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Executive summary 
 
There is a need to define an architecture that will describe the DICE platform and how its tools 
and components will be integrated. Determining the architectural solution through which the 
DICE framework will be developed is a problem that must be addressed systematically. 
We describe the decision making process that we followed to conclude to the appropriate DICE 
architecture. We present the architecture styles that we have examined, the trade-off analysis that 
we have performed and the justification of our decision against the goals and premises of DICE. 
We also provide an overview of the DICE tools and outline how they are positioned in the DICE 
methodology. Their interactions are described and sequence diagrams and data flows are also 
provided. 
With the adoption of the plugin architectural style (offered by Eclipse1), the DICE IDE (Integrated 
Development Environment, described in D1.2. “Requirements Specification”) provides a 
methodological workflow, specifying business and technical actors, processes and unit steps 
needed for designing a data-intensive application. The DICE methodology can be followed 
through the IDE and allows the user to cover both the design and the pre-production phase of a 
data-intensive applications.  

                                                
1 http://www.eclipse.org/  
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1. Overview 
After performing a systematic analysis, we have concluded that DICE Technological Tool-Chain 
should be implemented following a plugin architectural style. We have conducted an architectural 
trade-offs and integration pattern analysis and presented it in detail in what follows. A summary 
view of the project architecture is shown in Figure 1: 

 
Figure 1. DICE architecture. 

For the compilation of this report, we initially did a thorough pass over the DICE project 
requirements in order to provide a summary of the business and technical requirements as well as 
the DevOps practices and technologies used. In sequence, we define an architecture overview of 
the DICE platform and after that we identify DICE integration patterns, focusing on the Eclipse 
plugin architecture. 
An architectural trade-off analysis is presented in the DICE Architecture and Integration section 
(Section 3). We compare the MicroServices architectural approach [10] versus the plugin 
architectural style. They are being evaluated with the use of the Architecture Trade-off Analysis 
Method (ATAM). A description of the DICE tools in relation to the DICE architecture is given in 
the following section (Section 2. We give a short summary of each tool operation. Finally, the 
Appendix contains each DICE tools description of interactions, sequence diagrams and data flows.  
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1.1. Requirements 
This section presents an overview of the DICE project requirements. We provide a summary of 
the business and technical requirements as well as DevOps practices and technologies used. 
 
In general, the DICE project aims at delivering a methodology and a tool chain to help 
independent software vendors to develop data-intensive applications. From a business 
requirements perspective, the necessary functional requirements are: to develop a UML profile, a 
consistent methodology, and the underpinning model-to-model transformations to support model 
driven engineering approaches (MDE) for Big Data applications. Furthermore, DICE aims at 
translating such high-level design models into a concrete TOSCA-compliant deployment plan and 
execute it by means of a model-driven deployment and configuration tool chain. 
 
We can identify several non-functional business requirements. The UML designs will include 
annotations with performance, reliability, privacy as well as other specific data-intensive 
applications (DIA) requirements. Then, tools will be developed to predict the fulfilment of these 
requirements before and during application development. Security and privacy requirements 
should be modelled for well-known cloud providers (considering data management policy and 
encryption among other things) to support the provider selection process. Another non-functional 
requirement that should be met is scalability (horizontal and vertical). The system should 
manage the complexity of large software and data-intensive systems. It should be as much as 
possible linearly scalable to deal with a variable workloads. Auto scaling should be also 
supported. 
 
DICE envisions the co-existence of multiple simulation, verification, and testing tools that can 
guide the developer through the quality assessment of early prototypes of the Big Data 
application. The testability requirement implies that the best architecture alternatives according to 
the workload managed should be identified. For example, deploy and run the application on an 
isolated simulation environment with historical data to verify that quality tests pass. Analysis of 
the application architecture using various data sources and computational logic is another 
example. Testing and load stressing scenarios should be easily configurable. 
 
The quality requirement of the project is satisfied in several modules. Quality metrics (response 
time, throughput etc.) will be automatically extracted to be improved on following versions. The 
user monitors the performance of the system and evaluates the impact of the data rate in order to 
re-configure auto scaling policy and desired performance rates. Design anti-patterns and root-
causes of quality anomalies will also be detected. Specifying SLA requirements can be mentioned 
as a related example of non-functional properties. 
 
Fault tolerance is another non-functional requirement that is achieved. It is met in operational 
system monitoring (e.g. data and logs to detect candidate anomalies), measuring (e.g. provide the 
input/output operations per second (IOPS)) and management (user reports generation) operations. 
The simulation tool provides insights on hardware deployment requirements (e.g. how much 
RAM, CPU, etc. will be required to get a certain performance level). The documentation 
requirement is met by the methodology blueprint requirement (graphical representation within the 
main tooling suite that can be used as a tutorial for the end user). 
 
Regarding the technical requirements, in the context of WP1, most of them relate to the task of 
developing the DICE IDE as front-end to the DICE tool-chain and releasing the integrated 
framework. In particular, they are the support of stereotyping of UML diagrams with DICE 
profile, the creation of a dashboard tool that will guide the user through the workflow with code 
generation capabilities, the invocation of continuous integration tools through the IDE, the launch 
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of annotated UML models (that can trigger simulation and verification tools), the load of 
verification properties and the graphical representation of the verification tools output, the 
visualization of the analysis outcomes to the user and finally the loading of safety and privacy 
properties from the model of the application with the anomaly trace tool. 
 
In the context of WP2, the technical requirements are related to developing systematic methods for 
the design as well as representational support models to aid the Model-Driven Engineering of 
DIAs. DICE follows a paradigm inspired to the Model-Driven Architecture of UML, see 
deliverable D1.2, section D.2 for a review and introduction to core definitions such as DPIM, 
DTSM, and DDSM. Users require from the DICE profile to support the incremental specification 
of Data-Intensive Applications  following a Model-Driven Engineering approach, to stem every 
abstraction layer from UML, to allow definition of values of constraints (e.g. maximum cost for 
the DIA), properties (e.g. outgoing flow from a Storage Node) and stereotype attributes (batch and 
speed DIA elements) using the UML Profile MARTE (Modeling and Analysis for Real-Time and 
Embedded Systems; see D1.1) VSL (Value Specification Modeling) standard, to define structural 
and behavioral constraints typical in targeted technologies (e.g. Apache Hadoop, Apache Storm, 
Apache Spark, etc.) and to use packages to separately tackle the description of targeted 
technologies in the respective profile abstraction layers (e.g. DTSM and DDSM). Furthermore, the 
DPIM must be generic enough so as not to require any specialization, e.g., for domain-specific 
DIAs, the DTSM layer must support the definition of technology-specific DIA topologies, the 
DTSM must include extension facilities, the DDSM layer must support the definition of an 
Actionable deployment view (TOSCA-ready) and the DICE IDE must support the development of 
DIA exploiting the DICE profile and following the DICE methodology. Finally, the DICE profile 
and its design shall work under the assumption that their focus of application is limited to 
providing facilities and methodological approaches to support those properties that are relevant to 
perform analysis (e.g. for fine-tuning, load-estimation, etc.), testing (e.g. for run-time verification 
and adaptation towards continuous integration), monitoring (e.g. for flexible continuous 
improvement, etc.). 
 
In the context of WP3, the technical requirements are related to assessing quality requirements and 
at offering an optimized deployment configuration for the application under development. For 
accomplishing its objectives, WP3 will develop transformation tools, simulation tools, verification 
tools and optimization tools. They require that the transformation tools perform a model-to-model 
transformation taking the input from a DPIM or DTSM DICE annotated UML model and 
returning a formal model (e.g. Petri net model or a temporal logic model), that they take into 
account the relevant annotations in the DICE profile (properties, constraints and metrics) and 
transform them into the corresponding artifact in the formal model. The verification tools require 
that they are able from the UML DICE to model a system, to show possible execution traces of the 
system with its corresponding time stamps. Regarding the optimization tools, their objective is the 
minimization of deployment costs fulfilling at the same time reliability and performance 
constraints (e.g., map-reduce jobs execution deadlines). They should also explore the design space 
and accept the specification of a timeout and return results when this timeout is expired. The 
transformation tools and simulation tools should have no difference between white box and black 
box model elements. All tools should permit the user to check their outputs against SLAs included 
in the UML model annotations. 
 
In the context of WP4, the technical requirements are related to tools and techniques to support the 
iterative improvement of quality characteristics in data-intensive applications through feedback. 
This WP will design and implement the monitoring platform that will collect and store traces and 
logs produced during the execution of data-intensive applications. It will create monitoring tools, 
anomaly trace tools and enhancement tools. They require from the monitoring tools to perform 
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monitoring data pre-processing (extraction) before storing the data in the data warehouse in order 
to facilitate usage by other tasks, to support interactive visualization of monitoring data and to 
provide the data warehouse the ability to prevent unauthorized access to the monitoring data. Once 
correlation between anomalies in runtime and anti-patterns has been detected, the enhancement 
tools should propose methods for refactoring the design. The tools should also be able to compare 
two versions of the application to identify relevant changes and extract or infer the input 
parameters needed by the simulation tools and optimization tools to perform the quality analyses. 
Monitoring data must support the reconstruction of a sequence of events and the identification of 
the time when things occurred (for example a consistent timestamp in a distributed system). The 
monitoring tools and enhancement tools should capture the growth in the data size for the 
application. The enhancement tools must be capable of automatically updating UML models with 
analysis results. The anomaly trace tools must allow the developer to choose and load the safety 
and privacy properties from the model of the application described through the DICE profile and 
to be able to check, given a trace of the events of interest of the application, whether that trace is 
compatible with the desired safety and privacy properties. Finally, there must be a way to link the 
information that is stored in the data warehouse with the features and concepts of the DICE UML 
models (operations, attributes, objects, etc.). 
 
In the context of WP5, the technical requirements are related to developing tools which help put 
the DICE tools users' application to the actual environment and evaluate its runtime. The DICE 
technical team will develop continuous integration and deployment tools executing TOSCA, 
testing tools and a testbed environment (Flexiant Cloud Orchestrator). WP5 technical 
requirements are that the continuous integration tools must record the results of each test, mapping 
them to the version number and offer a dashboard to consolidate the view of the application 
deployment to restricted users. The quality testing tools must test the application for efficiency 
and reliability, safety and provide independent test results. The deployment tools must be able to 
run automatically and autonomically, to deploy and install any application and the related 
monitoring tools from a valid topology of the supported DICE building blocks, to be extendible 
and support multiple IaaS and to support selected PaaS. 
 
