
Developing Data-Intensive Cloud
Applications with Iterative Quality

Enhancements

Design and quality abstractions - Initial
version

Deliverable 2.1

Ref. Ares(2016)530056 - 01/02/2016

Deliverable 2.1. Design and quality abstractions - Initial version.

Deliverable: D2.1
Title: Design and quality abstractions - Initial version

Editor(s): Abel Gómez (ZAR) and José Merseguer (ZAR)
Contributor(s): Abel Gómez (ZAR), Michele Guerriero (PMI), José Merseguer

(ZAR), Elisabetta di Nitto (PMI) and Damian A. Tamburri (PMI)
Reviewers: Matej Artac (XLAB) and Tatiana Ustinova (IMP)

Type (R/P/DEC): Report
Version: 1.0

Date: 31-January-2016
Status: Final version

Dissemination level: Public
Download page: http://www.dice-h2020.eu/deliverables/

Copyright: Copyright c© 2016, DICE consortium – All rights reserved

The DICE project (February 2015-January 2018) has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

Copyright c© 2016, DICE consortium – All rights reserved 2

Deliverable 2.1. Design and quality abstractions - Initial version.

Executive summary

This document presents the initial version of the DICE design and quality abstractions. Therefore, it pro-
vides the initial versions of the DICE Models and the DICE Profile, both artifacts are briefly introduced
with an executive summary and extensively described in the Appendices A and B of this document, re-
spectively. This deliverable will be a baseline for deliverable D2.2 (Design and quality abstractions -
Final version) due in M24. The work presented in this deliverable has been carried out within tasks T2.1
(Data-aware functional models) and T2.2 (Data-aware quality annotations).

All the artifacts described in this document are publicly available in the so-called DICE-Models
Repository [dice:models:repo] and DICE-Profiles Repository [dice:profile:repo].

Copyright c© 2016, DICE consortium – All rights reserved 3

Deliverable 2.1. Design and quality abstractions - Initial version.

Glossary

DAM Dependability Analysis and Modeling
DDSM DICE Deployment Specific Model
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DPIM DICE Platform Independent Model
DTSM DICE Technology Specific Model
MARTE Modeling and Analysis of Real-Time and Embedded Systems
MDD Model-Driven Development
MDE Model-Driven Engineering
MTM Model To Model
NFP Non-Functional Properties
UML Unified Modelling Language
VSL Value Specification Modeling

Copyright c© 2016, DICE consortium – All rights reserved 4

Deliverable 2.1. Design and quality abstractions - Initial version.

Contents

Executive summary . 3

Glossary . 4

Table of Contents . 5

List of Figures . 7

List of Tables . 7

1 Introduction and Context . 8
1.1 Objectives of WP2 . 8
1.2 Objectives of Task 2.1 and Task 2.2 . 8
1.3 Objectives of this document . 8
1.4 Structure of the document . 8

2 Requirements . 10
2.1 Requirements . 10

3 Research and Development Approach . 12
3.1 DICE Metamodel . 13
3.2 DICE Profile . 14

4 DPIM Logical Layer . 16
4.1 Metamodel . 16
4.2 Profile . 18

5 DTSM Logical Layer . 19
5.1 Metamodel . 19
5.2 Profile . 19

6 Further Research Roadmap . 21

7 Conclusions . 22
7.1 Further Work . 22

References . 23

Appendix A. Domain Metamodels . 23
A.1 The DiceDomainModel::DPIM metamodel . 23
A.2 The DiceDomainModel::DTSM::Core metamodel . 26
A.3 The DiceDomainModel::DTSM::Hadoop metamodel 28
A.4 The DiceDomainModel::DTSM::Oryx metamodel . 33
A.5 The DiceDomainModel::DTSM::Spark metamodel 37
A.6 The DiceDomainModel::DTSM::Storm metamodel 43

Appendix B. Profile mappings . 48
B.1 Mapping the DiceDomainModel::DPIM metamodel onto DICE Profile: The DICE::

DICE_UML_Extensions::DPIM package . 48
B.2 Mapping the DiceDomainModel::DTSM::Core metamodel onto DICE Profile: The

DICE::DICE_UML_Extensions::DTSM::Core package 50
B.3 Mapping the DiceDomainModel::DTSM::Hadoop metamodel onto DICE Profile: The

DICE::DICE_UML_Extensions::DTSM::Hadoop package 51

Copyright c© 2016, DICE consortium – All rights reserved 5

Deliverable 2.1. Design and quality abstractions - Initial version.

B.4 Mapping the DiceDomainModel::DTSM::Spark metamodel onto DICE Profile: The
DICE::DICE_UML_Extensions::DTSM::Spark package 53

B.5 DICE model library . 54
B.5.1 The DICE::DICE_Library::Basic_DICE_Types package 54
B.5.2 The DICE::DICE_Library::Complex_DICE_Types package 55

Copyright c© 2016, DICE consortium – All rights reserved 6

Deliverable 2.1. Design and quality abstractions - Initial version.

List of Figures

1 DICE Metamodel - High-level View . 13
2 DICE Metamodel - DTSM View . 13
3 DICE Profile - High-level View . 14
4 DICE Library . 15
5 DICE UML Extensions . 15
6 DICE DPIM metamodel . 17
7 The DICE Spark Package, an Overview . 20

List of Tables

1 Stereotypes at DPIM level . 18
2 Stereotypes for the DTSM::Core . 19
3 Level of compliance of the current version with the initial set of requirements 22
5 DiceDomainModel::DPIM data types . 23
6 The DiceDomainModel::DPIM package . 23
7 DiceDomainModel::DTSM::Core data types . 26
8 The DiceDomainModel::DTSM::Core package . 26
9 DiceDomainModel::DTSM::Hadoop data types . 28
10 The DiceDomainModel::DTSM::Hadoop package . 28
11 The DiceDomainModel::DTSM::Oryx package . 33
12 DiceDomainModel::DTSM::Spark data types . 37
13 The DiceDomainModel::DTSM::Spark package . 37
14 DiceDomainModel::DTSM::Storm data types . 43
15 The DiceDomainModel::DTSM::Storm package . 43
16 The DICE::DICE_UML_Extensions::DPIM package 48
17 The DICE::DICE_UML_Extensions::DTSM::Core package 50
18 The DICE::DICE_UML_Extensions::DTSM::Hadoop package 51
19 The DICE::DICE_UML_Extensions::DTSM::Spark package 53
20 The DICE::DICE_Library::Basic_DICE_Types package 54
21 The DICE::DICE_Library::Complex_DICE_Types package 55

Copyright c© 2016, DICE consortium – All rights reserved 7

Deliverable 2.1. Design and quality abstractions - Initial version.

1 Introduction and Context

The focus of the DICE project is to define a quality-driven framework for developing data-intensive ap-
plications that leverage Big Data technologies hosted in private or public clouds. DICE offers a novel
profile and tools for data-aware quality-driven development. This document describes the initial ver-
sion of the DICE Profile and the DICE Metamodels, the latter are needed to develop the DICE-Profile
according to the Approach described in Section 3 of this document. The DICE Metamodels and the
DICE Profile, developed in the scope of WP2 as Tasks 2.1 (Data-aware functional models) and 2.2
(Data-aware quality annotations), are published in the DICE-Profiles [dice:profile:repo] and DICE-
Models [dice:models:repo] repositories.

1.1 Objectives of WP2

The goal of WP2 is to provide and evaluate the necessary design abstractions for specifying data-intensive
cloud applications. The work captured in this deliverable, focuses on Tasks 2.1 and 2.2 (see below),
namely, the conceptual definition of the DICE design abstractions. Remaining tasks cover the specifica-
tion of quality annotations, data protection and privacy constraints and will introduce or refine the DICE
Platform Independent Model (DPIM), DICE Technology Specific Model (DTSM), and DICE Deploy-
ment Specific Model (DDSM) logical layers of the DICE Profile. Finally, the WP needs to define the
DICE MDD methodology, which envisions the identification of the design and tool-chain usage work-
flow to support the continuous development of data-intensive applications.

1.2 Objectives of Task 2.1 and Task 2.2

Task 2.1 will provide DPIM and DTSM abstractions of the DICE Profile to describe data properties, data
usage requirements and data transformations among other data-related concerns. Outputs of this task will
be technology-specific models that include the necessary abstractions for a data-intensive application
developer to specify operations performed on data, qualifying inputs and outputs.

Task 2.2 will define DPIM and DTSM abstractions (UML-based languages and profiles) to specify
reliability, efficiency, and safety requirements for data-intensive applications, application subcompo-
nents, and data usage. This task will use as baselines DAM and MARTE profiles, these were described
in the DICE State of the Art Analysis deliverable [dice:d1.1].

1.3 Objectives of this document

This document presents the initial version of the DICE Metamodels and DICE Profile at DPIM and
DTSM levels. DICE Metamodels are the output of Task 2.1, while the DICE Profile is the output of
Task 2.2. This document serves as a baseline for deliverable D2.2 (Design and quality abstractions -
Final version).

1.4 Structure of the document

The structure of this deliverable is as follows:
• Section 2 summarizes the requirements that Tasks 2.1 and 2.2 aim to cover.

• Section 3 presents the Approach developed for constructing the Metamodels and for developing
the Profile.

• Section 4 summarizes the contribution of this deliverable at DPIM level.

• Section 5 summarizes the contribution of this deliverable at DTSM level.

• Section 6 summarizes the goals achieved, and outlines the future work.

• Appendix A details the current version of the DICE Metamodels at DPIM and DTSM levels.

Copyright c© 2016, DICE consortium – All rights reserved 8

Deliverable 2.1. Design and quality abstractions - Initial version.

• Appendix B details the current version of the DICE Profile at DPIM and DTSM levels.

Copyright c© 2016, DICE consortium – All rights reserved 9

Deliverable 2.1. Design and quality abstractions - Initial version.

