

Developing Data-Intensive Cloud
Applications with Iterative Quality

Enhancements

Architecture definition and integration
plan - Initial version
Deliverable 1.3

Ref. Ares(2016)528976 - 01/02/2016

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 2

Deliverable: D1.3
Title: Architecture definition and integration plan – Initial version

Editor(s): Ilias Spais (ATC)
Contributor(s): Giuliano Casale (IMP), Tatiana Ustinova (IMP), Pooyan Jamshidi (IMP),

Marc Gil (PRO), Christophe Joubert (PRO), Alberto Romeu (PRO), José
Merseguer (ZAR), Raquel Trillo (ZAR), Matteo Giovanni Rossi (PMI),
Elisabetta Di Nitto (PMI), Damian Andrew Tamburri (PMI), Danilo
Ardagna (PMI), José Vilar (ZAR), Simona Bernardi (ZAR), Matej Artač
(XLAB), Madalina Erascu (IEAT), Daniel Pop (IEAT), Gabriel Iuhasz
(IEAT), Youssef Ridene (NETF), Josuah Aron (NETF), Craig Sheridan
(FLEXI), Darren Whigham (FLEXI)

Reviewers: Youssef Ridene (NETF), Michele Ciavotta (PMI)
Type (R/P/DEC): Report

Version: 1.0
Date: 31-Jan-2016

Status: Final version
Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/
Copyright: Copyright © 2016, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre
FLEXI: Flexiant Limited

IEAT: Institutul E Austria Timisoara
IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA
PMI: Politecnico di Milano
PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.
ZAR: Unversidad De Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 644869

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 3

Executive summary

There is a need to define an architecture that will describe the DICE platform and how its tools
and components will be integrated. Determining the architectural solution through which the
DICE framework will be developed is a problem that must be addressed systematically.
We describe the decision making process that we followed to conclude to the appropriate DICE
architecture. We present the architecture styles that we have examined, the trade-off analysis that
we have performed and the justification of our decision against the goals and premises of DICE.
We also provide an overview of the DICE tools and outline how they are positioned in the DICE
methodology. Their interactions are described and sequence diagrams and data flows are also
provided.
With the adoption of the plugin architectural style (offered by Eclipse1), the DICE IDE (Integrated
Development Environment, described in D1.2. “Requirements Specification”) provides a
methodological workflow, specifying business and technical actors, processes and unit steps
needed for designing a data-intensive application. The DICE methodology can be followed
through the IDE and allows the user to cover both the design and the pre-production phase of a
data-intensive applications.

1 http://www.eclipse.org/

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 4

Table of contents

EXECUTIVE SUMMARY .. 3
TABLE OF CONTENTS ... 4
LIST OF FIGURES .. 7
LIST OF TABLES .. 7
1. OVERVIEW ... 8

1.1. Requirements ... 9
1.1.1. Architectural overview .. 12
1.1.2. Development tools ... 12
1.2. Runtime tools .. 13
1.3. WP-level architecture .. 14

2. DICE TOOLS ... 15
2.1. Overview of DICE tools .. 15
2.2. Positioning tools in the methodology .. 17

3. ARCHITECTURE AND INTEGRATION ... 19
3.1. Architectural Tradeoff Analysis and Integration Patterns ... 19
3.1.1. Plugin Architectural Style ... 19
3.1.2. Implementation Consequences for a Plugin Styled DICE Solution 20
3.1.3. Microservices Architecture Style .. 20
3.1.4. Implementation Consequences for a Microservice Styled DICE Solution 20
3.2. Architectural Tradeoff Analysis and Architecture Decisions for DICE 21
3.3. Shared Models ... 25
3.4. DICE architecture .. 25
3.5. Integration plan ... 27

APPENDIX A. ... 29
A.1. IDE .. 29
A.1.1 Stereotyping a UML diagram with the DICE profile to obtain a Platform-Independent
Model (PIM) ... 29
A.1.1.1. Description of interactions ... 29
A.1.1.2. Sequence diagrams ... 30
A.1.1.3. Data flows .. 30
A.1.2 Analysis, simulation, verification, feedback, and transformations until obtaining a
deployment model .. 31
A.1.2.1. Description of interactions ... 31
A.1.2.2. Sequence diagrams ... 32
A.1.2.3. Data flows .. 32
A.2. Simulation tool .. 32
A.2.1 Description of interactions ... 32
A.2.2 Sequence diagrams .. 33
A.2.3 Data flows .. 33
A.3. Optimization .. 34

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 5

A.3.1 Description of interactions ... 34
A.3.2 Sequence diagrams .. 36
A.3.3 Data flows .. 36
A.4. Verification .. 37
A.4.1 Description of interactions ... 37
A.4.2 Sequence diagrams .. 38
A.4.3 Data flows .. 38
A.5. Monitoring ... 39
A.5.1 ID: UC 4.1.1. Title: Metrics Specification .. 39
A.5.1.1. Description ... 39
A.5.1.2. Data Flow ... 39
A.5.2 ID: UC 4.1.2 Title: Monitoring tools registration ... 39
A.5.2.1. Description ... 39
A.5.2.2. Data Flow ... 40
A.5.3 ID: UC 4.1.3 Title: Monitoring Data storage (Start ES and LS) 40
A.5.3.1. Description ... 40
A.5.3.2. Data Flow ... 41
A.5.4 ID: UC 4.2. Title: Data Warehouse Query .. 41
A.5.4.1. Description ... 41
A.5.4.2. Data Flow ... 42
A.6. Enhancement ... 42
A.6.1 Description of interactions ... 42
A.6.2 Sequence diagrams .. 42
A.6.3 Data flows .. 43
A.7. Trace checking .. 43
A.7.1 Description of interactions ... 43
A.7.2 Sequence diagrams .. 44
A.7.3 Data flows .. 44
A.8. Anomaly detection .. 45
A.8.1 ID: UC 4.5 Title: Anomaly Detection Model Training ... 45
A.8.1.1. Description ... 45
A.8.1.2. Data Flow: .. 45
A.8.2 ID: UC 4.6. Title: Offline Anomaly Detection .. 45
A.8.2.1. Description ... 45
A.8.2.2. Data Flow ... 46
A.9. Delivery tool .. 46
A.9.1 Description of interactions ... 46
A.9.2 Sequence diagrams .. 47
A.9.3 Data flows .. 47
A.9.4 Continuous integration .. 49
A.9.4.1. Description of interactions ... 49
A.9.4.2. Sequence diagram .. 49
A.9.4.3. Data flows .. 50
A.9.5 Obtaining configuration recommendation ... 50

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 6

A.9.5.1. Description of interactions ... 50
A.9.5.2. Sequence diagram .. 51
A.9.5.3. Data flows .. 51
A.10. Quality testing .. 51
A.10.1 Description of interactions ... 52
A.10.2 Sequence diagrams ... 52
A.10.3 Data flows .. 53
A.11. Fault injection .. 53
A.11.1 ID R5.14.2 .. 53
A.11.1.1. Description of interactions ... 53
A.11.1.2. Sequence diagrams ... 53
A.11.1.3. Data flows .. 54
A.11.2 ID R5.30 ... 54
A.11.2.1. Description of interactions ... 54
A.11.2.2. Sequence diagrams ... 55
A.11.2.3. Data flows .. 55
A.12. Configuration optimization .. 55
A.12.1 Description of interactions ... 56
A.12.1 Data flows .. 57

REFERENCES .. 58

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 7

List of figures

Figure 1. DICE architecture. .. 8
Figure 2. DICE Methodology .. 18
Figure 5. DICE Quality Attribute Tree: General Form .. 22
Figure 6. DICE Quality Attribute Tree: MicroServices ... 23
Figure 7. DICE Quality Attribute Tree: Plugin Style .. 24

List of tables

Table 1: DICE tools and work packages .. 14
Table 2: DICE tools. .. 15
Table 3: DICE integration plan. ... 27

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 8

1. Overview
After performing a systematic analysis, we have concluded that DICE Technological Tool-Chain
should be implemented following a plugin architectural style. We have conducted an architectural
trade-offs and integration pattern analysis and presented it in detail in what follows. A summary
view of the project architecture is shown in Figure 1:

Figure 1. DICE architecture.

For the compilation of this report, we initially did a thorough pass over the DICE project
requirements in order to provide a summary of the business and technical requirements as well as
the DevOps practices and technologies used. In sequence, we define an architecture overview of
the DICE platform and after that we identify DICE integration patterns, focusing on the Eclipse
plugin architecture.
An architectural trade-off analysis is presented in the DICE Architecture and Integration section
(Section 3). We compare the MicroServices architectural approach [10] versus the plugin
architectural style. They are being evaluated with the use of the Architecture Trade-off Analysis
Method (ATAM). A description of the DICE tools in relation to the DICE architecture is given in
the following section (Section 2. We give a short summary of each tool operation. Finally, the
Appendix contains each DICE tools description of interactions, sequence diagrams and data flows.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 9

1.1. Requirements
This section presents an overview of the DICE project requirements. We provide a summary of
the business and technical requirements as well as DevOps practices and technologies used.

In general, the DICE project aims at delivering a methodology and a tool chain to help
independent software vendors to develop data-intensive applications. From a business
requirements perspective, the necessary functional requirements are: to develop a UML profile, a
consistent methodology, and the underpinning model-to-model transformations to support model
driven engineering approaches (MDE) for Big Data applications. Furthermore, DICE aims at
translating such high-level design models into a concrete TOSCA-compliant deployment plan and
execute it by means of a model-driven deployment and configuration tool chain.

We can identify several non-functional business requirements. The UML designs will include
annotations with performance, reliability, privacy as well as other specific data-intensive
applications (DIA) requirements. Then, tools will be developed to predict the fulfilment of these
requirements before and during application development. Security and privacy requirements
should be modelled for well-known cloud providers (considering data management policy and
encryption among other things) to support the provider selection process. Another non-functional
requirement that should be met is scalability (horizontal and vertical). The system should
manage the complexity of large software and data-intensive systems. It should be as much as
possible linearly scalable to deal with a variable workloads. Auto scaling should be also
supported.

DICE envisions the co-existence of multiple simulation, verification, and testing tools that can
guide the developer through the quality assessment of early prototypes of the Big Data
application. The testability requirement implies that the best architecture alternatives according to
the workload managed should be identified. For example, deploy and run the application on an
isolated simulation environment with historical data to verify that quality tests pass. Analysis of
the application architecture using various data sources and computational logic is another
example. Testing and load stressing scenarios should be easily configurable.