Technologies and tools 
 
Regarding the tools used, Papyrus [1] is chosen as UML modeler. ECore EAnnotation [2] will be 
used to annotate papyrus UML models in order to extend metamodel properties. Based on their 
experience with MOSKitt CASE tool [3], PRO proposes to create an IDE based on the last Eclipse 
Framework version.. Jenkins [4] will be invoked through a provided Eclipse plugin to allow 
continuous integration. Eclipse plugins and wizards will be created for the custom tools 
developed. Eclipse Modelling Facilities (EMF) [5] will provide basic meta-model consistency 
validation techniques. The monitoring platform will use Elastic Search [6], Logstash and Kibana 
[7] on Flexiant Cloud Orchestrator. 
 
DevOps practices 
 
A fundamental assumption of the DICE project is that the models co-existing in our MDA 
methodology (UML & TOSCA models) will act as a vehicular language to integrate different 
tools across the DICE tool chain. It will also allow different actors to see a complex Big Data 
systems at different level of abstractions, such as abstract level, architecture level, and deployment 
level. Therefore, the DICE approach is going to be fully compliant with the Model-Driven 
philosophy, and should be deemed as a possible extension of MDA to the realm of Big Data. 
 



Deliverable 1.3. Architecture definition and integration plan – initial version 
 

Copyright © 2016, DICE consortium – All rights reserved 12 
 

Following the OMG guidelines, the DICE profile and methodology supports the incremental 
specification of DIAs following a Model-Driven Architecture approach. It mimics the standard 
assumptions behind Model-Driven Engineering, including the separation of concerns across three 
disjoint but related layers (Platform-Independent and Platform-Specific). Separation of concerns is 
one of the basic principles behind model-driven engineering and related technologies. The DICE 
Profile must use packages to separately tackle the description of targeted technologies in the 
respective profile abstraction layers (e.g. DTSM and DDSM). 
 
Several notations are being considered in the scope of DICE (e.g. MDA, MDE, MARTE, 
SecureML). These notations already provide diagramming facilities that may be assumed as 
directly related to the needs and requirements of the DICE profile. For example, following the 
MDA paradigm, ModaCloudML2 offers modeling facilities to reason on cloud-based applications 
from multiple, functionally-complete perspectives. An example of following DevOps practices 
[12] is the interactive design component that will be offered to allow the graphical representation 
of the workflow. The DICE IDE will guide the developer through the DICE methodology. This 
interactive component will promote communication and collaboration between development, QA 
and IT operations, as DevOps assumes. 
The MDE approach underpins the necessity to bridge the gap from Dev and Ops by proposing to 
use UML models as a way to share a global view of the system. Such global view of the system is 
a key element of the DevOps vision. DICE therefore wants to emphasize the convergence of MDE 
and DevOps as a way to achieve an integrated, harmonized system view and orchestration 
between Dev and Ops. 

1.1.1. Architectural overview 
The DICE architecture offers a comprehensive set of tools that cover both the design and the pre-
production phase of a data-intensive application development. A diagram summarizing the overall 
DICE architecture is given in Figure 1. The different colors distinguish the two main components 
of the architecture: 
 

• Development tools, which are primarily centered on the development stage of the data-
intensive application. The IDE implements the DICE quality-driven methodology that 
guides the developer through the different stage of refinement of design models up to 
implementing the initial prototypes of its application. The IDE supports multiple quality 
analyses offered by the verification, simulation and optimization tools. 

• Runtime tools, which collect data during the application quality testing to characterize the 
efficiency, reliability and correctness of the components. This data is consolidated in the 
DICE monitoring platform and used to semi-automatically detect anomalies, optimize the 
system configuration, and enhance the design.  

 
The purpose of the tools within each group of tools is explained in details in the following 
sections. 

1.1.2. Development tools 
The central element of the DICE architecture is the Integrated Development Environment 
(IDE), where the developer specifies the data-intensive application using a model-driven 
engineering approach. To support this activity, the DICE Eclipse-based IDE embeds the DICE 
UML profile which provides the stereotypes and tags needed for the specification of data-
intensive applications in UML.  
 

                                                
2 http://www.modaclouds.eu/wp-
content/uploads/2012/09/MODAClouds_D4.2.1_MODACloudMLDevelopmentInitialVersion.pdf  
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Following an MDE approach, models are defined by the user in a top-down fashion, stemming 
from platform-independent specifications of components and architecture (DPIM UML models), 
through assignment of specific technologies to implement such specifications (DTSM UML 
models), and finally to the mapping of the application components into a concrete TOSCA-
compliant deployment specification (DDSM UML models). Such models can be related by DICE 
model-to-model transformations that are automatically executed within the IDE, to reduce the 
amount of manual work required from the user.  For example, initial DTSM and DDSM models 
can be generated from the DPIM models. 
 
Throughout the application design, the DICE IDE offers the possibility to automatically translate 
certain DICE models into formal models for assessment of quality properties (efficiency, costs, 
safety/correctness, etc.). Each analysis requires to run dedicated tools that reside outside the IDE 
environment, in order to obtain prediction metrics. The simulation, optimization and verification 
plugins take care of translating models in-between IDE and these external tools. They also collect 
via REST APIs the outputs of these tools that are shown to the user inside the IDE. The interface 
of these plugins assumes the user to be unskilled in the usage of the formal models. Furthermore, 
the quality properties are defined in terms of constraints using appropriate language constructs. 
 
As the developer progressively refines the application model and the application code, s/he is 
going to periodically commit them to a repository, i.e., a version control system (vcs). In DICE 
we will ensure that every commit increases the version number of the application, which is a 
unique identifier used across tools to keep synchronized models and code. The repository acts as a 
shared source of models and code across different versions for all the DICE tools that need to 
access them. The repository will reside externally to the IDE and will be accessed through 
appropriate tools (e.g. SVN, GIT, etc.).  

1.2. Runtime tools 
After the initial prototyping of the application, the developer will request to deploy the current 
prototype. After an automatic commit of all models and code to the external repository, the 
continuous deployment tool will retrieve a copy of both of them from the repository, build the 
application, and internally store the outputs and their associated artifacts. The delivery tool will 
then initialize the deployment environment (if not already created), consisting of VMs and 
software stack, and deploy (or update the existing deployment of) the application. The delivery 
operation also connects the DICE monitoring platform to the deployed application. The 
monitoring platform will be started and stopped by REST APIs and will acquire a pre-defined set 
of metrics that will be continuously stored in a performance data repository. 
 
The anomaly detection and trace checking tools will also feature an IDE plugin and will be able 
to query the monitoring platform for relevant metrics and use them to generate analyses 
concerning anomaly in performance, reliability or operational behavior of the application at a 
given release version. The anomaly detection tool will reason on the base of black-box and 
machine-learning models constructed from the monitoring data. Conversely, the trace checking 
tools are going to analyze the correctness of traces. These analyses will be manually invoked by 
the user from the IDE plugin. Similar to these, the enhancement tool will automatically annotate 
the DICE models stored in the repository with statistics on the inferred and recorded monitoring 
data, in order to help the user to inspect the root-causes of performance or reliability anomalies.  
 
The quality testing tools will support the generation of test workloads to the application. Such 
workloads are those that will be used to assess the quality of prototypes. Similarly, the fault 
injection tool will generate faults and malicious interferences that can help verifying the 
application resilience. Both tools integrate a heterogeneous set of actuators and can be run 
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manually by an operator through a command-line interface and configuration files. They will also 
be exploited by the configuration optimization tool to generate an experimental plan 
automatically given a time budget. The output of this tool is to confirm the optimal configuration 
of the deployment for an application in its final stages before being pushed to production. 
Compared to the optimization plugin, configuration optimization will also deal with fine-grained 
systems parameters (e.g. buffer size, block size, JVM configuration, etc.), which are difficult to 
model in design-time exploration. Moreover, configuration optimization is black-box and solely 
measurement-driven, whereas design space exploration is primarily model-driven. 

1.3. WP-level architecture 
The following table summarizes the WP-level responsibilities of the different components of the 
architecture, the lead maintainer and the major contributors: 

Table 1: DICE tools and work packages 

Tool Work 
Package 

Lead 
Maintainer 

Major 
Contributors 

IDE 1 PRO  

DICE Profile 2 PMI ZAR, NETF 

Simulation Plugin 3 ZAR IMP 

Optimization Plugin 3 PMI  

Verification Plugin 3 PMI IEAT 

Monitoring Platform 4 IEAT  

Anomaly Detection 4 IEAT IMP 

Trace Checking 4 PMI  

Enhancement Tool 4 IMP  

Quality Testing 5 IMP  

Configuration 
Optimization 

5 IMP IEAT 

Fault Injection 5 FLEXI  

Repository 5 XLAB  

Delivery Tools 5 XLAB  
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2. DICE tools 

2.1. Overview of DICE tools 
 
In the previous section, we have provided a high-level description of the DICE tools, explaining 
their main role in the DICE architecture. Here, we describe in more details the technical 
characteristics of each DICE tool. We begin by providing a more detailed description of the 
intended purpose of each tool of the DICE architecture. We cover in particular two dimensions: 
motivation and technical innovation. 
 

Table 2: DICE tools. 

Tool Motivation Innovation 

IDE 

Eclipse is a de-facto standard for the creation 
of software engineering models based on the 
MDE approach. DICE further intends to use 
the IDE to integrate the execution of the 
different DICE tools, in order to minimize 
learning curves and simplify adoption. 

There is no integrated environment for DevOps 
where a designer can create models to describe 
data-intensive applications and their underpinning 
technology stack. In particular, a core innovation 
is the fact of being a complete IDE for going from 
design to development.  

DICE Profile 

Existing UML models do not offer 
stereotypes and tags to describe data 
characteristics, data-intensive applications, 
and their technology stack.  

