

Developing Data-Intensive Cloud

Applications with Iterative Quality

Enhancements

Requirement Specification –

Companion Document

Deliverable 1.2

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 2

Table of Contents

TABLE OF CONTENTS .. 2

LIST OF TABLES .. 3

APPENDIX A. DICE DEMONSTRATORS REQUIREMENTS ... 10

A.1. The NewsAsset demonstrator Requirements ... 10

A.2. Big Data for e-Government ... 14

A.3. DICE-based Geo-fencing for the Maritime Sector .. 15

APPENDIX B. TECHNICAL REQUIREMENTS ... 21

B.1. WP1 Requirements .. 21

B.1.1 Consolidated requirements .. 21

B.1.2 Detailed requirements .. 24

B.2. WP2 Requirements .. 32

B.2.1 Consolidated requirements .. 32

B.2.2 Detailed requirements .. 36

B.3. WP3 Requirements .. 50

B.3.1 Consolidated requirements .. 50

B.3.2 Detailed requirements .. 53

B.4. WP4 Requirements .. 61

B.4.1 Consolidated requirements .. 61

B.4.2 Detailed requirements .. 65

B.5. WP5 Requirements .. 80

B.5.1 Consolidated requirements .. 80

B.5.2 Detailed requirements .. 83

APPENDIX C. TECHNICAL SCENARIOS .. 99

C.1. WP1 Scenarios .. 99

C.2. WP2 Scenarios .. 100

C.3. WP3 Scenarios .. 104

C.4. WP4 Scenarios .. 107

C.5. WP5 Scenarios .. 116

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 3

List of Tables
Table 1: Handling of data streams from social network and web-based platforms. 10

Table 2: Scaling requirement. ... 10

Table 3: Auto-scaling requirement. ... 10

Table 4: Requirement for the selection of public cloud providers. ... 11

Table 5: Distributed processing requirement. ... 11

Table 6: Requirement for the simulation and predictive analysis. .. 11

Table 7: Requirement for the quality metrics monitoring. .. 12

Table 8: Requirement for deployment models. ... 12

Table 9: Requirement for the bottleneck detection. .. 12

Table 10: Expression of non-functional requirements. ... 13

Table 11: Common-model vocabularies. .. 13

Table 12: Methodology blueprint requirement. ... 14

Table 13: Design requirement. .. 14

Table 14: Performance impact requirement. ... 14

Table 15: Storage requirement. ... 14

Table 16: Requirement for deployment models. ... 15

Table 17: DIA analysis and assessment. ... 15

Table 18: Requirement for the monitoring of quality and performance metrics. 15

Table 19: Requirement for the scalability analysis. .. 15

Table 20: Simulation and predictive analysis of new business rules. ... 15

Table 21: Scalability analysis requirement. ... 16

Table 22: Requirement for the quality metrics monitoring. .. 16

Table 23: Requirement for deployment models. ... 16

Table 24: Requirement for the bottleneck detection. .. 17

Table 25: Requirement for the testing and load stressing scenarios. ... 17

Table 26: Performance impact requirement. ... 17

Table 27: Continuous integration requirement. ... 18

Table 28: Requirement for the text fixtures generation. .. 18

Table 29: Requirement for the running of simulation environments. ... 18

Table 30: Requirement for the execution metrics. .. 19

Table 31: Requirement for the reliability results comparison. .. 19

Table 32: Deployment requirements. .. 19

Table 33: Deployment monitoring requirement. ... 20

Table 34: Requirement for the deployment scripts. .. 20

Table 35: Requirement for the stereotyping of UML diagrams and DICE profile. 21

Table 36: Requirement for the DICE methodology guidance. .. 21

Table 37: Continuous integration tools requirement. .. 21

Table 38: Requirement for the loading of annotated UML model. ... 22

Table 39: Property verification requirement. .. 22

Table 40: Graphical output requirement. ... 22

Table 41: Requirement for the visualisation of analysis results. ... 23

Table 42: Requirement for the loading of safety and privacy properties. ... 23

Table 43: The Stereotyping of UML diagrams with DICE profile Requirement. 24

Table 44: The Guides through the DICE methodology Requirement. .. 24

Table 45: The Quality testing tools IDE integration Requirement. ... 24

Table 46: The Continuous integration tools IDE integration Requirement. .. 25

Table 47: The Running tests from IDE without committing to VCS Requirement. 25

Table 48: The IDE support to the use of profile Requirement. ... 25

Table 49: The Metric selection Requirement. ... 26

Table 50: The Timeout specification Requirement. .. 26

Table 51: The Usability Requirement. .. 26

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 4

Table 52: The Loading the annotated UML model Requirement. .. 27

Table 53: The Usability of the IDE-VERIFICATION_TOOLS interaction Requirement. 27

Table 54: The Loading of the property to be verified Requirement. ... 27

Table 55: The Graphical output Requirement. .. 28

Table 56: The Graphical output of erroneous behaviors Requirement. .. 28

Table 57: The Loading a DDSM level model Requirement. ... 29

Table 58: The Resource consumption breakdown Requirement. .. 29

Table 59: The Bottleneck Identification Requirement. ... 29

Table 60: The Model parameter uncertainties Requirement. .. 30

Table 61: The Model parameter confidence intervals Requirement. .. 30

Table 62: The Visualization of analysis results Requirement. .. 30

Table 63: The Safety and privacy properties loading Requirement. ... 31

Table 64: The Feedback from safety and privacy properties monitoring to UML models concerning

violatedtime bounds Requirement. .. 31

Table 65: The Relation between ANOMALY_TRACE_TOOLS and IDE Requirement. 31

Table 66: Requirement for the DICE methodological paradigm. ... 32

Table 67: Requirement for the origin of the abstraction layer. ... 32

Table 68: DICE Constraints Specification Requirement ... 32

Table 69: Requirement for the DICE profile technology-specific constraints. 33

Table 70: Requirement for the DICE profile separation-of-concerns. .. 33

Table 71: Requirement for the data-intensive Quality of Service (QoS). ... 33

Table 72: Requirement for the DICE topologies. .. 34

Table 73: Requirement for DICE extension points. .. 34

Table 74: Requirement for the DICE deployment-specific views. ... 34

Table 75: IDE support to the use of profile requirement. .. 35

Table 76: DICE Analysis Focus. ... 35

Table 77: The Profile Basis Requirement. .. 36

Table 78: The Abstraction Layer Origin Requirement. ... 36

Table 79: The Relation with MARTE UML Profile Requirement. ... 36

Table 80: The Constraints Definition Requirement. ... 37

Table 81: The DICE Profile Performance Annotations Requirement. .. 37

Table 82: The DICE Profile Reliability Annotations Requirement. ... 37

Table 83: The DICE Profile Main DIA Concerns - Structure and Topology Requirement. 37

Table 84: The DICE Profile Main DIA Concerns - Flow and Behavior Requirement. 38

Table 85: The DICE Profile Pre- and Post-Processing Requirement. ... 38

Table 86: The DICE Profile Tech-Specific Constraints Requirement. ... 38

Table 87: The DICE Profile Separation-of-Concerns Requirement. ... 39

Table 88: The DICE Profile Supervision and Control Requirement. .. 39

Table 89: The DICE Profile Data Structure Requirement. .. 39

Table 90: The DICE Profile Data Communication Requirement. ... 40

Table 91: The DICE Profile Sub-Structures Requirement. ... 40

Table 92: The DICE Analysis Focus Requirement. .. 41

Table 93: The DICE Methodological Paradigm Requirement. ... 41

Table 94: The DICE Methodology support Diagrams Requirement. .. 41

Table 95: The DICE Design Process Requirement. .. 42

Table 96: The DICE Profile Views Requirement. ... 42

Table 97: The DICE Component View: this view allows designers to elaborate on the organizational

structure ofthe components and possibly the responsible entities involved in the DIAinteractions for the

purpose of realising the DIA’s intended use; (4) A QoS Cross-Cutti Requirement. 42

Table 98: The DICE State-Behavioral View Requirement. .. 43

Table 99: The DICE Sequence-Behavioral View Requirement. ... 43

Table 100: The DICE QoS Cross-Cutting View Requirement. ... 43

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 5

Table 101: The A Usage Cross-Cutting View; Requirement. ... 44

Table 102: The Data-Intensive QoS Requirement. ... 44

Table 103: The DICE DPIM Relations Requirement. ... 44

Table 104: The DICE DPIM Concern - Data and I/O Logic Requirement. .. 45

Table 105: The DICE Extension-Points Requirement. ... 45

Table 106: The DICE Splits Requirement. .. 45

Table 107: The DICE Topologies Requirement. ... 46

Table 108: The DICE Access Policies Requirement. .. 46

Table 109: The DICE Functional Definition Requirement. .. 46

Table 110: The DICE Deployment Specific Views Requirement. .. 47

Table 111: The DICE Framework Overrides Requirement... 47

Table 112: The DICE Resource Control Requirement. ... 48

Table 113: The DICE Scripting Support Requirement. .. 48

Table 114: The DIA Application Bundling Requirement. .. 48

Table 115: The IDE support to the use of profile Requirement. ... 49

Table 116: The DICE Deployment Constructs Origin Requirement. ... 49

Table 117: The DICE Deployment Required and Provided Properties Requirement. 49

Table 118: The DICE Deployment Required and Provided Execution Platforms Requirement. 50

Table 119: The DICE Deployment - NFV Requirement. .. 50

Table 120: Requirement for the Model to Model (M2M) transformation. ... 50

Table 121: Requirement for the annotations. .. 51

Table 122: Requirement for the generation of traces from the system model. 51

Table 123: Requirement for the cost/quality balance. ... 51

Table 124: Requirement for the Service Level Agreement (SLA) specification and compliance. 52

Table 125: Requirement for the optimisation timeout. ... 52

Table 126: Requirement for the white/black box transparency. .. 52

Table 127: The M2M Transformation Requirement. .. 53

Table 128: The Taking into account relevant annotations Requirement. .. 53

Table 129: The Transformation rules Requirement. ... 53

Table 130: The Simulation solvers Requirement. ... 54

Table 131: The Simulation of hosted big data services Requirement. .. 54

Table 132: The Transparency of underlying tools Requirement. .. 54

Table 133: The Generation of traces from the system model Requirement. ... 55

Table 134: The Cost/quality balance Requirement. .. 55

Table 135: The Relaxing constraints Requirement. .. 55

Table 136: The SLA specification and compliance Requirement. .. 56

Table 137: The Optimization timeout Requirement. ... 56

Table 138: The Modelling abstraction level Requirement. ... 57

Table 139: The White/black box transparency Requirement. ... 57

Table 140: The Ranged or extended what if analysis Requirement. ... 57

Table 141: The Verification of temporal safety/privacy properties Requirement. 58

Table 142: The Metric selection Requirement. ... 58

Table 143: The Timeout specification Requirement. .. 58

Table 144: The Usability Requirement. .. 59

Table 145: The Loading the annotated UML model Requirement. .. 59

Table 146: The Usability of the IDE-VERIFICATION_TOOLS interaction Requirement. 59

Table 147: The Loading of the property to be verified Requirement. ... 60

Table 148: The Graphical output Requirement. .. 60

Table 149: The Graphical output of erroneous behaviors Requirement. .. 60

Table 150: The Loading a DDSM level model Requirement. ... 61

Table 151: Requirement for the monitoring data extraction. .. 61

Table 152: Requirement for access restriction to the monitoring data. ... 61

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 6

Table 153: Monitoring visualisation requirement. .. 62

Table 154: Requirement for the refactoring methods. ... 62

Table 155: Enhancement tools version difference requirement. ... 62

Table 156: Requirement for the parameterization of simulation and optimization models. 63

Table 157: Requirement for the time-based ordering of monitoring data entries. 63

Table 158: Requirement for the data size trends. .. 63

Table 159: Requirement for the propagation of changes/automatic annotation of UML models. 63

Table 160: Requirement for the loading of safety and privacy properties. ... 64

Table 161: Requirement for the monitoring of safety and privacy properties. 64

Table 162: Requirement for the correlation between data stored in the DW and DICE UML models. 64

Table 163: The Monitoring data warehousing Requirement. .. 65

Table 164: The Monitoring data warehouse schema Requirement. .. 65

Table 165: The Monitoring data versioning Requirement. ... 66

Table 166: The Supplying the version number Requirement. ... 66

Table 167: The Monitoring data extractions Requirement. ... 66

Table 168: The Monitoring data format transformations Requirement. ... 66

Table 169: The Monitoring data retention policy Requirement. ... 67

Table 170: The Monitoring data access restrictions Requirement. ... 67

Table 171: The Monitoring tools REST API Requirement. ... 67

Table 172: The Monitoring Visualization Requirement.. 68

Table 173: The Data Warehouse replication Requirement. .. 68

Table 174: The Resource consumption breakdown Requirement. .. 68

Table 175: The Bottleneck Identification Requirement. ... 69

Table 176: The Semi-automated anti-pattern detection Requirement. .. 69

Table 177: The Refactoring methods Requirement. .. 69

Table 178: The Enhancement tools version difference Requirement. ... 70

Table 179: The Enhancement tools data acquisition Requirement. .. 70

Table 180: The Enhancement tools model access Requirement. .. 70

Table 181: The Parameterization of simulation and optimization models. Requirement. 71

Table 182: The Model parameter uncertainties Requirement. .. 71

Table 183: The Model parameter confidence intervals Requirement. .. 71

Table 184: The Time-based ordering of monitoring data entries Requirement. 72

Table 185: The Data size trends Requirement. ... 72

Table 186: The Anomaly detection in APPLICATION quality Requirement. 72

Table 187: The Unsupervised Anomaly Detection Requirement. ... 73

Table 188: The Supervised Anomaly Detection Requirement. ... 73

Table 189: The Contextual Anomalies Requirement. ... 73

Table 190: The Collective anomalies Requirement. ... 74

Table 191: The Predictive Model saving for Anomaly Detection Requirement. 74

Table 192: The Semi-automated data labelling Requirement. .. 74

Table 193: The Adaptation of thresholding Requirement. .. 75

Table 194: The Visualization of analysis results Requirement. .. 75

Table 195: The Report generation of analysis results Requirement. ... 75

Table 196: The Propagation of changes/automatic annotation of UML models Requirement. 76

Table 197: The Safety and privacy properties loading Requirement. ... 76

Table 198: The Definition of time window of interest for safety/privacy properties Requirement. 76

Table 199: The Mechanisms for the definition of the time window of interest for safety/privacy

propertiesRequirement. ... 77

Table 200: The Event occurrences detection for safety and privacy properties monitoring Requirement.