The quality requirement of the project is satisfied in several modules. Quality metrics (response
time, throughput etc.) will be automatically extracted to be improved on following versions. The
user monitors the performance of the system and evaluates the impact of the data rate in order to
re-configure auto scaling policy and desired performance rates. Design anti-patterns and root-
causes of quality anomalies will also be detected. Specifying SLA requirements can be mentioned
as a related example of non-functional properties.

Fault tolerance is another non-functional requirement that is achieved. It is met in operational
system monitoring (e.g. data and logs to detect candidate anomalies), measuring (e.g. provide the
input/output operations per second (IOPS)) and management (user reports generation) operations.
The simulation tool provides insights on hardware deployment requirements (e.g. how much
RAM, CPU, etc. will be required to get a certain performance level). The documentation
requirement is met by the methodology blueprint requirement (graphical representation within the
main tooling suite that can be used as a tutorial for the end user).

Regarding the technical requirements, in the context of WP1, most of them relate to the task of
developing the DICE IDE as front-end to the DICE tool-chain and releasing the integrated
framework. In particular, they are the support of stereotyping of UML diagrams with DICE
profile, the creation of a dashboard tool that will guide the user through the workflow with code
generation capabilities, the invocation of continuous integration tools through the IDE, the launch

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 10

of annotated UML models (that can trigger simulation and verification tools), the load of
verification properties and the graphical representation of the verification tools output, the
visualization of the analysis outcomes to the user and finally the loading of safety and privacy
properties from the model of the application with the anomaly trace tool.

In the context of WP2, the technical requirements are related to developing systematic methods for
the design as well as representational support models to aid the Model-Driven Engineering of
DIAs. DICE follows a paradigm inspired to the Model-Driven Architecture of UML, see
deliverable D1.2, section D.2 for a review and introduction to core definitions such as DPIM,
DTSM, and DDSM. Users require from the DICE profile to support the incremental specification
of Data-Intensive Applications following a Model-Driven Engineering approach, to stem every
abstraction layer from UML, to allow definition of values of constraints (e.g. maximum cost for
the DIA), properties (e.g. outgoing flow from a Storage Node) and stereotype attributes (batch and
speed DIA elements) using the UML Profile MARTE (Modeling and Analysis for Real-Time and
Embedded Systems; see D1.1) VSL (Value Specification Modeling) standard, to define structural
and behavioral constraints typical in targeted technologies (e.g. Apache Hadoop, Apache Storm,
Apache Spark, etc.) and to use packages to separately tackle the description of targeted
technologies in the respective profile abstraction layers (e.g. DTSM and DDSM). Furthermore, the
DPIM must be generic enough so as not to require any specialization, e.g., for domain-specific
DIAs, the DTSM layer must support the definition of technology-specific DIA topologies, the
DTSM must include extension facilities, the DDSM layer must support the definition of an
Actionable deployment view (TOSCA-ready) and the DICE IDE must support the development of
DIA exploiting the DICE profile and following the DICE methodology. Finally, the DICE profile
and its design shall work under the assumption that their focus of application is limited to
providing facilities and methodological approaches to support those properties that are relevant to
perform analysis (e.g. for fine-tuning, load-estimation, etc.), testing (e.g. for run-time verification
and adaptation towards continuous integration), monitoring (e.g. for flexible continuous
improvement, etc.).

In the context of WP3, the technical requirements are related to assessing quality requirements and
at offering an optimized deployment configuration for the application under development. For
accomplishing its objectives, WP3 will develop transformation tools, simulation tools, verification
tools and optimization tools. They require that the transformation tools perform a model-to-model
transformation taking the input from a DPIM or DTSM DICE annotated UML model and
returning a formal model (e.g. Petri net model or a temporal logic model), that they take into
account the relevant annotations in the DICE profile (properties, constraints and metrics) and
transform them into the corresponding artifact in the formal model. The verification tools require
that they are able from the UML DICE to model a system, to show possible execution traces of the
system with its corresponding time stamps. Regarding the optimization tools, their objective is the
minimization of deployment costs fulfilling at the same time reliability and performance
constraints (e.g., map-reduce jobs execution deadlines). They should also explore the design space
and accept the specification of a timeout and return results when this timeout is expired. The
transformation tools and simulation tools should have no difference between white box and black
box model elements. All tools should permit the user to check their outputs against SLAs included
in the UML model annotations.

In the context of WP4, the technical requirements are related to tools and techniques to support the
iterative improvement of quality characteristics in data-intensive applications through feedback.
This WP will design and implement the monitoring platform that will collect and store traces and
logs produced during the execution of data-intensive applications. It will create monitoring tools,
anomaly trace tools and enhancement tools. They require from the monitoring tools to perform

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 11

monitoring data pre-processing (extraction) before storing the data in the data warehouse in order
to facilitate usage by other tasks, to support interactive visualization of monitoring data and to
provide the data warehouse the ability to prevent unauthorized access to the monitoring data. Once
correlation between anomalies in runtime and anti-patterns has been detected, the enhancement
tools should propose methods for refactoring the design. The tools should also be able to compare
two versions of the application to identify relevant changes and extract or infer the input
parameters needed by the simulation tools and optimization tools to perform the quality analyses.
Monitoring data must support the reconstruction of a sequence of events and the identification of
the time when things occurred (for example a consistent timestamp in a distributed system). The
monitoring tools and enhancement tools should capture the growth in the data size for the
application. The enhancement tools must be capable of automatically updating UML models with
analysis results. The anomaly trace tools must allow the developer to choose and load the safety
and privacy properties from the model of the application described through the DICE profile and
to be able to check, given a trace of the events of interest of the application, whether that trace is
compatible with the desired safety and privacy properties. Finally, there must be a way to link the
information that is stored in the data warehouse with the features and concepts of the DICE UML
models (operations, attributes, objects, etc.).

In the context of WP5, the technical requirements are related to developing tools which help put
the DICE tools users' application to the actual environment and evaluate its runtime. The DICE
technical team will develop continuous integration and deployment tools executing TOSCA,
testing tools and a testbed environment (Flexiant Cloud Orchestrator). WP5 technical
requirements are that the continuous integration tools must record the results of each test, mapping
them to the version number and offer a dashboard to consolidate the view of the application
deployment to restricted users. The quality testing tools must test the application for efficiency
and reliability, safety and provide independent test results. The deployment tools must be able to
run automatically and autonomically, to deploy and install any application and the related
monitoring tools from a valid topology of the supported DICE building blocks, to be extendible
and support multiple IaaS and to support selected PaaS.

Technologies and tools

Regarding the tools used, Papyrus [1] is chosen as UML modeler. ECore EAnnotation [2] will be
used to annotate papyrus UML models in order to extend metamodel properties. Based on their
experience with MOSKitt CASE tool [3], PRO proposes to create an IDE based on the last Eclipse
Framework version.. Jenkins [4] will be invoked through a provided Eclipse plugin to allow
continuous integration. Eclipse plugins and wizards will be created for the custom tools
developed. Eclipse Modelling Facilities (EMF) [5] will provide basic meta-model consistency
validation techniques. The monitoring platform will use Elastic Search [6], Logstash and Kibana
[7] on Flexiant Cloud Orchestrator.

DevOps practices

A fundamental assumption of the DICE project is that the models co-existing in our MDA
methodology (UML & TOSCA models) will act as a vehicular language to integrate different
tools across the DICE tool chain. It will also allow different actors to see a complex Big Data
systems at different level of abstractions, such as abstract level, architecture level, and deployment
level. Therefore, the DICE approach is going to be fully compliant with the Model-Driven
philosophy, and should be deemed as a possible extension of MDA to the realm of Big Data.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 12

Following the OMG guidelines, the DICE profile and methodology supports the incremental
specification of DIAs following a Model-Driven Architecture approach. It mimics the standard
assumptions behind Model-Driven Engineering, including the separation of concerns across three
disjoint but related layers (Platform-Independent and Platform-Specific). Separation of concerns is
one of the basic principles behind model-driven engineering and related technologies. The DICE
Profile must use packages to separately tackle the description of targeted technologies in the
respective profile abstraction layers (e.g. DTSM and DDSM).

Several notations are being considered in the scope of DICE (e.g. MDA, MDE, MARTE,
SecureML). These notations already provide diagramming facilities that may be assumed as
directly related to the needs and requirements of the DICE profile. For example, following the
MDA paradigm, ModaCloudML2 offers modeling facilities to reason on cloud-based applications
from multiple, functionally-complete perspectives. An example of following DevOps practices
[12] is the interactive design component that will be offered to allow the graphical representation
of the workflow. The DICE IDE will guide the developer through the DICE methodology. This
interactive component will promote communication and collaboration between development, QA
and IT operations, as DevOps assumes.
The MDE approach underpins the necessity to bridge the gap from Dev and Ops by proposing to
use UML models as a way to share a global view of the system. Such global view of the system is
a key element of the DevOps vision. DICE therefore wants to emphasize the convergence of MDE
and DevOps as a way to achieve an integrated, harmonized system view and orchestration
between Dev and Ops.

1.1.1. Architectural overview
The DICE architecture offers a comprehensive set of tools that cover both the design and the pre-
production phase of a data-intensive application development. A diagram summarizing the overall
DICE architecture is given in Figure 1. The different colors distinguish the two main components
of the architecture:

• Development tools, which are primarily centered on the development stage of the data-
intensive application. The IDE implements the DICE quality-driven methodology that
guides the developer through the different stage of refinement of design models up to
implementing the initial prototypes of its application. The IDE supports multiple quality
analyses offered by the verification, simulation and optimization tools.

• Runtime tools, which collect data during the application quality testing to characterize the
efficiency, reliability and correctness of the components. This data is consolidated in the
DICE monitoring platform and used to semi-automatically detect anomalies, optimize the
system configuration, and enhance the design.

The purpose of the tools within each group of tools is explained in details in the following
sections.

1.1.2. Development tools
The central element of the DICE architecture is the Integrated Development Environment
(IDE), where the developer specifies the data-intensive application using a model-driven
engineering approach. To support this activity, the DICE Eclipse-based IDE embeds the DICE
UML profile which provides the stereotypes and tags needed for the specification of data-
intensive applications in UML.

2 http://www.modaclouds.eu/wp-
content/uploads/2012/09/MODAClouds_D4.2.1_MODACloudMLDevelopmentInitialVersion.pdf

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 13

Following an MDE approach, models are defined by the user in a top-down fashion, stemming
from platform-independent specifications of components and architecture (DPIM UML models),
through assignment of specific technologies to implement such specifications (DTSM UML
models), and finally to the mapping of the application components into a concrete TOSCA-
compliant deployment specification (DDSM UML models). Such models can be related by DICE
model-to-model transformations that are automatically executed within the IDE, to reduce the
amount of manual work required from the user. For example, initial DTSM and DDSM models
can be generated from the DPIM models.