The DICE profile extends UML to handle the 
definition of data-intensive applications. There is 
no comparable MDE solution in this space, 
therefore the innovation is to be a first mover. 

Simulation  

Once a data-intensive application is designed, 
simulation can help anticipating the 
performance and reliability of the software 
before implementation or throughout revision 
cycles. Example of questions that can be 
answered by a simulation tool include: how 
many resources (VMs, memory, CPU, etc.) 
will be required to achieve a given 
performance target? What will be the 
response time and throughput of data-
intensive jobs? 

There exist tools and environments to translate an 
application design specification into simulation 
models, however none copes with the notion of 
data or can generate models for data-intensive 
technologies. Instead, the DICE simulation tool 
will be able to generate and simulate models for 
specific data-intensive technologies (e.g. 
Hadoop/MapReduce, Spark, Storm, etc.) 

Optimization  

Simulation offers the possibility to evaluate a 
given model. However, thousands of models 
may need to be evaluated in order to 
maximize some utility function, e.g. finding 
an architecture that incurs minimum 
operational costs subject to data redundancy 
and reliability requirements. The 
optimization plugin will perform multiple 
invocations of the simulation tool to support 
the automated search of optimal solution. 
This is needed to limit the time needed to 
complete the search and obtain a good 
solution. 

Design space exploration has been increasingly 
sought in traditional multi-tier applications, but not 
in the design of data-intensive applications. For 
example, it is not possible today to find optimal 
architectures subject to constraints on dataset 
volumes and transfer rates. Delivering this 
capability will constitute the main innovation of 
the optimization tool. 

Verification  

Simulation is helpful to study the behavior of 
a system under a variety of scenarios. 
However, it cannot provide definite answers 
concerning the impossibility of some events. 
For example, in safety-critical systems, a 
designer may want to avoid that certain 
schedules of operation results in loss of data 
(e.g. due to timeouts, buffer overflows, etc.). 

Verification tools often have a high learning curve 
for non-experts. The DICE verification tools will 
be integrated with the IDE ecosystem to simplify 
the invocation of verification analyses in a user-
friendly way. This will be achieved by the use of 
templates to run specific analyses on specific 
technologies. 
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Furthermore, simulation requires a 
substantial effort to answer logical predicates, 
since it is not meant to be queried through a 
logic. Verification tools allow to address 
these problems, offering a logic language to 
analyze the correctness of a system, generate 
counterexamples, and expose safety risks. 

Monitoring 
Platform 

During prototyping and testing it is important 
to collect operational data on the application 
and the infrastructure to understand if all the 
design constraints are satisfied. There is 
however a gap between high-level design 
metrics (e.g. data throughputs) and the 
concrete low-level mapping of these metrics 
to quantities in log files. The monitoring 
platform takes care of this mapping from 
data-intensive technologies, of the retrieval of 
the data and its storage and querying through 
a data warehouse. 

There exist several monitoring open source tools 
in the public domain. However, the integration of 
these tools into a solution to support developers 
(easy deployment, extensible to various Big Data 
technologies) is atypical use, as these are mostly 
used by operators. Another innovation is the 
contribution to simplifying the monitoring process, 
by offering the default selection of representative 
metrics across DICE-supported technologies.  

Anomaly 
Detection 

As an application evolves it is not always 
simple to decide if the application 
performance or reliability have been affected 
by a change. This requires to perform 
statistical analysis to compare monitoring 
data across versions. This tool will perform 
this analysis based on the different version of 
the DICE application and models. 

Anomaly detection tools exist in the open source 
domain; however none is specifically tailored to 
MDE. There is also not yet evidence that such 
systems can be effective in finding anomalies in 
data-intensive applications, therefore this 
prototype will push the boundary in a novel 
research space. 

Trace 
Checking 

Anomaly detection can also be performed by 
trace checking, which involves ensuring that 
a sequence of events appearing in a trace is 
correct with respect to pre-defined 
characteristics. Compared to anomaly 
detection, this capability allows users to 
evaluate logical queries on the trace to check 
its correctness, as opposed to the idea of the 
anomaly detection tool of verifying the 
application behavior using a statistical 
analysis. 

The DICE trace checking tool will complement the 
formal verification tool, in that it will help 
determine, from actual traces of the system 
execution, whether the parameters with which the 
formal verification model were initialized are 
indeed correct; it will also make sure that the 
properties analyzed at design time still hold at 
runtime (they might be violated due to an incorrect 
configuration of the parameters, as mentioned 
above). 
 

Enhancement 
Tool 

Given monitoring data for an application, a 
designer needs to interpret this data to find 
ways to enhance the application design. This 
is complex to perform, since the components, 
annotations and abstractions used in a UML 
model do not semantically match to the 
concrete low-level metrics that can be 
collected via a monitoring tool. For example, 
reading a threading level at a data base does 
not explain what business-level operation 
was performed by the DB. 

The enhancement tool will introduce a new 
methodology and prototype to close the gap 
between measurements and UML diagrams. No 
mature methodology appears available in the 
research literature that can address this inverse 
problem of going from measurements back to the 
models to help reasoning about the application 
design. 

Quality 
Testing 

The testing of a data-intensive application 
requires the availability of novel workload 
injection and actuators (e.g. scripts to 
automatically change configurations, to 
instantiate and run the workload generators, 
etc.)  

Most of workload injection and testing tools are 
specific to multi-tier applications (e.g. JMeter). 
The DICE quality testing tools will focus primarily 
on data-intensive applications, for which there is a 
chronic shortage of such tools. 
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Configuration 
Optimization 

Once an application approaches the final 
stages of deployment it becomes increasingly 
important to tune its performance and 
reliability. This is a time-consuming task, 
since the number of different configurations 
can grow very large. Tools are needed to 
guide this phase. 

There is a shortage of tools to guide the 
experimental configuration of complex software 
systems. This will provide an innovative solution 
in this space, which will combine experimentation 
with reasoning based on machine learning models.  

Fault Injection 

 
 
Given an initial prototype of the application, 
it is important for reliability purposes to 
understand the resilience of the application to 
unexpected problems in the operational 
environments (e.g. faults, contention, etc.). 
The fault injection tool will address this need 
by offering an application that can create on-
demand such problems to explore the 
application response. 

Some fault injection tools exist on the market, 
such as ChaosMonkey3.  These tools however are 
either platform specific or limited in functionality 
such as with ChaosMonkey for AWS (Amazon …) 
and termination of VMs (Virtual Machines).  The 
DICE Fault Injection tool will address the need to 
generate Faults at the VM level, at the user Cloud 
Level and on the Cloud platform level. This larger 
range of functionalities allows a greater flexibility 
as well as the ability to generate multiple faults 
from a single tool. In addition when compared to 
other fault injection tools, shall be light weight and 
only install the required tools and components on 
the target VMs. 

Repository 
This is an auxiliary system required to store 
and version the models used by the other 
tools.  

N/A. This is an auxiliary system tailored to the 
integration of the DICE tools. 

Delivery Tool 

The DevOps paradigm assumes development 
to be a continuous process, where the 
application code can be often changed and 
redeployed through continuous integration 
tools to examine the application response. 
The infrastructure and the whole applications 
are described in code as well. DICE aims at 
emphasizing the adoption of this paradigm 
during the pre-production stages, in order to 
accelerate the generation of the initial 
prototypes. 

DICE will offer a novel continuous deployment 
solution that combines some cutting-edge 
solutions for cloud computing, namely the 
emerging TOSCA profile and the Cloudify 
deployment tool, naturally extending the model-
driven development into realization of the model 
in the target environment, providing a complete 
design-deployment-testing ecosystem in DICE. 
These tools will be empowered with blueprints to 
support the deployment of the data-intensive 
technologies supported by DICE. 

2.2. Positioning tools in the methodology 
The methodology and DICE tools are conceived with a high desire to reduce the time to market of 
business-critical data-intensive applications (DIA). Therefore, the DICE IDE provides a methodological 
workflow, specifying business and technical actors, processes and unit steps needed for designing a data-
intensive application. This general-purpose methodology allows the design of data-intensive cloud 
applications for different domains. 
 

                                                
3 http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html 
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Figure 2. DICE Methodology 
Methodology steps DICE Tools Used 

DIA Component design DICE Profile 

DIA Analysis and Assessment Verification Tool 
Enhancement Tool 

DIA Technology Mapping DICE Profile 

CL Implementation IDE (Natively built-in technological components) 

DIA Platform Mapping DICE Profile 

Platform Specific Implementation IDE (Natively built-in technological components) 

Deployment Delivery Tool (CI, Deployment repository…) 

Testing Quality Testing Tools: 
• Anomaly Detection 
• Fault Injection 
• Configuration/Optimization 

Runtime feedback analysis Monitoring Tool 
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3. Architecture and Integration 
This section elaborates on the possible architectural solutions through which the DICE framework 
may be developed. In order to procure the reasonable starting points of our decision-making we 
enacted a series of brainstorming sessions to evaluate: (a) the tenets and challenges behind the 
DICE H2020 project; (b) the current market concerns and stakeholders envisioned by DICE; (c) 
the trends in current architecture styles consistent with DICE goals.  
In addition, the section features an application of the industrial-strength method architecture 
decision making method called the “Architecture Trade-off Analysis Method” [8] to make a 
decision and establish its value against the goals and premises of DICE. 
Finally, this section elaborates on how, given the architecture choices elaborated in the following 
section, the resulting DICE models will be shared across the DICE technological solution. 

3.1.  Architectural Tradeoff Analysis and Integration Patterns 
As previously specified, in order to come up with a decision concerning the DICE technological 
architecture we proceeded as follows.  
First, in a series of brainstorming sessions and focus groups we established a number of valuable 
architectural styles alternatives (e.g. a plugin style vs. a service-oriented style, etc.). The result of 
this very first investigation yielded a number of styles rotating around services (e.g. typical SOA 
web-services or more modern and DevOps consistent Microservices [11]) as well as a number of 
more design-level styles (e.g. the plugin architecture style). 
Second, in a preliminary decision evaluation session, we narrowed the architecture decision down 
to two alternatives, namely, a plugin architecture style (e.g. think of the Eclipse IDE) against a 
Microservice architecture style (e.g. think of modern web-service transaction systems such as 
Netflix). 
Third, through an application of the ATAM method, we evaluated the best-possible option from 
our two choices. The rest of this subsection focuses on elaborating further details on the two 
architectural choices that we faced at the decision-making phase, i.e., the second step. 