2 Requirements

Deliverable D1.2 [dice:d1.2, dice:d1.2:companion], released on month 6, presented the requirements
analysis for the DICE project. The outcome of the analysis was a consolidated list of requirements and
the list of use cases that define the project’s goals that guide the DICE technical activities.

This section recapitulates these requirements for Tasks T2.1 and T2.2.

2.1 Requirements

ID R2.1
Title DICE Methodological Paradigm
Priority Must have
Description The DICE profile and methodology shall support the incremental specification of Data-

Intensive Applications (DIAs) following a Model-Driven Engineering approach, as
defined in standard OMG guidelines.

ID R2.2
Title Abstraction Layer Origin
Priority Must have
Description Every abstraction layer (namely, DPIM, DTSM and DDSM) of the DICE profile

MUST stem from UML.

ID R2.3
Title Relation with MARTE UML Profile
Priority Must have
Description The DICE Profile MUST define required and provided properties of a DIA as well

as metrics (estimated, measured, calculated and requirements) to monitor them. Said
metrics will be specifed following the MARTE NFP framework.

ID R2.4
Title DICE Constraints Specification
Priority Must have
Description The DICE Profile MUST allow definition of values of constraints (e.g., maximum

cost for the DIA), properties (e.g., outgoing flow from a Storage Node) and stereotype
attributes (batch and speed DIA elements) using the MARTE VSL standard.

ID R2.5
Title DICE Profile Performance Annotations
Priority Must have
Description The DICE Profile shall define annotations for performance based on the

MARTE::GQAM framework.

ID R2.6
Title DICE Profile Reliability Annotations
Priority Must have
Description The DICE Profile shall define annotations for reliability based on the DAM profile.

ID R2.7
Title DICE Extension-Points
Priority Must have

Copyright c© 2016, DICE consortium – All rights reserved 10

Deliverable 2.1. Design and quality abstractions - Initial version.

Description The DTSM MUST include extension facilities. These facilities shall be used to “aug-
ment” the DICE profile with technologies beyond the DICE project assumptions (e.g.,
Storm, Spark, Hadoop/MR, etc.). Similarly, every technological space embedded
within the DICE profile shall exist in the form of such extensions, e.g., as concep-
tual packages (at the DTSM layer) and refined implementation-specific packages (at
the DDSM layer).

ID R2.8
Title DICE Profile Main DIA Concerns - Flow and Behavior
Priority Must have
Description The DICE Profile shall define annotations that address behavioral and flow concerns

behind DIAs. Also, the DICE Profile shall define annotations for flow-control across
DIAs.

ID R2.9
Title DICE Topologies
Priority Must have
Description The DTSM layer MUST support the definition of Technology-specific DIA Topologies

(e.g., Namenode-Datanode-SecondaryNamenode vs. Master-Region-Zookeeper, etc.).

ID R2.10
Title DICE Profile Tech-Specific Constraints
Priority Must have
Description The DICE Profile MUST define structural and behavioral constraints typical in targeted

technologies (e.g., Hadoop, Storm, Spark, etc.).

ID R2.11
Title DICE Profile Separation-of-Concerns
Priority Must have
Description The DICE Profile MUST use packages to separately tackle the description of targeted

technologies in the respective profile abstraction layers (e.g., DTSM and DDSM). Said
packages shall be maintained consistently

ID R2.13
Title DICE Profile Data Structure
Priority Must have
Description The DICE Profile shall define QoS annotations for data structure and its specification.

ID R2.14
Title DICE Profile Data Communication
Priority Must have
Description The DICE Profile shall define annotations to elaborate on structural and behavioral de-

tails concerning the channeling and marshalling of information across specified DIAs.

ID R2.15
Title DICE Profile Sub-Structures
Priority Must have
Description The DICE Profile shall provide annotations for specifying node nesting and replication

across the structure of DIAs.

Copyright c© 2016, DICE consortium – All rights reserved 11

Deliverable 2.1. Design and quality abstractions - Initial version.

3 Research and Development Approach

As recalled in the DICE State of the Art Analysis deliverable [dice:d1.1], MDE techniques [MDE] and
MDA in particular [MDA] define the typical abstraction layers for the purpose of engineering software
systems using a model-centric perspective. The fundamental axiom behind this engineering paradigm is
that any engineering endeavor shall be guided by at least three compounding and interoperating perspec-
tives, namely: (a) Computational-Independent perspective; (b) a Platform-Independent perspective; (c)
a Platform-Specific perspective. Using these three perspectives, one or more models can be specified to
properly and systematically specify a system-to-be. In DICE these perspectives take the form of DPIM,
DTSM and DDSM, respectively, while the specification language adopted is UML.

UML [UML] is a General Purpose Modelling Language. Therefore, it can be used to model a wide
range of systems but not all of its modelling capabilities are necessarily useful in all domains or appli-
cations. Conversely, Domain-Specific Modelling Languages (DSML) are conceived for addressing the
needs of specific application domains. In this regard, UML offers a solution, the so-called UML profiling
mechanism [UML]. Profiling opens the possibility of creating DSMLs by extending or restricting UML.
A Profile is then an adaptation of UML to fit a specific domain. In short, a UML Profile is made of a
set of stereotypes, a set of tags and a set of related constraints. A stereotype is just a name that will be
attached to certain elements of a UML diagram. Stereotypes have tags, we can see them as the attributes
added by the stereotype.

UML has been extended with two Profiles of interest for DICE, namely MARTE [MARTE] and
DAM [DAM]. MARTE (Modelling and Analysis of Real-Time and Embedded systems) provides support
for the specification, design, quantitative evaluation, and verification & validation of software systems.
DAM (Dependability Analysis and Modelling Profile) provides support for the dependability modelling
and analysis of software systems. However, neither MARTE nor DAM has a direct support for expressing
data location, data properties such as volume or transfer rates or operations that move data. Hence,
addressing such lack is the main objective of the DICE Profile.

For constructing a technically correct high-quality UML profile, that covers the necessary concepts
according to the DIA technologies, several steps need to be followed. First, metamodels for each ab-
straction level, i.e. DPIM, DTSM and DDSM, that define the concepts are needed. We have carried out
this step by carefully reviewing the abstract concepts for modelling DIA, then obtaining the abstractions
for the DPIM level, which conform the DICE Metamodel at DPIM level. Later, we have reviewed the
different Big Data technologies addressed by DICE (e.g., Hadoop, Spark or Storm) and we have defined
the abstractions of interest, consequently obtaining the DICE Metamodels at DTSM level. The last level,
DDSM, will be subject of another deliverable D2.3 (Deployment abstractions - Initial version), due in
M18.

As a second step, the DICE Profile, at DPIM and DTSM levels, was defined by mapping the concepts
from the DICE domain models or DICE Metamodels to UML, MARTE and DAM. Using the DICE
domain models we designed: (a) the DICE extensions (stereotypes and tags), and (b) the DICE library
containing DIA specific types. We followed an iterative process for the profile definition, in which each
domain class was examined, together with its attributes, associations and constraints, to identify the most
suitable UML base concepts for it, as suggested in [S07].

While constructing the DICE Profile, following WP2 requirements, we introduced a set of stereo-
types small yet expressive, that can be easily used by the software engineer. We then used guidelines
from [LETG07] to select the subset of the domain classes that eventually were mapped to stereotypes.
Moreover, several patterns proposed in [LETG07] were applied (e.g., the reference association pattern),
that enable the creation of a profile from the domain model while keeping it consistent with the UML
meta-model. The DICE stereotypes are then assets for annotating UML DIA models at the different
abstraction levels. This set of stereotypes here proposed is the one for obtaining formal models and
TOSCA models by M2M transformations. Currently the stereotypes proposed are useful for obtaining
performance models. Later, we will extend this proposal with stereotypes useful for obtaining reliability
models (Task 2.2) and TOSCA models (Task 2.3).

In the following we summarize main concerns regarding the DICE Metamodel and DICE Profile.

Copyright c© 2016, DICE consortium – All rights reserved 12

Deliverable 2.1. Design and quality abstractions - Initial version.

Figure 1: DICE Metamodel - High-level View

3.1 DICE Metamodel

The DICE metamodel, detailed in Appendix A of this document, is sketched in Figure 1. DICE considers
one metamodel per abstraction level: DPIM, DTSM and DDSM. The rationale behind this organization
is that each abstraction level keeps separated, self-contained and mutually incremental. At DPIM level
the metamodel provides those abstract concepts needed for DIA modeling. At DTSM level, see Fig-
ure 2 the metamodel provides a core-DTSM metamodel and one DTSM metamodel for each technology
addressed.

The logical division of the most complex abstraction layers in the DICE Profile, namely, the DICE
DTSM (addressed in this deliverable) and DDSM (addressed in D2.3 deliverable) layers was arranged
using a standard package-like notation. Following a systematic approach tailored from Formal Concept
Analysis (FCA) [fca], we elicited the core-constructs common to all technologies addressed by DICE
and captured said constructs in a core package, to be used by all technological extensions. In addition,
specific technological extensions, e.g., Hadoop MR or Storm, were self-contained into separate pack-

Figure 2: DICE Metamodel - DTSM View

Copyright c© 2016, DICE consortium – All rights reserved 13

Deliverable 2.1. Design and quality abstractions - Initial version.

ages, thus allowing to keep them transparent to less expert users. Nevertheless, DICE will strive to make
available these packages as possibly instantiable and modifiable constructs, e.g., to accommodate the
needs of more experienced users.

3.2 DICE Profile

For each aforementioned metamodel we propose a mapping for obtaining the DICE Profile, as detailed
in Appendix B of this document. The DICE Metamodel is a live artifact that will evolve during the
project, hence the mapping here presented will necessarily evolve with the DICE Metamodel. Figure 3
offers a high-level view of the DICE Profile, which basically contains the DICE Library and the DICE
Extensions.