Throughout the application design, the DICE IDE offers the possibility to automatically translate
certain DICE models into formal models for assessment of quality properties (efficiency, costs,
safety/correctness, etc.). Each analysis requires to run dedicated tools that reside outside the IDE
environment, in order to obtain prediction metrics. The simulation, optimization and verification
plugins take care of translating models in-between IDE and these external tools. They also collect
via REST APIs the outputs of these tools that are shown to the user inside the IDE. The interface
of these plugins assumes the user to be unskilled in the usage of the formal models. Furthermore,
the quality properties are defined in terms of constraints using appropriate language constructs.

As the developer progressively refines the application model and the application code, s/he is
going to periodically commit them to a repository, i.e., a version control system (vcs). In DICE
we will ensure that every commit increases the version number of the application, which is a
unique identifier used across tools to keep synchronized models and code. The repository acts as a
shared source of models and code across different versions for all the DICE tools that need to
access them. The repository will reside externally to the IDE and will be accessed through
appropriate tools (e.g. SVN, GIT, etc.).

1.2. Runtime tools
After the initial prototyping of the application, the developer will request to deploy the current
prototype. After an automatic commit of all models and code to the external repository, the
continuous deployment tool will retrieve a copy of both of them from the repository, build the
application, and internally store the outputs and their associated artifacts. The delivery tool will
then initialize the deployment environment (if not already created), consisting of VMs and
software stack, and deploy (or update the existing deployment of) the application. The delivery
operation also connects the DICE monitoring platform to the deployed application. The
monitoring platform will be started and stopped by REST APIs and will acquire a pre-defined set
of metrics that will be continuously stored in a performance data repository.

The anomaly detection and trace checking tools will also feature an IDE plugin and will be able
to query the monitoring platform for relevant metrics and use them to generate analyses
concerning anomaly in performance, reliability or operational behavior of the application at a
given release version. The anomaly detection tool will reason on the base of black-box and
machine-learning models constructed from the monitoring data. Conversely, the trace checking
tools are going to analyze the correctness of traces. These analyses will be manually invoked by
the user from the IDE plugin. Similar to these, the enhancement tool will automatically annotate
the DICE models stored in the repository with statistics on the inferred and recorded monitoring
data, in order to help the user to inspect the root-causes of performance or reliability anomalies.

The quality testing tools will support the generation of test workloads to the application. Such
workloads are those that will be used to assess the quality of prototypes. Similarly, the fault
injection tool will generate faults and malicious interferences that can help verifying the
application resilience. Both tools integrate a heterogeneous set of actuators and can be run

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 14

manually by an operator through a command-line interface and configuration files. They will also
be exploited by the configuration optimization tool to generate an experimental plan
automatically given a time budget. The output of this tool is to confirm the optimal configuration
of the deployment for an application in its final stages before being pushed to production.
Compared to the optimization plugin, configuration optimization will also deal with fine-grained
systems parameters (e.g. buffer size, block size, JVM configuration, etc.), which are difficult to
model in design-time exploration. Moreover, configuration optimization is black-box and solely
measurement-driven, whereas design space exploration is primarily model-driven.

1.3. WP-level architecture
The following table summarizes the WP-level responsibilities of the different components of the
architecture, the lead maintainer and the major contributors:

Table 1: DICE tools and work packages

Tool Work
Package

Lead
Maintainer

Major
Contributors

IDE 1 PRO

DICE Profile 2 PMI ZAR, NETF

Simulation Plugin 3 ZAR IMP

Optimization Plugin 3 PMI

Verification Plugin 3 PMI IEAT

Monitoring Platform 4 IEAT

Anomaly Detection 4 IEAT IMP

Trace Checking 4 PMI

Enhancement Tool 4 IMP

Quality Testing 5 IMP

Configuration
Optimization

5 IMP IEAT

Fault Injection 5 FLEXI

Repository 5 XLAB

Delivery Tools 5 XLAB

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 15

2. DICE tools

2.1. Overview of DICE tools

In the previous section, we have provided a high-level description of the DICE tools, explaining
their main role in the DICE architecture. Here, we describe in more details the technical
characteristics of each DICE tool. We begin by providing a more detailed description of the
intended purpose of each tool of the DICE architecture. We cover in particular two dimensions:
motivation and technical innovation.

Table 2: DICE tools.

Tool Motivation Innovation

IDE

Eclipse is a de-facto standard for the creation
of software engineering models based on the
MDE approach. DICE further intends to use
the IDE to integrate the execution of the
different DICE tools, in order to minimize
learning curves and simplify adoption.

There is no integrated environment for DevOps
where a designer can create models to describe
data-intensive applications and their underpinning
technology stack. In particular, a core innovation
is the fact of being a complete IDE for going from
design to development.

DICE Profile

Existing UML models do not offer
stereotypes and tags to describe data
characteristics, data-intensive applications,
and their technology stack.

The DICE profile extends UML to handle the
definition of data-intensive applications. There is
no comparable MDE solution in this space,
therefore the innovation is to be a first mover.

Simulation

Once a data-intensive application is designed,
simulation can help anticipating the
performance and reliability of the software
before implementation or throughout revision
cycles. Example of questions that can be
answered by a simulation tool include: how
many resources (VMs, memory, CPU, etc.)
will be required to achieve a given
performance target? What will be the
response time and throughput of data-
intensive jobs?

There exist tools and environments to translate an
application design specification into simulation
models, however none copes with the notion of
data or can generate models for data-intensive
technologies. Instead, the DICE simulation tool
will be able to generate and simulate models for
specific data-intensive technologies (e.g.
Hadoop/MapReduce, Spark, Storm, etc.)

Optimization

Simulation offers the possibility to evaluate a
given model. However, thousands of models
may need to be evaluated in order to
maximize some utility function, e.g. finding
an architecture that incurs minimum
operational costs subject to data redundancy
and reliability requirements. The
optimization plugin will perform multiple
invocations of the simulation tool to support
the automated search of optimal solution.
This is needed to limit the time needed to
complete the search and obtain a good
solution.

Design space exploration has been increasingly
sought in traditional multi-tier applications, but not
in the design of data-intensive applications. For
example, it is not possible today to find optimal
architectures subject to constraints on dataset
volumes and transfer rates. Delivering this
capability will constitute the main innovation of
the optimization tool.

Verification

Simulation is helpful to study the behavior of
a system under a variety of scenarios.
However, it cannot provide definite answers
concerning the impossibility of some events.
For example, in safety-critical systems, a
designer may want to avoid that certain
schedules of operation results in loss of data
(e.g. due to timeouts, buffer overflows, etc.).

Verification tools often have a high learning curve
for non-experts. The DICE verification tools will
be integrated with the IDE ecosystem to simplify
the invocation of verification analyses in a user-
friendly way. This will be achieved by the use of
templates to run specific analyses on specific
technologies.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 16

Furthermore, simulation requires a
substantial effort to answer logical predicates,
since it is not meant to be queried through a
logic. Verification tools allow to address
these problems, offering a logic language to
analyze the correctness of a system, generate
counterexamples, and expose safety risks.

Monitoring
Platform

During prototyping and testing it is important
to collect operational data on the application
and the infrastructure to understand if all the
design constraints are satisfied. There is
however a gap between high-level design
metrics (e.g. data throughputs) and the
concrete low-level mapping of these metrics
to quantities in log files. The monitoring
platform takes care of this mapping from
data-intensive technologies, of the retrieval of
the data and its storage and querying through
a data warehouse.

There exist several monitoring open source tools
in the public domain. However, the integration of
these tools into a solution to support developers
(easy deployment, extensible to various Big Data
technologies) is atypical use, as these are mostly
used by operators. Another innovation is the
contribution to simplifying the monitoring process,
by offering the default selection of representative
metrics across DICE-supported technologies.

Anomaly
Detection

As an application evolves it is not always
simple to decide if the application
performance or reliability have been affected
by a change. This requires to perform
statistical analysis to compare monitoring
data across versions. This tool will perform
this analysis based on the different version of
the DICE application and models.

Anomaly detection tools exist in the open source
domain; however none is specifically tailored to
MDE. There is also not yet evidence that such
systems can be effective in finding anomalies in
data-intensive applications, therefore this
prototype will push the boundary in a novel
research space.

Trace
Checking

Anomaly detection can also be performed by
trace checking, which involves ensuring that
a sequence of events appearing in a trace is
correct with respect to pre-defined
characteristics. Compared to anomaly
detection, this capability allows users to
evaluate logical queries on the trace to check
its correctness, as opposed to the idea of the
anomaly detection tool of verifying the
application behavior using a statistical
analysis.

The DICE trace checking tool will complement the
formal verification tool, in that it will help
determine, from actual traces of the system
execution, whether the parameters with which the
formal verification model were initialized are
indeed correct; it will also make sure that the
properties analyzed at design time still hold at
runtime (they might be violated due to an incorrect
configuration of the parameters, as mentioned
above).

Enhancement
Tool

Given monitoring data for an application, a
designer needs to interpret this data to find
ways to enhance the application design. This
is complex to perform, since the components,
annotations and abstractions used in a UML
model do not semantically match to the
concrete low-level metrics that can be
collected via a monitoring tool. For example,
reading a threading level at a data base does
not explain what business-level operation
was performed by the DB.

The enhancement tool will introduce a new
methodology and prototype to close the gap
between measurements and UML diagrams. No
mature methodology appears available in the
research literature that can address this inverse
problem of going from measurements back to the
models to help reasoning about the application
design.

Quality
Testing

The testing of a data-intensive application
requires the availability of novel workload
injection and actuators (e.g. scripts to
automatically change configurations, to
instantiate and run the workload generators,
etc.)

Most of workload injection and testing tools are
specific to multi-tier applications (e.g. JMeter).
The DICE quality testing tools will focus primarily
on data-intensive applications, for which there is a
chronic shortage of such tools.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 17

Configuration
Optimization

Once an application approaches the final
stages of deployment it becomes increasingly
important to tune its performance and
reliability. This is a time-consuming task,
since the number of different configurations
can grow very large. Tools are needed to
guide this phase.

There is a shortage of tools to guide the
experimental configuration of complex software
systems. This will provide an innovative solution
in this space, which will combine experimentation
with reasoning based on machine learning models.

Fault Injection

Given an initial prototype of the application,
it is important for reliability purposes to
understand the resilience of the application to
unexpected problems in the operational
environments (e.g. faults, contention, etc.).
The fault injection tool will address this need
by offering an application that can create on-
demand such problems to explore the
application response.