3.1.1. Plugin Architectural Style 
In the plugin architecture style, software architects are constrained to develop their applications in 
terms of the following architectural elements: 

1. Plugin: a bundle that adds functionality to an application, the host application; 
2. Host application: offers the mechanisms to add new plugins during operation; 
3. Extension-point (a.k.a. plugin interface): a stub in the host 

that can be extended by hostable plugins; 
Software architects are constrained to adhere to a single restriction 
concerning this architectural style, namely, that Plugins have to 
comply to the extensibility constraints defined in architecture of the 
application hosting extendable plugins. For example, architects 
elaborating a plugin for the Eclipse IDE need to adhere strictly to 
restrictions superimposed by the nature, structure and limitations of 
the Eclipse IDE (e.g., memory limit, etc.). 
In a nutshell, there are several advantages connected to using a 
plugin architecture style in the scope of DICE. For example, 
members of the DICE consortium (as well as future users and 
vendors connected to the DICE IDE) can implement and incorporate application features very 
quickly. Also, since plugins are separate modules with well- defined interfaces, you can quickly 
isolate and solve problems. Moreover, creating custom versions of DICE applications would 
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become easier and without source code modifications. Furthermore, Eclipse marketplace4 is an 
appropriate place that we can used to disseminate the DICE tools. 

3.1.2. Implementation Consequences for a Plugin Styled DICE Solution 
Several mechanisms would have to be defined in connection to a plugin styled DICE solution. 
More in particular: 

1. Define a list of methods/functions a plugin must implement or define a base class that 
plugin must use; 

2. Define mechanisms for registering callbacks; 
3. Define what type of behavior each method or function 

must exhibit; 
However, there are several frameworks that the DICE 
consortium may consider as a starting point behind styling the 
DICE solution with plugins. For example, the Eclipse IDE 
offers a valuable platform and a platform extension system that 
fits almost perfectly with the DICE tenets (e.g., Big-Data 
architectural design in a model-driven fashion) and challenges 
(e.g., supporting continuous architecting in a DevOps fashion 
[12]). Indeed, the Eclipse IDE (see the overall structure in the 
Figure on the right-hand side) would provide the DICE solution 
with: 

1. An extensible platform/customizable IDE via the RCP 
framework; 

2. Core services for controlling tools working together; 
3. Runtime platform to support system development by composition of plugins - also, the 

runtime platform discovers plugins at startup and manages auto plugins loading; 
4. Multi-layering featuring a platform specific layer, a java-development tools (JDT) layer 

and an overall IDE layer; 

3.1.3. Microservices Architecture Style 
The Microservice architecture [9][10][11] is a new architectural style that has been introduced 
after new paradigms like continuous delivery and DevOps. In this architectural style, applications 
can be composed of fully independent services that communicate with each other via light weight 
API such as REST. The micro-services are built around business capabilities and are typically 
independently deployable by fully automated deployment services. 
The services in this architectural style can be implemented using different programming languages 
and technology stacks. This style as opposed to traditional hierarchical architectures (e.g. 
composite services), is more symmetric and follow the principles of publish and subscribe 
communication style.  This architectural style is the most suitable style for integrating applications 
around business capabilities and in DevOps paradigm [12] where there the team structures are 
typically shaped around business capabilities. 

3.1.4. Implementation Consequences for a Microservice Styled DICE Solution 
In a classical plugin style, the DICE IDE consolidates plugins that do not talk much to each other 
and dialog in the IDE environment through the shared UML models. Each plugin calls the external 
tools via REST APIs. For example, testing and deployment tools are orchestrated by their 
respective plugins inside the IDE. The IDE Plugin X would therefore develop the logic to connect 
to external Tool X. The other plugins would be entirely agnostic of this. Each IDE plugin can be 
called by the user irrespectively of the other plugins, but requires a DICE m to be loaded in the 
                                                
4 http://marketplace.eclipse.org/ 
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IDE. There is a clear unique selling point at the end of the project, the IDE with the powerful 
DICE plugins inside it, but methodology and workflow may be difficult to customize or adapt to 
specific needs of end users. 
Conversely, Microservice are a cloud-native architecture [10] through which a software system 
can be realized as a set of small independent services [9]. Each of these services are capable of 
being deployed independently on a different platform and run in their own process while 
communicating through lightweight mechanisms like RESTFul APIs [10]. In the DICE setting, 
this means that each service is a DICE business capability that can use various programming 
languages and data stores [11].  
Moreover, Microservices architecture is different from a canonical Service Oriented Architecture. 
SOA is an architectural pattern where the services are self-contained units that communicate with 
each-other via communication protocols. However, they have several shortcomings, as listed in 
the following table, they are stateful, synchronous and technology dependent (all based on 
enterprise service bus - ESB) and also the integration needs to be hardcoded into few available 
languages such as BPEL. 
In addition, using microservices, we can develop DICE tools separately and the integration can be 
based on the assumptions that all tools needs to emit some messages and receive some events from 
yet another topic. So the integration becomes reactive, asynchronous and event driven. Finally, 
from a technological point of view, the integration connectors can be written in any language and 
hosted even as yet another service (e.g. Kubernetes (for integration) + Docker5 (for tools)). 

3.2. Architectural Tradeoff Analysis and Architecture Decisions for DICE 
The goal of the Architecture Tradeoff Analysis Method (ATAM) is to determine how quality 
attributes interact in such a way that a best fitting architectural decision may become apparent. 
The steps for ATAM are the following: 

1. Present method to stakeholders 
2. Present business drivers (by project manager) 
3. Present architecture (by lead architect) 
4. Identify architectural approaches 
5. Generate quality attribute tree 
6. Elaborate architectural approaches 
7. Brainstorm and prioritize scenarios 
8. Analyse architectural approaches 
9. Present results 

In the following text we elaborate on the (architectural) quality attribute tree (step 5) wherefore 
DICE quality attributes are evaluated against architectural alternatives pruned from software 
architecture research and practice (see Section 3.1). The root node of the tree (see the figure 
below) is termed “utility”. It expresses the overall quality of the architecture. The next level 
contains the architectural quality attributes that were evaluated for a concrete option. These are 
again broken down into more detailed constituents. Finally, the leaf nodes are concrete scenarios 
where said DICE quality attributes are enacted. 
Steps 1 through 3 as well as 6 through 9 of the procedure actually took place during several DICE 
online and plenary meetings and are not documented here (meeting minutes provide additional 
elaboration and details of said steps). 

                                                
5 https://www.docker.com/ 
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Figure 3. DICE Quality Attribute Tree: General Form 

The tree rotates around a set of seven key evaluation characteristics, namely: DevOps-readiness - 
our solution should accommodate and support wherever possible the DevOps strategy and ways of 
thinking; extensibility - our solution should allow full extensibility while supporting said activity 
with appropriate and adequate tooling; Ease-of-use - our solution should make no assumption as 
to the level of skill of the user and should be ready to support multiple possible users with multiple 
possible concerns and ability levels; Generalizability - our solution should make no assumption 
as to where and in which context should the DICE solution be used in practice, also the solution 
should be ready to accommodate rapid and unforeseen contextual changes; Implementation-time 
- our solution should not force additional skills on the DICE consortium and should accommodate 
our planned schedule and prototypal timing; Feasibility - our solution should be feasible in the 
allotted time given the desirable other DICE characteristics; SME-readiness - our solution should 
be ready to accommodate the organizational scenarios and variables typical in SMEs and should 
remain efficient in and on top of infrastructure size and expectations typical for SMEs as well. 
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Figure 4. DICE Quality Attribute Tree: Microservices6 

A Microservices solution is almost explicitly tied to a DevOps way of working since it envisions 
reducing services to be made available to their smallest form possible in such a way so as to divide 
responsibility and reduce coordination where possible. This way of working however may not be 
feasible with the DICE tenets and challenges. Although extremely novel, this alternative would 
force re-training and refocusing of skills across the DICE consortium since many partners may not 
be familiar with technologies involved in Microservices (e.g. WS, messaging systems, REST, 
ESB, etc.). Also, the architecture may limit the methodological extensibility and user-experience 
connected to the DICE solution since this would inextricably be tied with a DevOps way of 
working, i.e., by means of Microservices. Finally, the solution may not accommodate well the 
small resources in SMEs or organizational schemes such as Bring-Your-Own-Device, very 
common in SMEs as well. 

                                                
6 Matched points are highlighted in bold. 
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Figure 5. DICE Quality Attribute Tree: Plugin Style 

A more classical and established plugin style (e.g. as supported by the Eclipse IDE and related 
extension frameworks such as RCP7) may be configured to accommodate a DevOps way of 
working (e.g. as accompanied by Eclipse tools such as MyLyn). Also, rotating around well-
established Eclipse technological extension frameworks, architecture extensibility and 
generalizability may be kept to the highest level. In addition, Eclipse and similar plugin based 
technologies are already very pragmatically versed into allowing configuration and preparation of 
ad-hoc distributions, depending on the level of experience or desired control by the user. This 
would allow the DICE solution to accommodate scenarios in which both neophytes and gurus may 
be interested in using our technology. Finally, Eclipse and similar plugin styled platforms already 
accommodate the resource limits and organizational practices typical in SMEs. 
It is therefore our decision, that the DICE Technological Tool-Chain be implemented 
following a plugin architectural style, as supported by the technological solution which best 
accommodates previous design decisions within the DICE consortium, that is, the DICE 
IDE.   