The DICE Library, detailed in Figure 4, contains basic and complex DIA types. We have imported
the DAM library, which also imports the basic Non-Functional Properties (NFP) types from the MARTE
library, for the definition of these types. In particular, the MARTE NFPs sub-profile is applied to the def-
inition of new basic DIA types and the Value Specification Modeling (VSL) sub-profile to the definition
of the complex ones.

The DICE Extensions package, detailed in Figure 5, provides the domain expert with a set of stereo-
types to be applied at model specification level, i.e., the stereotypes necessary to represent the different
system views in concrete UML models.

Figure 3: DICE Profile - High-level View

Copyright c© 2016, DICE consortium – All rights reserved 14

Deliverable 2.1. Design and quality abstractions - Initial version.

Figure 4: DICE Library

Figure 5: DICE UML Extensions

Copyright c© 2016, DICE consortium – All rights reserved 15

Deliverable 2.1. Design and quality abstractions - Initial version.

4 DPIM Logical Layer

DICE provides Software Architects with a set of core concepts, at the DPIM layer, to specify the fun-
damental architecture elements that constitute a Data-Intensivef application, i.e., during the DIA Design
phase. Designers may use the identified core architecture elements to quickly put together the structural
view of their Big-Data application, highlighting and tackling concerns such as data flow and essential
high-level processing properties (e.g., rate, properties provided and required by every component, etc.)
as well as key data processing needs (e.g., batch, streaming, etc.).

4.1 Metamodel

DPIM includes all concepts that are relevant for structuring a DIA. At the DPIM level we define the high
level topology of the application and its QoS requirements. Elements of the DPIM meta-model fall into
two categories:

1. Active DIA elements, which are shown by in light yellow in the bottom of the model (see Fig. 6);

2. Passive DIA elements, which are shown in white in the top of the model (see Fig. 6).

More in particular, the meta-model in Fig. 6 shows that DIA elements are essentially aggregates of
two sets of components. Firstly, the "ComputationalNode", which is basically responsible for carrying
out computational task like map, or reduce in MapReduce. One of important attributes of ComputationN-
ode is "computationType" that shows the processing type of big-data i.e, batch processing or stream pro-
cessing. The ComputationNode itself, further specializes into "SourceNode" and "Visualization" nodes.
The SourceNode’s role is to provide data for processing. In other word the SourceNode represents the
source of data which are coming into application in order to being processed. The attribute "sourceType"
further specifies the characteristics of source. The ultimate goal of a big-data application is to process
the data that have high volume and velocity. So the SourceNode, and ComputationNode are in DPIM
since there are the essential part of each and every DIA.The sourceNode is the entry point of data into
application and the Computation is where data would process. Visualization here means to visualize
the data to represent the knowledge more intuitively and effectively by using different graphs which are
computed through Data-Intensive means. Even though the visualization of big-data itself could be done
by a separate application, but here we considered visualization as specification of ComputationNode
since ultimately the visualization is a data-intensive computation task. Another element which is also
specification of ComputationNode is the FilterNode. Its role is to do any type of pre-processing and
post-processing of data if needed.

The second key element in the DICE profile is the "StorageNode". As its name may suggest the
StorageNode represents the element which is responsible for storing the data, either for long term or not.
Moreover it is associated with "Channel" that represents the communication channel in application. The
specification of Channel also shows the restrictions and constraints of a channel. It also specifies the char-
acteristics related to transformation of data like information rate and taps. The concept of StorageNode
in DPIM mainly corresponds with the "database" in the model1, in some case it could be "filesystem"
also. The channel in DPIM is representation of "Governance and data Integration" in Model1 which
mainly includes the technologies responsible for transferring the data, like message broker systems. The
other elements in the model are "DataSpecification" and "QoSRequiredProperty", which are annotation
stubs1 for specification the type and format of data and the QoS for system and its evaluation respectively.
Further details are available in Appendix A.

1Inherited from the MODACloudML notation (http://www.modaclouds.eu/wp-content/uploads/2012/09/
MODAClouds_D4.2.1_MODACloudMLDevelopmentInitialVersion.pdf).

Copyright c© 2016, DICE consortium – All rights reserved 16

Deliverable 2.1. Design and quality abstractions - Initial version.

Fi
gu

re
6:

D
IC

E
D

PI
M

m
et

am
od

el

Copyright c© 2016, DICE consortium – All rights reserved 17

Deliverable 2.1. Design and quality abstractions - Initial version.

4.2 Profile

Table 1 summarizes the current list of stereotypes of the DICE Profile for the DPIM level.

Table 1: Stereotypes at DPIM level

Stereotype Description (This stereotype is for model elements representing. . .)
DiceComponent DIA components with throughput and maybe resource multiplicity.
DiceFilterNode Filter nodes with input and output ratios.
DiceSourceNode DIA components with a given storage volume and processing rate.
DiceStorageResource DIA resources with resource multiplicity, data specification and

processing rate.
DiceChannel DIA channels that can be subject of failures and have error propagation

rate.

Copyright c© 2016, DICE consortium – All rights reserved 18

Deliverable 2.1. Design and quality abstractions - Initial version.

5 DTSM Logical Layer

When all essential architecture elements are in place, by means of architectural reasoning in the DICE
DPIM layer, DICE makes available ad-hoc model transformations that parse DPIM models and produce
equipollent DTSM models where the specified data processing needs are exploded (if possible) into a
possible configuration using appropriate technologies (e.g., Spark for streaming or Hadoop for batch).
At this layer DICE provides architects and developers several key technological framework packages
that they can evaluate as possible alternatives for Technological Mapping and Logical Implementation,
that is, selecting the technological frameworks that map well with the problem at hand and implementing
the needed processing logic for that framework. Once designers choose the appropriate technological
alternative, DICE will provide model transformations that instantiate the alternative (if available) e.g., by
instantiating pre-made, ad-hoc packages that contain: (a) framework elements needed to “link" the Data-
Intensive application logic (e.g., through inheritance); (b) framework elements that contain (optional)
configuration details (c) framework elements that represent deployable entities and nodes (e.g., Master
Nodes and Resource Managers for Hadoop Map Reduce). Software Architects proceed by filling out any
wanted configuration details to run the chosen frameworks, probably in collaboration with Infrastructure
Engineers.

5.1 Metamodel

As previously introduced, at the DTSM layer the Data-Intensive application is elaborated with technology-
specific packages. Several of the packages to be supported by DICE have been produced in the form of
well-formed and validated meta-model package drafts. These drafts exist as working meta-models to
be improved through action research with our industry partners. The technological packages that were
currently drafted are: (1) Hadoop Map-Reduce 2; (2) Storm; (3) Spark; (4) Oryx 2. For example, see the
Spark DTSM package2 reported in Fig. 7. In essence, at the DTSM layer, designers use the pre-made
technology-specific packages either with full defaults or configuring (at least) the following: (a) Work-
flowSpecification - contains details necessary to configure the chosen framework according to ad-hoc
execution, scheduling and access policies; (b) one or more Tracker(s) must be specified for the purpose
of tracking job-progress and node-status; (c) a Manager node needs to be specified to regularly poll
tracker nodes for the purpose of updating and steering their orchestration; (c) finally, InputSplits and
InputSplitSpec must be produced to instruct the framework and the Big-Data application on how to pro-
duce input splits (i.e., processable blocks of coherent data) and what shall be the structure and semantics
of said splits for further process. In addition, at the DTSM level, designers and developers elaborate
on the desired behavioural specification for the data-intensive job, by “filling-in" the functions provided
in the technology-specific packages, e.g., by inserting desired behaviour in the «Map» and «Reduce»
constructs part of the Hadoop package within DICE.

5.2 Profile

Table 2 summarizes the current list of stereotypes of the DICE Profile for the DTSM::Core package.
Further details about stereotypes for technologies are available in Appendix B.

Table 2: Stereotypes for the DTSM::Core

Stereotype Description
DiceComponent This stereotype inherits from one at the DPIM level and adds a

function specification.
DiceWkSpec This stereotype is for specifying DIA scenarios to which a

performance or reliability analysis can be carried out.
DiceSourceNode This stereotype is imported from the DPIM level.
DiceStorageResource This stereotype inherits from one at the DPIM level and adds

constraint and a management layer.

2More details on the Meta-Modeling Elements part of the various Technological Packages as well as the DICE Core Package
are available in Appendix A

Copyright c© 2016, DICE consortium – All rights reserved 19

Deliverable 2.1. Design and quality abstractions - Initial version.

Figure
7:T

he
D

IC
E

Spark
Package,an

O
verview

Copyright c© 2016, DICE consortium – All rights reserved 20

Deliverable 2.1. Design and quality abstractions - Initial version.

6 Further Research Roadmap

Although we have achieved results almost beyond our own expectation, reaching a set of mature notations
for the several technologies we plan to support in the DICE project requires still a significant amount of
work.

First, in terms of Quality of Service (QoS) and Quality of Data (QoD) metrics, as previously men-
tioned, the DICE profile currently supports the specification of Quality required properties at the DPIM
level (as envisioned in our requirements) but it does allow only partially to further elaborate said metrics
into the parameters needed to verify/evaluate them. This support is actually only covered for the Apache
Storm big data framework modelled within our specifications. Conversely, these parameters should be
investigated extensively as part of further collaboration with remaining work-packages, namely WP3,
WP4 and WP5. So far, we carried out some basic work to bring about some agreement on the set of
high-level properties currently to be supported by the profile but, indeed, we are still working to elicit
a complete set of said parameters to be implemented in an ancillary DTSM layer parameters library.
We plan to elaborate said library either by: (a) investigating all possible parameters that can be elicited
through DICE monitoring; (b) running empirical research with our fellow DICE partners; (c) reverse-
engineer supported technological packages to understand key metrics to be supported.