Some fault injection tools exist on the market,
such as ChaosMonkey3. These tools however are
either platform specific or limited in functionality
such as with ChaosMonkey for AWS (Amazon …)
and termination of VMs (Virtual Machines). The
DICE Fault Injection tool will address the need to
generate Faults at the VM level, at the user Cloud
Level and on the Cloud platform level. This larger
range of functionalities allows a greater flexibility
as well as the ability to generate multiple faults
from a single tool. In addition when compared to
other fault injection tools, shall be light weight and
only install the required tools and components on
the target VMs.

Repository
This is an auxiliary system required to store
and version the models used by the other
tools.

N/A. This is an auxiliary system tailored to the
integration of the DICE tools.

Delivery Tool

The DevOps paradigm assumes development
to be a continuous process, where the
application code can be often changed and
redeployed through continuous integration
tools to examine the application response.
The infrastructure and the whole applications
are described in code as well. DICE aims at
emphasizing the adoption of this paradigm
during the pre-production stages, in order to
accelerate the generation of the initial
prototypes.

DICE will offer a novel continuous deployment
solution that combines some cutting-edge
solutions for cloud computing, namely the
emerging TOSCA profile and the Cloudify
deployment tool, naturally extending the model-
driven development into realization of the model
in the target environment, providing a complete
design-deployment-testing ecosystem in DICE.
These tools will be empowered with blueprints to
support the deployment of the data-intensive
technologies supported by DICE.

2.2. Positioning tools in the methodology
The methodology and DICE tools are conceived with a high desire to reduce the time to market of
business-critical data-intensive applications (DIA). Therefore, the DICE IDE provides a methodological
workflow, specifying business and technical actors, processes and unit steps needed for designing a data-
intensive application. This general-purpose methodology allows the design of data-intensive cloud
applications for different domains.

3 http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 18

Figure 2. DICE Methodology
Methodology steps DICE Tools Used

DIA Component design DICE Profile

DIA Analysis and Assessment Verification Tool
Enhancement Tool

DIA Technology Mapping DICE Profile

CL Implementation IDE (Natively built-in technological components)

DIA Platform Mapping DICE Profile

Platform Specific Implementation IDE (Natively built-in technological components)

Deployment Delivery Tool (CI, Deployment repository…)

Testing Quality Testing Tools:
• Anomaly Detection
• Fault Injection
• Configuration/Optimization

Runtime feedback analysis Monitoring Tool

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 19

3. Architecture and Integration
This section elaborates on the possible architectural solutions through which the DICE framework
may be developed. In order to procure the reasonable starting points of our decision-making we
enacted a series of brainstorming sessions to evaluate: (a) the tenets and challenges behind the
DICE H2020 project; (b) the current market concerns and stakeholders envisioned by DICE; (c)
the trends in current architecture styles consistent with DICE goals.
In addition, the section features an application of the industrial-strength method architecture
decision making method called the “Architecture Trade-off Analysis Method” [8] to make a
decision and establish its value against the goals and premises of DICE.
Finally, this section elaborates on how, given the architecture choices elaborated in the following
section, the resulting DICE models will be shared across the DICE technological solution.

3.1. Architectural Tradeoff Analysis and Integration Patterns
As previously specified, in order to come up with a decision concerning the DICE technological
architecture we proceeded as follows.
First, in a series of brainstorming sessions and focus groups we established a number of valuable
architectural styles alternatives (e.g. a plugin style vs. a service-oriented style, etc.). The result of
this very first investigation yielded a number of styles rotating around services (e.g. typical SOA
web-services or more modern and DevOps consistent Microservices [11]) as well as a number of
more design-level styles (e.g. the plugin architecture style).
Second, in a preliminary decision evaluation session, we narrowed the architecture decision down
to two alternatives, namely, a plugin architecture style (e.g. think of the Eclipse IDE) against a
Microservice architecture style (e.g. think of modern web-service transaction systems such as
Netflix).
Third, through an application of the ATAM method, we evaluated the best-possible option from
our two choices. The rest of this subsection focuses on elaborating further details on the two
architectural choices that we faced at the decision-making phase, i.e., the second step.

3.1.1. Plugin Architectural Style
In the plugin architecture style, software architects are constrained to develop their applications in
terms of the following architectural elements:

1. Plugin: a bundle that adds functionality to an application, the host application;
2. Host application: offers the mechanisms to add new plugins during operation;
3. Extension-point (a.k.a. plugin interface): a stub in the host

that can be extended by hostable plugins;
Software architects are constrained to adhere to a single restriction
concerning this architectural style, namely, that Plugins have to
comply to the extensibility constraints defined in architecture of the
application hosting extendable plugins. For example, architects
elaborating a plugin for the Eclipse IDE need to adhere strictly to
restrictions superimposed by the nature, structure and limitations of
the Eclipse IDE (e.g., memory limit, etc.).
In a nutshell, there are several advantages connected to using a
plugin architecture style in the scope of DICE. For example,
members of the DICE consortium (as well as future users and
vendors connected to the DICE IDE) can implement and incorporate application features very
quickly. Also, since plugins are separate modules with well- defined interfaces, you can quickly
isolate and solve problems. Moreover, creating custom versions of DICE applications would

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 20

become easier and without source code modifications. Furthermore, Eclipse marketplace4 is an
appropriate place that we can used to disseminate the DICE tools.

3.1.2. Implementation Consequences for a Plugin Styled DICE Solution
Several mechanisms would have to be defined in connection to a plugin styled DICE solution.
More in particular:

1. Define a list of methods/functions a plugin must implement or define a base class that
plugin must use;

2. Define mechanisms for registering callbacks;
3. Define what type of behavior each method or function

must exhibit;
However, there are several frameworks that the DICE
consortium may consider as a starting point behind styling the
DICE solution with plugins. For example, the Eclipse IDE
offers a valuable platform and a platform extension system that
fits almost perfectly with the DICE tenets (e.g., Big-Data
architectural design in a model-driven fashion) and challenges
(e.g., supporting continuous architecting in a DevOps fashion
[12]). Indeed, the Eclipse IDE (see the overall structure in the
Figure on the right-hand side) would provide the DICE solution
with:

1. An extensible platform/customizable IDE via the RCP
framework;

2. Core services for controlling tools working together;
3. Runtime platform to support system development by composition of plugins - also, the

runtime platform discovers plugins at startup and manages auto plugins loading;
4. Multi-layering featuring a platform specific layer, a java-development tools (JDT) layer

and an overall IDE layer;

3.1.3. Microservices Architecture Style
The Microservice architecture [9][10][11] is a new architectural style that has been introduced
after new paradigms like continuous delivery and DevOps. In this architectural style, applications
can be composed of fully independent services that communicate with each other via light weight
API such as REST. The micro-services are built around business capabilities and are typically
independently deployable by fully automated deployment services.
The services in this architectural style can be implemented using different programming languages
and technology stacks. This style as opposed to traditional hierarchical architectures (e.g.
composite services), is more symmetric and follow the principles of publish and subscribe
communication style. This architectural style is the most suitable style for integrating applications
around business capabilities and in DevOps paradigm [12] where there the team structures are
typically shaped around business capabilities.

3.1.4. Implementation Consequences for a Microservice Styled DICE Solution
In a classical plugin style, the DICE IDE consolidates plugins that do not talk much to each other
and dialog in the IDE environment through the shared UML models. Each plugin calls the external
tools via REST APIs. For example, testing and deployment tools are orchestrated by their
respective plugins inside the IDE. The IDE Plugin X would therefore develop the logic to connect
to external Tool X. The other plugins would be entirely agnostic of this. Each IDE plugin can be
called by the user irrespectively of the other plugins, but requires a DICE m to be loaded in the

4 http://marketplace.eclipse.org/

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 21

IDE. There is a clear unique selling point at the end of the project, the IDE with the powerful
DICE plugins inside it, but methodology and workflow may be difficult to customize or adapt to
specific needs of end users.
Conversely, Microservice are a cloud-native architecture [10] through which a software system
can be realized as a set of small independent services [9]. Each of these services are capable of
being deployed independently on a different platform and run in their own process while
communicating through lightweight mechanisms like RESTFul APIs [10]. In the DICE setting,
this means that each service is a DICE business capability that can use various programming
languages and data stores [11].
Moreover, Microservices architecture is different from a canonical Service Oriented Architecture.
SOA is an architectural pattern where the services are self-contained units that communicate with
each-other via communication protocols. However, they have several shortcomings, as listed in
the following table, they are stateful, synchronous and technology dependent (all based on
enterprise service bus - ESB) and also the integration needs to be hardcoded into few available
languages such as BPEL.
In addition, using microservices, we can develop DICE tools separately and the integration can be
based on the assumptions that all tools needs to emit some messages and receive some events from
yet another topic. So the integration becomes reactive, asynchronous and event driven. Finally,
from a technological point of view, the integration connectors can be written in any language and
hosted even as yet another service (e.g. Kubernetes (for integration) + Docker5 (for tools)).

3.2. Architectural Tradeoff Analysis and Architecture Decisions for DICE
The goal of the Architecture Tradeoff Analysis Method (ATAM) is to determine how quality
attributes interact in such a way that a best fitting architectural decision may become apparent.
The steps for ATAM are the following:

1. Present method to stakeholders
2. Present business drivers (by project manager)
3. Present architecture (by lead architect)
4. Identify architectural approaches
5. Generate quality attribute tree
6. Elaborate architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyse architectural approaches
9. Present results

In the following text we elaborate on the (architectural) quality attribute tree (step 5) wherefore
DICE quality attributes are evaluated against architectural alternatives pruned from software
architecture research and practice (see Section 3.1). The root node of the tree (see the figure
below) is termed “utility”. It expresses the overall quality of the architecture. The next level
contains the architectural quality attributes that were evaluated for a concrete option. These are
again broken down into more detailed constituents. Finally, the leaf nodes are concrete scenarios
where said DICE quality attributes are enacted.
Steps 1 through 3 as well as 6 through 9 of the procedure actually took place during several DICE
online and plenary meetings and are not documented here (meeting minutes provide additional
elaboration and details of said steps).