                                                
7 https://wiki.eclipse.org/Rich_Client_Platform 
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3.3. Shared Models 
 
Stemming from the above decision it is our intention to make available the following shared 
models: 
DPIM XMI 2.11 Standard EMF Format DAM-Compatible UML-Papyrus 

Format 
DTSM XMI 2.11 Standard EMF Format DAM-Compatible UML-Papyrus 

Format 
DDSM XMI 2.11 TOSCA V1 TOSCA-JSON, TOSCA-YAML 
 
Integration Patterns 
Prepare → Commit → Modify: Models should be prepared in draft format, committed to version-
control and modified (e.g. according to analyses or further modelling and design); 
Retrieve → Analyse → Modify → Commit: Before being analysed, updated versions of the 
models should always be retrieved from version-control, should always be analysed before a 
modification, i.e., the analysis is the rationale of the modification and should always be committed 
after modification (would be addressed in details in WP2 deliverables); 
Observe → Retrieve → Modify → Commit: Models which need to undergo modifications as a 
consequence of observed monitoring evaluations are first retrieved from version-control, then 
modified and then re-committed again; 

3.4. DICE architecture 
A plugin architectural style has been chosen to implement the DICE technological tool chain. As 
examined in previous section, the plugin architecture offers several advantages such as 
extensibility, separation of concerns and many other best practices. The Eclipse IDE itself follows 
this architecture. It offers a platform extension system through plugins which fits with the DICE 
principles and challenges. The DICE architecture components are the development tools which are 
integrated in the IDE, the runtime tools which are called from the IDE, the IDE itself and the 
external repository. They are distinguished with different colours in Figure 1. 
The DICE profile and methodology support the incremental specification of Data-Intensive 
Applications (DIAs) following a Model-Driven Engineering approach. The DICE IDE exploits the 
DICE profile and follows the DICE methodology. It offers wizards to guide the developer through 
the steps envisioned in the DICE methodology. The DICE tools described will be used at different 
stages of the methodology. In the following table we provide a summary of the architecture of 
each DICE component, a short behavioural description and the link to the respective section in the 
Appendix. 

Tool Architecture component Behavioural description Appendix 

IDE The Integrated Development 
Environment is the core 
component. The Plugin 
Architecture Style is implemented 
by customizing the Eclipse IDE. 

The user starts the IDE. This latter will execute 
the requested actions and delegate the requests 
to the tool(s) that can serve the request.   

A.1 

DICE Profile This component belongs to the 
development tools. It provides the 
stereotypes and tags needed for the 
specification of data-intensive 
applications in UML. 

The user loads the DICE Profile model from the 
resources. He selects the desired elements to 
annotate. Once finished, he submit the model to 
the repository. 

A.1 

Simulation Simulation is part of the 
development tools. It gives 
information about the predicted 

The user starts a new simulation using the 
annotated UML models as input. The 
simulation process is configured through the 

A.2 
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metric values in the technological 
environment being studied. 

IDE. The users executes the process and the 
results are shown to the user in the GUI. 

Optimization Optimization is part of the 
development tools. While 
simulation offers the possibility to 
evaluate a given model, the 
optimization plugin will perform 
multiple invocations of the 
simulation tool to support the 
automated search of optimal 
solution. 

The user loads the model from the repository. 
The optimization tool is invoked. Some 
performance metrics are returned to the tool and 
the simulation tool is invoked. A certain 
number of deployment models are sent to the 
simulation tool. The outcome is returned to the 
Optimization tool and reported to the user. 

A.3 

Verification The verification component is part 
of the development tools. It offers 
a logic language to analyse the 
correctness of a system, generate 
counterexamples, and expose 
safety risks. 

The user loads the model from the repository. 
He selects a property to be checked using 
templates and the tool from the analysis. The 
annotated DTSM model, the property and the 
tool are sent to the Verification plugin. The 
outcome of the verification and the trace (of the 
system that violates it) are reported to the user. 

A.4 

Monitoring 
Platform 

The Monitoring platform 
component is part of the runtime 
tools. It is invoked from the IDE 
through RESTFul services. It 
monitors quality metrics in the 
application and in its underpinning 
software stack and infrastructure 
as the application runs. 

The user loads the model from the repository. 
The user submits a query string to the 
monitoring platform through the IDE. He can 
specify parameters such as a time interval, the 
type of the output and others. An elastic search 
query is generated and the results are returned 
to the monitoring platform. 

A.5 

Anomaly 
Detection 

The Anomaly detection 
component is part of the runtime 
tools. It attempts to decide if the 
application performance or 
reliability have been affected by a 
change based on the different 
version of the DICE application 
and models. 

The user loads the model from the repository. 
The user will have to select a subset of features 
and timeframe on which anomaly detection will 
take place. The resulting data will be used to 
train and validate a predictive model. If a model 
has been already calculated for this subset of 
features, the service will check the given 
timeframe for anomalies. Once an anomaly is 
detected, a reaction (send email, notify users, 
etc.) will be triggered. 

A.8 

Trace 
Checking 

The Trace Checking component is 
part of the runtime tools. It allows 
users to evaluate logical queries on 
the trace to check its correctness, 
as opposed to the idea of the 
anomaly detection tool of 
verifying the application behaviour 
using a statistical analysis. 

The user loads the model from the repository 
and activates trace checking. The list of logs is 
retrieved in the Monitoring platform and sent to 
the IDE. The user selects a property and a time 
window. The outcome of the trace-checking is 
reported to the IDE. 

A.7 

Enhancement 
Tool 

The Enhancement tool component 
is part of the runtime tools. It 
supports the users with the task of 
evolving the application quality 
after tests on prototypes. 

The user loads the model from the repository 
and requests to detect anti-patterns in the 
current design. The tool analyses the current 
UML models and returns an indication of 
possible anti-patterns to the IDE. The 
Enhancement tool queries monitoring data from 
the Monitoring Platform and uses these data to 
analyse the parameters of the performance 
models. 

A.6 

Quality The Quality Testing component is The user loads the model from the repository. A.11 
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Testing part of the runtime tools. It 
generates artificial workloads that 
are sequentially submitted to the 
running application according to a 
testing plan. 

The main data entity in quality testing tool is 
the test plan which needs to be in a user 
readable XML like format and compatible with 
other similar tool such as JMeter. The test plan 
should define the notion of time unit and the 
level of the load that will be injected during 
time periods. After the test plan is defined by 
the user via IDE, it will be sent to the quality 
testing tool to run the test case. 

Configuration 
Optimization 

The Configuration Optimization 
component is part of the runtime 
tools. It optimizes the big data 
application configuration within 
limited time using numerical 
optimization and machine learning 
models. 

The user loads the model from the repository 
and launches the tool. The configuration 
template is retrieved by the tool through model 
repository. The appropriate configuration is 
then set in the template. In order to perform 
model fitting, tool requires to retrieve the 
performance data and augment new points in 
the repository. These performance data serve as 
the main ingredient for reasoning where to test 
next in the tool. 

A.10 

Fault Injection The Fault Injection component is 
part of the runtime tools. It 
explores the application response 
to unexpected problems in the 
operational environments (e.g., 
faults, contention, etc.) by creating 
on-demand such problems. 

The user starts the Fault Injection tool. He 
enters his input using command line options. 
The tool will connect to the virtual machine and 
begin Fault. The results are stored in an 
accessible log file and returned to the tool. 

A.12 

Repository The repository component acts as 
a shared source of models and 
code across different versions for 
all the DICE tools that need to 
access them. It will reside 
externally to the IDE and will be 
accessed through appropriate tools 
(e.g. SVN). 

The user loads the model from the repository. 
Upon completion of this work, the user submits 
the file (models/ configuration scripts etc.) to 
the repository. 

A.9 

Delivery Tool The Delivery Tool component will 
initialize the deployment 
environment and deploy the 
application. It also connects the 
monitoring platform to the 
deployed application. 

The user loads the model from the repository. 
The IDE tools trigger the model-to-text 
transformation, which produces an OASIS 
TOSCA document in YAML format. The 
Delivery Tool consumes the TOSCA document 
and, based on the blueprint description, deploys 
and configures the application in the test bed. 

A.9 

 

3.5. Integration plan 
The following table presents DICE integration plan focusing on the most important activities and 
milestones 

Table 3: DICE integration plan. 

Date DICE 
Framework 

Version 

Included features 

M12 - Initial version of: 
• Simulation support from ZAR 
• Verification support from PMI 
• Monitoring support from IEAT 
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• Delivery Tool support from XLAB 

M18 1.0.0 Initial version of: 
• Optimization support from PMI 
• Anomaly detection support from IEAT 
• Trace Checking support from PMI 
• Enhancement support from IMP 
• Fault Injection support from FLEXI 
• Configuration Optimization support from IMP 

First release of the DICE Framework with Repository support from XLAB with all M12 
initial version of the tools. This release will be available on the official GitHub repository of 
DICE: github.com/dice-project/  
The IDE plugins will come with format of packaging and uploading to the market place. We 
plan to use Vagrant scripts for installing the monitoring framework in Virtual Box, which is 
useful for getting to know the framework. For the services related to the deployment, 
TOSCA blueprints will be released for Cloudify that enable bootstrapping and deploying 
these services with little effort. 

M24 2.0.0 Initial version of: 
• Quality Testing support from IMP 

Intermediate versions of: 
• Simulation support from ZAR 
• Verification support from PMI 
• Delivery Tool support from XLAB 

Final version of: 
• Monitoring support from IEAT 

Second release of DICE Framework (Initial complete version) with all M12 and M18 initial 
version of the tools. 

M30 3.0.0 Final version of: 
• Simulation support from ZAR 
• Verification support from PMI 
• Delivery Tool support from XLAB 
• Optimization support from PMI 
• Quality Testing support from IMP 

Final version of DICE Framework with all M24 and M30 final versions of the tools 

 
This is a first approach of the integration plan. Every deliverable will include the related features 
as far as possible, depending on how much costs including it in this deliverable or not. If one 
feature is not included in one deliverable, will be present in the next one. 
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Appendix A.  
 
A.1. IDE 

A.1.1 Stereotyping a UML diagram with the DICE profile to obtain a Platform-
Independent Model (PIM) 

ID UC1.1 

Title  Stereotyping a UML diagram with the DICE profile to obtain a 
Platform-Indep. Model 

Priority  Required 

Actors  Architect, IDE 

Flow events A technical person capable of designing and modelling a data intensive 
application models the Platform-Indep. UML Model stereotyped with 
the DICE profile. 