 ... 77

Table 201: The Safety and privacy properties monitoring Requirement. ... 77

Table 202: The Safety and privacy properties result reporting Requirement. 78

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 7

Table 203: The Feedback from safety and privacy properties monitoring to UML models Requirement.

 ... 78

Table 204: The Feedback from safety and privacy properties monitoring to UML models concerning

violatedtime bounds Requirement. .. 78

Table 205: The Correlation between data stored in the DW and DICE UML models Requirement. ... 79

Table 206: The Relation between ANOMALY_TRACE_TOOLS and IDE Requirement. 79

Table 207: The Monitoring for quality tests Requirement. ... 79

Table 208: The Tag monitoring data with OSLC tags Requirement. .. 80

Table 209: Requirement for the continuous integration and versioning. .. 80

Table 210: Requirement for the graphical user interface for continuous integration. 80

Table 211: Requirement for the quality testing scope. .. 81

Table 212: Requirement for the extended quality testing scope. .. 81

Table 213: Requirements for the quality testing results. ... 81

Table 214: Requirement for the autonomy of deployment tools. .. 82

Table 215: Requirement for the scope of deployment tools. ... 82

Table 216: Requirement for the extendibility and flexibility of the deployment tools. 82

Table 217: Support of deployment tools for Platform-as-aService (PaaS) requirement. 83

Table 218: The Versioning Requirement. ... 83

Table 219: The Testing project Requirement. ... 83

Table 220: The Continuous integration tools deployment Requirement. .. 84

Table 221: The Translation of TOSCA models Requirement. .. 84

Table 222: The Deployment plan support Requirement. .. 84

Table 223: The Translation tools autonomy Requirement. ... 85

Table 224: The Deployment plan contents Requirement. ... 85

Table 225: The Deployment plans execution tools Requirement. ... 85

Table 226: The Deployment tools transparency Requirement. ... 85

Table 227: The Deployment plans extendability Requirement. .. 86

Table 228: The Deployment plans portability Requirement. .. 86

Table 229: The Deployment of the application in a test environment Requirement. 86

Table 230: The Starting the monitoring tools Requirement. ... 87

Table 231: The User-provided initial data retrieval Requirement. .. 87

Table 232: The Test data generation Requirement. ... 87

Table 233: The Data loading support Requirement. ... 88

Table 234: The Data loading hook Requirement. ... 88

Table 235: The Definition of quality test Requirement. .. 88

Table 236: The Representative test configurations generation Requirement. 89

Table 237: The Starting the quality testing Requirement. ... 89

Table 238: The Test run independence Requirement. ... 89

Table 239: The Test outcome Requirement. ... 90

Table 240: The User's unit and regression tests code execution inclusion Requirement. 90

Table 241: The Continuous integration tools dashboard Requirement. .. 90

Table 242: The Quality testing tools IDE integration Requirement. ... 91

Table 243: The Testing results feedback Requirement. .. 91

Table 244: The Test the application for efficiency Requirement. ... 91

Table 245: The Test the application for reliability Requirement. ... 91

Table 246: The Test the behaviour when resources become exhausted Requirement. 92

Table 247: The Trigger deliberate outages and problems to assess the application’s behaviour under

faultsRequirement. .. 92

Table 248: The Test the application for safety Requirement. ... 92

Table 249: The Test the application for data protection Requirement. ... 93

Table 250: The Provide monitoring of the quality aspect of the development evolution (quality

regression)Requirement. .. 93

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 8

Table 251: The Quick testing vs comprehensive testing Requirement. .. 93

Table 252: The Deployment configuration review Requirement. ... 94

Table 253: The Build acceptance Requirement. .. 94

Table 254: The Deployment plans reuse Requirement. .. 94

Table 255: The Continuous integration tools access control Requirement. .. 95

Table 256: The Continuous integration tools IDE integration Requirement. .. 95

Table 257: The Running tests from IDE without committing to VCS Requirement. 95

Table 258: The Flexiant platform simulated or induced faults Requirement. 96

Table 259: The Recommender Engine and Optimization Requirement. ... 96

Table 260: The Brute-force approach for deployment configuration deployment Requirement. 96

Table 261: The Recommender Engine API Requirement. .. 97

Table 262: The Induced faults in the guest environment Requirement. .. 97

Table 263: The Reactions to problems in the runtime Requirement. .. 97

Table 264: The Testbed problem notifications Requirement. ... 98

Table 265: The Stereotyping a UML diagram with the DICE profile to obtain a Platform-Indep. Model

Scenario. .. 99

Table 266: The Analysis, simulation, verification, feedback, and transformations until obtaining a

deployment model Scenario. ... 99

Table 267: The Workflow Specification Scenario. ... 100

Table 268: The Cost Analysis Scenario. ... 100

Table 269: The Data-flow specification Scenario. .. 101

Table 270: The Function Specification Scenario. ... 101

Table 271: The Framework Override Scenario. .. 102

Table 272: The Defining Data-Splits Scenario. .. 102

Table 273: The Topology Specification Scenario. .. 103

Table 274: The Framework Control Scenario. .. 103

Table 275: The Verification of reliability or performance properties from a DPIM/DTSM DICE

annotated UMLmodel Scenario. .. 104

Table 276: The Verification of throughput from a DPIM DICE annotated UML model Scenario. ... 105

Table 277: The Verification of safety and privacy properties from a DICE UML model Scenario. .. 105

Table 278: The Optimization of the deployment from a DDSM DICE annotated UML model with

reliability andperformance constraints Scenario. .. 106

Table 283: The Monitor a big data framework Scenario... 107

Table 284: The Metrics Specification Scenario. ... 107

Table 285: The Monitoring tools registration Scenario... 108

Table 286: The Monitored Data Storage Scenario. ... 108

Table 287: The Data Warehouse query Scenario. ... 109

Table 288: The Data Cleaning Scenario. ... 109

Table 289: The Metrics Visualization Scenario. ... 110

Table 290: The Anomaly detection model training Scenario. ... 111

Table 291: The Offline Anomaly detection Scenario. ... 111

Table 292: The Detect safety/privacy properties violation Scenario. ... 112

Table 293: The Anti-pattern detection Scenario. .. 112

Table 294: The Anti-pattern driven architectural refactoring Scenario. ... 113

Table 295: The Bottleneck detection based on testing data Scenario. .. 114

Table 296: The Automatic extraction of model parameters Scenario. .. 114

Table 297: The Quality regression Scenario. .. 115

Table 298: The Building the configuration description Scenario. ... 116

Table 299: The Continuous deployment sequence Scenario. .. 116

Table 300: The Continuous integration sequence Scenario. ... 117

Table 301: The Obtaining configuration recommendation Scenario. ... 118

Table 302: The One-click deployment and testing Scenario. .. 119

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 9

Table 303: The Configuration recommender engine training Scenario. ... 119

Table 304: The Initial data preparation Scenario. ... 120

Table 305: The Provisioning of the test resources Scenario. .. 121

Table 306: The Performing the quality testing Scenario. .. 121

Table 307: The Testing the application against external faults Scenario. ... 122

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 10

Appendix A. DICE Demonstrators Requirements

A.1. The NewsAsset demonstrator Requirements

Table 1: Handling of data streams from social network and web-based platforms.

ID: ATC.1

Title: Handle streams of data fed from social network and web-based platforms

Priority of

accomplishment:
Must have

Type: Requirement

Description: As an ARCHITECT I want to be able to design a system that will include services that

cope with high rates of data which vary in terms of size and format

Rationale: Address the challenge to manage the complexity of large software and data-intensive

systems. The architecture design of such a system must deal with a workload that is

unpredictable due to its nature (social media items vary in number and size in an

unpredictable way

Supporting

material:
D6.1 (M16)

Other comments: N/A

Table 2: Scaling requirement.

ID: ATC.2

Title: Scaling

Priority of

accomplishment:
Must have

Type: Requirement

Description: As an ARCHITECT I want to be able to design a system that will be able to scale out to

serve a wide range of workloads. The system should be linearly scalable, and it should

scale out rather than up, meaning that throwing more machines at the problem will do the

job

Rationale: Analyze real time streaming data (for instance filtering, pre-processing and validation)

and provide insights.

Supporting

material:
D6.1 (M16)

Other comments: This requirement is connected to ATC.3

Table 3: Auto-scaling requirement.

ID: ATC.3

Title: Auto - Scaling

Priority of

accomplishment:
Should have

Type: Requirement

Description: As an ARCHITECT I want to be able to set monitoring parameter values as thresholds for

triggering automatic scaling. At the same time I want to be able to monitor performance

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 11

and quality metrics and evaluate the impact of the data rate in order to re-configure auto-

scaling policy details and desired performance rates. Which are the thresholds for

efficiently managing high loads?

Rationale: The two goals of auto-scaling are to optimize resources used by an application (which

saves money), and to minimize human intervention (which saves time and reduces errors)

Supporting

material:
D6.1 (M16)

Other comments: This requirement is connected to ATC.2.

Involves SIMULATION_TOOLS, MONITORING_TOOLS, QTESTING_TOOLS

Table 4: Requirement for the selection of public cloud providers.

ID: ATC.4

Title: Selection of public cloud providers

Priority of

accomplishment:
Could have

Type: Requirement

Description: As an ADMINISTRATOR I want to obtain models of well – known cloud offerings (e.g.

Amazon EC2) related to data management. For instance location, protections (e.g.

encryption), who has access to it, both in the short-term and long-term

Rationale: The rationale of modelling public cloud providers is to identify offerings related to data

security and privacy. Where are the data located, which is the data management policy

offered, etc.

Supporting

material:
D6.1 (M16)

Other comments:

Table 5: Distributed processing requirement.

ID: ATC.5

Title: Distributed processing

Priority of

accomplishment:
Must have

Type: Requirement

Description: As an ARCHITECT I want to be able to model a system that distributes its processing

functionalities to different components/modules.

Rationale: Avoid a centralized architecture. Push processing functionalities to several different

components in order to perform quick and accurate computations. These components may

serve different business logics or could be instances of the same one hosted on different

nodes.

Supporting

material:
D6.1 (M16)

Other comments:

Table 6: Requirement for the simulation and predictive analysis.

ID: ATC.6

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 12

Title: Simulation and predictive analysis

Priority of

accomplishment:
Should have

Type: Requirement

Description: As a REQ_ENGINEER/QA_ENGINEER I want to measure the impact of different

architecture alternatives based on performance and cost. For example, deploy and run the

application on an isolated simulation environment with historical data to verify that

quality tests pass

Rationale: Identify the best architecture alternatives according to the workload managed. Give

insights on current quality and performance metrics to iteratively improve them

Supporting

material:
D6.1 (M16)

Other comments: Involves SIMULATION_TOOLS

Table 7: Requirement for the quality metrics monitoring.

ID: ATC.7

Title: Quality metrics monitoring

Priority of

accomplishment:
Must have

Type: Requirement

Description: As an QA_ENGINEER_I want to automatically extract quality metrics iteratively (from

current version to compare with previous and next versions) to improve those metrics on

following versions

Rationale: Monitor throughput, fault tolerance, response time and availability

Supporting

material:
D6.1 (M16)

Other comments: Involves MONITORING_TOOLS, QTESTING_TOOLS

Table 8: Requirement for deployment models.

ID: ATC.8

Title: Deployment models

Priority of

accomplishment:
Could have

Type: Requirement

Description: As an ARCHITECT I want to model deployment configuration to automatically generate

deployment scripts

Rationale:

Supporting

material:
D6.1 (M16)

Other comments: Same as PO.4.

Involves TRANSFORMATION_TOOLS, DEPLOYMENT_TOOLS

Table 9: Requirement for the bottleneck detection.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 13

ID: ATC.9

Title: Bottleneck detection

Priority of

accomplishment:
Must have

Type: Requirement

Description: As a DEVELOPER I want to know the bottlenecks of my NLP processing so that I can

fix them for better performance

Rationale:

Supporting

material:
D6.1 (M16)

Other comments: Same as PO.5

Involves VERIFICATION_TOOLS, ENHANCEMENT_TOOLS,

MONITORING_TOOLS, TESTING_TOOLS

Table 10: Expression of non-functional requirements.