5 https://www.docker.com/

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 22

Figure 3. DICE Quality Attribute Tree: General Form

The tree rotates around a set of seven key evaluation characteristics, namely: DevOps-readiness -
our solution should accommodate and support wherever possible the DevOps strategy and ways of
thinking; extensibility - our solution should allow full extensibility while supporting said activity
with appropriate and adequate tooling; Ease-of-use - our solution should make no assumption as
to the level of skill of the user and should be ready to support multiple possible users with multiple
possible concerns and ability levels; Generalizability - our solution should make no assumption
as to where and in which context should the DICE solution be used in practice, also the solution
should be ready to accommodate rapid and unforeseen contextual changes; Implementation-time
- our solution should not force additional skills on the DICE consortium and should accommodate
our planned schedule and prototypal timing; Feasibility - our solution should be feasible in the
allotted time given the desirable other DICE characteristics; SME-readiness - our solution should
be ready to accommodate the organizational scenarios and variables typical in SMEs and should
remain efficient in and on top of infrastructure size and expectations typical for SMEs as well.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 23

Figure 4. DICE Quality Attribute Tree: Microservices6

A Microservices solution is almost explicitly tied to a DevOps way of working since it envisions
reducing services to be made available to their smallest form possible in such a way so as to divide
responsibility and reduce coordination where possible. This way of working however may not be
feasible with the DICE tenets and challenges. Although extremely novel, this alternative would
force re-training and refocusing of skills across the DICE consortium since many partners may not
be familiar with technologies involved in Microservices (e.g. WS, messaging systems, REST,
ESB, etc.). Also, the architecture may limit the methodological extensibility and user-experience
connected to the DICE solution since this would inextricably be tied with a DevOps way of
working, i.e., by means of Microservices. Finally, the solution may not accommodate well the
small resources in SMEs or organizational schemes such as Bring-Your-Own-Device, very
common in SMEs as well.

6 Matched points are highlighted in bold.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 24

Figure 5. DICE Quality Attribute Tree: Plugin Style

A more classical and established plugin style (e.g. as supported by the Eclipse IDE and related
extension frameworks such as RCP7) may be configured to accommodate a DevOps way of
working (e.g. as accompanied by Eclipse tools such as MyLyn). Also, rotating around well-
established Eclipse technological extension frameworks, architecture extensibility and
generalizability may be kept to the highest level. In addition, Eclipse and similar plugin based
technologies are already very pragmatically versed into allowing configuration and preparation of
ad-hoc distributions, depending on the level of experience or desired control by the user. This
would allow the DICE solution to accommodate scenarios in which both neophytes and gurus may
be interested in using our technology. Finally, Eclipse and similar plugin styled platforms already
accommodate the resource limits and organizational practices typical in SMEs.
It is therefore our decision, that the DICE Technological Tool-Chain be implemented
following a plugin architectural style, as supported by the technological solution which best
accommodates previous design decisions within the DICE consortium, that is, the DICE
IDE.

7 https://wiki.eclipse.org/Rich_Client_Platform

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 25

3.3. Shared Models

Stemming from the above decision it is our intention to make available the following shared
models:
DPIM XMI 2.11 Standard EMF Format DAM-Compatible UML-Papyrus

Format
DTSM XMI 2.11 Standard EMF Format DAM-Compatible UML-Papyrus

Format
DDSM XMI 2.11 TOSCA V1 TOSCA-JSON, TOSCA-YAML

Integration Patterns
Prepare → Commit → Modify: Models should be prepared in draft format, committed to version-
control and modified (e.g. according to analyses or further modelling and design);
Retrieve → Analyse → Modify → Commit: Before being analysed, updated versions of the
models should always be retrieved from version-control, should always be analysed before a
modification, i.e., the analysis is the rationale of the modification and should always be committed
after modification (would be addressed in details in WP2 deliverables);
Observe → Retrieve → Modify → Commit: Models which need to undergo modifications as a
consequence of observed monitoring evaluations are first retrieved from version-control, then
modified and then re-committed again;

3.4. DICE architecture
A plugin architectural style has been chosen to implement the DICE technological tool chain. As
examined in previous section, the plugin architecture offers several advantages such as
extensibility, separation of concerns and many other best practices. The Eclipse IDE itself follows
this architecture. It offers a platform extension system through plugins which fits with the DICE
principles and challenges. The DICE architecture components are the development tools which are
integrated in the IDE, the runtime tools which are called from the IDE, the IDE itself and the
external repository. They are distinguished with different colours in Figure 1.
The DICE profile and methodology support the incremental specification of Data-Intensive
Applications (DIAs) following a Model-Driven Engineering approach. The DICE IDE exploits the
DICE profile and follows the DICE methodology. It offers wizards to guide the developer through
the steps envisioned in the DICE methodology. The DICE tools described will be used at different
stages of the methodology. In the following table we provide a summary of the architecture of
each DICE component, a short behavioural description and the link to the respective section in the
Appendix.

Tool Architecture component Behavioural description Appendix

IDE The Integrated Development
Environment is the core
component. The Plugin
Architecture Style is implemented
by customizing the Eclipse IDE.

The user starts the IDE. This latter will execute
the requested actions and delegate the requests
to the tool(s) that can serve the request.

A.1

DICE Profile This component belongs to the
development tools. It provides the
stereotypes and tags needed for the
specification of data-intensive
applications in UML.

The user loads the DICE Profile model from the
resources. He selects the desired elements to
annotate. Once finished, he submit the model to
the repository.

A.1

Simulation Simulation is part of the
development tools. It gives
information about the predicted

The user starts a new simulation using the
annotated UML models as input. The
simulation process is configured through the

A.2

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 26

metric values in the technological
environment being studied.

IDE. The users executes the process and the
results are shown to the user in the GUI.

Optimization Optimization is part of the
development tools. While
simulation offers the possibility to
evaluate a given model, the
optimization plugin will perform
multiple invocations of the
simulation tool to support the
automated search of optimal
solution.

The user loads the model from the repository.
The optimization tool is invoked. Some
performance metrics are returned to the tool and
the simulation tool is invoked. A certain
number of deployment models are sent to the
simulation tool. The outcome is returned to the
Optimization tool and reported to the user.

A.3

Verification The verification component is part
of the development tools. It offers
a logic language to analyse the
correctness of a system, generate
counterexamples, and expose
safety risks.

The user loads the model from the repository.
He selects a property to be checked using
templates and the tool from the analysis. The
annotated DTSM model, the property and the
tool are sent to the Verification plugin. The
outcome of the verification and the trace (of the
system that violates it) are reported to the user.

A.4

Monitoring
Platform

The Monitoring platform
component is part of the runtime
tools. It is invoked from the IDE
through RESTFul services. It
monitors quality metrics in the
application and in its underpinning
software stack and infrastructure
as the application runs.

The user loads the model from the repository.
The user submits a query string to the
monitoring platform through the IDE. He can
specify parameters such as a time interval, the
type of the output and others. An elastic search
query is generated and the results are returned
to the monitoring platform.

A.5

Anomaly
Detection

The Anomaly detection
component is part of the runtime
tools. It attempts to decide if the
application performance or
reliability have been affected by a
change based on the different
version of the DICE application
and models.

The user loads the model from the repository.
The user will have to select a subset of features
and timeframe on which anomaly detection will
take place. The resulting data will be used to
train and validate a predictive model. If a model
has been already calculated for this subset of
features, the service will check the given
timeframe for anomalies. Once an anomaly is
detected, a reaction (send email, notify users,
etc.) will be triggered.

A.8

Trace
Checking

The Trace Checking component is
part of the runtime tools. It allows
users to evaluate logical queries on
the trace to check its correctness,
as opposed to the idea of the
anomaly detection tool of
verifying the application behaviour
using a statistical analysis.

The user loads the model from the repository
and activates trace checking. The list of logs is
retrieved in the Monitoring platform and sent to
the IDE. The user selects a property and a time
window. The outcome of the trace-checking is
reported to the IDE.

A.7

Enhancement
Tool

The Enhancement tool component
is part of the runtime tools. It
supports the users with the task of
evolving the application quality
after tests on prototypes.

The user loads the model from the repository
and requests to detect anti-patterns in the
current design. The tool analyses the current
UML models and returns an indication of
possible anti-patterns to the IDE. The
Enhancement tool queries monitoring data from
the Monitoring Platform and uses these data to
analyse the parameters of the performance
models.

A.6

Quality The Quality Testing component is The user loads the model from the repository. A.11

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 27

Testing part of the runtime tools. It
generates artificial workloads that
are sequentially submitted to the
running application according to a
testing plan.

The main data entity in quality testing tool is
the test plan which needs to be in a user
readable XML like format and compatible with
other similar tool such as JMeter. The test plan
should define the notion of time unit and the
level of the load that will be injected during
time periods. After the test plan is defined by
the user via IDE, it will be sent to the quality
testing tool to run the test case.

Configuration
Optimization

The Configuration Optimization
component is part of the runtime
tools. It optimizes the big data
application configuration within
limited time using numerical
optimization and machine learning
models.

The user loads the model from the repository
and launches the tool. The configuration
template is retrieved by the tool through model
repository. The appropriate configuration is
then set in the template. In order to perform
model fitting, tool requires to retrieve the
performance data and augment new points in
the repository. These performance data serve as
the main ingredient for reasoning where to test
next in the tool.

A.10

Fault Injection The Fault Injection component is
part of the runtime tools. It
explores the application response
to unexpected problems in the
operational environments (e.g.,
faults, contention, etc.) by creating
on-demand such problems.

The user starts the Fault Injection tool. He
enters his input using command line options.
The tool will connect to the virtual machine and
begin Fault. The results are stored in an
accessible log file and returned to the tool.

A.12

Repository The repository component acts as
a shared source of models and
code across different versions for
all the DICE tools that need to
access them. It will reside
externally to the IDE and will be
accessed through appropriate tools
(e.g. SVN).

The user loads the model from the repository.
Upon completion of this work, the user submits
the file (models/ configuration scripts etc.) to
the repository.

A.9

Delivery Tool The Delivery Tool component will
initialize the deployment
environment and deploy the
application. It also connects the
monitoring platform to the
deployed application.

The user loads the model from the repository.
The IDE tools trigger the model-to-text
transformation, which produces an OASIS
TOSCA document in YAML format. The
Delivery Tool consumes the TOSCA document
and, based on the blueprint description, deploys
and configures the application in the test bed.

A.9

3.5. Integration plan
The following table presents DICE integration plan focusing on the most important activities and
milestones

Table 3: DICE integration plan.

Date DICE
Framework

Version

Included features

M12 - Initial version of:
• Simulation support from ZAR
• Verification support from PMI
• Monitoring support from IEAT

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 28

• Delivery Tool support from XLAB

M18 1.0.0 Initial version of:
• Optimization support from PMI
• Anomaly detection support from IEAT
• Trace Checking support from PMI
• Enhancement support from IMP
• Fault Injection support from FLEXI
• Configuration Optimization support from IMP

First release of the DICE Framework with Repository support from XLAB with all M12
initial version of the tools. This release will be available on the official GitHub repository of
DICE: github.com/dice-project/
The IDE plugins will come with format of packaging and uploading to the market place. We
plan to use Vagrant scripts for installing the monitoring framework in Virtual Box, which is
useful for getting to know the framework. For the services related to the deployment,
TOSCA blueprints will be released for Cloudify that enable bootstrapping and deploying
these services with little effort.