Pre-conditions  UML diagram of domain model 

Post-conditions  Stereotyped diagram with DICE profile 
 

A.1.1.1. Description of interactions 
The use case UC1.1 specifies that, from an existing UML model, an architect should be able to 
annotate it using the DICE profile. 
To obtain such information, the following steps need to be performed: 
● The Architect starts the IDE. 
● The Architect open the desired model to annotate. 
● The Architect loads the DICE profile model from the resources. 
● The Architect selects the desired elements to annotate. 
● The resulting model could be stored into a repository in order to use it in next steps. 
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A.1.1.2. Sequence diagrams 

 
A.1.1.3. Data flows 
The UML model should be retrieved from a repository, and the DICE profile model will be 
available as plugin in the IDE. The Architect will synchronize its local copy with the data in the 
repository. Then he need to load the DICE profile model from the IDE plugins, and start 
annotating the UML model. Once finished, the model should be uploaded to the repository again. 
 
  



Deliverable 1.3. Architecture definition and integration plan – initial version 
 

Copyright © 2016, DICE consortium – All rights reserved 31 
 

 

A.1.2 Analysis, simulation, verification, feedback, and transformations until 
obtaining a deployment model 

ID UC1.2 

Title  Analysis, simulation, verification, feedback, and transformations until 
obtaining a deployment model 

Priority  Required 

Actors  Developer, IDE, QA Tester 

Flow events The developer is a technical person capable of developing a data 
intensive application. He is guided through the DICE methodology to 
accelerate development and deployment of the data-intensive 
application with quality iteration. 
A Quality-Assessment expert may also run and examine the output of 
the QA testing tools in addition to the developer 

Pre-conditions  Stereotyped diagram with DICE profile 

Post-conditions  Architecture model, platform-specific model, QA models 

 
A.1.2.1. Description of interactions 
The use case UC1.1 specifies that, from an existing stereotyped UML model, a developer should 
be able to execute certain operations on them. 
To obtain such information, the following steps need to be performed: 
 
● The Architect starts the IDE. 
● The Architect loads a stereotyped UML model. 
● Via the contextual menu, developer will be able to start Verification, Simulation or 

Optimization tool over the model. Also s/he can perform transformations to other models. 
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A.1.2.2. Sequence diagrams 

 
A.1.2.3. Data flows 
As seen in the sequence diagram, the Developer always starts the request. The IDE will execute 
the requested action and delegate to the Tool the work. Finally, the tool will send the result to the 
repository. 

A.2. Simulation tool 
The requirements elicitation of D1.2 only considers a single use case8 that concerns the Simulation 
Tools component, the UC3.1. This use case can be summarized as 2: 

ID UC3.1 

Title  Verification of reliability or performance properties from a 
DPIM/DTSM DICE annotated UML model 

Priority  Required 

Actors  QA Engineer, IDE, Transformation Tools, Simulation Tools 

Pre-conditions  There exists a DPIM/DTSM level UML annotated model 

Post-conditions  The QA Engineer gets information about the predicted metric value in 
the technological environment being studied 

A.2.1  Description of interactions 
The use case UC3.1 specifies that, from an existing DPIM/DTSM level UML annotated model 
(pre-condition), the QA Engineer gets information about the predicted metric value in the 
technological environment being studied (post-condition). 
To obtain such information, the following steps need to be performed: 
                                                
8 UC3.1.1 (Verification of throughput from a DPIM DICE annotated UML model) is a specialization of UC3.1, and as 
such will not be considered in the present document to avoid redundancies 
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● The QA Engineer models a DPIM/DTSM model applying the DICE profile to a UML 
model using the DICE IDE. 

● The QA Engineer starts a new simulation using the DICE-profiled UML models as input. 
● The DICE-profiled UML models are translated within the simulation process to formal 

models, which can be automatically analysed, using M2M and M2T transformations. 
● The simulation process is configured, specifying the kind of analysis to perform and the 

additional input data required to run the analysis. 
● The simulation process is executed, i.e., the formal models are analysed using existing 

open-source evaluation tools (such as GreatSPN and JMT). 
● The result produced by the evaluation tool is processed to generate a tool-independent 

report, conformant to a report model, with the assessment of performance and reliability 
metrics. 

● The tool-independent report is fed into the DICE IDE and it is shown to the user in the 
GUI. 

A.2.2 Sequence diagrams 

 
A.2.3 Data flows 
We have modelled the interactions among the Simulation Tool components as depicted in 
sequence diagram. For the sake of maintainability, the Simulator component has been split up in 
UI and non-UI components, i.e., Simulator-GUI and Simulator respectively. 
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Specifically, the sequence diagram depicted in sequence diagram describes the specific steps to 
simulate a DICE-profiled UML diagram using as an example the GreatSPN tool as the underlying 
evaluation tool, but others may be used. 
As it can be seen in the figure, the modeling step is outside the scope of the Simulation phase, and 
the model to be analysed is supposed to pre-exist and is managed by the DICE IDE. When the 
user wants to simulate a model, s/he invokes the Simulator-GUI, which parses the model and asks 
the user any additional required information. When this information is obtained, the Simulator-
GUI calls the Simulator that will handle the simulation in background. 
The Simulator will then orchestrate the interaction among all the different modules. First, the 
M2M transformation module will create a PNML representation of the DICE-profiled model. 
Second, the PNML file will be transformed to a GreatSPN-specific Petri net description file. 
Third, the Simulator will start the analysis of the Petri net using GreatSPN. Finally, when the 
analysis ends, the raw results produced by GreatSPN will be converted into a formatted results 
file. This formatted results will be then sent to the DICE IDE that will show them to the user in a 
visual form. 

A.3. Optimization 
The requirements elicitation of D1.2 only considers a single use case that concerns the 
Optimization tool component (UC3.3). This use case can be summarized as: 
ID UC3.3 

Title  Optimization of the deployment from a DDSM DICE annotated UML 
model with reliability and performance constraints. 

Priority  Required 

Actors  ARCHITECT 

Pre-conditions  There exists a partially specified DDSM UML annotated model (in 
particular the number and type of storage and compute nodes are 
missing). 

Post-conditions  The ARCHITECT gets a fully specified DDSM model minimizing the 
deployment cost and fulfilling QoS constraints specified in the input 
DTSM model.  

A.3.1 Description of interactions 
The use case UC3.3 specifies that, from an existing DDSM UML annotated model (pre-condition), 
the ARCHITECT gets a fully specified DDSM model minimizing the deployment cost and 
fulfilling QoS constraints specified in the input DDSM model (post-condition). 

In this scenario the ARCHITECT is required to interact with the IDE in order to retrieve the 
deployment model, which is stored and versioned within the Repository component and optimized 
it by means of the Optimization tool. The deployment model is a DDSM DICE annotated UML 
model that may be incomplete, meaning that some quantitative information (namely the number 
and type of VMs to be used at runtime) are missing.  

The user feeds the deployment model as input into the optimization tool along with some other 
relevant inputs that are used to control the behavior of the tool. In particular pieces of information 
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as simulation accuracy, local search number of iteration, and QoS constraints to be applied to the 
deployment can be set by the user in this phase. Once the model, the constraints, and the 
properties are correctly loaded, the tool starts its execution by firstly generating a Mixed Integer 
Non-Linear Problem (MINLP) that is based on approximated formulae to evaluate DIA jobs 
execution time and is meant for a quick identification of a potentially high-quality initial solution. 

A specific MINLP solver running as a service is invoked to solve the internal mathematical model. 
The so-obtained initial solution is afterwards used within the local search based optimization 
process representing the core of the tool. To this end the solution undergoes a set of 
transformations (also known as moves) that are applied iteratively with the aim of progressively 
reducing the deployment cost guaranteeing at the same time the fulfillment of the constraints. The 
deployment models generated during this phase are turned into Petri Nets or Queue networks by 
the Simulation tools, which is in charge of performing suitable model-to-model transformations 
and solve the resulting performance models. The outcome of performance evaluation process is a 
set of performance metrics that are returned to the optimization tool. Such pieces of information 
are used to drive the next steps of the search process towards less and less costly deployments. 
According to the level of parallelism granted by the Simulation tool more than one candidate 
solution can be generated and evaluated in parallel.  

At the end of this scenario the best deployment model obtained (complete DDSM) is presented to 
the user along with its related performance metrics. If, for whatever reason, such an outcome does 
not fit the user’s expectation, s/he will perform the changes s/he deems appropriate and re-execute 
the optimization process from the new deployment. 
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A.3.2 Sequence diagrams 

 
A.3.3 Data flows 
We have modelled the interactions among the Optimization tool component as depicted in Fig. 1. 
The modelling step is outside the scope of the optimization phase, and the model to be analysed is 
supposed to pre-exist and is managed by the DICE IDE. When the user wants to optimize a model, 
s/he invokes the Optimization tool, which loads the model and asks the user any additional 
required information. More in details, the optimization is performed through the following steps: 

1. The model is chosen from the Repository. Repository sends the model to IDE and the IDE 
to the user. 

2. The possibly incomplete DICE DDSM annotated model, the QoS constraints, and 
properties to use for the analysis are sent to the Optimization tool. 

3. A first-approximation mathematical optimization model is generated and sent to a suitable 
MINLP solver. Some performance metrics are returned to the Optimization tool. 
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4. The Simulation tool is initialized and set up. 
5. A certain number of fully defined deployments model are generated and sent to the 

Simulation tool to perform the required analysis. The outcome is a set of performance 
indicator that are returned to the Optimization tool 

The outcome of the Optimization (the cheapest feasible deployment identified) and its related 
metrics are reported to the user. 

A.4. Verification 
A.4.1 Description of interactions 
The user performs verification on the current model loaded in the IDE or selects the model from 
the repository; in the last case, the model is first loaded and then showed in the IDE. 

The verification is performed on annotated DTSM models which already contain all the 
information required to perform the analysis. 

The user selects a (safety/privacy) property to be checked possibly using templates (which are 
compliant with the definition of the class of desired properties for the application, specified in the 
design phase at DPIM level) and the tool for the analysis. 

After the definition of the property of interest, the orchestrator submits the verification request to 
the Verification plugin. The Verification plugin converts DICE UML model and the property to 
be verified into a formal model that is suitable for verification (e.g., a temporal logic model).  