ID: ATC.10

Title: Express non-functional requirements

Priority of

accomplishment:
Should have

Type: Requirement

Description: As an ARCHITECT I want to have tools to express non-functional requirements that will

be considered when modeling my system

Rationale: In the current version of the system non- functional requirements are defined in a textual

way making their adoption extremely difficult

Supporting

material:

Other comments:

Table 11: Common-model vocabularies.

ID: ATC.11

Title: Common model vocabularies

Priority of

accomplishment:
Should have

Type: Requirement

Description: As an ARCHITECT I want to obtain common domain-independent and domain-

dependent vocabularies (meta-models, UML profiles, etc.) that can be used to describe

application’s components and express requirements (if possible at component level),

enabling a common understanding

Rationale: Common vocabularies can be beneficiary when describing similar components.

Supporting

material:

Other comments:

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 14

Table 12: Methodology blueprint requirement.

ID: ATC.12

Title: Methodology blueprint

Priority of

accomplishment:
Must have

Type: Requirement

Description: As an ARCHITECT/DEVELOPER I want to obtain a graphical representation

(outline) of the methodology process integrated within the main tooling suite, and

easily accessible throughout the suite. A cheat sheet explaining the overall process and

details for each task. Links to launch required tools for each task from the cheat sheet

or the graphical outline

Rationale: Can be used as a tutorial for the end user

Supporting

material:

Other comments:

A.2. Big Data for e-Government

Table 13: Design requirement.

ID: NETF.1

Title: Design

Priority of

accomplishment:
Must have

Description: DIA design guidelines through DICE: a kind of graphical representation of the workflow

- the methodology (showing achieved/remaining steps). It can be either a specific editor

or a technical view (Eclipse part) such GMF Dashboard. This component must be

interactive, i.e. can be used to automatically navigate through diagrams, etc.

Table 14: Performance impact requirement.

ID: NETF.2

Title: Performance impact

Priority of

accomplishment:
Must have

Description: I want to know the impact on the performance metrics when using different architecture

alternatives for different quality and performance indicators.

Table 15: Storage requirement.

ID: NETF.3

Title: Storage

Priority of

accomplishment:
Must have

Description: The key requirement of big data storage is that it can handle very large amounts of data

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 15

and it has to be easily scalable to accommodate data growth, and that it can provide the

input/output operations per second (IOPS) necessary to deliver data to analytics tools. In

fact, DICE must provide a way to model such technology and express this requirement in

the model.

Table 16: Requirement for deployment models.

ID: NETF.4

Title: Deployment models

Priority of

accomplishment:
Could have

Description: As an ARCHITECT I want to model deployment configuration to automatically generate

deployment scripts.

Table 17: DIA analysis and assessment.

ID: NETF.5

Title: DIA analysis and assessment

Priority of

accomplishment:
Must have

Description: Analyse and validate the application architecture using various data sources and

computational logic.

Table 18: Requirement for the monitoring of quality and performance metrics.

ID: NETF.6

Title: Quality, performance and other metrics monitoring

Priority of

accomplishment:
Must have

Description: Automatically extract quality and performance metrics iteratively to improve those

metrics on following versions:

 monitoring data and logs to detect candidate anomalies and report to user

 detecting data design anti-patterns

 estimate root-causes of quality anomalies

Table 19: Requirement for the scalability analysis.

ID: NETF.7

Title: Scalability analysis

Priority of

accomplishment:
Should have

Description: Cloud deployment and scalability

 Evaluate cloud alternatives for deployment: Cost versus performance.

 Automatically create cloud deployment configurations

A.3. DICE-based Geo-fencing for the Maritime Sector

Table 20: Simulation and predictive analysis of new business rules.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 16

ID: PO.1

Title: Simulation and predictive analysis of new business rules

Priority of

accomplishment:
Must have

Type: Requirement

Description: As a REQ_ENGINEER I want to know the impact on the quality and performance

metrics of a new CEP business rule so that I can evaluate different alternative

requirements with a lower impact on quality and performance

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves SIMULATION_TOOLS

Table 21: Scalability analysis requirement.

ID: PO.2

Title: Scalability analysis

Priority of

accomplishment:
Should have

Type: Requirement

Description: As an ARCHITECT I want to know the impact on the performance and quality metrics of

changes in the data stream (more data), the areas of the port to monitor (more zones,

bigger, more complex) to make changes in the architecture

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves SIMULATION_TOOLS, MONITORING_TOOLS

Table 22: Requirement for the quality metrics monitoring.

ID: PO.3

Title: Performance and other metrics monitoring

Priority of

accomplishment:
Must have

Type: Requirement

Description: As an ARCHITECT I want to automatically extract performance metrics iteratively

(from current version to compare with previous and next versions) to improve those

metrics on following versions

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves MONITORING_TOOLS, QTESTING_TOOLS

Table 23: Requirement for deployment models.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 17

ID: PO.4

Title: Deployment models

Priority of

accomplishment:
Could have

Type: Requirement

Description: As an ARCHITECT I want to model deployment configuration to automatically generate

deployment scripts

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves TRANSFORMATION_TOOLS, DEPLOYMENT_TOOLS

Table 24: Requirement for the bottleneck detection.

ID: PO.5

Title: Bottleneck detection

Priority of

accomplishment:
Should have

Type: Requirement

Description: As a developer I want to know the bottlenecks of my CEP rules, AIS data parsing

implementation so that I can fix them for better performance

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves VERIFICATION_TOOLS, ENHANCEMENT_TOOLS,

MONITORING_TOOLS, TESTING_TOOLS

Table 25: Requirement for the testing and load stressing scenarios.

ID: PO.6

Title: Testing and load stressing scenarios

Priority of

accomplishment:
Should have

Type: Requirement

Description: As a DEVELOPER I want to configure testing and load stressing scenarios so I can

debug concrete CEP business rules on different situations

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves DEPLOYMENT_TOOLS, CI_TOOLS, QTESTING_TOOLS, TESTBED

Table 26: Performance impact requirement.

ID: PO.7

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 18

Title: Performance impact

Priority of

accomplishment:
Must have

Type: Requirement

Description: As a DEVELOPER I want to know the impact on the performance metrics when I change

the implementation of a CEP business rule so that I can improve the implementation for

better performance

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves OPTIMIZATION_TOOLS, ENHANCEMENT_TOOLS

Table 27: Continuous integration requirement.

ID: PO.8

Title: Model continuous integration jobs

Priority of

accomplishment:
Could have

Type: Requirement

Description: As a QA_ENGINEER I want to model continuous integration to automatically generate

and configure continuous integration jobs

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves DEPLOYMENT_TOOLS, CI_TOOLS, TRANSFORMATION_TOOLS

Table 28: Requirement for the text fixtures generation.

ID: PO.9

Title: Test fixtures generation

Priority of

accomplishment:
Could have

Type: Requirement

Description: As a QA_ENGINEER I want to generate test fixtures to build simulation environments

Rationale: In the context of Posidonia Operations a test fixture is a portion of the data extracted

from a real time execution. This test fixture (data) is then injected into the system to

reproduce concrete scenarios

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves QTESTING_TOOLS, CI_TOOLS

Table 29: Requirement for the running of simulation environments.

ID: PO.10

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 19

Title: Run simulation environments

Priority of

accomplishment:
Must have

Type: Requirement

Description: As a QA_ENGINEER I want to automatically run isolated testing environments to

validate integration tests

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves SIMULATION_TOOLS, DEPLOYMENT_TOOLS, CI_TOOLS

Table 30: Requirement for the execution metrics.

ID: PO.11

Title: Execution metrics

Priority of

accomplishment:
Must have

Type: Requirement

Description: As a QA_TESTER I want to get real time execution metrics so I can improve them

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves MONITORING_TOOLS, QTESTING_TOOLS

Table 31: Requirement for the reliability results comparison.

ID: PO.12

Title: Reliability results comparison

Priority of

accomplishment:
Must have

Type: Requirement

Description: As a QA_TESTER I want to know the reliability of the results of the system among

versions testing with different datasets so I can validate the correctness of the

development

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves MONITORING_TOOLS, ANOMALY_TRACE_TOOLS, QTESTING_TOOLS

Table 32: Deployment requirements.

ID: PO.13

Title: Deployment requirements

Priority of Must have

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 20

accomplishment:

Type: Requirement

Description: As an ADMINISTRATOR given some port requirements (number of vessels, number of

messages per second, number of CEP rules, areas to monitor) I want to get insights on

hardware deployment requirements I want to learn how much RAM, CPU, etc. will be

required to get a certain performance

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves DEPLOYMENT_TOOLS

Table 33: Deployment monitoring requirement.

ID: PO.14

Title: Deployment monitoring

Priority of

accomplishment:
Must have

Type: Requirement

Description: As an ADMINISTRATOR I want to monitor the status of the deployed system so I can

take actions when something fails or is about to failing

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves MONITORING_TOOLS, ANOMALY_TRACE_TOOLS

Table 34: Requirement for the deployment scripts.

ID: PO.15

Title: Deployment scripts

Priority of

accomplishment:
Should have

Type: Requirement

Description: As an ADMINISTRATOR I want to get deployment scripts for a given cloud

environment

Rationale:

Supporting

material:
See: DICE-based Geo-fencing for the Maritime Sector (POSIDONIA OPERATIONS)

Other comments: Involves DEPLOYMENT_TOOLS

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 21

Appendix B. Technical Requirements

B.1. WP1 Requirements

B.1.1 Consolidated requirements

Table 35: Requirement for the stereotyping of UML diagrams and DICE profile.

ID: R1.1

Title: Stereotyping of UML diagrams with DICE profile

Priority of

accomplishment:
Must have

Type: Requirement

Description: Open-source modelling tool with XMI and UML2.X (2.4 or 2.5) support

Rationale: Support quality-related decision-making

Supporting

material:
N/A

Other comments: Stereotypes of the DICE profile will be applied in Papyrus UML models

Table 36: Requirement for the DICE methodology guidance.

ID: R1.2

Title: Guides through the DICE methodology

Priority of

accomplishment:
Must have

Type: Requirement

Description: Dashboard tool with DICE functional covering workflow support

Rationale: The DICE IDE will guide the developer through the DICE methodology. Integrated

development environment to generate Java code and accelerate development

Supporting

material:
N/A

Other comments: MOSKitt Dashboard diagram is proposed as workflow dashboard application. Generation

of Java Code should be designed and implemented

Table 37: Continuous integration tools requirement.

ID: R1.7

Title: Continuous integration tools IDE integration

Priority of

accomplishment:
Must have

Type: Requirement

Description: The CI_TOOLS MUST be integrated with the IDE.

Rationale: The continuous integration tools must provide the means to be invoked remotely, with an

option of controls and status display built into the IDE.

Supporting N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 22

material:

Other comments: A plugin to connect Eclipse with Jenkins will be provided on the IDE. This plugin allows

to execute Continuous Integration (e.g., Jenkins) Tasks from Eclipse. Configuration

should be done on Jenkins. This plugin allows to execute them from Eclipse, and see the

results from there

Table 38: Requirement for the loading of annotated UML model.

ID: R3IDE.4

Title: Loading the annotated UML model

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DICE IDE MUST include a command to launch the SIMULATION_TOOLS and

VERIFICATION_TOOLS for a DICE UML model that is loaded in the IDE

Rationale: The verification phase is launched from the DICE IDE, it is not meant to be independent,

even though it involves launching an external tool (see R3.9.1).

Supporting

material:

N/A

Other comments: IDE will allow to execute external tools providing as a parameter the desired annotated

UML model. A Papyrus UML model can be annotated with EAnnotation (from Ecore) in

order to extend the Metamodel properties.

Table 39: Property verification requirement.

ID: R3IDE.4.2

Title: Loading of the property to be verified

Priority of

accomplishment:
Must have

Type: Requirement

Description: The VERIFICATION_TOOLS MUST be able to handle the verification of the properties

to be checked that can be defined through the IDE and the DICE profile

Rationale: The properties to be checked are defined in the DICE UML model (possibly using

templates). The requirement on the VERIFICATION_TOOLS is to be able to handle

them.

Supporting

material:
N/A

Other comments: Properties to be verified can be listed in a custom model understandable by the

VERIFICATION_TOOLS, where all the properties to be verified can be listed there. Both

this model and the UML model will be used as input for the verification tools.

Table 40: Graphical output requirement.

ID: R3IDE.5

Title: Graphical output

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 23

Priority of

accomplishment:
Should have

Type: Requirement

Description: Whenever needed (for better understanding of the response), the IDE SHOULD be able to

take the output generated by the VERIFICATION_TOOLS (i.e., execution traces of the

modeled system) and represent it graphically, connecting it to the elements of the

modeled system.

Rationale: The output of the VERIFICATION_TOOLS (i.e., traces of the modeled system) should

be presented in a user-friendly way to help the user better understand the outcome of the

verification task.

Supporting

material:
N/A

Other comments: One way to do that is to create a metamodel that supports to define all the traces and

relates them to an element from the UML model. The easiest way is to annotate the

Papyrus UML model with EAnnotations (from Ecore) and, programmatically, colorate

elements if desired. Also the traces (a string) can be added as annotation and show it

within a popup or similar.