M24 2.0.0 Initial version of:
• Quality Testing support from IMP

Intermediate versions of:
• Simulation support from ZAR
• Verification support from PMI
• Delivery Tool support from XLAB

Final version of:
• Monitoring support from IEAT

Second release of DICE Framework (Initial complete version) with all M12 and M18 initial
version of the tools.

M30 3.0.0 Final version of:
• Simulation support from ZAR
• Verification support from PMI
• Delivery Tool support from XLAB
• Optimization support from PMI
• Quality Testing support from IMP

Final version of DICE Framework with all M24 and M30 final versions of the tools

This is a first approach of the integration plan. Every deliverable will include the related features
as far as possible, depending on how much costs including it in this deliverable or not. If one
feature is not included in one deliverable, will be present in the next one.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 29

Appendix A.

A.1. IDE

A.1.1 Stereotyping a UML diagram with the DICE profile to obtain a Platform-
Independent Model (PIM)

ID UC1.1

Title Stereotyping a UML diagram with the DICE profile to obtain a
Platform-Indep. Model

Priority Required

Actors Architect, IDE

Flow events A technical person capable of designing and modelling a data intensive
application models the Platform-Indep. UML Model stereotyped with
the DICE profile.

Pre-conditions UML diagram of domain model

Post-conditions Stereotyped diagram with DICE profile

A.1.1.1. Description of interactions
The use case UC1.1 specifies that, from an existing UML model, an architect should be able to
annotate it using the DICE profile.
To obtain such information, the following steps need to be performed:
● The Architect starts the IDE.
● The Architect open the desired model to annotate.
● The Architect loads the DICE profile model from the resources.
● The Architect selects the desired elements to annotate.
● The resulting model could be stored into a repository in order to use it in next steps.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 30

A.1.1.2. Sequence diagrams

A.1.1.3. Data flows
The UML model should be retrieved from a repository, and the DICE profile model will be
available as plugin in the IDE. The Architect will synchronize its local copy with the data in the
repository. Then he need to load the DICE profile model from the IDE plugins, and start
annotating the UML model. Once finished, the model should be uploaded to the repository again.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 31

A.1.2 Analysis, simulation, verification, feedback, and transformations until
obtaining a deployment model

ID UC1.2

Title Analysis, simulation, verification, feedback, and transformations until
obtaining a deployment model

Priority Required

Actors Developer, IDE, QA Tester

Flow events The developer is a technical person capable of developing a data
intensive application. He is guided through the DICE methodology to
accelerate development and deployment of the data-intensive
application with quality iteration.
A Quality-Assessment expert may also run and examine the output of
the QA testing tools in addition to the developer

Pre-conditions Stereotyped diagram with DICE profile

Post-conditions Architecture model, platform-specific model, QA models

A.1.2.1. Description of interactions
The use case UC1.1 specifies that, from an existing stereotyped UML model, a developer should
be able to execute certain operations on them.
To obtain such information, the following steps need to be performed:

● The Architect starts the IDE.
● The Architect loads a stereotyped UML model.
● Via the contextual menu, developer will be able to start Verification, Simulation or

Optimization tool over the model. Also s/he can perform transformations to other models.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 32

A.1.2.2. Sequence diagrams

A.1.2.3. Data flows
As seen in the sequence diagram, the Developer always starts the request. The IDE will execute
the requested action and delegate to the Tool the work. Finally, the tool will send the result to the
repository.

A.2. Simulation tool
The requirements elicitation of D1.2 only considers a single use case8 that concerns the Simulation
Tools component, the UC3.1. This use case can be summarized as 2:

ID UC3.1

Title Verification of reliability or performance properties from a
DPIM/DTSM DICE annotated UML model

Priority Required

Actors QA Engineer, IDE, Transformation Tools, Simulation Tools

Pre-conditions There exists a DPIM/DTSM level UML annotated model

Post-conditions The QA Engineer gets information about the predicted metric value in
the technological environment being studied

A.2.1 Description of interactions
The use case UC3.1 specifies that, from an existing DPIM/DTSM level UML annotated model
(pre-condition), the QA Engineer gets information about the predicted metric value in the
technological environment being studied (post-condition).
To obtain such information, the following steps need to be performed:

8 UC3.1.1 (Verification of throughput from a DPIM DICE annotated UML model) is a specialization of UC3.1, and as
such will not be considered in the present document to avoid redundancies

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 33

● The QA Engineer models a DPIM/DTSM model applying the DICE profile to a UML
model using the DICE IDE.

● The QA Engineer starts a new simulation using the DICE-profiled UML models as input.
● The DICE-profiled UML models are translated within the simulation process to formal

models, which can be automatically analysed, using M2M and M2T transformations.
● The simulation process is configured, specifying the kind of analysis to perform and the

additional input data required to run the analysis.
● The simulation process is executed, i.e., the formal models are analysed using existing

open-source evaluation tools (such as GreatSPN and JMT).
● The result produced by the evaluation tool is processed to generate a tool-independent

report, conformant to a report model, with the assessment of performance and reliability
metrics.

● The tool-independent report is fed into the DICE IDE and it is shown to the user in the
GUI.

A.2.2 Sequence diagrams

A.2.3 Data flows
We have modelled the interactions among the Simulation Tool components as depicted in
sequence diagram. For the sake of maintainability, the Simulator component has been split up in
UI and non-UI components, i.e., Simulator-GUI and Simulator respectively.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 34

Specifically, the sequence diagram depicted in sequence diagram describes the specific steps to
simulate a DICE-profiled UML diagram using as an example the GreatSPN tool as the underlying
evaluation tool, but others may be used.
As it can be seen in the figure, the modeling step is outside the scope of the Simulation phase, and
the model to be analysed is supposed to pre-exist and is managed by the DICE IDE. When the
user wants to simulate a model, s/he invokes the Simulator-GUI, which parses the model and asks
the user any additional required information. When this information is obtained, the Simulator-
GUI calls the Simulator that will handle the simulation in background.
The Simulator will then orchestrate the interaction among all the different modules. First, the
M2M transformation module will create a PNML representation of the DICE-profiled model.
Second, the PNML file will be transformed to a GreatSPN-specific Petri net description file.
Third, the Simulator will start the analysis of the Petri net using GreatSPN. Finally, when the
analysis ends, the raw results produced by GreatSPN will be converted into a formatted results
file. This formatted results will be then sent to the DICE IDE that will show them to the user in a
visual form.

A.3. Optimization
The requirements elicitation of D1.2 only considers a single use case that concerns the
Optimization tool component (UC3.3). This use case can be summarized as:
ID UC3.3

Title Optimization of the deployment from a DDSM DICE annotated UML
model with reliability and performance constraints.

Priority Required

Actors ARCHITECT

Pre-conditions There exists a partially specified DDSM UML annotated model (in
particular the number and type of storage and compute nodes are
missing).

Post-conditions The ARCHITECT gets a fully specified DDSM model minimizing the
deployment cost and fulfilling QoS constraints specified in the input
DTSM model.

A.3.1 Description of interactions
The use case UC3.3 specifies that, from an existing DDSM UML annotated model (pre-condition),
the ARCHITECT gets a fully specified DDSM model minimizing the deployment cost and
fulfilling QoS constraints specified in the input DDSM model (post-condition).

In this scenario the ARCHITECT is required to interact with the IDE in order to retrieve the
deployment model, which is stored and versioned within the Repository component and optimized
it by means of the Optimization tool. The deployment model is a DDSM DICE annotated UML
model that may be incomplete, meaning that some quantitative information (namely the number
and type of VMs to be used at runtime) are missing.

The user feeds the deployment model as input into the optimization tool along with some other
relevant inputs that are used to control the behavior of the tool. In particular pieces of information

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 35

as simulation accuracy, local search number of iteration, and QoS constraints to be applied to the
deployment can be set by the user in this phase. Once the model, the constraints, and the
properties are correctly loaded, the tool starts its execution by firstly generating a Mixed Integer
Non-Linear Problem (MINLP) that is based on approximated formulae to evaluate DIA jobs
execution time and is meant for a quick identification of a potentially high-quality initial solution.

A specific MINLP solver running as a service is invoked to solve the internal mathematical model.
The so-obtained initial solution is afterwards used within the local search based optimization
process representing the core of the tool. To this end the solution undergoes a set of
transformations (also known as moves) that are applied iteratively with the aim of progressively
reducing the deployment cost guaranteeing at the same time the fulfillment of the constraints. The
deployment models generated during this phase are turned into Petri Nets or Queue networks by
the Simulation tools, which is in charge of performing suitable model-to-model transformations
and solve the resulting performance models. The outcome of performance evaluation process is a
set of performance metrics that are returned to the optimization tool. Such pieces of information
are used to drive the next steps of the search process towards less and less costly deployments.
According to the level of parallelism granted by the Simulation tool more than one candidate
solution can be generated and evaluated in parallel.

At the end of this scenario the best deployment model obtained (complete DDSM) is presented to
the user along with its related performance metrics. If, for whatever reason, such an outcome does
not fit the user’s expectation, s/he will perform the changes s/he deems appropriate and re-execute
the optimization process from the new deployment.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 36

A.3.2 Sequence diagrams

A.3.3 Data flows
We have modelled the interactions among the Optimization tool component as depicted in Fig. 1.
The modelling step is outside the scope of the optimization phase, and the model to be analysed is
supposed to pre-exist and is managed by the DICE IDE. When the user wants to optimize a model,
s/he invokes the Optimization tool, which loads the model and asks the user any additional
required information. More in details, the optimization is performed through the following steps:

1. The model is chosen from the Repository. Repository sends the model to IDE and the IDE
to the user.

2. The possibly incomplete DICE DDSM annotated model, the QoS constraints, and
properties to use for the analysis are sent to the Optimization tool.

3. A first-approximation mathematical optimization model is generated and sent to a suitable
MINLP solver. Some performance metrics are returned to the Optimization tool.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 37

4. The Simulation tool is initialized and set up.
5. A certain number of fully defined deployments model are generated and sent to the

Simulation tool to perform the required analysis. The outcome is a set of performance
indicator that are returned to the Optimization tool

The outcome of the Optimization (the cheapest feasible deployment identified) and its related
metrics are reported to the user.

A.4. Verification
A.4.1 Description of interactions
The user performs verification on the current model loaded in the IDE or selects the model from
the repository; in the last case, the model is first loaded and then showed in the IDE.