Based on the class of property to verify or on the approach the user applies, the plugin selects the 
appropriate solver which analyzes the formal model against the property and determines whether 
the property holds for the system or not. 

The outcome is sent to orchestrator and then to the IDE which presents the result. It shows 
whether the property is fulfilled or not; and, if the property is violated, the IDE presents the trace 
of the system that violates it. 
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A.4.2 Sequence diagrams 
 

 

A.4.3 Data flows 
1. The model is chosen from the Repository. Repository sends the model to IDE. 

2. The annotated DTSM model, the property and the tool to use for the analysis are sent to 
the Verification plugin. 

3. The outcome of the verification (yes/no) and the trace (if any) is sent to the orchestrator 
component which then reports the results in the IDE. 
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A.5. Monitoring 
ID: UC4.1 Title: Monitoring a Big Data framework (Scenario) 
[Combination of UC 4.1.1 to UC 4.1.3] 

A.5.1 ID: UC 4.1.1. Title: Metrics Specification 
A.5.1.1. Description 
Any user or DICE tool can query the monitoring platform. The query request needs to contain a 
query string similar to the one used in Kibana, a time interval (or time math representation of 
interval). It is also possible to specify the type of output (csv, json, rdf+xml, plain). The dmon-
controller then receives this request and generates the elasticsearch query that is executed and then 
returned in the specified output format. 

 
A.5.1.2. Data Flow 
The request and its payload are sent to the dmon-controller. The data from ElasticSearch is sent to 
dmon-controller where it is further processed (if it is required) and then sent to its final 
destination. 

A.5.2 ID: UC 4.1.2 Title: Monitoring tools registration 
A.5.2.1. Description 
The current deployment specification is sent to the Continuous Integration (CI) tool which then 
sends the platform specific deployment to the Deployment service (DS) which enacts this. The DS 
send a request that contains the FQDN, credentials and roles of each node from the deployment to 
the dmon-controller which in turn deploys in parallel all dmon-agent instances on these nodes. 
Based on the roles assigned to each node the monitoring auxiliary components are installed and 
configured. When everything is done a response is given to the DS which sends that to the CI. 
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A.5.2.2. Data Flow 
Data is represented only by the request payloads (json). 

A.5.3 ID: UC 4.1.3 Title: Monitoring Data storage (Start ES and LS) 
A.5.3.1. Description 
Any user or tool that has access to the dmon-controller Management API can bootstrap additional 
monitoring platform core components. The dmon-shipper controls an instance of logstash server 
while dmon-indexer controls an instance of elasticsearch. It is also possible to start/stop and 
reconfigure each of these components. The only prerequisite is that there exist a registered newly 
provisioned VM. 
This diagram represents both first deployment and possible scaling scenarios. For both scenarios a 
prerequisite is that there exist provisioned VMs on which the services and components can be 
bootstrapped.  
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A.5.3.2. Data Flow 
The only data is the request payloads (json). 

A.5.4 ID: UC 4.2. Title: Data Warehouse Query 
A.5.4.1. Description 
In the DICE solution the data warehouse is represented by the instance (or cluster) of 
ElasticSearch. Because of this querying the data warehouse is done the same way as in UC4.1. It 
is possible to export both the data and the indexes from any ElasticSearch instances. This can be, 
at a later time, imported into the monitoring platform and again queried the same way as before. It 
is even possible to import this data together with its index into a completely separate ElasticSearch 
instance. By removing older unused indexes from the monitoring platform we can limit the 
amount of computational resources needed by it and store potentially valuable data for later use.  



Deliverable 1.3. Architecture definition and integration plan – initial version 
 

Copyright © 2016, DICE consortium – All rights reserved 42 
 

 
A.5.4.2. Data Flow 
The request and its payload are sent to the dmon-controller. The data from elasticsearch is sent to 
dmon-controller where it is further processed (if it is required) and then sent to its final 
destination. 
A.6. Enhancement 

A.6.1  Description of interactions 
 
The user activates the enhancement analysis for model parameter analysis and inputs the 
parameters for the Enhancement tool through IDE. Then the IDE triggers the start of the 
Enhancement tool.  
 
If the user requires to update the model parameters, then according to the parameters set by the 
user the Enhancement tool queries the specific monitoring data, such as CPU utilization, response 
time and throughput, used for the analysis from the monitoring platform.  Statistical analysis is 
performed based on the runtime monitoring measurements and the tool generates the new 
parameters for the model. Finally with the new parameters, the tool updates the model directly and 
return the updated model back to the IDE along with a report generated based on the performance 
of the application.  
 
If the user requires for bottleneck identification for the current design from the IDE, then the 
Enhancement tool analyzes the current UML model and highlights software or hardware 
bottlenecks based on testing results and return the result back to the IDE.  
 
The user may also request to examine quality regressions in two versions of the application. Then 
Enhancement tool analyses quality differences between versions by operating directly on the 
monitoring data and return the result back to the IDE. 
 
 
 

 
A.6.2 Sequence diagrams 
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A.6.3 Data flows 
The major data exchange happens when the enhancement tool updates the models. The tool will 
query  monitoring data from the Monitoring Platform and uses these data to analyse the 
parameters of the performance models. 
 
A.7. Trace checking 
 

A.7.1  Description of interactions 
The user activates trace checking on the current model loaded in the IDE or selects the model from 
the repository; in the last case, the model is first loaded and then showed in the IDE. 

The user selects a non-functional property (metric) to be checked from a list (compliant with the 
model/properties that are supported in the framework), a time window, and a log from the 
Monitoring platform to be checked over the specified time window. 
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The orchestrator submits the trace-checking request to the Trace-checking plugin. The trace-
checking plugin then activates a trace-checking job on the selected trace. 

The outcome is sent to orchestrator and then to the IDE which presents the result. It shows the 
values of the non-functional properties that are extracted from the trace compared with the values 
of the same properties defined at design time. 

A.7.2 Sequence diagrams 
 

 

A.7.3 Data flows 
1. The model is chosen from the Repository. Repository sends the model to IDE. 

2. The list of the logs is retrieved in the Monitoring platform; it sends the list to the IDE.  

3. The non-functional property chosen by the user (based on the DPIM annotation) is sent to 
the Trace-checking plugin along with the time-window. 

4. The outcome of the trace-checking is sent by the Trace-checking plugin to the orchestrator 
component which then reports the results in the IDE. 

Next scenario 



Deliverable 1.3. Architecture definition and integration plan – initial version 
 

Copyright © 2016, DICE consortium – All rights reserved 45 
 

If the non-functional properties have specific relation (order) with respect to the values established 
at design time then the tool reports the properties, defined at DPIM level that might be violated. 

A.8. Anomaly detection 
A.8.1 ID: UC 4.5 Title: Anomaly Detection Model Training 
A.8.1.1. Description 
In order to create viable predictive models that are able to detect not only point anomalies but also 
contextual anomalies we need a robust training methodology. In the case of DICE a user will have 
to select a subset of features that are stored in the Monitoring Platform. This is then used to query 
the controller and a dataset is created. The resulting data is then used to train and subsequently 
validate a predictive model. If the trained model has a good performance it is stored, if not then it 
is discarded. The type of anomaly detection algorithm is not yet defined. It is scheduled for the 
second year of the project. 

 
A.8.1.2. Data Flow: 
Data is consumed from the DICE Monitoring platform. 

A.8.2 ID: UC 4.6. Title: Offline Anomaly Detection 
A.8.2.1. Description 
Any tool or user can issue a request to the anomaly detection tool. This request has to define a set 
of features and timeframe on which the anomaly detection will take place. If anomaly detection 
tool (ADT) model training has been done/initialized for this subset of features the service will 
check the given timeframe for anomalies. This requires the querying of the monitoring solution 
and fetching the pre-trained predictive model. The best performing predictive model is then 
fetched and instantiated. If a better performing model for the given dataset is detected than the one 
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already instantiated the new model will be loaded. This check happens before a new batch of data 
is loaded. 

 
A.8.2.2. Data Flow 
Data is consumed from the DICE Monitoring platform. This is true both for the required metrics 
as well as the trained predictive models. 
A.9. Delivery tool 

A.9.1 Description of interactions 
The Continuous integration sequence starts with the programmer’s code and models, and results in 
a deployed platform services and the application in the test bed, quality (non-functional) tests run, 
and a result of the non-functional tests available in the Continuous Integration component of the 
DICE Delivery Tool. The part 1 of the use case describes the feature up to the point of the 
application deployed and configured in the test bed. 

The actors (normally programmers) use the IDE to model the application at the DPIM and DDSM 
level. They also edit the application code. At some point during their development (but normally 
at least once a day) they decide that the application is ready to be deployed and, possibly, tested in 
the test bed. They verify that the code compiles and checks in their IDE. The next step for them is 
to commit the model of the application in the Repository. Also, they commit their code changes in 
the Repository. 

The Continuous Integration part of the Delivery Tool receives a notification about the Repository 
update (conversely, it polls the status of the Repository periodically until it learns of a change) of 
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the project. It then fetches the updates from the Repository - both the code and the model. Then it 
performs the compilation and assembly of any user-written code. 

Finally, the Delivery Tools initiate the deployment and configuration phase. In the current 
implementation, it first destroys any existing deployment of the application along with all the 
platform services needed for the application. This effectively cleans up the environment and frees 
the resources. Then it proceeds by first creating the environment in the test bed, provisioning any 
virtual resources (computation, storage, and networking) required according to the application 
model. Then it configures the services and the application, and finally it runs the services and 
application components. This last step also includes the step of registering the nodes running 
services to the Monitoring in order for the application components to initiate the streams of 
runtime metrics. 