Table 41: Requirement for the visualisation of analysis results.

ID: R4IDE5

Title: Visualization of analysis results

Priority of

accomplishment:
Could have

Type: Requirement

Description: ENHANCEMENT_TOOLS SHOULD be capable of visualizing analysis results

Rationale: N/A

Supporting

material:
R4.25

Other comments: One way to do that is to create a metamodel that supports to define all the traces and

relates them to an element from the UML model. The easiest way is to annotate the

Papyrus UML model with EAnnotations (from Ecore) and, programmatically, colorate

elements if desired. Also the traces (an string) can be added as annotation and show it

within a popup or similar.

Table 42: Requirement for the loading of safety and privacy properties.

ID: R4IDE6

Title: Safety and privacy properties loading

Priority of

accomplishment:
Must have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS MUST allow the DEVELOPER/ARCHITECT to

choose and load the safety and privacy properties from the Model of the application

described through the DICE profile

Rationale: The properties to be analyzed are application-dependent, and they must come from

somewhere in the DICE model of the application. The user knows what properties are to

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 24

be monitored, so he/she should select those that most interest him/her

Supporting

material:
R4.28

Other comments: A wizard where properties to be analyzed can be selected before launching the external

tool. So the configuration model and the UML model will be passed as input to these

tools.

B.1.2 Detailed requirements

Table 43: The Stereotyping of UML diagrams with DICE profile Requirement.

ID: R1.1

Title: Stereotyping of UML diagrams with DICE profile

Priority of accomplishment: Must have

Type: Requirement

Description: Open-source modelling tool with XMI and UML2.X (2.4 or 2.5) support

Rationale: Support quality-related decision-making

Supporting material: N/A

Other comments: Stereotypes of the DICE profile will be applied in Papyrus UML models

Table 44: The Guides through the DICE methodology Requirement.

ID: R1.2

Title: Guides through the DICE methodology

Priority of accomplishment: Must have

Type: Requirement

Description: Dashboard tool with DICE functional covering workflow support

Rationale: The DICE IDE will guide the developer through the DICE methodology.

Integrated development environment to generate java code and accelerate

development

Supporting material: N/A

Other comments: MOSKitt Dashboard diagram is proposed as workflow dashboard application.

Generation of Java Code should be designed and implemented

Table 45: The Quality testing tools IDE integration Requirement.

ID: R1.6

Title: Quality testing tools IDE integration

Priority of accomplishment: Should have

Type: Requirement

Description: The IDE SHOULD provide the means to configure the QTESTING_TOOLS

execution

Rationale: Quality tests may come with parameters such as the number of tests to run or the

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 25

duration of each tests, which the user should be able to change.

Supporting material: N/A

Other comments: N/A

Table 46: The Continuous integration tools IDE integration Requirement.

ID: R1.7

Title: Continuous integration tools IDE integration

Priority of accomplishment: Must have

Type: Requirement

Description: The CI_TOOLS MUST be integrated with the IDE.

Rationale: The continuous integration tools must provide the means to be invoked remotely,

with an option of controls and status display built into the IDE.

Supporting material: N/A

Other comments: A plugin to connect Eclipse with Jenkins will be provided on the IDE. This

plugin allows to execute Continuous Integration (e.g., Jenkins) Tasks from

Eclipse. Configuration should be done on Jenkins. This plugin allows to execute

them from Eclipse, and see the results from there

Table 47: The Running tests from IDE without committing to VCS Requirement.

ID: R1.7.1

Title: Running tests from IDE without committing to VCS

Priority of accomplishment: Could have

Type: Requirement

Description: The CI_TOOLS COULD provide an integration with the IDE that enables

deployment and execution of tests on the user's local changes without

committing the code into the VCS.

Rationale: In some cases the DEVELOPER may want to run a test without committing the

code into the repository.

Supporting material: N/A

Other comments: N/A

Table 48: The IDE support to the use of profile Requirement.

ID: R2IDE.1

Title: IDE support to the use of profile

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE IDE MUST support the development of DIA exploiting the DICE

profile and following the DICE methodology. This means that it should offer

widzards to guide the developer through the steps envisioned in the DICE

methodology

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 26

Rationale: An adoption of the DICE profile not supported by a user friendly IDE can be

quite cumbersome and limit the benefits of our approach. The more the IDE is

user friendly the more the potential of a positive impact of the DICE profile on

practitioners increases

Supporting material: N/A

Other comments: N/A

Table 49: The Metric selection Requirement.

ID: R3IDE.1

Title: Metric selection

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE IDE MUST allow to select the metric to compute from those defined

in the DPIM/DTSM DICE annotated UML model. There are efficiency and

reliability related metrics

Rationale: N/A

Supporting material: The metrics supported will be all those defined in WP2. Examples of them are

Throughput or response time when talking about performance; or MTTF o

MTBF, and so on regarding reliability

Other comments: N/A

Table 50: The Timeout specification Requirement.

ID: R3IDE.2

Title: Timeout specification

Priority of accomplishment: Should have

Type: Requirement

Description: The IDE SHOULD allow the user to set a timeout and a maximum amount of

memory (2) to be used when running the SIMULATION_TOOLS and the

VERIFICATION_TOOLS. Then, when the timeout expires or when the memory

limit is exceeded, the IDE SHOULS notify the user

Rationale: N/A

Supporting material: (2) The timeout should be set by the user considering the hardware configuration

and the space of the model

Other comments: N/A

Table 51: The Usability Requirement.

ID: R3IDE.3

Title: Usability

Priority of accomplishment: Could have

Type: Requirement

Description: The TRANSFORMATION_TOOLS and SIMULATION_TOOLS MAY follow

some usability, ergonomics or accesibility standard such as ISO/TR 16982:2002,

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 27

ISO 9241, WAI W3C or similar

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 52: The Loading the annotated UML model Requirement.

ID: R3IDE.4

Title: Loading the annotated UML model

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE IDE MUST include a command to launch the

SIMULATION_TOOLS and VERIFICATION_TOOLS for a DICE UML model

that is loaded in the IDE

Rationale: The verification phase is launched from the DICE IDE, it is not meant to be

independent, even though it involves launching an external tool (see R3.9.1).

Supporting material: N/A

Other comments: IDE will allow to execute external tools providing as a parameter the desired

annotated UML model. A Papyrus UML model can be annotated with

EAnnotation (from Ecore) in order to extend the Metamodel properties.

Table 53: The Usability of the IDE-VERIFICATION_TOOLS interaction Requirement.

ID: R3IDE.4.1

Title: Usability of the IDE-VERIFICATION_TOOLS interaction

Priority of accomplishment: Should have

Type: Requirement

Description: The QA_ENGINEER SHOULD not perceive a difference between the IDE and

the VERIFICATION_TOOL; it SHOULD be possible to seamlessly invoke the

latter from the former

Rationale: In a sense the IDE and the VERFICATION_TOOLS reside in a sort of

continuum, where the former invokes the latter, but the user should not feel the

difference in the environment

Supporting material: N/A

Other comments: N/A

Table 54: The Loading of the property to be verified Requirement.

ID: R3IDE.4.2

Title: Loading of the property to be verified

Priority of accomplishment: Must have

Type: Requirement

Description: The VERIFICATION_TOOLS MUST be able to handle the verification of the

properties to be checked that can be defined through the IDE and the DICE

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 28

profile

Rationale: The properties to be checked are defined in the DICE UML model (possibly

using templates). The requirement on the VERIFICATION_TOOLS is to be able

to handle them.

Supporting material: N/A

Other comments: Properties to be verified can be listed in a custom model understandable by the

VERIFICATION_TOOLS, where all the properties to be verified can be listed

there. Both this model and the UML model will be used as input for the

verification tools

Table 55: The Graphical output Requirement.

ID: R3IDE.5

Title: Graphical output

Priority of accomplishment: Should have

Type: Requirement

Description: Whenever needed (for better understanding of the response), the IDE SHOULD

be able to take the output generated by the VERIFICATION_TOOLS (i.e.,

execution traces of the modeled system) and represent it graphically, connecting

it to the elements of the mod

Rationale: The output of the VERIFICATION_TOOLS (i.e., traces of the modeled system)

should be presented in a user-friendly way to help the user better understand the

outcome of the verification task.

Supporting material: N/A

Other comments: One way to do that is to create a metamodel that supports to define all the traces

and relates them to an element from the UML model. The easiest way is to

annotate the Papyrus UML model with EAnnotations (from Ecore) and,

programmatically, colorate elements if desired. Also the traces (a string) can be

added as annotation and show it within a popup or similar.

Table 56: The Graphical output of erroneous behaviors Requirement.

ID: R3IDE.5.1

Title: Graphical output of erroneous behaviors

Priority of accomplishment: Could have

Type: Requirement

Description: In case the outcome of the verification task is "the property does not hold", the

VERIFICATION_TOOLS COULD provide, in addition to the raw execution

trace of the system that violates the desired property, an indication of where in

the trace lies the probl

Rationale: In case of a property not holding, the VERIFICATION_TOOLS return a trace of

the system model that violates the property. Understanding *why* the property

is violated (e.g., which part of the trace is the one where the property is violated)

is not always an easy task. The output of the VERIFICATION_TOOLS might

help in this regard, by highlighting where the problem lies.

Supporting material: N/A

Other comments: One way to do that is to create a metamodel that supports to define all the traces

and relates them to an element from the UML model. The easiest way is to

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 29

annotate the Papyrus UML model with EAnnotations (from Ecore) and,

programmatically, colorate elements if desired. Also the traces (a string) can be

added as annotation and show it within a popup or similar.

Table 57: The Loading a DDSM level model Requirement.

ID: R3IDE.6

Title: Loading a DDSM level model

Priority of accomplishment: Must have

Type: Requirement

Description: The OPTIMIZATION_TOOLS as part of the IDE MUST provide an interface to

load (not design) a DDSM DICE annotated model

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 58: The Resource consumption breakdown Requirement.

ID: R4IDE1

Title: Resource consumption breakdown

Priority of accomplishment: Must have

Type: Requirement

Description: The DEVELOPER MUST be able to see via the ENHANCEMENT_TOOLS the

resource consumption breakdown into its atomic components.

Rationale: Existence of different abstraction levels between design concepts (e.g.,

abstractions in

the DICE profile) and runtime measurements hides the details on what high-level

request effectively generated the request for data.

Supporting material: R4.11

Other comments: N/A

Table 59: The Bottleneck Identification Requirement.

ID: R4IDE2

Title: Bottleneck Identification

Priority of accomplishment: Must have

Type: Requirement

Description: The ENHANCEMENT_TOOLS MUST indicate which classes of requests

represent bottlenecks for the application in a given deployment.

Rationale: N/A

Supporting material: R4.12

Other comments: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 30

Table 60: The Model parameter uncertainties Requirement.

ID: R4IDE3

Title: Model parameter uncertainties

Priority of accomplishment: Could have

Type: Requirement

Description: The REQ_ENGINEER COULD express uncertainty on some

performance/reliability input parameters (e.g., execution times) in the DICE

profile by means of a prior distribution or an interval. The

ENHANCEMENT_TOOLS COULD take into account these parameters to esti

Rationale: DoW mentions Bayesian estimation techniques. These techniques can explicitly

account for the uncertainty provided by the REQ_ENGINEER.

Supporting material: R4.20

Other comments: This requirement may be alternatively stated as part of WP2 or WP3, since it

also affects the DICE profile. The requirement would expand the scientific

impact of the tool, but if too complex to implement it might be ignored without

major consequences.

Table 61: The Model parameter confidence intervals Requirement.

ID: R4IDE4

Title: Model parameter confidence intervals

Priority of accomplishment: Could have

Type: Requirement

Description: The ENHANCEMENT_TOOLS COULD return confidence intervals for each

inferred parameter of the performance and reliability models.

Rationale: The WP3 models require to provide a number of parameters, such as CPU

speeds. These will be inferred by the ENHANCEMENT_TOOLS of WP4 from

the monitoring data. However, the estimation is subject to uncertainties so

confidence intervals could be provided to the WP3 tools to quantify such

uncertainty. If the CI is too wide, we might issue a warning in

SIMULATION_TOOLS that the prediction is not robust.

Supporting material: R4.21

Other comments: N/A

Table 62: The Visualization of analysis results Requirement.

ID: R4IDE5

Title: Visualization of analysis results

Priority of accomplishment: Could have

Type: Requirement

Description: ENHANCEMENT_TOOLS SHOULD be capable of visualizing analysis results

Rationale: N/A

Supporting material: R4.25

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 31

Other comments: One way to do that is to create a metamodel that supports to define all the traces

and relates them to an element from the UML model. The easiest way is to

annotate the Papyrus UML model with EAnnotations (from Ecore) and,

programmatically, colorate elements if desired. Also the traces (an string) can be

added as annotation and show it within a popup or similar.

Table 63: The Safety and privacy properties loading Requirement.

ID: R4IDE6

Title: Safety and privacy properties loading

Priority of accomplishment: Must have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS MUST allow the

DEVELOPER/ARCHITECT to choose and load the safety and privacy

properties from the Model of the application described through the DICE profile

Rationale: The properties to be analyzed are application-dependent, and they must come

from somewhere in the DICE model of the application. The user knows what

properties are to be monitored, so he/she should select those that most interest

him/her

Supporting material: R4.28

Other comments: A wizard where properties to be analyzed can be selected before launching the

external tool. So the configuration model and the UML model will be passed as

input to these tools

Table 64: The Feedback from safety and privacy properties monitoring to UML models concerning violatedtime

bounds Requirement.