Second, in terms of model evolvability and manipulability by means of model transformations, we
currently developed a series of tentative technological transformation templates to be used as an inspira-
tion for the development and implementation of the IDE. Said transformations are by no means complete
and we are still gathering a complete overview for the expected transformation and manipulation re-
quirements from our case-study owners. An important aspect that we have to study in detail concerns
how to make sure that transformations enable an incremental modeling approach where the designer can
move from the DPIM level down to the DTSM and DDSM levels and then back to DPIM for extend-
ing/modifying the DIA, without causing that his/her work on the lower levels goes lost.

Third, an important aspect to be tackled concerns the identification and modeling of privacy concerns
which are key to the DICE tenants. This will be done based on the interaction with case study owners
and with our legal consultant, Dott. Perri.

Stemming from the above discussion, in the future we plan to: (a) engage our case-study owners for
the purpose of eliciting and further elaborating required QoS, QoD and privacy properties with connected
parameters needed for verification; (b) engage our case-study owners for the purpose of gathering a com-
plete overview of desired model manipulations; (c) draft an Eclipse IDE implementation and extension
of the MARTE/DAM profile to support DICE models instantiation and manipulation; (d) evaluate said
work with prototyping and industrial action research on our case studies.

Copyright c© 2016, DICE consortium – All rights reserved 21

Deliverable 2.1. Design and quality abstractions - Initial version.

7 Conclusions

In this document we have presented the current version of the DICE Metamodels and DICE Profile,
which are the main outcomes for Tasks T2.1 and T2.2, respectively.

Table 3 summarizes the main achievements of this deliverable in terms of compliance with the initial
set of requirements presented in Section 2. Note that some of the requirements are specified both at
Profile level and at Methodological level. However, our analysis of compliance refers to the Profile level
exclusively. In Table 3, the labels specifying the Level of fulfillment could be: (i) 7 (unsupported: the
requirement is not fulfilled by the current version); (ii) 4 (partially-low supported: a few of the aspects
of the requirement are fulfilled by the current version); (iii) 4 (partially-high supported: most of the
aspects of the requirement are fulfilled by the current version); and (iv) 4 (supported: the requirement is
fulfilled by the current version).

Table 3: Level of compliance of the current version with the initial set of requirements

Requirement Title Priority Level of fulfillment
R2.1 DICE Methodological Paradigm MUST 7

R2.2 Abstraction Layer Origin MUST 4

R2.3 Relation with MARTE UML Profile MUST 4

R2.4 DICE Constraints Specification MUST 4

R2.5 DICE Profile Performance Annotations MUST 4

R2.6 DICE Profile Reliability Annotations MUST 4

R2.7 DICE Extension-Points MUST 4

R2.8 DICE Profile Main DIA Concerns - Flow and Be-
havior

MUST 4

R2.9 DICE Topologies MUST 7

R2.10 DICE Profile Tech-Specific Constraints MUST 4

R2.11 DICE Profile Separation-of-Concerns MUST 4

R2.13 DICE Profile Data Structure MUST 4

R2.14 DICE Profile Data Communication MUST 4

R2.15 DICE Profile Sub-Structures MUST 4

7.1 Further Work

Tasks T2.1 and T2.2 will still produce an additional deliverable, D2.2, the Design and quality abstrac-
tions - Final version at month 24. For such deliverable we still need to: (i) introduce Storm and Oryx
DICE Profiles at DTSM level; (ii) perform a complete validation of the DICE Profile; and (iii) address
the following issues:

• Regarding requirement R2.1, this deliverable has not addressed the incremental specification.

• Regarding requirement R2.6, although some stereotypes already include the notion of failure, the
DICE Profile needs to be reviewed for including reliability annotations compliant with DAM pro-
file.

• Regarding requirement R2.7, it has been addressed at DTSM level but not at DDSM level.

• Regarding requirement R2.9, it needs to be addressed.

• Regarding requirement R2.10, it needs to be addressed for Storm and Oryx.

• Regarding requirement R2.15, currently this is supported by DAM.

Copyright c© 2016, DICE consortium – All rights reserved 22

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

Appendix A. Domain Metamodels

A.1 The DiceDomainModel::DPIM metamodel

Table 5: DiceDomainModel::DPIM data types

Name Kind Values or Description
ComputationType Enumeration distributed, parallel, distributedParallel,

microBench, sorting, grep, wordCount,
collabFiltering, naiveBayes, bfs, pageRank,
kMeans, connectedComponents, relQuery

TechType Enumeration RDD
SourceType Enumeration sharedStorage, dataStream
ProcessingType Enumeration synch, asynch, policy
DICEproperties Enumeration genericProperty
DataFormatType Enumeration

Table 6: The DiceDomainModel::DPIM package

DICE DiceDomainModel::DPIM Metamodel Element Description Attributes
DIA Represents a Data Intensive Ap-

plication.
1. Compositions:
• contains: DIAElement

DIAElement An element of a Data Intensive
Application. It can be a Compu-
tationNode or a StorageNode.

1. Attributes:
• name: String
• requiredProperties: DICEproperties
• providedProperties: DICEproperties

2. Compositions:
• hasToFullfill: QoSRequiredProperty
• contains: DIAElement
• input: Data
• output: Data

3. Associations:
• hasToFullfill: QoSRequiredProperty
• contains: DIAElement
• input: Data
• output: Data

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
23

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

ComputationNode inherits from:
DiceDomainModel::DPIM::DIAElement,
DAM::System::Core::Component

Represents an element of the ap-
plication whose goal is to per-
form some computation.

1. Attributes:
• type: ComputationType
• targetTech: TechType
• procType: ProcessingType
• thorughput: DICEproperties

2. Associations:
• storeAndProcess: StorageNode

FilterNode inherits from:
DiceDomainModel::DPIM::DIAElement,
DiceDomainModel::DPIM::ComputationNode

Represents a computation node
that performs just some filtering
on the application data.

1. Attributes:
• inputRatio: DICEproperties
• outputRatio: DICEproperties

VisualizationNode inherits from:
DiceDomainModel::DPIM::DIAElement,
DiceDomainModel::DPIM::ComputationNode

Represents a computation node
whose goal is to perform data
visualization.

SourceNode inherits from:
DiceDomainModel::DPIM::DIAElement,
DiceDomainModel::DPIM::ComputationNode

This entity represents an ele-
ment of the DIA acting as a data
source at the DPIM layer.

1. Attributes:
• sourceType: SourceType
• sourceProperties: DICEproperties
• rate: double

2. Associations:
• provides: DataSpecification

StorageNode inherits from:
DiceDomainModel::DPIM::DIAElement,
MARTE::GRM::ResourceCore::StorageResource

Reseprents an element of the
application whose goal is to
store the application data, (i.e, a
database or a file system).

1. Attributes:
• CRUDrate: DICEproperties
• properties: DICEproperties

2. Associations:
• responds_to: DataSpecification

Channel inherits from:
DAM::System::Core::Connector

Represents a communication
channel between a Computa-
tionNode and a StorageNode.

1. Attributes:
• rate: DICEproperties

2. Associations:
• connectsOne: ComputationNode
• connectsTwo: StorageNode

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

24

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

DataSpecification This entity represents data char-
acteristics like the model and
the format.

1. Attributes:
• description: String
• size: int
• location: DICEproperties
• refERmodel: String
• refDataFormat: DataFormatType

QoSRequiredProperty Represents the QoS constraints
associated with an element of
the Data Intensive Applicaion.

Data Represents the data that an ele-
ment of the application can take
in input and/or produce in out-
put.

1. Associations:
• responds_to: DataSpecification

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
25

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

A.2 The DiceDomainModel::DTSM::Core metamodel

Table 7: DiceDomainModel::DTSM::Core data types

Name Kind Values or Description
ConstraintsType Enumeration maxIteration
ComputationalNodeType Enumeration HadoopMR, Storm
ManagementLayerType Enumeration spark
JobScheduleType Enumeration runtime, speculative, redundant, fair,

capacity
AccessScheduleType Enumeration
FunctionSpecType Enumeration map, reduce, combine, partition, report,

collectOutput

Table 8: The DiceDomainModel::DTSM::Core package

DICE DiceDomainModel::DTSM::Core Metamodel Element Description Attributes
DIAElement inherits from:
DiceDomainModel::DPIM::DIAElement

This entity represents a generic
element of the DIA at the
DTSM layer.

1. Attributes:
• nodeTypeSpec: ComputationalNodeType

AnalyzableElement inherits from:
DiceDomainModel::DTSM::Core::DIAElement

This entity represents an elemnt
of the DIA application that have
be analyzed in the sense that
need to respect specific QoS re-
quirements.

1. Attributes:
• QoSRequiredProperty:

StorageNode inherits from:
DiceDomainModel::DPIM::StorageNode

This entity represents a storage
node in the DIA implemented
by a specific storage technology
at the DTSM layer.

1. Attributes:
• nodeConstraints: String
• managementLayer: ManagementLayerType

2. Associations:
• affects: WorkflowSpecification

ComputationNode inherits from:
DiceDomainModel::DTSM::Core::DIAElement,
DiceDomainModel::DPIM::ComputationNode

This entity represents an ele-
ment of the DIA performing a
computation task by employing
a specific data processing tech-
nology at the DTSM layer.

1. Attributes:
• function: FunctionSpecType

2. Associations:
• nestingAndReplication: ComputationNode

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

26

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

SourceNode inherits from:
DiceDomainModel::DTSM::Core::DIAElement,
DiceDomainModel::DPIM::SourceNode

This entity represents an ele-
ment of the DIA acting as a data
source at the DTSM layer.