A.9.2 Sequence diagrams 

 

A.9.3 Data flows 
 
In this scenario, the user produces the application code. We assume that the IDE tools also trigger 
the model-to-text transformation, which produces an OASIS TOSCA document in YAML format. 
This document contains a blueprint, describing the application to be deployed as well as the 
configuration for each service in the blueprint. 
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The Delivery Tool consumes the TOSCA document and, based on the blueprint description, 
deploys and configures the application in the test bed. 
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A.9.4 Continuous integration 
 
A.9.4.1. Description of interactions 
This sequence diagram emphasizes the continuous nature of the integration, which includes 
getting a feedback using the quality testing tools to assess the validity of the current build of the 
application. 
The previous sequence diagram shows in further details what this sequence diagram shows at a 
more abstract level. The developer, who edits the current build as the code and models, requests of 
the IDE to commit the build. IDE pushes the build to the Repository, which, in turn, notifies the 
Delivery Tool about the update. The Delivery Tool fetches the build’s commit contents, compiles 
them and, if all goes well, deploys the blueprint from the built into the testbed. The result of this 
interaction is an application, representing the current build, which runs in the test bed. Like in the 
previous sequence diagram, the deployment action replaces the deploys of any previous builds and 
their supporting platform services in the testbed. 
Then the Delivery Tool invokes the Quality Testing tool, which exposes the application to a test 
workload. With the help of the Monitoring Tools (omitted from the diagram for clarity), it 
produces the quality metrics describing the build’s non-functional properties. 
The whole process repeats for each new build, which represents a part of the application’s version. 
The Delivery Tool stores the history of this information. The developer can then at any time 
request of the Delivery Tool to show the Quality Test results history, and as a result should obtain 
a chart (or some other time series representation) showing the build performance through time. 

A.9.4.2. Sequence diagram 
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A.9.4.3. Data flows 
 

The first part of this scenario’s data flows repeat the ones described in the previous scenario:  the 
user must first produce the application code and have an OASIS TOSCA YAML document 
blueprint built. The Delivery Tool consumes the TOSCA document and, based on the blueprint 
description, deploys and configures the application in the test bed. 
The Delivery Tools are configured to run quality tests to a certain extent (frequent short tests, 
occasional longer tests). They run the tests, passing any configuration needed to the Quality 
Testing tool. The outcome of the tests are a scalar or an array of scalars to be stored in the 
Delivery Tool’s database. 
The developers then request the history of a project or an application, possibly specifying the time 
range of the query and the type of metric to inspect. As a response they receive a graphical or 
tabular representation of the metric history. 

A.9.5 Obtaining configuration recommendation 
A.9.5.1. Description of interactions 
The configuration recommendation is a result of a sophisticated process, which is carried out by 
the Configuration Optimization tool. This sequence illustrates how an actor (typically a developer) 
puts the process in motion. 
As with the previous workflows, the developer first works on the code and the model of the 
application, and at some point commits both to the Repository. Considering that the configuration 
optimization is still a relatively lengthy non-interactive process, which also needs to use the 
resources of the testbed, we preferably move it away from the IDE. Therefore, the developer needs 
to schedule the configuration optimization, and this is possible through Delivery Tools.  
The Delivery Tools invoke the Configuration Optimization tool, which in turn needs to first obtain 
the TOSCA application topology from the Repository as a part of the build’s commit. It then starts 
its iteration towards an optimal optimization. 
When finished, it posts the result back at the Repository. 
This approach of the scenario is a slightly different take from the one described in Section 
[Configuration Optimization]. Here we emphasize the use of the Configuration Optimization tool 
in an asynchronous (background processing) approach, where the user can set the optimization to 
run and then forget it until it finishes. 
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A.9.5.2. Sequence diagram 

 
A.9.5.3. Data flows 
The main data item to flow through this scenario consists of the configuration, i.e., the specific 
values of various services’ and application parameters. They start with the Developer, who either 
sets some initial values from defaults, manual guesses or any previous runs of the Configuration 
Optimization. The configuration gets stored in the Repository with the current build’s version. 
The Configuration Optimization updates the configuration values as it iterates through its 
algorithm, and the last set values are said to be optimal. 
The recommended (optimal) configuration is then available in the Repository for the developers to 
use with the subsequent deploys and further application development. 
A.10. Quality testing 
The requirements elicitation of D1.2 considers the following scenarios (U5.10, U5.11) that 
concerns the quality testing component. 
 

ID: U5.10 

Title: Performing the quality testing 

Task: T5.3 
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Priority: REQUIRED 

Actor 1: QTESTING_TOOLS 

Actor 2: MONITORING_TOOLS 

Actor 3: TESTBED 

Actor 4: N/A 

Flow of Events: 1. QTESTING_TOOLS starts injecting load in the 
APPLICATION after signalling to 
MONITORING_TOOLS the start of a test 
2. The test plan is executed taking into consideration the 
dimensions to be explored (e.g. performance, reliability, 
etc.) 
3. If requested, QTESTING_TOOLS may access 
TESTBED APIs to perform the test 

Pre-conditions: 1. A quality test has been requested in some scenario 
2. Test resources have been provisioned 

Post-conditions: 1. Test data has been collected by 
MONITORING_TOOLS 

Exceptions: N/A 

Data Exchanges: N/A 

   
 

A.10.1  Description of interactions 

1-    The tester defines a test plan using the interface provided by the IDE. A test plan consists of a 
test scenario comprising of a workload over time and the data source that needs to generate the 
real load. 

2-    The tester then initiates the test using the IDE. 

3-    The load will be injected using appropriate injection driver including the Fault Injection Tool 
for different technologies involved in the system under test. 

4-    When the test plan has been finished, the quality testing tool will inform the user about the 
outcome of the test generation. 

A.10.2 Sequence diagrams 
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A.10.3 Data flows 
The main data entity in quality testing tool is the test plan which needs to be in a user readable 
XML like format and compatible with other similar tool such as JMeter. The test plan should 
define the notion of time unit and the level of the load that will be injected during time periods. 
A.11. Fault injection 

A.11.1 ID R5.14.2 
ID R5.14.2 

Title  Trigger deliberate outages and problems to assess the application’s behavior under faults 

Priority  Required 

Actors  User, VM 

 

A.11.1.1.  Description of interactions 
 

• The User starts the Fault Injection tool. 

• Using command line options they pass fault and required details. 

• Fault Injection Tool Connects to VM and begins Fault. 

• Fault information and status is pass to Fault Injection tool which stores this within a log 
file. 

A.11.1.2. Sequence diagrams 
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A.11.1.3. Data flows 
As seen in the sequence diagram, the user begins the request to the Fault Injection tool. The Fault 
Injection tool then connects to the VM and stores the output of the Fault in a log file for user 
access. 
 

A.11.2 ID R5.30 
 

ID R5.30 

Title  Induced faults in the guest environment 

Priority  Required 

Actors  Cloud Admin, Fault Injection Tool, Cloud Platform 
 

A.11.2.1. Description of interactions 
● The Cloud Admin starts the Fault Injection tool. 
● Using command line options they pass the required Cloud Level fault and required 

authentication details. 
● Fault Injection Tool Connects to Cloud Platform and authenticates to begin the fault.  
● The Fault is then started on the required physical node. 
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● Fault information and status is pass to Fault Injection tool which stores this within a log 
file. 

 

A.11.2.2. Sequence diagrams 

 
A.11.2.3. Data flows 
As seen in the sequence diagram, the Cloud Admin starts the request. The Fault Injection tool will 
execute the requested action, and before returning the result to the Cloud Admin via storing the 
details within an accessible Log file. 

A.12. Configuration optimization 
The requirements elicitation of D1.2 considers U5.5 as the main scenario that 
concerns the Configuration Optimization component. 
 
ID: U5.5 

Title: Obtaining configuration recommendation 

Task: T5.1 

Priority: REQUIRED 

Actor 1: DEVELOPER 

Actor 2: DEPLOYMENT_TOOLS 
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Actor 3: N/A 

Actor 4: N/A 

Flow of 
Events: 

1. DEVELOPER provides the model, fixed parameters and free parameters as 
an input to DEPLOYMENT_TOOLS 
2. DEPLOYMENT_TOOLS provide recommended values for the free 
parameters, optionally quantified with the quality criteria (reliability, efficiency, 
safety) 
3. DEVELOPER selects from the recommended values to fix all of the 
parameters 

Pre-
conditions: 

1. Model of the application (WP2) 
2. Free/fixed parameters in the model (WP2) 
3. Output of OPTIMIZATION_TOOLS proposing additional fixed parameters 
(WP3) 

Post-
conditions: 

1. Deployment configuration with parameters set to optimal and recommended 
values 

Exceptions: OPTIMIZATION_TOOLS and DEPLOYMENT_TOOLS help assign a 
complimentary set of parameter values (e.g., number of Hadoop mappers and 
reducers) 

Data 
Exchanges: 

 

 

A.12.1 Description of interactions 
 

1- The tester provides a list of configuration parameters and potential (exhaustive) set of 
configuration options for each parameter. The tester also provides the maximum number of 
experiments for which she has the budget for. 

2- The tester then starts the tool via IDE. 

3- The tool then starts the test by retrieving the configuration template from model repository 
4- Prepares the testing scripts and the testbed and load the historical data from data 
repository. 
5- The configuration optimization tool also performs the initial experiments by doing a small 
DoE design to provide some initial data for initial model fitting. 
6- The tool then sequentially performs the experiments and after the budget is finished it 
gives the optimum configuration as well as the internal machine learning model for performance 
predictions in use cases for example, A/B testing or other scenarios as mentioned above. For 
doing so it performs the following steps: 
a. The configuration optimization tool deploys the configuration by specific parameter 
settings by using the DS tool. 
b. The tool builds and runs the topology on the testbed. 
c.  The tool queries the monitoring and augments the experimental data to the data 
repository. 
d. The tool performs the model refitting on the updated historical data and reason where to 
test next using the model prediction of the good locations (good location means low estimates of 
latency or high estimates of throughput using the internal machine learning model). 
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A.12.1 Data flows 

As it is shown in the sequence diagram, two major entities are involved in quality testing tool: (i) 
the configuration file, (ii) the performance data. The configuration template is retrieved by the tool 
through model repository in a YAML file. The appropriate configuration is then set in the template 
by appropriate values. In order to perform model fitting, tool requires to retrieve the performance 
data and augment new points in the repository. These performance data serve as the main 
ingredient for reasoning where to test next in the tool. Also further internal entities are used in the 
model for storing the historical configurations and also storing the machine learning model and its 
estimates. 
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