ID: R4IDE7

Title: Feedback from safety and privacy properties monitoring to UML models

concerning violated time bounds

Priority of accomplishment: Could have

Type: Requirement

Description: In the feedback provided by the ANOMALY_TRACE_TOOLS to the

DEVELOPER/ARCHITECT, the tools COULD highlight when a timing

requirement is violated, and what is the value of the violation

Rationale: The specific feedback about timing violations might help the

DEVELOPER/ARCHITECT adjust the parameters of the models/properties

Supporting material: R4.31.1

Other comments: N/A

Table 65: The Relation between ANOMALY_TRACE_TOOLS and IDE Requirement.

ID: R4IDE8

Title: Relation between ANOMALY_TRACE_TOOLS and IDE

Priority of accomplishment: Should have

Type: Requirement

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 32

Description: It SHOULD be possible to launch the ANOMALY_TRACE_TOOLS from the

IDE

Rationale: The idea is that the trace checking is performed starting from the elements that

are described in the DICE UML model (see requirement R4.32). Hence, it makes

sense that the tool is invoked from the UML IDE. The idea could be that the IDE

has a link to the DW, and when the user asks for performing trace checking, the

IDE queries the DW, retrieves the information for the trace checking, then feeds

the ANOMALY_TRACE_TOOLS with the traces to be checked.

Supporting material: R4.33

Other comments: N/A

B.2. WP2 Requirements

B.2.1 Consolidated requirements

Table 66: Requirement for the DICE methodological paradigm.

ID: R2.1

Title: DICE Methodological Paradigm

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DICE profile and methodology shall support the incremental specification of Data-Intensive

Applications (DIAs) following a Model-Driven Engineering approach, as defined in standard

OMG guidelines.

Rationale: The DICE profile and Methodology both follow the MDE paradigm and the models envisioned

thereto.

Supporting material: N/A

Other comments: N/A

Table 67: Requirement for the origin of the abstraction layer.

ID: R2.2

Title: Abstraction Layer Origin

Priority of

accomplishment:
Must have

Type: Requirement

Description: Every abstraction layer (namely, DPIM, DTSM and DDSM) of the DICE profile MUST stem from

UML.

Rationale: The DICE profile shall mimic the standard assumptions behind Model-Driven Engineering,

including the separation of concerns across three disjoint but related layers (Platform-Independent,

Platform-Specific and Deployment-Specific).

Supporting material:

Other comments: N/A

Table 68: DICE Constraints Specification Requirement

ID: R2.4

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 33

Title: DICE Constraints Specification

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DICE Profile MUST allow definition of values of constraints (e.g., maximum cost for the

DIA), properties (e.g., outgoing flow from a Storage Node) and stereotype attributes (batch and

speed DIA elements) using the MARTE VSL standard.

Rationale: VSL is a part of the MARTE standard dedicated specifically to the (semi-)formal specification of

quality attribute values across profiles for quality properties definition and their analysis. DICE

shall make use of these modelling facilities inherited from MARTE

Supporting material:

Other comments: N/A

Table 69: Requirement for the DICE profile technology-specific constraints.

ID: R2.10

Title: DICE Profile Tech-Specific Constraints

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DICE Profile MUST define structural and behavioral constraints typical in targeted

technologies (e.g., Hadoop, Storm, Spark, etc.).

Rationale: Many technologies have different possible structural or behavioral concerns and consequent

constraints. These must be explicitly supported across the DICE profile.

Supporting material: N/A

Other comments: N/A

Table 70: Requirement for the DICE profile separation-of-concerns.

ID: R2.11

Title: DICE Profile Separation-of-Concerns

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DICE Profile MUST use packages to separately tackle the description of targeted technologies

in the respective profile abstraction layers (e.g., DTSM and DDSM). Said packages shall be

maintained consistently

Rationale: Separation of concerns is one of the basic principles behind model-driven engineering and related

technologies.

Supporting material: N/A

Other comments: N/A

Table 71: Requirement for the data-intensive Quality of Service (QoS).

ID: R2.4

Title: Data-Intensive QoS

Priority of Must have

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 34

accomplishment:

Type: Requirement

Description: The DPIM MUST be generic enough so as not to require any specialization, e.g., for domain-

specific DIAs. Conversely, the DPIM layer shall contain generic constructs with which to instantiate

all possible DIAs together with all relevant QoS and Data-intensive analyses.

Rationale: The first layer of abstraction of the DICE profile shall at least address the quality annotations as

well as the safety & privacy characteristics (cfr. WP3) needed to further the design of a DIA in a

QoS-Aware way.

Supporting material: N/A

Other comments: N/A

Table 72: Requirement for the DICE topologies.

ID: R2.9

Title: DICE Topologies

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DTSM layer MUST support the definition of Technology-specific DIA Topologies (e.g.,

Namenode-Datanode-SecondaryNamenode vs. Master-Region-Zookeeper, etc.).

Rationale: Similarly to other modelling technologies (e.g., TOSCA) DICE shall support the definition and

design of DIA as topologies of connected services/components/nodes. Given that different

technologies require different topologies, this concern is especially relevant at the DTSM layer and

shall be supported as such.

Supporting material: N/A

Other comments: N/A

Table 73: Requirement for DICE extension points.

ID: R2.7

Title: DICE Extension-Points

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DTSM MUST include extension facilities. These facilities shall be used to “augment” the

DICE profile with technologies beyond the DICE project assumptions (e.g., Storm, Spark,

Hadoop/MR, etc.). Similarly, every technological space embedded within the DICE profile shall

exist in the form of such extensions, e.g., as conceptual packages (at the DTSM layer) and refined

implementation-specific packages (at the DDSM layer).

Rationale: Because Big-Data Applications and their domain are extremely rich with technology and very

highly evolving, the DICE profile shall define extension points where possible, i.e., points where

further technologies may be specified and "plugged-in" within the profile itself.

Supporting material: N/A

Other comments: N/A

Table 74: Requirement for the DICE deployment-specific views.

ID: R2.12

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 35

Title: DICE Deployment Specific Views

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DDSM layer MUST support the definition of an Actionable deployment view (TOSCA-ready):

this view offers conceptual mappings between the technological layers defined in the DTSM and

concepts in the TOSCA meta modeling infrastructure such that one-way transformation between the

technological layer and the actionable deployment view is possible.

Rationale: Because the instantiation for execution of different technologies may be optional and supported via

TOSCA, the DDSM layer shall allow designers to use or not use the TOSCA-based deployment

model for execution. This requirement assumes that further standards may be presented beyond

TOSCA in the future.

Supporting material: N/A

Other comments: N/A

Table 75: IDE support to the use of profile requirement.

ID: R2.17

Title: IDE support to the use of profile

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DICE IDE MUST support the development of DIA exploiting the DICE profile and following

the DICE methodology. This means that it should offer wizards to guide the developer through the

steps envisioned in the DICE methodology

Rationale: An adoption of the DICE profile not supported by a user friendly IDE can be quite cumbersome and

limit the benefits of our approach. The more the IDE is user friendly the more the potential of a

positive impact of the DICE profile on practitioners increases

Supporting material: N/A

Other comments: N/A

Table 76: DICE Analysis Focus.

ID: R2.18

Title: DICE Analysis Focus

Priority of

accomplishment:
Must have

Type: Domain Assumption

Description: The DICE profile and its design shall work under the assumption that their focus of application is

limited to providing facilities and methodological approaches to support those properties that are

relevant to perform analysis (e.g., for fine-tuning, load-estimation, etc.), testing (e.g., for run-time

verification and adaptation towards continuous integration), monitoring (e.g., for flexible

continuous improvement, etc.).

Rationale: Being an emerging field, DIAs design and analysis may entail a great variety of possible analyses

and venues for research and development. Our assumption however, is that DIAs are either

modelled to analyse and estimate their properties, test these estimations in practice or monitor their

auctioned behaviour for continuous improvement. Other endeavours, however connected to DIAs,

are out of the scope of DICE.

Supporting material: N/A

Other comments: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 36

B.2.2 Detailed requirements

Table 77: Requirement for the DICE methodological paradigm.

ID: R2.1

Title: DICE Methodological Paradigm

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DICE profile and methodology shall support the incremental specification of Data-Intensive

Applications (DIAs) following a Model-Driven Engineering approach, as defined in standard

OMG guidelines.

Rationale: The DICE profile and Methodology both follow the MDE paradigm and the models envisioned

thereto.

Supporting material: N/A

Other comments: N/A

Table 78: The Abstraction Layer Origin Requirement.

ID: R2.2

Title: Abstraction Layer Origin

Priority of

accomplishment:
Must have

Type: Requirement

Description: Every abstraction layer (namely, DPIM, DTSM and DDSM) of the DICE profile MUST stem from

UML.

Rationale: The DICE profile shall mimic the standard assumptions behind Model-Driven Engineering,

including the separation of concerns across three disjoint but related layers (Platform-Independent,

Platform-Specific and Deployment-Specific).

Supporting material:

Other comments: N/A

Table 79: The Relation with MARTE UML Profile Requirement.

ID: R2.3

Title: Relation with MARTE UML Profile

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE Profile MUST define required and provided properties of a DIA as

well as metrics (estimated, measured, calculated and requirements) to monitor

them. Said metrics will be specifed following the MARTE NFP framework.

Rationale: MARTE provides valuable foundations for specifying non-functional properties

and shall be considered for extension

Supporting material: http://www.omgmarte.org/

Other comments: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 37

Table 80: The Constraints Definition Requirement.

ID: R2.4

Title: DICE Constraints Specification

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DICE Profile MUST allow definition of values of constraints (e.g., maximum cost for the

DIA), properties (e.g., outgoing flow from a Storage Node) and stereotype attributes (batch and

speed DIA elements) using the MARTE VSL standard.

Rationale: VSL is a part of the MARTE standard dedicated specifically to the (semi-)formal specification of

quality attribute values across profiles for quality properties definition and their analysis. DICE

shall make use of these modelling facilities inherited from MARTE

Supporting material:

Other comments: N/A

Table 81: The DICE Profile Performance Annotations Requirement.

ID: R2.5

Title: DICE Profile Performance Annotations

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE Profile shall define annotations for performance based on the

MARTE::GQAM framework.

Rationale: Relevant part inherited from MARTE for the specifcations of performance

values.

Supporting material: N/A

Other comments: N/A

Table 82: The DICE Profile Reliability Annotations Requirement.

ID: R2.6

Title: DICE Profile Reliability Annotations

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE Profile shall define annotations for reliability based on the DAM

profile.

Rationale: DAM is a profile designed to extend MARTE in support of reliability, and

therefore shall be considered within DICE and the profile specification.

Supporting material: N/A

Other comments: N/A

Table 83: Requirement for DICE extension points.

ID: R2.7

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 38

Title: DICE Extension-Points

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DTSM MUST include extension facilities. These facilities shall be used to “augment” the

DICE profile with technologies beyond the DICE project assumptions (e.g., Storm, Spark,

Hadoop/MR, etc.). Similarly, every technological space embedded within the DICE profile shall

exist in the form of such extensions, e.g., as conceptual packages (at the DTSM layer) and refined

implementation-specific packages (at the DDSM layer).

Rationale: Because Big-Data Applications and their domain are extremely rich with technology and very

highly evolving, the DICE profile shall define extension points where possible, i.e., points where

further technologies may be specified and "plugged-in" within the profile itself.

Supporting material: N/A

Other comments: N/A

Table 84: The DICE Profile Main DIA Concerns - Flow and Behavior Requirement.

ID: R2.8

Title: DICE Profile Main DIA Concerns - Flow and Behavior

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE Profile shall define annotations that address behavioral and flow

concerns behind DIAs. Also, the DICE Profile shall define annotations for flow-

control across DIAs.

Rationale: Many of the characteristics behind DIAs are sensibly influenced by the flow of

information, its management and the application's behavior in managing and

handling data. These aspects shall be made explicit for DICE-supported analysis.

Supporting material: N/A

Other comments: N/A

Table 85: Requirement for the DICE topologies.

ID: R2.9

Title: DICE Topologies

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DTSM layer MUST support the definition of Technology-specific DIA Topologies (e.g.,

Namenode-Datanode-SecondaryNamenode vs. Master-Region-Zookeeper, etc.).

Rationale: Similarly to other modelling technologies (e.g., TOSCA) DICE shall support the definition and

design of DIA as topologies of connected services/components/nodes. Given that different

technologies require different topologies, this concern is especially relevant at the DTSM layer and

shall be supported as such.

Supporting material: N/A

Other comments: N/A

Table 86: The DICE Profile Tech-Specific Constraints Requirement.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 39

ID: R2.10

Title: DICE Profile Tech-Specific Constraints

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DICE Profile MUST define structural and behavioral constraints typical in targeted

technologies (e.g., Hadoop, Storm, Spark, etc.).

Rationale: Many technologies have different possible structural or behavioral concerns and consequent

constraints. These must be explicitly supported across the DICE profile.

Supporting material: N/A

Other comments: N/A

Table 87: The DICE Profile Separation-of-Concerns Requirement.