1. Attributes:
• name: String
• type: SourceType

2. Associations:
• loadInMemory: ChannelSpecification

WorkflowSpecification inherits from:
DiceDomainModel::DTSM::Core::DIAElement,
DAM::System::Core::Service

This entity represents an ele-
ment of the DIA descrbing its
workflow in terms of constraints
affecting the storage and the
computation nodes.

1. Attributes:
• workflowConstraints: ConstraintsType
• jobSchedule: JobScheduleType
• blockAccessSchedule: AccessScheduleType

2. Associations:
• restricts: ComputationNode

ChannelSpecification This entity represents an el-
ement of the DIA responsi-
ble for the communication be-
tween components and the data
trasnfer, implemented by a spe-
cific messaging technology at
the DTSM layer.

1. Attributes:
• rate: float
• techSupport: TechType
• size: float
• policy:

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
27

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

A.3 The DiceDomainModel::DTSM::Hadoop metamodel

Table 9: DiceDomainModel::DTSM::Hadoop data types

Name Kind Values or Description
SplitEType DataType Split
connection DataType java.sql.connection
HadoopInputFormatEnum Enumeration TextInputFormat, FixedLengthInputFormat,

SequenceFileInputFormat,
KeyValueTextInputFormat, NLineInputFormat

Table 10: The DiceDomainModel::DTSM::Hadoop package

DICE DiceDomainModel::DTSM::Hadoop Metamodel Element Description Attributes
HadoopSpecificationModel inherits from:
DiceDomainModel::DTSM::Core::WorkflowSpecification

This entity defines different
configurations that are set by the
developer and are required dur-
ing the job execution. These in-
formation will be passed to the
master node to define how the
job should be scheduled.

1. Attributes:
• mapperClass: String
• reducerClass: String
• jobName: String
• combinerclass: String
• numOfReduceTasks: int
• inputFormat: String
• outputKeyClass: String
• outputValueClass: String
• joinerClass: String
• outputFormat: String
• isJobSucceded: boolean

2. Compositions:
• associated_to_HadoopMRrunner: HadoopMRrunner

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

28

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

HadoopMRrunner This entity represents the appli-
cation runner. After the applica-
tion as been designed with all its
components (Mapper, Reducer),
this runner is responsible to ef-
fectively submit the application
to the Hadoop runtime system.

1. Attributes:
• MapTaskReport: String
• ReduceTaskRepor: String
• JobID: int
• clusterStatus: String
• runningJobs: String
• jobProgress: String
• jobQueue: String

2. Compositions:
• contains_RecordWriter: RecordWriter
• contains_RecordReader: RecordReader
• contains_DBaccessManager: DBaccessManager
• contains_Scheduler: Scheduler
• contains_Reducer: Reducer
• contains_tester: Tester
• contains_Joiner: Joiner
• contains_mappr: Mapper

DBaccessManager This entity represents the driver
the Hadoop application uses to
access a data store. It allow to
specify property like the url to
the database and the username
and password required to access
it. Moreover through this class
the application can directly op-
erate on the databse.

1. Attributes:
• connection: String
• initialised: boolean
• isOracle: boolean
• isMySQL: boolean
• DB_URL: String
• DRIVER_CLASS: String
• server: String
• Password: String
• UserName: String
• tableName: String
• Conditions: String
• OrderByFeildName: String
• FieldNames: String

RecordWriter RecordWriter writes the output
<key, value> pairs to an output
file.

1. Attributes:
• finalSynch: boolean
• out: String

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
29

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

RecordReader The record reader breaks the
data into key/value pairs for in-
put to the Mapper.

1. Attributes:
• startOffset: long
• end: long
• pos: long
• fs: String
• path: String
• value: String
• fileIn: String
• reader: String
• key: String
• isInputSplitable: boolean
• InputFormatType: HadoopInputFormatEnum

2. Compositions:
• uses_InputSplitDataSpec: InputSplitDataSpec
• uses_KeyValueGenerator: KeyValueGenerator

Mapper it is an implementation of map
task that will be executed on
some slave node in the deployed
cluster, it will generate key-
value pairs to be passed to re-
ducers.

1. Attributes:
• mapper: String

Reducer it is an implementation of re-
duce task that will be executed
on slave nodes, like map task.
The key-value pairs made by re-
ducers will be saved back into
some storage like HDFS or an
instance of a RDBMS.

1. Attributes:
• reducer: String

Tester This entity represents a generic
suite of tests for a Mapper or a
Reducer.

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

30

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

Scheduler The Scheduler in an Hadoop
system is the component re-
sponsible assign key-value pairs
produced by a Mapper to the
proper Reducer. Each Sched-
uler is responsible for a given
set of hosts (a cluster) and a give
set of keys.

1. Attributes:
• USE: String
• LOG: String
• slotsPerHost: BigInteger
• RemainingSplits: BigInteger
• realSplits: Split
• Splits: Split
• host: String

2. Associations:
• manages_host: Host
• manages_split: Split

Joiner This entity represents a compo-
nent used by the Hadoop appli-
cation to join the output of a set
of reducers.

1. Attributes:
• REDUCES_PER_HOST: int

Host This entity simply represents an
host, like a virtual machine.

1. Attributes:
• hostName: String
• splits: Split

Split This entity represent a piece of
the application input data (i.e. a
line in a file), that can be pro-
cessed in parallel.

1. Attributes:
• filename: String
• isAssigned: boolean
• location: String

HadoopMRInputSpecs This entity represents the speci-
fication of the Hadoop applica-
tion, like the path to the input
text file to process.

1. Attributes:
• fileName: String

InputSplitDataSpec it gives the intuition to the de-
veloper about the structure of
input files that should be read
and written back into storage
node i.e. HDFS data nodes.

1. Attributes:
• fileName: String
• offSet: long
• splitSize: long
• maxSplitSize: long
• MinSplitSize: long

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
31

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

KeyValueGenerator This entity represents an ele-
ment of an Hadoop application
able to generate key-value pairs.

1. Attributes:
• entry: String
• Progress: float

2. Compositions:
• generates: KeyValuePairs

KeyValuePairs This entity simply represents a
key-value pairs produced by the
Hadoop application.

1. Attributes:
• key: String
• value: String

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

32

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

A.4 The DiceDomainModel::DTSM::Oryx metamodel

Table 11: The DiceDomainModel::DTSM::Oryx package

DICE DiceDomainModel::DTSM::Oryx Metamodel Element Description Attributes
DIA This entity represents the root of

the Oryx 2 DIA.
1. Attributes:
• type: String
• DIADescription: String
• runScript: String
• computeClassPath: String
• id: String

2. Compositions:
• DIASer: ServingLayer
• DIABa: BatchLayer
• DIASp: SpeedLayer

Kafka This entity represents an in-
stance of Kafka that is used
by the Oryx 2 system as
the data transport layer, which
moves data between layers of
the Lambda architecture and
receives input from external
sources

1. Attributes:
• type: String
• KafkaDescription: String
• BrokerURL: String

2. Compositions:
• HasUpdateTopic: updateTopic
• KafkaHasInputTopic: inputTopic

Zookeeper This entity represents an in-
stance of Zookeeper that is used
the Oryx 2 framework.

1. Attributes:
• type: String
• ZookeeperDescription: String
• zkServers: String

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
33

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

APISpecification This entity represents the speci-
fication of the APIs exposed by
the serving layer.

1. Attributes:
• UserName: String
• Password: String
• servingLayerPort: String
• APIDescription: String
• keystoreFile: String
• keystorePassword: String
• readOnly: boolean
• contextPath: String
• typeApi: String

YarnSpecification This entity represents the con-
figuration of the YARN cluster
on top of which the BatchLayer
run.

1. Attributes:
• type: String
• NoOfInstance: int
• Cores: int
• YarnDescription: String

MlSpecification This entity represents the spec-
ification of the Machine Learn-
ing algorithm to be executed,
allowing to specify parameters
like the degree of parallelism
and the test fraction of the input
dataset.

1. Attributes:
• TestFraction: int
• Candidate: int
• Parallelism: int
• MISpecificationDescription: String
• typeMl: String

StorgeSpecification This entity represent the storage
system on which the Batch layer
store results. It is implemented
in Oryx 2 as an HDFS.

1. Attributes:
• type: String
• InputDirectory: String
• OutputDirectory: String
• StorageDescription: String
• Rate: int
• SourceProperties: String

ConfSpecification inherits from:
DiceDomainModel::DTSM::Oryx::APISpecification,
DiceDomainModel::DTSM::Oryx::YarnSpecification,
DiceDomainModel::DTSM::Oryx::MlSpecification

This entity represents a generic
system configuration which can
be extended according to spe-
cific systems employed in the
Oryx 2 architecture.

1. Attributes:
• ConfigurationDescription: String

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

34

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

SparkStream This entity represents a Spark
Streaming application. In Oryx
2 both the Speed layer and the
Batch layer are implemented as
Spark Streaming applications.

1. Attributes:
• type: String
• IntervalBtwnComputation: String
• master: String
• NumberofExecutors: String
• ExecutorCore: String
• ExecutorMemory: String
• HeapSize: String
• DynamicAlloc: boolean

ServingLayer The serving layer listens for
model and model updates on the
update topic Kafka Topic. It
maintains model state in mem-
ory. It exposes REST APIs for
queryign the model in memory.
Each API may also accept new
data and write it to Kafka where
it can be seen by the Speed and
Batch layers.

1. Attributes:
• type: String
• ModelManagerClass: String
• ApplicationResources: String
• memory: String
• ServinLayerDescription: String
• minModelLoadFraction: String

2. Compositions:
• SerUseKf: Kafka
• SerManageMI: MlSpecification
• SpeAPI: APISpecification
• SpeYarn: YarnSpecification

SpeedLayer This entity represents the Speed
layer of the Lambda architec-
ture and is implemented using
Spark Streaming. It periodically
loads a new model from the up-
date topic and continually pro-
duces model updates. These are
put back onto the update topic
too.