The verification is performed on annotated DTSM models which already contain all the
information required to perform the analysis.

The user selects a (safety/privacy) property to be checked possibly using templates (which are
compliant with the definition of the class of desired properties for the application, specified in the
design phase at DPIM level) and the tool for the analysis.

After the definition of the property of interest, the orchestrator submits the verification request to
the Verification plugin. The Verification plugin converts DICE UML model and the property to
be verified into a formal model that is suitable for verification (e.g., a temporal logic model).

Based on the class of property to verify or on the approach the user applies, the plugin selects the
appropriate solver which analyzes the formal model against the property and determines whether
the property holds for the system or not.

The outcome is sent to orchestrator and then to the IDE which presents the result. It shows
whether the property is fulfilled or not; and, if the property is violated, the IDE presents the trace
of the system that violates it.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 38

A.4.2 Sequence diagrams

A.4.3 Data flows
1. The model is chosen from the Repository. Repository sends the model to IDE.

2. The annotated DTSM model, the property and the tool to use for the analysis are sent to
the Verification plugin.

3. The outcome of the verification (yes/no) and the trace (if any) is sent to the orchestrator
component which then reports the results in the IDE.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 39

A.5. Monitoring
ID: UC4.1 Title: Monitoring a Big Data framework (Scenario)
[Combination of UC 4.1.1 to UC 4.1.3]

A.5.1 ID: UC 4.1.1. Title: Metrics Specification
A.5.1.1. Description
Any user or DICE tool can query the monitoring platform. The query request needs to contain a
query string similar to the one used in Kibana, a time interval (or time math representation of
interval). It is also possible to specify the type of output (csv, json, rdf+xml, plain). The dmon-
controller then receives this request and generates the elasticsearch query that is executed and then
returned in the specified output format.

A.5.1.2. Data Flow
The request and its payload are sent to the dmon-controller. The data from ElasticSearch is sent to
dmon-controller where it is further processed (if it is required) and then sent to its final
destination.

A.5.2 ID: UC 4.1.2 Title: Monitoring tools registration
A.5.2.1. Description
The current deployment specification is sent to the Continuous Integration (CI) tool which then
sends the platform specific deployment to the Deployment service (DS) which enacts this. The DS
send a request that contains the FQDN, credentials and roles of each node from the deployment to
the dmon-controller which in turn deploys in parallel all dmon-agent instances on these nodes.
Based on the roles assigned to each node the monitoring auxiliary components are installed and
configured. When everything is done a response is given to the DS which sends that to the CI.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 40

A.5.2.2. Data Flow
Data is represented only by the request payloads (json).

A.5.3 ID: UC 4.1.3 Title: Monitoring Data storage (Start ES and LS)
A.5.3.1. Description
Any user or tool that has access to the dmon-controller Management API can bootstrap additional
monitoring platform core components. The dmon-shipper controls an instance of logstash server
while dmon-indexer controls an instance of elasticsearch. It is also possible to start/stop and
reconfigure each of these components. The only prerequisite is that there exist a registered newly
provisioned VM.
This diagram represents both first deployment and possible scaling scenarios. For both scenarios a
prerequisite is that there exist provisioned VMs on which the services and components can be
bootstrapped.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 41

A.5.3.2. Data Flow
The only data is the request payloads (json).

A.5.4 ID: UC 4.2. Title: Data Warehouse Query
A.5.4.1. Description
In the DICE solution the data warehouse is represented by the instance (or cluster) of
ElasticSearch. Because of this querying the data warehouse is done the same way as in UC4.1. It
is possible to export both the data and the indexes from any ElasticSearch instances. This can be,
at a later time, imported into the monitoring platform and again queried the same way as before. It
is even possible to import this data together with its index into a completely separate ElasticSearch
instance. By removing older unused indexes from the monitoring platform we can limit the
amount of computational resources needed by it and store potentially valuable data for later use.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 42

A.5.4.2. Data Flow
The request and its payload are sent to the dmon-controller. The data from elasticsearch is sent to
dmon-controller where it is further processed (if it is required) and then sent to its final
destination.
A.6. Enhancement

A.6.1 Description of interactions

The user activates the enhancement analysis for model parameter analysis and inputs the
parameters for the Enhancement tool through IDE. Then the IDE triggers the start of the
Enhancement tool.

If the user requires to update the model parameters, then according to the parameters set by the
user the Enhancement tool queries the specific monitoring data, such as CPU utilization, response
time and throughput, used for the analysis from the monitoring platform. Statistical analysis is
performed based on the runtime monitoring measurements and the tool generates the new
parameters for the model. Finally with the new parameters, the tool updates the model directly and
return the updated model back to the IDE along with a report generated based on the performance
of the application.

If the user requires for bottleneck identification for the current design from the IDE, then the
Enhancement tool analyzes the current UML model and highlights software or hardware
bottlenecks based on testing results and return the result back to the IDE.

The user may also request to examine quality regressions in two versions of the application. Then
Enhancement tool analyses quality differences between versions by operating directly on the
monitoring data and return the result back to the IDE.

A.6.2 Sequence diagrams

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 43

A.6.3 Data flows
The major data exchange happens when the enhancement tool updates the models. The tool will
query monitoring data from the Monitoring Platform and uses these data to analyse the
parameters of the performance models.

A.7. Trace checking

A.7.1 Description of interactions
The user activates trace checking on the current model loaded in the IDE or selects the model from
the repository; in the last case, the model is first loaded and then showed in the IDE.

The user selects a non-functional property (metric) to be checked from a list (compliant with the
model/properties that are supported in the framework), a time window, and a log from the
Monitoring platform to be checked over the specified time window.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 44

The orchestrator submits the trace-checking request to the Trace-checking plugin. The trace-
checking plugin then activates a trace-checking job on the selected trace.

The outcome is sent to orchestrator and then to the IDE which presents the result. It shows the
values of the non-functional properties that are extracted from the trace compared with the values
of the same properties defined at design time.

A.7.2 Sequence diagrams

A.7.3 Data flows
1. The model is chosen from the Repository. Repository sends the model to IDE.

2. The list of the logs is retrieved in the Monitoring platform; it sends the list to the IDE.

3. The non-functional property chosen by the user (based on the DPIM annotation) is sent to
the Trace-checking plugin along with the time-window.

4. The outcome of the trace-checking is sent by the Trace-checking plugin to the orchestrator
component which then reports the results in the IDE.

Next scenario

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 45

If the non-functional properties have specific relation (order) with respect to the values established
at design time then the tool reports the properties, defined at DPIM level that might be violated.

A.8. Anomaly detection
A.8.1 ID: UC 4.5 Title: Anomaly Detection Model Training
A.8.1.1. Description
In order to create viable predictive models that are able to detect not only point anomalies but also
contextual anomalies we need a robust training methodology. In the case of DICE a user will have
to select a subset of features that are stored in the Monitoring Platform. This is then used to query
the controller and a dataset is created. The resulting data is then used to train and subsequently
validate a predictive model. If the trained model has a good performance it is stored, if not then it
is discarded. The type of anomaly detection algorithm is not yet defined. It is scheduled for the
second year of the project.

A.8.1.2. Data Flow:
Data is consumed from the DICE Monitoring platform.

A.8.2 ID: UC 4.6. Title: Offline Anomaly Detection
A.8.2.1. Description
Any tool or user can issue a request to the anomaly detection tool. This request has to define a set
of features and timeframe on which the anomaly detection will take place. If anomaly detection
tool (ADT) model training has been done/initialized for this subset of features the service will
check the given timeframe for anomalies. This requires the querying of the monitoring solution
and fetching the pre-trained predictive model. The best performing predictive model is then
fetched and instantiated. If a better performing model for the given dataset is detected than the one

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 46

already instantiated the new model will be loaded. This check happens before a new batch of data
is loaded.

A.8.2.2. Data Flow
Data is consumed from the DICE Monitoring platform. This is true both for the required metrics
as well as the trained predictive models.
A.9. Delivery tool

A.9.1 Description of interactions
The Continuous integration sequence starts with the programmer’s code and models, and results in
a deployed platform services and the application in the test bed, quality (non-functional) tests run,
and a result of the non-functional tests available in the Continuous Integration component of the
DICE Delivery Tool. The part 1 of the use case describes the feature up to the point of the
application deployed and configured in the test bed.

The actors (normally programmers) use the IDE to model the application at the DPIM and DDSM
level. They also edit the application code. At some point during their development (but normally
at least once a day) they decide that the application is ready to be deployed and, possibly, tested in
the test bed. They verify that the code compiles and checks in their IDE. The next step for them is
to commit the model of the application in the Repository. Also, they commit their code changes in
the Repository.

The Continuous Integration part of the Delivery Tool receives a notification about the Repository
update (conversely, it polls the status of the Repository periodically until it learns of a change) of

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 47

the project. It then fetches the updates from the Repository - both the code and the model. Then it
performs the compilation and assembly of any user-written code.

Finally, the Delivery Tools initiate the deployment and configuration phase. In the current
implementation, it first destroys any existing deployment of the application along with all the
platform services needed for the application. This effectively cleans up the environment and frees
the resources. Then it proceeds by first creating the environment in the test bed, provisioning any
virtual resources (computation, storage, and networking) required according to the application
model. Then it configures the services and the application, and finally it runs the services and
application components. This last step also includes the step of registering the nodes running
services to the Monitoring in order for the application components to initiate the streams of
runtime metrics.

A.9.2 Sequence diagrams

A.9.3 Data flows

In this scenario, the user produces the application code. We assume that the IDE tools also trigger
the model-to-text transformation, which produces an OASIS TOSCA document in YAML format.
This document contains a blueprint, describing the application to be deployed as well as the
configuration for each service in the blueprint.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 48

The Delivery Tool consumes the TOSCA document and, based on the blueprint description,
deploys and configures the application in the test bed.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 49

A.9.4 Continuous integration

A.9.4.1. Description of interactions
This sequence diagram emphasizes the continuous nature of the integration, which includes
getting a feedback using the quality testing tools to assess the validity of the current build of the
application.
The previous sequence diagram shows in further details what this sequence diagram shows at a
more abstract level. The developer, who edits the current build as the code and models, requests of
the IDE to commit the build. IDE pushes the build to the Repository, which, in turn, notifies the
Delivery Tool about the update. The Delivery Tool fetches the build’s commit contents, compiles
them and, if all goes well, deploys the blueprint from the built into the testbed. The result of this
interaction is an application, representing the current build, which runs in the test bed. Like in the
previous sequence diagram, the deployment action replaces the deploys of any previous builds and
their supporting platform services in the testbed.
Then the Delivery Tool invokes the Quality Testing tool, which exposes the application to a test
workload. With the help of the Monitoring Tools (omitted from the diagram for clarity), it
produces the quality metrics describing the build’s non-functional properties.
The whole process repeats for each new build, which represents a part of the application’s version.
The Delivery Tool stores the history of this information. The developer can then at any time
request of the Delivery Tool to show the Quality Test results history, and as a result should obtain
a chart (or some other time series representation) showing the build performance through time.

