13, black box transparency will be dealt once DTSM models are ad-
dressed, currently only white box model translations are considered.

• Regarding requirement R3IDE.1, the definition of multiple metrics is supported at model level.
Proper filtering and selection still needs to be implemented at the GUI level.

Copyright c© 2016, DICE consortium – All rights reserved 28

Deliverable 3.2. DICE simulation tools - Initial version

• Requirement R3.3 is supported via specific plug-ins and extension points only. If transformations
may be selectable by end-users a better GUI is required.

• Requirement R3.14 is only supported by the core non-UI components. A new orchestrator is
required, and a UI needs to be implemented.

• Regarding requirement R3IDE.2, the life-cycle of a simulation process can be completely tracked
and controlled, but no specific support for timeouts has been implemented yet. This is however a
minor issue.

• Support for requirement R3IDE.3 needs to be fully implemented.

• We intend to exploit the extensions described in Section 5 to produce an integration between the
DICE Simulation Tool and JMT, since the former at the moment can target only GreatSPN.

Copyright c© 2016, DICE consortium – All rights reserved 29

Deliverable 3.2. DICE simulation tools - Initial version

Appendix A. The DICE-Simulation Repository

This appendix describes the DICE-Simulation repository [dice:simulation:repo]. This repository con-
tains the following projects/plug-ins:

es.unizar.disco.core — This project contains the Core plug-in. The Core plug-in provides some utility
clases for I/O, together with the shared logging capabilities.

es.unizar.disco.core.ui — This project contains the Core UI plug-in. The Core UI plug-in provides UI
components that are shared across the different plug-ins contained in this repository, such as file
selection dialogs.

es.unizar.disco.pnconfig — This project contains the implementation of the Configuration Model as an
EMF plug-in.

es.unizar.disco.pnml.m2m — This project implements the M2M tranformation from UML to PNML
using QVTo.

es.unizar.disco.pnextensions — This project provides some utilities to handle some extensions in PNML
models. The PNML standard does not provide support for timed and stochastic petri nets. Thus,
this plug-in provides the utility methods to handle this information by using the ToolSpecifics tags
provided by the PNML standard.

es.unizar.disco.pnml.m2t — This project contains the Acceleo [acceleo] transformation to convert a
DICE-annotated PNML file to a set GreatSPN files.

es.unizar.disco.simulation.greatspn.ssh — This project contains the OSGi component that controls a
remote GreatSPN instance by using SSH commands.

es.unizar.disco.simulation — This project contains the core component that executes a simulation by
orchestrating the interactions among all the previous components.

es.unizar.disco.simulation.ui — This project contains the UI contributions that allow the users to in-
voke a simulation within the Eclipse GUI.

es.unizar.disco.ssh — This project provides a simple extension point contribution to access a remote
host by issuing the connection data using a local file.

com.hierynomus.sshj — This project contains the sshj - SSHv2 library for Java as an OSGi-friendly
bundle. This module is required by es.unizar.disco.simulation.greatspn.ssh to access
a remote GreatSPN instance using SSH/SFTP.

Copyright c© 2016, DICE consortium – All rights reserved 30