1. Attributes:
• modelManagerClass: String
• type: String
• UiPort: String
• DynamicAlloc: String
• minModelLoadFraction: String
• SpeedLayerDescription: String

2. Compositions:
• SpeUseMI: MlSpecification
• SpeUseKaf: Kafka
• SpeedhasSparkStream: SparkStream

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
35

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

BatchLayer The batch layer is implemented
as a Spark Streaming process on
a Hadoop cluster, which reads
data from the input Kafka topic.
The Streaming process neces-
sarily has a very long period –
hours or even a day. It uses
Spark to save the current win-
dow of data to HDFS, and then
combine with all historical data
on HDFS, and initiate building
of a new result. The result is
written to HDFS, and, also pub-
lished to a Kafka update topic.

1. Attributes:
• updateClass: String
• type: String
• HDFSbaseURL: String
• UiPort: String
• BatchLayerDescription: String

2. Compositions:
• BatchHasStorage: StorgeSpecification
• BatchUseMI: MlSpecification
• BatchUseKaf: Kafka
• BatchhasSparkStream: SparkStream

inputTopic This entity represent the Kafka
Topic used for new inputs of the
system. The serving layer post
new inputs to this Topic which
are consumed by the Speed and
Batch layers.

1. Attributes:
• type: String
• KafkaConsumerDescription: String
• name: String
• NumberofPartitions: String
• retentionTime: String
• replicationValue: String
• maxMessageSize: String

2. Compositions:
• InputTopichasMaster: Zookeeper

updateTopic This entity represent the Kafka
Topic used for update the model
in order to reflect new input.
The Serving layer consumes the
model and the model updates to
answer to the user queries, the
Speed layer periodically con-
sume the current model and pro-
duce a model update, while the
Batch layer at each execution
produce a new model.

1. Attributes:
• type: String
• KafkaProducerDescription: String
• name: String
• NumberOfPartitions: String
• retentionTime: String
• replicationValue: String
• maxMessageSize: String

2. Compositions:
• UpdatTopichasMaster: Zookeeper

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

36

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

A.5 The DiceDomainModel::DTSM::Spark metamodel

Table 12: DiceDomainModel::DTSM::Spark data types

Name Kind Values or Description
SparkDistObjType Enumeration
SparkFunctionType Enumeration transformation, action
SparkVar Enumeration Broadcast, Accumulator,

ParallelizableCollection
SparkStorageLevel Enumeration MEMORY_ONLY, MEMORY_AND_DISK,

MEMORY_ONLY_SER, MEMORY_AND_DISK_SER,
DISK_ONLY, MEMORY_ONLY_2,
MEMORY_AND_DISK_2,, OFF_HEAP

RDDtype Enumeration PythonObj, JavaObj, EEnumLiteral0

Table 13: The DiceDomainModel::DTSM::Spark package

DICE DiceDomainModel::DTSM::Spark Metamodel Element Description Attributes
DIAmain inherits from:
DiceDomainModel::DTSM::Spark::DriverProgram

This entity represents the root of
the Spark application and has an
associated DriverProgram to ex-
ecute.

1. Attributes:
• sparkDependency: String
• hadoopClientDependency: String
• sparkImports: String

2. Associations:
• constructs: SparkContext
• uses: DriverProgram

DistributedDataset This entity represents the
dataset the Spark application
have to process.

1. Associations:
• : ExternalData
• stems from: ExternalData

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
37

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

ParallelOperation inherits from:
DiceDomainModel::DTSM::Spark::Function

A generic operation performing
some trasformation in paralled
on RDDs.

1. Attributes:
• Name: String
• inputRDD: RDDtype
• outputRDD: RDDtype

2. Compositions:
• parameter: Function
• receives: RDD
• produces: outputRDD
• input: RDD

3. Associations:
• parameter: Function
• receives: RDD
• produces: outputRDD
• input: RDD

ExternalData This entity represents an ex-
ternal data source from which
RDDs can be created.

1. Attributes:
• sourceType:
• Path:

count inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

Return the number of elements
in an RDD.

1. Attributes:
• counter: long

filter inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

Return a new dataset formed by
selecting those elements of the
source RDD on which a given
function returns true.

collect inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

Return all the elements of the
dataset as an array.

flatMap inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation,
DiceDomainModel::DTSM::Spark::map

Similar to map, but each input
item can be mapped to 0 or more
output items instead of just a
single item.

mapToPair inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation,
DiceDomainModel::DTSM::Spark::map

Return a new RDD by applying
a function to all elements of this
RDD.

1. Attributes:
• pair: byte[]

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

38

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

reduceByKey inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation,
DiceDomainModel::DTSM::Spark::reduce

When called on a dataset of (K,
V) pairs, returns a dataset of (K,
V) pairs where the values for
each key are aggregated using a
given reduce function

1. Attributes:
• reducingKey: char

saveAsTextFile inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

Write the elements of the
dataset as a text file (or set of
text files) in a given directory in
a filesystem

1. Attributes:
• path: String

map inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

Return a new RDD formed by
passing each element of the
source RDD through a function
func.

reduce inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

This operation aggregates the
elements of the RDD on which
it is execute using a given re-
duce function.

DriverProgram The DriverProgram is the main
application that declares the
transformations and actions on
RDDs using a instance of the
SparkContext and submits such
requests to the master which
manages the cluster scheduling
tasks among Workers and pro-
vides the SparkContext.

1. Attributes:
• clusterConfig: char
• ParallelizableCollection: SparkVar
• distData: SparkDistObjType
• DriverMemory: int

2. Compositions:
• executes: ParallelOperation
• works on: DistributedDataset

3. Associations:
• executes: ParallelOperation
• works on: DistributedDataset

SparkContext The SparkContext is the main
entry point for Spark functional-
ity. A SparkContext represents
the connection to a Spark clus-
ter. It can be used for example
to create RDDs from a datastore
table (i.e. a Cassandra table).

1. Compositions:
• contains: ClusterConfig

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
39

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

Function The Spark Function is an inter-
face representing a generic op-
eration provided by Spark appli-
able on RDDs.

coalesce inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

This Spark operation decreases
the number of partitions in an
input RDD.

groupByKey inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation,
DiceDomainModel::DTSM::Spark::coalesce

When called on a dataset of (K,
V) pairs, returns a dataset of (K,
Iterable<V>) pairs.

1. Attributes:
• groupingKey:

aggregateByKey inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation,
DiceDomainModel::DTSM::Spark::coalesce

When called on a dataset of (K,
V) pairs, returns a dataset of (K,
U) pairs where the values for
each key are aggregated using a
given combine functions.

1. Attributes:
• aggregatingKey:

mapPartitions inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation,
DiceDomainModel::DTSM::Spark::map

Similar to map, but runs sepa-
rately on each partition (block)
of the RDD.

mapPartitionsWithIndex inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation,
DiceDomainModel::DTSM::Spark::map,
DiceDomainModel::DTSM::Spark::mapPartitions

Similar to mapPartitions, but
also provides the executed func-
tion with an integer value repre-
senting the index of the partition

sample inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

Sample a fraction of the in-
put RDD, with or without re-
placement, using a given ran-
dom number generator seed.

union inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

Return a new dataset that con-
tains the union of the elements
in the RDD on which it is called
and the argument RDD.

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

40

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

Intersection inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

Return a new dataset that con-
tains the intersection of the ele-
ments in the RDD on which it is
called and the argument RDD.

RDD This entity represend and RDD
(Resilient Distributed Dataset
) and is the primary abstraction
within the Spark framework. An
RDD is a fault-tolerant, possibly
distributed, set of items that can
be processed in parallel. They
can be for example generated
from data stored in HDFS.

1. Attributes:
• lineage: String
• Type: RDDtype
• ID: int
• name: String
• storageLevel: SparkStorageLevel

2. Associations:
• generates: RDD

outputRDD This entity represents the output
RDD of the Spark application
that can be stored.

1. Attributes:
• lineage: String

ClusterConfig This entity represents the con-
figuration of the Spark cluster
managed by the Master, like the
number of nodes and character-
istics of each node.

1. Attributes:
• ExecutorMemory: int
• ClusterURL: String
• StorageMemoryFraction: long
• ShuffleMemoryFraction: long
• Master: String
• AppName: String

Loop This entity simply represent a
loop executed by the Spark ap-
plication.

1. Compositions:
• executes: Function
• processes: RDD
• runs: Loop

2. Associations:
• executes: Function
• processes: RDD
• runs: Loop

PairRDD inherits from:
DiceDomainModel::DTSM::Spark::RDD

RDD that are just (key, value)
pairs, for which Spark provides
extra functions.

1. Attributes:
• keyType: RDDtype
• valueType: RDDtype

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
41

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

sort inherits from:
DiceDomainModel::DTSM::Spark::Function,
DiceDomainModel::DTSM::Spark::ParallelOperation

When this operation is called on
a dataset of (K, V) pairs where,
it returns a dataset of (K, V)
pairs sorted by keys in ascend-
ing or descending order

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

42

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

A.6 The DiceDomainModel::DTSM::Storm metamodel

Table 14: DiceDomainModel::DTSM::Storm data types

Name Kind Values or Description
BoltApi Enumeration prepare, execute, OPFields, Cleanup, Config
Operation Enumeration name, params, type, body
Property Enumeration name, type
SpoutApi Enumeration Open, NextTuple, Ack, Fail, OPFields
StormOpMode Enumeration local, remote

Table 15: The DiceDomainModel::DTSM::Storm package

DICE DiceDomainModel::DTSM::Storm Metamodel Element Description Attributes
DIAmain This entity represents the root of

the Stom application.
1. Attributes:
• opMode: StormOpMode

2. Associations:
• clusterManager: Nimbus
• dependsOn: Zookeeper
• clusteredVia: Supervisor
• becomes: Topology
• becomes: TopologyConfiguration

DIAStorage This entity represents a storage
element of the application, im-
plemented by a specific technol-
ogy, in which specific Bolt can
write their results.