ID: R2.11

Title: DICE Profile Separation-of-Concerns

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DICE Profile MUST use packages to separately tackle the description of targeted technologies

in the respective profile abstraction layers (e.g., DTSM and DDSM). Said packages shall be

maintained consistently

Rationale: Separation of concerns is one of the basic principles behind model-driven engineering and related

technologies.

Supporting material: N/A

Other comments: N/A

Table 88: Requirement for the DICE deployment-specific views.

ID: R2.12

Title: DICE Deployment Specific Views

Priority of

accomplishment:
Must have

Type: Requirement

Description: The DDSM layer MUST support the definition of an Actionable deployment view (TOSCA-ready):

this view offers conceptual mappings between the technological layers defined in the DTSM and

concepts in the TOSCA meta modeling infrastructure such that one-way transformation between the

technological layer and the actionable deployment view is possible.

Rationale: Because the instantiation for execution of different technologies may be optional and supported via

TOSCA, the DDSM layer shall allow designers to use or not use the TOSCA-based deployment

model for execution. This requirement assumes that further standards may be presented beyond

TOSCA in the future.

Supporting material: N/A

Other comments: N/A

Table 89: The DICE Profile Data Structure Requirement.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 40

ID: R2.13

Title: DICE Profile Data Structure

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE Profile shall define QoS annotations for data structure and its

specification.

Rationale: Data-Structure is a big concern in Data-Intensive Applications. Also, said

concern must be explicitly supported with ad-hoc constructs such that its

relations with DIAs is properly analysed and supported at Design time.

Supporting material: N/A

Other comments: N/A

Table 90: The DICE Profile Data Communication Requirement.

ID: R2.14

Title: DICE Profile Data Communication

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE Profile shall define annotations to elaborate on structural and

behavioral details concerning the channeling and marshalling of information

across specified DIAs.

Rationale: the flow of information across a DIA, e.g., for further processing or visualization

shall be supported at both structural (i.e., nodes involved) and behavioral (i.e.,

behavior of said nodes) level. Thsi is because data flow and manipulation of data

can vary sensibly depending on the kind of DIA being designed (e.g., for the

purpose of analysing streaming data).

Supporting material: N/A

Other comments: N/A

Table 91: The DICE Profile Sub-Structures Requirement.

ID: R2.15

Title: DICE Profile Sub-Structures

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE Profile shall provide annotations for specifying node nesting and

replication across the structure of DIAs.

Rationale: DIAs often are requried to be designed as nested applications. For example,

compute nodes may hide internal logic from multiple possible technological

specification within them. Therefore, the ability to support nesting and sub-

structure across DIAs shall be supported.

Supporting material: N/A

Other comments: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 41

Table 92: The DICE Analysis Focus Requirement.

ID: R2.16

Title: DICE Analysis Focus

Priority of accomplishment: Must have

Type: Domain Assumption

Description: The DICE profile and its design shall work under the assumption that their focus

of application is limited to providing facilities and methdological approaches to

support those properties that are relevant to perform analysis (e.g., for fine-

tuning, load-

Rationale: being an emerging field, DIAs design and analysis may entail a great variety of

possible analyses and venues for research and development. Our assumption

however, is that DIAs are either modelled to analyse and estimate their

properties, test these estimations in practice or monitor their actioned behavior

for continuous improvement. Other endeavours, however connected to DIAs, are

out of the scope of DICE.

Supporting material: https://docs.google.com/presentation/d/1aAeoGJox42pHBpmLCDDhwGtmb-

J7RmzFobqm-QB7tV8/edit#slide=id.gb6c695009_2_115

Other comments: N/A

Table 93: The DICE Methodological Paradigm Requirement.

ID: MR2.1

Title: DICE Methodological Paradigm

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE profile and methodology shall support the incremental specification of

Data-Intensive Applications (DIAs) following a Model-Driven Engineering

approach, as defined in standard OMG guidelines.

Rationale: The DICE profile and Methodology both follow the MDE paradigm and the

models envisioned thereto.

Supporting material: N/A

Other comments: N/A

Table 94: The DICE Methodology support Diagrams Requirement.

ID: MR2.2

Title: DICE Methodology support Diagrams

Priority of accomplishment: Should have

Type: Domain Assumption

Description: Every abstraction layer (namely, DPIM, DTSM and DDSM) of the DICE profile

shall stem from UML.

Rationale: several notations are being considered in the scope of DICE (e.g., MDA, MDE,

MARTE, SecureML) - these notations already provide diagramming facilities

that may be assumed as directly related to the needs and requirements of the

DICE profile.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 42

Supporting material: N/A

Other comments: N/A

Table 95: The DICE Design Process Requirement.

ID: PR2.16

Title: DICE Design Process

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE profile and methodology shall support the design of DIAs across three

layers of abstractions: The DPIM, the DTSM and the DDSM, addressing

platform-independent, technology-specific and deployment-specific details

respectively.

Rationale: Designing DIAs via the DICE profile shall also follow the MDE paradigm.

Supporting material: N/A

Other comments: N/A

Table 96: The DICE Profile Views Requirement.

ID: MR2.3

Title: DICE Profile Views

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE profile framework MUST envision that the designer obtains views

using the DICE profile and following the methodology. Said views shall isolate

separately all and only elements necessary to perform DICE quality evaluations.

To this purpose, the DP

Rationale: the views in the requirement emerged from a preliminary analysis of concerns to

be addressed at design time for DIAs.

Supporting material: N/A

Other comments: N/A

Table 97: The DICE Component View: this view allows designers to elaborate on the organizational structure ofthe

components and possibly the responsible entities involved in the DIAinteractions for the purpose of realising the DIA’s

intended use; (4) A QoS Cross-Cutti Requirement.

ID: MR2.3a

Title: DICE Component View: this view allows designers to elaborate on the

organizational structure of the components and possibly the responsible entities

involved in the DIAinteractions for the purpose of realising the DIA’s intended

use; (4) A QoS Cross-Cutti

Priority of accomplishment: Must have

Type: Requirement

Description: this view allows designers to elaborate on the organizational structure of the

components and possibly the responsible entities involved in the DIA

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 43

Rationale: the views in the requirement emerged from a preliminary analysis of concerns to

be addressed at design time for DIAs.

Supporting material: N/A

Other comments: N/A

Table 98: The DICE State-Behavioral View Requirement.

ID: MR2.3b

Title: DICE State-Behavioral View

Priority of accomplishment: Must have

Type: Requirement

Description: this view allows designers to elaborate on the internal components

behavior rather than high-level components interactions across the DIA

Rationale: the views in the requirement emerged from a preliminary analysis of concerns to

be addressed at design time for DIAs.

Supporting material: N/A

Other comments: N/A

Table 99: The DICE Sequence-Behavioral View Requirement.

ID: MR2.3c

Title: DICE Sequence-Behavioral View

Priority of accomplishment: Must have

Type: Requirement

Description: this view allows designers to elaborate on components interactions for the

purpose of realising the DIA’s intended use

Rationale: the views in the requirement emerged from a preliminary analysis of concerns to

be addressed at design time for DIAs.

Supporting material: N/A

Other comments: N/A

Table 100: The DICE QoS Cross-Cutting View Requirement.

ID: MR2.3d

Title: DICE QoS Cross-Cutting View

Priority of accomplishment: Must have

Type: Requirement

Description: this view shall consist of cross-cutting annotations to elements in views “a”, “b”

and “c”. The purpose of this view is to elaborate on the QoS constraints,

limitations or requirements specified for annotated elements. The DICE profile

shall focus on QoS

Rationale: the views in the requirement emerged from a preliminary analysis of concerns to

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 44

be addressed at design time for DIAs.

Supporting material: N/A

Other comments: N/A

Table 101: The A Usage Cross-Cutting View; Requirement.

ID: MR2.3e

Title: A Usage Cross-Cutting View;

Priority of accomplishment: Must have

Type: Requirement

Description: this view shall consist of cross-cutting annotations or graphical notations

containing information related to the expected entrance load for the DIA and its

composing elements.

Rationale: the views in the requirement emerged from a preliminary analysis of concerns to

be addressed at design time for DIAs.

Supporting material: N/A

Other comments: N/A

Table 102: The Data-Intensive QoS Requirement.

ID: MR2.4

Title: Data-Intensive QoS

Priority of accomplishment: Must have

Type: Requirement

Description: The DPIM shall be generic enough so as not to require any specialization, e.g.,

for domain-specific DIAs. Conversely, the DPIM layer shall contain generic

constructs with which to instantiate all possible DIAs together with all relevant

QoS and Data-inten

Rationale: the first layer of abstraction of the DICE profile shall at least address the quality

annotations as well as the safety & privacy characteristics (cfr. WP3) needed to

further the design of a DIA in a QoS-Aware way.

Supporting material: N/A

Other comments: N/A

Table 103: The DICE DPIM Relations Requirement.

ID: MR2.5

Title: DICE DPIM Relations

Priority of accomplishment: Must have

Type: Requirement

Description: The DPIM shall inherit notations and concepts from conceptual notations

intended for similar purposes. For example, ModaCloudML offers modeling

facilities to reason on cloud-based applications from multiple, functionally-

complete perspectives (e.g., data,

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 45

Rationale: there exist a number of profiles that alaready (partially) cover the needs behind

the DICE profile. Rather than reinventing new concepts, DICE may well inherit

from said notations reusing where possible.

Supporting material: N/A

Other comments: N/A

Table 104: The DICE DPIM Concern - Data and I/O Logic Requirement.

ID: MR2.6

Title: DICE DPIM Concern - Data and I/O Logic

Priority of accomplishment: Must have

Type: Requirement

Description: The DPIM shall provide annotations to specify data-retrieval (i.e., where does

the data come from and how is it transferred to its destination). Hence, I/O logic

shall also be specified at the DPIM layer. Therefore, the DICE profile has to

provide annotat

Rationale: the DPIM layer shall be conceived for requirements engineering of DIAs. In so

doing, data and I/O shall be equally covered in the first layer of DIA abstraction.

Supporting material: N/A

Other comments: N/A

Table 105: The DICE Extension-Points Requirement.

ID: MR2.7

Title: DICE Extension-Points

Priority of accomplishment: Must have

Type: Requirement

Description: The DTSM shall include extension facilities. These facilities shall be used to

“augment” the DICE profile with technologies beyond the DICE project

assumptions (e.g., Storm, Spark, Hadoop/MR, etc.). Similarly, every

technological space embedded within the

Rationale: because Big-Data Applications and their domain are extremely rich with

technology and very highly evolving, the DICE profile shall define extension

points where possible, i.e., points where further technologies may be specified

and "plugged-in" within the profile itself.

Supporting material: N/A

Other comments: N/A

Table 106: The DICE Splits Requirement.

ID: MR2.8

Title: DICE Splits

Priority of accomplishment: Must have

Type: Requirement

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 46

Description: The DTSM layer shall support the definition and reasoning of “Splits”, i.e.,

computable portions of data for the DIA at hand.

Rationale: The DICE profile shall support the design of logically processable portions of

information, i.e., "splits". This construct is technology-specific and is therefore

needed starting from the DTSM layer. For example, if the designer is interested

in knowing or manipulating/configuring the data processing policy he may want

to vary the size, shape and processing for splits in his ad-hoc DIA.

Supporting material: N/A

Other comments: N/A

Table 107: The DICE Topologies Requirement.

ID: MR2.9

Title: DICE Topologies

Priority of accomplishment: Must have

Type: Requirement

Description: The DTSM layer shall support the definition of Technology-specific DIA

Topologies (e.g., Namenode-Datanode-SecondaryNamenode vs. Master-Region-

Zookeeper, etc.).

Rationale: similarly to other modelling technologies (e.g., TOSCA) DICE shall support the

definition and design of DIA as topologies of connected

services/components/nodes. Given that different technologies require different

topologies, this concern is especially relevant at the DTSM layer and shall be

supported as such.

Supporting material: N/A

Other comments: N/A

Table 108: The DICE Access Policies Requirement.

ID: MR2.10

Title: DICE Access Policies

Priority of accomplishment: Must have

Type: Requirement

Description: The DTSM layer shall support the definition of Access Policies, e.g., to data or

to DIA frameworks.

Rationale: normally a designer is also required to specify which access policies will be used

across the DIAs. Given that different tchnologies require different access policies

and related mechanisms, reasoning on Access policies shall take place initailly at

the DTSM layer.

Supporting material: N/A

Other comments: N/A

Table 109: The DICE Functional Definition Requirement.

ID: MR2.11

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 47

Title: DICE Functional Definition

Priority of accomplishment: Must have

Type: Requirement

Description: The DTSM layer shall support Technology-specific functions definition (Map-

Reduce-Combine vs. Transformation-Action-Filter etc.).

Rationale: The technological compound within DIAs consists of functional definitions

which are specific for certain technologies. This means that functional

specification for said technologies shall take place initially at the DTSM layer.

Supporting material: N/A

Other comments: N/A

Table 110: The DICE Deployment Specific Views Requirement.

ID: MR2.12

Title: DICE Deployment Specific Views

Priority of accomplishment: Must have

Type: Requirement

Description: The DDSM layer shall support the definition of an Actionable deployment view

(TOSCA-ready): this view offers conceptual mappings between the

technological layer defined in the DTSM and concepts in the TOSCA

metamodeling infrastructure such that one-way t

Rationale: because the instantiation for execution of different technologies may be optional

and supported via TOSCA, the DDSM layer shall allow designers to use or not

use the TOSCA-based deployment model for execution. This requirement

assumes that further standards may be presented beyond TOSCA in the future.