A.9.4.2. Sequence diagram

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 50

A.9.4.3. Data flows

The first part of this scenario’s data flows repeat the ones described in the previous scenario: the
user must first produce the application code and have an OASIS TOSCA YAML document
blueprint built. The Delivery Tool consumes the TOSCA document and, based on the blueprint
description, deploys and configures the application in the test bed.
The Delivery Tools are configured to run quality tests to a certain extent (frequent short tests,
occasional longer tests). They run the tests, passing any configuration needed to the Quality
Testing tool. The outcome of the tests are a scalar or an array of scalars to be stored in the
Delivery Tool’s database.
The developers then request the history of a project or an application, possibly specifying the time
range of the query and the type of metric to inspect. As a response they receive a graphical or
tabular representation of the metric history.

A.9.5 Obtaining configuration recommendation
A.9.5.1. Description of interactions
The configuration recommendation is a result of a sophisticated process, which is carried out by
the Configuration Optimization tool. This sequence illustrates how an actor (typically a developer)
puts the process in motion.
As with the previous workflows, the developer first works on the code and the model of the
application, and at some point commits both to the Repository. Considering that the configuration
optimization is still a relatively lengthy non-interactive process, which also needs to use the
resources of the testbed, we preferably move it away from the IDE. Therefore, the developer needs
to schedule the configuration optimization, and this is possible through Delivery Tools.
The Delivery Tools invoke the Configuration Optimization tool, which in turn needs to first obtain
the TOSCA application topology from the Repository as a part of the build’s commit. It then starts
its iteration towards an optimal optimization.
When finished, it posts the result back at the Repository.
This approach of the scenario is a slightly different take from the one described in Section
[Configuration Optimization]. Here we emphasize the use of the Configuration Optimization tool
in an asynchronous (background processing) approach, where the user can set the optimization to
run and then forget it until it finishes.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 51

A.9.5.2. Sequence diagram

A.9.5.3. Data flows
The main data item to flow through this scenario consists of the configuration, i.e., the specific
values of various services’ and application parameters. They start with the Developer, who either
sets some initial values from defaults, manual guesses or any previous runs of the Configuration
Optimization. The configuration gets stored in the Repository with the current build’s version.
The Configuration Optimization updates the configuration values as it iterates through its
algorithm, and the last set values are said to be optimal.
The recommended (optimal) configuration is then available in the Repository for the developers to
use with the subsequent deploys and further application development.
A.10. Quality testing
The requirements elicitation of D1.2 considers the following scenarios (U5.10, U5.11) that
concerns the quality testing component.

ID: U5.10

Title: Performing the quality testing

Task: T5.3

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 52

Priority: REQUIRED

Actor 1: QTESTING_TOOLS

Actor 2: MONITORING_TOOLS

Actor 3: TESTBED

Actor 4: N/A

Flow of Events: 1. QTESTING_TOOLS starts injecting load in the
APPLICATION after signalling to
MONITORING_TOOLS the start of a test
2. The test plan is executed taking into consideration the
dimensions to be explored (e.g. performance, reliability,
etc.)
3. If requested, QTESTING_TOOLS may access
TESTBED APIs to perform the test

Pre-conditions: 1. A quality test has been requested in some scenario
2. Test resources have been provisioned

Post-conditions: 1. Test data has been collected by
MONITORING_TOOLS

Exceptions: N/A

Data Exchanges: N/A

A.10.1 Description of interactions

1- The tester defines a test plan using the interface provided by the IDE. A test plan consists of a
test scenario comprising of a workload over time and the data source that needs to generate the
real load.

2- The tester then initiates the test using the IDE.

3- The load will be injected using appropriate injection driver including the Fault Injection Tool
for different technologies involved in the system under test.

4- When the test plan has been finished, the quality testing tool will inform the user about the
outcome of the test generation.

A.10.2 Sequence diagrams

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 53

A.10.3 Data flows
The main data entity in quality testing tool is the test plan which needs to be in a user readable
XML like format and compatible with other similar tool such as JMeter. The test plan should
define the notion of time unit and the level of the load that will be injected during time periods.
A.11. Fault injection

A.11.1 ID R5.14.2
ID R5.14.2

Title Trigger deliberate outages and problems to assess the application’s behavior under faults

Priority Required

Actors User, VM

A.11.1.1. Description of interactions

• The User starts the Fault Injection tool.

• Using command line options they pass fault and required details.

• Fault Injection Tool Connects to VM and begins Fault.

• Fault information and status is pass to Fault Injection tool which stores this within a log
file.

A.11.1.2. Sequence diagrams

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 54

A.11.1.3. Data flows
As seen in the sequence diagram, the user begins the request to the Fault Injection tool. The Fault
Injection tool then connects to the VM and stores the output of the Fault in a log file for user
access.

A.11.2 ID R5.30

ID R5.30

Title Induced faults in the guest environment

Priority Required

Actors Cloud Admin, Fault Injection Tool, Cloud Platform

A.11.2.1. Description of interactions
● The Cloud Admin starts the Fault Injection tool.
● Using command line options they pass the required Cloud Level fault and required

authentication details.
● Fault Injection Tool Connects to Cloud Platform and authenticates to begin the fault.
● The Fault is then started on the required physical node.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 55

● Fault information and status is pass to Fault Injection tool which stores this within a log
file.

A.11.2.2. Sequence diagrams

A.11.2.3. Data flows
As seen in the sequence diagram, the Cloud Admin starts the request. The Fault Injection tool will
execute the requested action, and before returning the result to the Cloud Admin via storing the
details within an accessible Log file.

A.12. Configuration optimization
The requirements elicitation of D1.2 considers U5.5 as the main scenario that
concerns the Configuration Optimization component.

ID: U5.5

Title: Obtaining configuration recommendation

Task: T5.1

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: DEPLOYMENT_TOOLS

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 56

Actor 3: N/A

Actor 4: N/A

Flow of
Events:

1. DEVELOPER provides the model, fixed parameters and free parameters as
an input to DEPLOYMENT_TOOLS
2. DEPLOYMENT_TOOLS provide recommended values for the free
parameters, optionally quantified with the quality criteria (reliability, efficiency,
safety)
3. DEVELOPER selects from the recommended values to fix all of the
parameters

Pre-
conditions:

1. Model of the application (WP2)
2. Free/fixed parameters in the model (WP2)
3. Output of OPTIMIZATION_TOOLS proposing additional fixed parameters
(WP3)

Post-
conditions:

1. Deployment configuration with parameters set to optimal and recommended
values

Exceptions: OPTIMIZATION_TOOLS and DEPLOYMENT_TOOLS help assign a
complimentary set of parameter values (e.g., number of Hadoop mappers and
reducers)

Data
Exchanges:

A.12.1 Description of interactions

1- The tester provides a list of configuration parameters and potential (exhaustive) set of
configuration options for each parameter. The tester also provides the maximum number of
experiments for which she has the budget for.

2- The tester then starts the tool via IDE.

3- The tool then starts the test by retrieving the configuration template from model repository
4- Prepares the testing scripts and the testbed and load the historical data from data
repository.
5- The configuration optimization tool also performs the initial experiments by doing a small
DoE design to provide some initial data for initial model fitting.
6- The tool then sequentially performs the experiments and after the budget is finished it
gives the optimum configuration as well as the internal machine learning model for performance
predictions in use cases for example, A/B testing or other scenarios as mentioned above. For
doing so it performs the following steps:
a. The configuration optimization tool deploys the configuration by specific parameter
settings by using the DS tool.
b. The tool builds and runs the topology on the testbed.
c. The tool queries the monitoring and augments the experimental data to the data
repository.
d. The tool performs the model refitting on the updated historical data and reason where to
test next using the model prediction of the good locations (good location means low estimates of
latency or high estimates of throughput using the internal machine learning model).

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 57

A.12.1 Data flows

As it is shown in the sequence diagram, two major entities are involved in quality testing tool: (i)
the configuration file, (ii) the performance data. The configuration template is retrieved by the tool
through model repository in a YAML file. The appropriate configuration is then set in the template
by appropriate values. In order to perform model fitting, tool requires to retrieve the performance
data and augment new points in the repository. These performance data serve as the main
ingredient for reasoning where to test next in the tool. Also further internal entities are used in the
model for storing the historical configurations and also storing the machine learning model and its
estimates.

Deliverable 1.3. Architecture definition and integration plan – initial version

Copyright © 2016, DICE consortium – All rights reserved 58

References
[1] Papyrus modeling environment tool. https://eclipse.org/papyrus/
[2] ECore EAnnotation http://wiki.eclipse.org/STEM_Model_Generator/EAnnotations
[3] Modelling Software KIT (MOSKitt) https://www.prodevelop.es/en/products/MOSKitt
[4] Jenkins https://jenkins-ci.org/
[5] Eclipse Modeling Framework (EMF) https://eclipse.org/modeling/emf/
[6] Elasticsearch https://www.elastic.co/products/elasticsearch
[7] Kibana https://www.elastic.co/products/kibana
[8] Kazman, R.; Klein, M. & Clements, P. (2000), 'ATAM: Method for Architecture

Evaluation' (CMU/SEI-2000-TR-004) , Technical report, Carnegie Mellon University,
Software Engineering Institute (SEI).

[9] Balalaie A, Heydarnoori A, Jamshidi P., “Microservices Architecture Enables DevOps: an
Experience Report on Migration to a Cloud-Native Architecture”. IEEE Software, 2016.

[10] Balalaie A, Heydarnoori A, Jamshidi P., “Microservices Migration Patterns”, Technical
Report, Sharif University of Technology, Technical Report No. 1, TRSUT-CE-ASE-2015-
01 2015. [Available Online at http://arminb. me/microservices/report.pdf]

[11] Balalaie, A., Heydarnoori, A. and Jamshidi, P., “Migrating to cloud-native architectures
using microservices: An experience report,” in In Proceedings of the 1st International
Workshop on Cloud Adoption and Migration, September 2015.

[12] Brunnert, A., et al., “Performance-oriented DevOps: A Research Agenda”, SPEC Research
Group --- DevOps Performance Working Group, Standard Performance Evaluation
Corporation (SPEC), SPEC-RG-2015-01 (2015).