DIAFilter This entity represents an ele-
ment of the Storm application
that apply some preliminary fil-
tering over streams produced by
give data sources.

1. Associations:
• preprocesses: DIASource

DIASource This entity represents an exter-
nal data source for the Storm
application, from which specific
Spouts can read input stream.

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
43

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

StormSpecificationModel 1. Compositions:
• aggregates: PackageDeclaration

Topology inherits from:
DiceDomainModel::DTSM::Storm::StormSpecificationModel

This entity embeed the logic of
the Storm application. It repre-
sents the application cointnous
workflow over the input streams
of tuples by means of a DAG
(Directed Acyclic Graph) com-
posed by Bolts and Spouts.

1. Attributes:
• build: String
• Reliable: boolean
• name: String

2. Compositions:
• logicalSpecification: Component
• uses: TopologyConfiguration
• crossFunctionalProcessing: Topology

3. Associations:
• logicalSpecification: Component
• uses: TopologyConfiguration
• crossFunctionalProcessing: Topology

Component This entity represents a generic
element of a Storm Topology ei-
ther a Spout or a Bolt.

1. Attributes:
• name: String

PackageDeclaration inherits from:
DiceDomainModel::DTSM::Storm::StormSpecificationModel

This represents the package
declaration section of the Storm
application.

Spout inherits from:
DiceDomainModel::DTSM::Storm::StormSpecificationModel,
DiceDomainModel::DTSM::Storm::Topology,
DiceDomainModel::DTSM::Storm::Component

This entity represents a Spout
in the Storm topology, or an
element that reads tuples from
external data source and emits
them into the topology.

1. Attributes:
• inputSource: String

2. Associations:
• processedBy: Bolt
• readsFrom: DIASource

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

44

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

Bolt inherits from:
DiceDomainModel::DTSM::Storm::StormSpecificationModel,
DiceDomainModel::DTSM::Storm::Topology,
DiceDomainModel::DTSM::Storm::Component

All processing in topologies is
done in bolts. Bolts can do any-
thing from filtering, functions,
aggregations, joins, talking to
databases, and more. This en-
tity represents a Bolt in a Storm
topology, or an element doing
some processing on the input tu-
ples. Kind of processing tasks
can be joins on over two streams
of tuples or an aggregation over
a stream.

1. Attributes:
• inputMessage: String
• outputMessage: String

2. Associations:
• furtherProcessing: Bolt
• storesIn: DIAStorage

TopologyBuilder This elements allow to build
Storm Topologies by exposing
suitable APIs.

1. Attributes:
• name: String

2. Associations:
• builds: Topology
• buildsSpouts: AddSpout

AddBolt inherits from:
DiceDomainModel::DTSM::Storm::TopologyBuilder

This element represents the op-
eration of adding a Bolt in a
Topology provided by a Topol-
ogyBuilder.

AddSpout inherits from:
DiceDomainModel::DTSM::Storm::TopologyBuilder

This element represents the op-
eration of adding a Bolt in a
Topology provided by a Topol-
ogyBuilder.

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
45

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

TopologyConfiguration This entity represents the topol-
ogy specification, which has to
be employed by the Stom appli-
cation.

1. Attributes:
• parameter: String
• path: String
• maxSpout: int
• ZookeeperConnectionTimeout: double

2. Compositions:
• feedsInto: Nimbus
• specifies: Task
• specifies: Executor
• specifies: Worker
• specifies: Supervisor
• specifies: Zookeeper
• specifies: Nimbus

3. Associations:
• feedsInto: Nimbus
• specifies: Task
• specifies: Executor
• specifies: Worker
• specifies: Supervisor
• specifies: Zookeeper
• specifies: Nimbus

Nimbus This represents the nimbus dae-
mon running on the master node
responsible for managing the
cluster of slave nodes.

1. Attributes:
• stormFW: String
• UI: String

Zookeeper This entity represents an in-
stance of Zookeeper that is used
the Oryx 2 framework.

1. Associations:
• fileManagement: Nimbus

Supervisor The Supervisor is a daemon re-
sponsible for starting and stop-
ping Worker processes on a spe-
cific machine.

1. Attributes:
• stormFW: String

2. Associations:
• isPartOf: Supervisor
• isManagedBy: Nimbus
• reference: Zookeeper
• has: Worker

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

46

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

Task A Task represents a generic op-
eration that need to be run and
which is assigned to an Execu-
tor. It can be either the execu-
tion of a Bolt or of a Spout.

1. Attributes:
• replicationFactor: int

2. Associations:
• instanceOf: Component

Executor An Executor represents a thread
run by a Worker and executing
in parallel one or more instances
of the same specific Task as-
signed to the Executor.

1. Attributes:
• replicationFactor: int

2. Associations:
• has: Task
• taskConsistency: Topology

Worker A Worker represents a process
within the Storm system which
can run multiple Executors in
parallel on top of a JVM and in-
side one virtual machine of the
Storm cluster.

1. Attributes:
• ReplicationFactor: int

2. Associations:
• has: Executor

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
47

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

Appendix B. Profile mappings

Next we detail the mapping between the concepts of the DICE domain metamodels and the DICE profile. The engineer only needs to use those DICE tags that are
useful for him/her to describe the UML model element at hand. Note that unqualified classifier names belong to the packages being described in the corresponding
section.

B.1 Mapping the DiceDomainModel::DPIM metamodel onto DICE Profile: The DICE::DICE_UML_Extensions::DPIM package

Table 16: The DICE::DICE_UML_Extensions::DPIM package

DICE DPIM Metamodel Element DICE Stereotype Applicable to DICE Tags
DIA Comment: This class represents the model itself, then it does not map into a Profile element.
DIAElement Comment: This is an abstract class, then it does not map into a Profile element.
ComputationNode «DiceComponent» inherits from

«DAM::DAM_UML_Extensions::
System::Core::DaComponent»

From «DAM::DAM_UML_Extensions::
System::Core::DaComponent» and supertypes
(e.g. «MARTE::GRM::Resource»):
UML::Classes::Kernel::Property,
UML::Classes::Kernel::
InstanceSpecification,
UML::Classes::Kernel::Classifier,
UML::Interaction::BasicInteractions::
Lifeline, UML::CompositeStructures::
InternalStructures::
ConnectableElement

New tags:
• throughput: NFP_Frequency
• type: ComputationType
• targetTech: TechType
• procType: ProcessingType

Inherited tags of interest:
• isActive: bool
• resMult: int

FilterNode «DiceFilterNode» inherits from
«DiceComponent»

All from «MARTE::GRM::Resource» (see
«DiceComponent»).

New tags:
• inputRatio: NFP_Frequency
• outputRatio: NFP_Frequency

VisualizationNode Comment: This class does not declare additional attributes, thus, an stereotype is not needed.
SourceNode «DiceSourceNode» inherits from

«DiceComponent»
All from «MARTE::GRM::Resource» (see
«DiceComponent»).

New tags:
• store: DiceDataVolume
• provides: DiceDataSpecification
• sourceType: SourceType
• rate: NFP_Frequency

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

48

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

StorageNode «DiceStorageResource»
inherits from «MARTE::GRM::
StorageResource»

From «MARTE::GRM::StorageResource» and
supertypes:
UML::Classes::Kernel::Property,
UML::Classes::Kernel::
InstanceSpecification,
UML::Classes::Kernel::Classifier,
UML::Interaction::BasicInteractions::
Lifeline, UML::CompositeStructures::
InternalStructures::
ConnectableElement

New tags:
• respondsTo:
DiceDataSpecification;

• CRUDrate: NFP_Frequency
Inherited tags of interest:
• resMult: int
• elementSize: int

Channel «DiceChannel» inherits from
«DAM::DAM_UML_Extensions::
System::Core::DaConnector»

From «DAM::DAM_UML_Extensions::
System::Core::DaConnector»:
UML::Classes::Kernel::Association,
UML::Classes::Dependencies::
Dependency, UML::Components::
BasicComponents::Connector,
UML::Interactions::
BasicInteractions::Message,
UML::UseCases::Include,
UML::UseCases::Extend,
UML::CompositeStructure::
InvocationActions::InvocationAction

New tags:
• rate: NFP_Frequency
• messageBroker: String
• channelDescription:
DiceChannelSpecification

Inherited tags of interest:
• coupling: NFP_Real[*]
• failure: DaFailure[*]
• errorProp: DaErrorPropagation[*]

DataSpecification Comment: DataSpecification maps to a DICE complex type. See package DICE::DICE_Library::Complex_DICE_Types.
QoSRequiredProperty Comment: This is the definition of a MARTE NFP with source=req. This class is aggregated to DIAElement. Each DIAElement that

needs a NFP definition should have its corresponding tag. Therefore, it is not mapped to a DICE stereotype.
Data Comment: Does not map onto a stereotype.

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
49

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

B.2 Mapping the DiceDomainModel::DTSM::Core metamodel onto DICE Profile: The DICE::DICE_UML_Extensions::DTSM::Core pack-
age

Table 17: The DICE::DICE_UML_Extensions::DTSM::Core package

DICE DTSM::Core Metamodel
Element

DICE Stereotype Applicable to DICE Tags

DIAElement Comment: This is an abstract class, and in this initial proposal does not map into a Profile element. However, its attribute nodeTypeSpec
still needs to be considered in a refactoring.

AnalyzableElement Comment: This class is for defining QoS properties (MTTF, MTTR, etc). They are already defined in MARTE and DAM as NFPs.
Therefore, it does not map into a Profile element.