Supporting material: N/A

Other comments: N/A

Table 111: The DICE Framework Overrides Requirement.

ID: MR2.13

Title: DICE Framework Overrides

Priority of accomplishment: Must have

Type: Requirement

Description: The DDSM layer shall support the definition of framework overrides. This

allows designers to provide ad-hoc tweaks to framework settings based on

specific constraints or design concerns.

Rationale: many applications require ad-hoc configuration of the frameworks on which they

are based. These tweaks are, by design, only allowed to change execution and

deployment dynamics. Therefore, this ability shall be given to designers at the

DDSM layer.

Supporting material: N/A

Other comments: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 48

Table 112: The DICE Resource Control Requirement.

ID: MR2.14

Title: DICE Resource Control

Priority of accomplishment: Must have

Type: Requirement

Description: The DDSM layer shall support the management of VMs and similar resources as

well as the necessary environmental setup connected to the application of

specific frameworks (e.g., Hadoop/MapReduce).

Rationale: many DIAs require fine-grained handling and management of resources beyond

transparent resource-provisioning. Designers shall be given the ability to govern

said aspects of deployment at the DDSM layer.

Supporting material: N/A

Other comments: N/A

Table 113: The DICE Scripting Support Requirement.

ID: MR2.15

Title: DICE Scripting Support

Priority of accomplishment: Must have

Type: Requirement

Description: The DDSM layer shall allow the support for linking ad-hoc config. scripts or

default config. scripts within the DIA.

Rationale: a big part in specifying and deploying/running DIAs consists in the

definition/reuse of configuration scripts. The DICE profile shall allow designers

to link scripts to modelling elements specific to their designed DIA.

Supporting material: N/A

Other comments: N/A

Table 114: The DIA Application Bundling Requirement.

ID: MR2.16

Title: DIA Application Bundling

Priority of accomplishment: Should have

Type: Requirement

Description: The Actionable Deployment View within the DDSM layer shall support DIA

application bundling, e.g., using the CSAR formalism adopted by the TOSCA

notation.

Rationale: Container technologies are the de-facto standard for deploying DIAs. The

TOSCA reference format for DICE deployment models already pre-defines a

deployment bundle possibly for reuse within the DICE profile itself.

Supporting material: N/A

Other comments: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 49

Table 115: The IDE support to the use of profile Requirement.

ID: MR2.17

Title: IDE support to the use of profile

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE IDE MUST support the development of DIA exploiting the DICE

profile and following the DICE methodology. This means that it should offer

widzards to guide the developer through the steps envisioned in the DICE

methodology

Rationale: An adoption of the DICE profile not supported by a user friendly IDE can be

quite cumbersome and limit the benefits of our approach. The more the IDE is

user friendly the more the potential of a positive impact of the DICE profile on

practitioners increases

Supporting material: N/A

Other comments: N/A

Table 116: The DICE Deployment Constructs Origin Requirement.

ID: PRD2.1

Title: DICE Deployment Constructs Origin

Priority of accomplishment: Should have

Type: Requirement

Description: The DICE Profile shall define deployment-specific construct contiguously to

TOSCA-specific constructs and their relations.

Rationale: TOSCA is the key reference format to be supported for deployment-ready DIAs

- reference to its constructs shall be constant in the definition of the DICE

profile.

Supporting material: N/A

Other comments: N/A

Table 117: The DICE Deployment Required and Provided Properties Requirement.

ID: PRD2.2

Title: DICE Deployment Required and Provided Properties

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE Profile shall define technology-specific properties in terms of

required- and provided-properties.

Rationale: Provided- and required-properties are an essential concept behind TOSCA-ready

cloud applications. TOSCA-ready orchestrators use said constructs as

requirements to drive the deployment process of parsed specifications. As a

consequence, said constructs shall be used massively across the definition of

DICE profile and its modeling elements.

Supporting material: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 50

Other comments: N/A

Table 118: The DICE Deployment Required and Provided Execution Platforms Requirement.

ID: PRD2.3

Title: DICE Deployment Required and Provided Execution Platforms

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE Profile shall define annotations support the specification of required-

and provided-execution platforms for the deployment of DIAs.

Rationale: execution platforms are coherent specifications that describe the environment

atop which the DIA needs to be processed. DIAs specified within DICE shall

include said specifications since they are required to map DICE-specified DIAs

into TOSCA-ready executable CSAR bundles.

Supporting material: N/A

Other comments: N/A

Table 119: The DICE Deployment - NFV Requirement.

ID: PRD2.4

Title: DICE Deployment - NFV

Priority of accomplishment: Should have

Type: Requirement

Description: The DICE Profile shall provide facilities to model virtualized network-functions

and their respective relations in an NFV topology.

Rationale: Network-Function Virtualization shall be an integral part to DICE profile

definition. Also, in defining TOSCA-compliant specifications, DIAs specified

within DICE shall need to elaborate on NFV constructs to be possibly expressed

using TOSCA-YAML syntax.

Supporting material: N/A

Other comments: N/A

B.3. WP3 Requirements

B.3.1 Consolidated requirements

Table 120: Requirement for the Model to Model (M2M) transformation.

ID: R3.1

Title: M2M Transformation

Priority of

accomplishment:
Must have

Type: Requirement

Description: The TRANSFORMATION_TOOLS MUST perform a model-to-model transformation taking the

input from a DPIM or DTSM DICE annotated UML model and returning a formal model (e.g. Petri

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 51

net model or a temporal logic model).

Rationale: This is the main functionality needed to perform simulations and verification activities

Supporting material: N/A

Other comments: N/A

Table 121: Requirement for the annotations.

ID: R3.2

Title: Taking into account relevant annotations

Priority of

accomplishment:
Must have

Type: Requirement

Description: The TRANSFORMATION_TOOLS MUST take into account the relevant annotations in the DICE

profile (properties, constraints and metrics) whether related to performance, reliability, safety,

privacy, and transform them into the corresponding artifact in the formal model

Rationale: N/A

Supporting material: A property is a characteristic of a system's element (e.g. transfer rate of a disk)

Other comments: N/A

Table 122: Requirement for the generation of traces from the system model.

ID: R3.7

Title: Generation of traces from the system model

Priority of

accomplishment:
Must have

Type: Requirement

Description: The VERIFICATION_TOOLS MUST be able, from the UML DICE model a system, to show

possible execution traces of the system, with its corresponding time stamps. This sequence

SHOULD be used by the QA_ENGINEER to determine whether the system model captures the

behavior of the application or not, for model validation purposes.

Rationale: One way to validate whether the actual system has been sufficiently captured by the model is to

produce traces of the model, and see whether they are consistent with the expected behavior of the

system.

Supporting material: N/A

Other comments: The checking of whether the trace is "reasonable" or not can only be done by the user, it cannot be

done automatically by the tool. In fact, the tool will always produce traces that are compatible with

the system model; the question is whether the system model is reasonable or not.

Table 123: Requirement for the cost/quality balance.

ID: R3.8

Title: Cost/quality balance

Priority of

accomplishment:
Must have

Type: Requirement

Description: The OPTIMIZATION_TOOLS will minimize deployment costs trying to fulfill reliability and

performance metrics (e.g., map reduce jobs execution deadlines)

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 52

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 124: Requirement for the Service Level Agreement (SLA) specification and compliance.

ID: R3.10

Title: SLA specification and compliance

Priority of

accomplishment:
Must have

Type: Requirement

Description: All three tool types, SIMULATION_TOOLS, VERIFICATION_TOOLS and

OPTIMIZATION_TOOLS MUST permit users to check their outputs against SLA's included in

UML model annotations. If an SLA is violated the tools will inform the user.

Rationale: The DICE Profile inherits from MARTE how to specify non-functional properties, i.e., how to

specify SLA’s as requirements. Then, the WP3 TOOLS must read these SLA’s and compute in the

formal model results that help to verify them. For example, the UML model could specify a

performance requirement of 1 sec. as the response time of a given service. Then, the

SIMULATION_TOOLS must analyze the Petri net performance model to tell the response time of

such service, according to the current model input parameters. The tool could highlight those SLA’s

that are not fulfilled.

Supporting material: N/A

Other comments: N/A

Table 125: Requirement for the optimisation timeout.

ID: R3.11

Title: Optimization timeout

Priority of

accomplishment:
Could have

Type: Requirement

Description: The OPTIMIZATION_TOOLS MUST explore the design space and accept the specification of a

timeout and return results gracefully when this timeout is expired

Rationale: The user should not be waiting for a response indefinitely

Supporting material: N/A

Other comments: N/A

Table 126: Requirement for the white/black box transparency.

ID: R3.13

Title: White/black box transparency

Priority of

accomplishment:
Must have

Type: Requirement

Description: For the TRANSFORMATION_TOOLS and the SIMULATION_TOOLS there will be no

difference between white box and black box model elements.

Rationale: In both cases, black or white model elements, the processes remain the same. First, annotations

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 53

will come from well-known sources for some components while others will be guessed by the

ARCHITECT. Later, the reasoning about the system through the formal model will lead to

improvements of some attributes, parameters or constraints. Finally, the analysis of the logs

coming from WP4 will provide information from real application execution. It does not matter

whether the improved parameter refers to a black box model element (e.g., MP job or any other

Hadoop framework executed in the cloud) or an ad hoc well known algorithm modeled as a white-

box component.

Supporting material: N/A

Other comments: N/A

B.3.2 Detailed requirements

Table 127: The M2M Transformation Requirement.

ID: R3.1

Title: M2M Transformation

Priority of accomplishment: Must have

Type: Requirement

Description: The TRANSFORMATION_TOOLS MUST perform a model-to-model

transformation taking the input from a DPIM or DTSM DICE annotated UML

model and returning a formal model (e.g. Petri net model or a temporal logic

model).

Rationale: This is the main functionality needed to perform simulations and verification

activities

Supporting material: N/A

Other comments: N/A

Table 128: The Taking into account relevant annotations Requirement.

ID: R3.2

Title: Taking into account relevant annotations

Priority of accomplishment: Must have

Type: Requirement

Description: The TRANSFORMATION_TOOLS MUST take into account the relevant

annotations in the DICE profile (properties, constraints and metrics) whether

related to performance, reliability, safety, privacy, and transform them into the

corresponding artifact in the form

Rationale: N/A

Supporting material: A property is a characteristic of a system's element (e.g. tranfer rate of a disk)

Other comments: N/A

Table 129: The Transformation rules Requirement.

ID: R3.3

Title: Transformation rules

Priority of accomplishment: Could have

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 54

Type: Requirement

Description: The TRANSFORMATION_TOOLS MAY be able to extract, interpret and apply

the transformation rules from an external source(1).

Rationale: An external source joined to a declarative style make it possible to extend the

behavior of the system without having to modify source code. In the last term,

these two requirements, will permit to provide an extension mechanism to the

DICE profile (e.g. to support the impact of new parameters coming from new

technologies or algorithms).

Supporting material: 1) External source: Probably a repository with the transformation rules in

declarative format to be processed by QVT (Query/View/Transformation) or a

similar tool

Other comments: N/A

Table 130: The Simulation solvers Requirement.

ID: R3.4

Title: Simulation solvers

Priority of accomplishment: Must have

Type: Requirement

Description: The SIMULATION_TOOLS will select automatically and acording to the metric

selected, the right SOLVER whether simulation or analytical solvers (e.g.

Markov sollution)

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 131: The Simulation of hosted big data services Requirement.

ID: R3.5

Title: Simulation of hosted big data services

Priority of accomplishment: Must have

Type: Requirement

Description: The SIMULATION_TOOLS MUST be able to describe the execution

characteristics of hosted big data services.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 132: The Transparency of underlying tools Requirement.

ID: R3.6

Title: Transparency of underlying tools

Priority of accomplishment: Must have

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 55

Type: Requirement

Description: The TRANSFORMATION_TOOLS and SIMULATION_TOOLS MUST be

transparent to users. From their point of view the user is analyzing metrics from

and making simulations over an enriched UML Model.

Rationale: N/A

Supporting material: The whole process must be atomic to the user. s/he just need to know that is

simulating the behaviour of an UML model. Any tranformation or analysis we

are doing to compute the metrics doesn't need to be explicited to the user (or

even better expressed,

Other comments: N/A

Table 133: The Generation of traces from the system model Requirement.

ID: R3.7

Title: Generation of traces from the system model

Priority of accomplishment: Must have

Type: Requirement

Description: The VERIFICATION_TOOLS MUST be able, from the UML DICE model a

system, to show possible execution traces of the system, with its corresponding

time stamps. This sequence SHOULD be used by the QA_ENGINEER to

determine whether the system model captures the

Rationale: One way to validate whether the actual system has been sufficiently captured by

the model is to produce traces of the model, and see whether they are consistent

with the expected behavior of the system.

Supporting material: N/A

Other comments: The checking of whether the trace is "reasonable" or not can only be done by the

user, it cannot be done automatically by the tool. In fact, the tool will always

produce traces that are compatible with the system model; the question is

whether the system model is reasonable or not.

Table 134: The Cost/quality balance Requirement.

ID: R3.8

Title: Cost/quality balance

Priority of accomplishment: Must have

Type: Requirement

Description: The OPTIMIZATION_TOOLS will minimize deployment costs trying to fulfill

reliability and performance metrics (e.g., map reduce jobs execution deadlines)

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 135: The Relaxing constraints Requirement.