StorageNode «DiceStorageResource» inherits from
«DICE::DICE_UML_Extensions::
DPIM::DiceStorageResource»

See «DICE::
DICE_UML_Extensions::DPIM::
DiceStorageResource»

New tags:
• nodeConstraints: String[*]
• managementLayer: ManagementLayerType

Comment: The affects association is not dealt by the Profile
ComputationNode «DiceComponent» inherits from

«DICE::DICE_UML_Extensions::
DPIM::DiceComponent»

See «DICE::
DICE_UML_Extensions::DPIM::
DiceComponent»

New tags:
• function: FunctionSpecType

Comment: The nestingAndReplication recursive association is not dealt by the Profile.
SourceNode «DiceSourceNode» imported from

«DICE::DICE_UML_Extensions::
DPIM::DiceSourceNode»

See «DICE::
DICE_UML_Extensions::DPIM::
DiceSourceNode»

Comment: A new stereotype is not needed since attributes, name and type are already present in the superclass.
WorkflowSpecification «DiceWkSpec» inherits from

«DAM::DAM_UML_Extensions::
System::Core::DaService»

Inherited from
«DAM::DAM_UML_Extensions::
System::Core::DaService»
and supertypes (e.g., «MARTE::
MARTE_AnalysisModel::GQAM::
GaScenario»): UML::Classes::
Kernel::NamedElement,
UML::Actions::Action, UML::
CommonBehaviors::Behavior,
UML::Interactions::
BasicInteractions::Message

New tags:
• wkConstraints: ConstraintsType[*]
• jobSchedule: JobSchedule
• bASchedule: AccessSchedule

Comment: The restricts association is not dealt by the Profile.
ChannelSpecification Comment: ChannelSpecification maps to a DICE complex type. See package DICE::DICE_Library::Complex_DICE_Types.

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

50

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

B.3 Mapping the DiceDomainModel::DTSM::Hadoop metamodel onto DICE Profile: The DICE::DICE_UML_Extensions::DTSM::Hadoop
package

Table 18: The DICE::DICE_UML_Extensions::DTSM::Hadoop package

DICE DTSM::Hadoop Metamodel
Element

DICE Stereotype Applicable to DICE Tags

HadoopSpecificationModel «DiceHadoopSpec» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Core::DiceWkSpec»

See «DICE::
DICE_UML_Extensions::DTSM::
Core::DiceWkSpec»

New tags:
• mapperClass: String
• reducerClass: String
• jobName: String
• combinerclass: String
• numOfReduceTasks: Integer
• inputFormat: String
• outputKeyClass: String
• outputValueClass: String
• joinerClass: String
• outputFormat: String
• isJobSucceded: boolean

HadoopMRrunner «DiceHadoopRunner» UML::Classes::Kernel::
InstanceSpecification,
UML::Classes::Kernel::
Classifier,
UML::Interaction::
BasicInteractions::
Lifeline,
UML::CompositeStructures::
InternalStructures::
ConnectableElement

New tags:
• rapTaskReport: String
• reduceTaskReport: String
• jobID: Integer
• clusterStatus: String
• runningJobs: String
• jobProgress: String
• jobQueue: String

Comment: This stereotype may be useful only for informative purposes

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
51

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

DBaccessManager «DiceHadoopDBMngr» UML::Classes::Kernel::
InstanceSpecification,
UML::Classes::Kernel::
Classifier,
UML::Interaction::
BasicInteractions::
Lifeline,
UML::CompositeStructures::
InternalStructures::
ConnectableElement

New tags:
• connection: String
• initialised: Boolean
• isOracle: Boolean
• isMySQL: Boolean
• dbUrl: String
• driverClass: String
• server: String
• password: String
• userName: String
• tableName: String
• conditions: String
• orderByFieldName: String
• FieldNames: String

Comment: This stereotype may be useful only for informative purposes
RecordWriter «DiceHadoopRWriter» inherits from

«DICE::DICE_UML_Extensions::
DTSM::Core::DiceStorageResource»

See «DICE::
DICE_UML_Extensions::DTSM::
Core::DiceStorageResource»

RecordReader «DiceHadoopRReader» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Core::DiceSourceNode»

See «DICE::
DICE_UML_Extensions::DTSM::
Core::DiceSourceNode»

Mapper, Reducer, Tester «DiceHadoopMROperation» inherits
from
«MARTE::MARTE_AnalysisModel::
GQAM::GaStep»

Inherited from «MARTE::
MARTE_AnalysisModel::GQAM::
GaStep» and supertypes:
UML::Classes::Kernel::
NamedElement,
UML::Actions::Action, UML::
CommonBehaviors::Behavior,
UML::Interactions::
BasicInteractions::Message

Comment: «DiceHadoopMROperation» may inherit from a specific stereotype – not declared yet – in «DICE::DICE_UML_
Extensions::DTSM::Core» to represent operations

KeyValuePair Comment: This class is uninteresting from the profile point of view, and does not require a stereotype
InputSplitDataSpec Comment: This class is uninteresting from the profile point of view, and does not require a stereotype

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

52

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

B.4 Mapping the DiceDomainModel::DTSM::Spark metamodel onto DICE Profile: The DICE::DICE_UML_Extensions::DTSM::Spark
package

Table 19: The DICE::DICE_UML_Extensions::DTSM::Spark package

DICE DTSM::Spark Metamodel
Element

DICE Stereotype Applicable to DICE Tags

DriverProgram «DiceSparkSpec» inherits from
«DICE::DICE_UML_Extensions::
DTSM::Core::DiceWkSpec»

See «DICE::
DICE_UML_Extensions::DTSM::
Core::DiceWkSpec»

Comment: «DiceSparkSpec» is used just for informative purposes. Time specification is done in «DiceSparkOperation».
ParallelOperation «DiceSparkOperation» inherits from

«MARTE::MARTE_AnalysisModel::
GQAM::GaStep»

Inherited from «MARTE::
MARTE_AnalysisModel::GQAM::
GaStep» and supertypes:
UML::Classes::Kernel::
NamedElement,
UML::Actions::Action, UML::
CommonBehaviors::Behavior,
UML::Interactions::
BasicInteractions::Message

New tags:
• kind: SparkOperationKind

Comment: The kind tag is just for informative purpose, and is uninteresting for performance or reliability analysis.
«ParallelOperation» may inherit from a specific stereotype – not declared yet – in «DICE::UML_Extensions:DTSM::Core» to rep-
resent operations.

RDD «DiceSparkRDDataSet» inherits from
«DICE::DICE_UML_Extensions::
Core::DiceSourceNode»

See «DICE::
DICE_UML_Extensions::Core::
DiceSourceNode»

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
53

D
el

iv
er

ab
le

2.
1.

D
es

ig
n

an
d

qu
al

ity
ab

st
ra

ct
io

ns
-I

ni
tia

lv
er

si
on

.

B.5 DICE model library

The DICE model library contains basic and complex types that are used by the DICE UML extensions.

B.5.1 The DICE::DICE_Library::Basic_DICE_Types package

Table 20: The DICE::DICE_Library::Basic_DICE_Types package

Basic_DICE_Types Type Name Corresponding element from DiceDomainModel Kind Values
ComputationType DICE::DICE_UML_Extensions::DPIM::ComputationType Enumeration distributed, parallel,

distributedParallel,
microBench, sorting, grep,
wordCount,
collabFiltering,
naiveBayes, bfs, pageRank,
kMeans,
connectedComponents,
relQuery

TechType DICE::DICE_UML_Extensions::DPIM::TechType Enumeration RDD
ProcessingType DICE::DICE_UML_Extensions::DPIM::ProcessingType Enumeration synch, asynch, policy
SourceType DICE::DICE_UML_Extensions::DPIM::SourceTypes Enumeration sharedStorage, dataStream
RefType DICE::DICE_UML_Extensions::DPIM::DataSpecification Enumeration NoSQL, ER
RefDFType DICE::DICE_UML_Extensions::DPIM::DataFormatType Enumeration RDF, JSON
ConstraintsType DICE::DICE_UML_Extensions::DTSM::Core::ConstraintsType Enumeration maxIteration
ComputationalNodeType DICE::DICE_UML_Extensions::DTSM::Core::ComputationalNodeType Enumeration hadoop, storm
ManagementLayerType DICE::DICE_UML_Extensions::DTSM::Core::ManagementLayerType Enumeration spark
JobScheduleType DICE::DICE_UML_Extensions::DTSM::Core::JobScheduleType Enumeration runtime, speculative,

redundant, fair, capacity
FunctionSpecType DICE::DICE_UML_Extensions::DTSM::Core::FunctionSpecType Enumeration map, reduce, combine,

partition, report,
collectOutput

SparkOperationKind DICE::DICE_UML_Extensions::DTSM::Spark::SparkOperationKind Enumeration intersection, union,
sample, count, filter,
collect, map, reduce,
saveAsTextFile, shuffle

C
op

yr
ig

ht
c ©

20
16

,D
IC

E
co

ns
or

tiu
m

–
A

ll
ri

gh
ts

re
se

rv
ed

54

D
eliverable

2.1.D
esign

and
quality

abstractions
-Initialversion.

B.5.2 The DICE::DICE_Library::Complex_DICE_Types package

Table 21: The DICE::DICE_Library::Complex_DICE_Types package

Complex_DICE_Types Type Name Corresponding element from DiceDomainModel Attributes
DiceDataVolume DiceDomainModel::DPIM::Data • volume: NFP_DataSize
DiceDataSpecification DiceDomainModel::DPIM::DataSpecification • description: String

• size: NFP_DataSize
• refModel: RefType
• refDataFormat: RefDFType

DiceChannelSpecification DiceDomainModel::DTSM::Core::ChannelSpecification • rate: NFP_Frequency
• size: NFP_DataSize

C
opyright

c©
2016,D

IC
E

consortium
–

A
llrights

reserved
55