ID: R3.9

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 56

Title: Relaxing constraints

Priority of accomplishment: Could have

Type: Requirement

Description: Being not possible to fulfill all requirements (SLA vs cost), the

OPTIMIZATION_TOOLS COULD suggest what constraints should be relaxed

(whether cost related or SLA related) to obtain a compliant model

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 136: The SLA specification and compliance Requirement.

ID: R3.10

Title: SLA specification and compliance

Priority of accomplishment: Must have

Type: Requirement

Description: All three tool types, SIMULATION_TOOLS, VERIFICATION_TOOLS and

OPTIMIZATION_TOOLS MUST permit users to check their outputs against

SLA's included in UML model annotations. If an SLA is violated the tools will

inform the user

Rationale: The DICE Profile inherits from MARTE how to specify non-functional

properties, i.e., how to specify SLA’s as requirements. Then, the WP3 TOOLS

must read these SLA’s and compute in the formal model results that help to

verify them. For example, the UML model could specify a performance

requirement of 1 sec. as the response time of a given service. Then, the

SIMULATION_TOOLS must analyze the Petri net performance model to tell

the response time of such service, according to the current model input

parameters. The tool could highlight those SLA’s that are not fulfilled.

Supporting material: N/A

Other comments: N/A

Table 137: The Optimization timeout Requirement.

ID: R3.11

Title: Optimization timeout

Priority of accomplishment: Could have

Type: Requirement

Description: The OPTIMIZATION_TOOLS MUST explore the design space and accept the

specification of a timeout and return results gracefully when this timeout is

expired

Rationale: The user should not be waiting for a response indefinitely

Supporting material: N/A

Other comments: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 57

Table 138: The Modelling abstraction level Requirement.

ID: R3.12

Title: Modelling abstraction level

Priority of accomplishment: Must have

Type: Requirement

Description: The user should not be waiting for a response indefinitely

Rationale: We are not talking here about layers or tiers in the sense we do when talking

about DPIM, DTSM or DDSM models, but about levels in the degree of

understanding/knowledge (or desired granularity) of the system. Some elements

will be treated as black boxes.

Supporting material: N/A

Other comments: N/A

Table 139: The White/black box transparency Requirement.

ID: R3.13

Title: White/black box transparency

Priority of accomplishment: Must have

Type: Requirement

Description: For the TRANSFORMATION_TOOLS and the SIMULATION_TOOLS there

will be no difference between white box and black box model elements.

Rationale: In both cases, black or white model elements, the processes remain the same.

First, annotations will come from well-known sources for some components

while others will be guessed by the ARCHITECT. Later, the reasoning about the

system through the formal model will lead to improvements of some attributes,

parameters or constraints. Finally, the analysis of the logs coming from WP4 will

provide information from real application execution. It doesn't matter whether

the improved parameter refers to a black box model element (e.g., MP job or any

other Hadoop framework executed in the cloud) or an ad hoc well known

algorithm modeled as a white-box component.

Supporting material: N/A

Other comments: N/A

Table 140: The Ranged or extended what if analysis Requirement.

ID: R3.14

Title: Ranged or extended what if analysis

Priority of accomplishment: Could have

Type: Requirement

Description: The SIMULATION_TOOLS will be able to cover a range of possible values for

a parameter and run a simulation for every different scenario (according to a gap

parameter that splits the range to cover in a list of discrete values to evaluate)

Rationale: N/A

Supporting material: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 58

Other comments: N/A

Table 141: The Verification of temporal safety/privacy properties Requirement.

ID: R3.15

Title: Verification of temporal safety/privacy properties

Priority of accomplishment: Must have

Type: Requirement

Description: Taking the DICE annotated UML model (which must include the property to be

verified) as an input, the VERIFICATION_TOOLS MUST be able to answer

questions related to whether the specified property holds for the modeled system

or not.

Rationale: This is the main role of the VERIFICATION_TOOL: to be able to verify the

properties defined in the DICE UML model

Supporting material: N/A

Other comments: N/A

Table 142: The Metric selection Requirement.

ID: R3IDE.1

Title: Metric selection

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE IDE MUST allow to select the metric to compute from those defined

in the DPIM/DTSM DICE annotated UML model. There are efficiency and

reliability related metrics

Rationale: N/A

Supporting material: The metrics supported will be all those defined in WP2. Examples of them are

Throughput or response time when talking about performance; or MTTF o

MTBF, and so on regarding reliability

Other comments: N/A

Table 143: The Timeout specification Requirement.

ID: R3IDE.2

Title: Timeout specification

Priority of accomplishment: Should have

Type: Requirement

Description: The IDE SHOULD allow the user to set a timeout and a maximum amount of

memory (2) to be used when running the SIMULATION_TOOLS and the

VERIFICATION_TOOLS. Then, when the timeout expires or when the memory

limit is exceeded, the IDE SHOULD notify the user

Rationale: N/A

Supporting material: (2) The timeout should be set by the user considering the hardware configuration

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 59

and the space of the model

Other comments: N/A

Table 144: The Usability Requirement.

ID: R3IDE.3

Title: Usability

Priority of accomplishment: Could have

Type: Requirement

Description: The TRANSFORMATION_TOOLS and SIMULATION_TOOLS MAY follow

some usability, ergonomics or accesibility standard such as ISO/TR 16982:2002,

ISO 9241, WAI W3C or similar

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 145: The Loading the annotated UML model Requirement.

ID: R3IDE.4

Title: Loading the annotated UML model

Priority of accomplishment: Must have

Type: Requirement

Description: The DICE IDE MUST include a command to launch the

SIMULATION_TOOLS and VERIFICATION_TOOLS for a DICE UML model

that is loaded in the IDE

Rationale: The verification phase is launched from the DICE IDE, it is not meant to be

independent, even though it involves launching an external tool (see R3.9.1).

Supporting material: N/A

Other comments: N/A

Table 146: The Usability of the IDE-VERIFICATION_TOOLS interaction Requirement.

ID: R3IDE.4.1

Title: Usability of the IDE-VERIFICATION_TOOLS interaction

Priority of accomplishment: Should have

Type: Requirement

Description: The QA_ENGINEER SHOULD not perceive a difference between the IDE and

the VERIFICATION_TOOL; it SHOULD be possible to seamlessly invoke the

latter from the former

Rationale: In a sense the IDE and the VERFICATION_TOOLS reside in a sort of

continuum, where the former invokes the latter, but the user should not feel the

difference in the environment

Supporting material: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 60

Other comments: N/A

Table 147: The Loading of the property to be verified Requirement.

ID: R3IDE.4.2

Title: Loading of the property to be verified

Priority of accomplishment: Must have

Type: Requirement

Description: The VERIFICATION_TOOLS MUST be able to handle the verification of the

properties to be checked that can be defined through the IDE and the DICE

profile

Rationale: The properties to be checked are defined in the DICE UML model (possibly

using templates). The requirement on the VERIFICATION_TOOLS is to be able

to handle them.

Supporting material: N/A

Other comments: The properties that can be defined at the level of the DICE UML model should

actually only be those that can be analyzed.

Table 148: The Graphical output Requirement.

ID: R3IDE.5

Title: Graphical output

Priority of accomplishment: Should have

Type: Requirement

Description: Whenever needed (for better understanding of the response), the IDE SHOULD

be able to take the output generated by the VERIFICATION_TOOLS (i.e.,

execution traces of the modeled system) and represent it graphically, connecting

it to the elements of the mod

Rationale: The output of the VERIFICATION_TOOLS (i.e., traces of the modeled system)

should be presented in a user-friendly way to help the user better understand the

outcome of the verification task.

Supporting material: N/A

Other comments: N/A

Table 149: The Graphical output of erroneous behaviors Requirement.

ID: R3IDE.5.1

Title: Graphical output of erroneous behaviors

Priority of accomplishment: Could have

Type: Requirement

Description: In case the outcome of the verification task is "the property does not hold", the

VERIFICATION_TOOLS COULD provide, in addition to the raw execution

trace of the system that violates the desired property, an indication of where in

the trace lies the probl

Rationale: In case of a property not holding, the VERIFICATION_TOOLS return a trace of

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 61

the system model that violates the property. Understanding *why* the property

is violated (e.g., which part of the trace is the one where the property is violated)

is not always an easy task. The output of the VERIFICATION_TOOLS might

help in this regard, by highlighting where the problem lies.

Supporting material: N/A

Other comments: N/A

Table 150: The Loading a DDSM level model Requirement.

ID: R3IDE.6

Title: Loading a DDSM level model

Priority of accomplishment: Must have

Type: Requirement

Description: The OPTIMIZATION_TOOLS as part of the IDE MUST provide an interface to

load (not design) a DDSM DICE annotated model

Rationale: N/A

Supporting material: N/A

Other comments: N/A

B.4. WP4 Requirements

B.4.1 Consolidated requirements

Table 151: Requirement for the monitoring data extraction.

ID: R4.3

Title: Monitoring data extractions

Priority of

accomplishment:
Must have

Type: Requirement

Description: MONITORING_TOOLS MUST perform monitoring data pre-processing (extraction) before

storing the data in the data warehouse in order to facilitate usage by other tasks.

Rationale: Different actors have different /expectations from the monitoring data stored in DW, such that

aggregations over time periods, different granularities etc.

Supporting material: N/A

Other comments: Pre-processing refers to extraction and validation operations in order to extract (parse) log files and

validate the obtained data (e.g. valid email address, valid IP address etc.).

Table 152: Requirement for access restriction to the monitoring data.

ID: R4.6

Title: Monitoring data access restrictions

Priority of

accomplishment:
Must have

Type: Requirement

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 62

Description: The data warehouse MUST provide the ability to prevent unauthorised access to the monitoring

data.

Rationale: The monitored data may contain sensitive and private data.

Supporting material: N/A

Other comments: N/A

Table 153: Monitoring visualisation requirement.

ID: R4.8

Title: Monitoring Visualization

Priority of

accomplishment:
Should have

Type: Requirement

Description: MONITORING_TOOLS SHOULD support interactive visualization of monitoring data

Rationale: Visualization will give human actors an initial overview over the monitoring data available for their

APPLICATION.

Supporting material: N/A

Other comments: This will reuse an existing Web-based visualization tool available for the data warehouse platform

(e.g. Kibana Web tool for Elastic platform)

Table 154: Requirement for the refactoring methods.

ID: R4.14

Title: Refactoring methods

Priority of

accomplishment:
Should have

Type: Requirement

Description: Once correlation between anomalies in runtime and anti-patterns has been detected, the

ENHANCEMENT_TOOLS SHOULD propose methods for refactoring the design leveraging

parameters extracted from the traces.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 155: Enhancement tools version difference requirement.

ID: R4.16

Title: Enhancement tools version difference

Priority of

accomplishment:
Could have

Type: Requirement

Description: The ENHANCEMENT_TOOLS COULD compare two versions of the application to identify

relevant changes.

Rationale: N/A

Supporting material: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 63

Other comments: N/A

Table 156: Requirement for the parameterization of simulation and optimization models.

ID: R4.19

Title: Parameterization of simulation and optimization models.

Priority of

accomplishment:
Must have

Type: Requirement

Description: The ENHANCEMENT_TOOLS MUST extract or infer the input parameters needed by the

SIMULATION_TOOLS and OPTIMIZATION_TOOLS to perform the quality analyses.

Rationale: N/A

Supporting material: N/A

Other comments: Input parameters inferred as a result of this requirement may be completed by additional parameters

provided by end-user or other tools (e.g. configuration recommender).

Table 157: Requirement for the time-based ordering of monitoring data entries.

ID: R4.22

Title: Time-based ordering of monitoring data entries

Priority of

accomplishment:
Must have

Type: Domain Assumption

Description: Monitoring data MUST support the reconstruction of a sequence of events and the identification of

the time when things occurred (for example a consistent timestamp in a distributed system)

Rationale: While in general data is application-dependent, for running trace checking it is important that data

is time-based ordered.

Supporting material: N/A

Other comments: In case of data collected from multiple nodes of a distributed system, MONITORING_TOOLS

must ensure data is consistently ordered when providing answer to actors' queries.

Table 158: Requirement for the data size trends.

ID: R4.23

Title: Data size trends

Priority of

accomplishment:
Should have

Type: Requirement

Description: The MONITORING_TOOLS and ENHANCEMENT_TOOLS SHOULD capture the growth in the

data size for the APPLICATION.

Rationale: Data size cannot be predicted at design time, the APPLICATION behavior usually depend on it

since the DB gets slower the larger the data gets.

Supporting material: N/A

Other comments: N/A

Table 159: Requirement for the propagation of changes/automatic annotation of UML models.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 64

ID: R4.27

Title: Propagation of changes/automatic annotation of UML models

Priority of

accomplishment:
Must have

Type: Requirement

Description: ENHANCEMENT_TOOLS MUST be capable of automatically updating UML models with

analysis results (new values)

Rationale: Increase efficiency of iterative enhancement process

Supporting material: N/A

Other comments: N/A

Table 160: Requirement for the loading of safety and privacy properties.

ID: R4.28 (R4IDE6)

Title: Safety and privacy properties loading

Priority of

accomplishment:
Must have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS MUST allow the DEVELOPER/ARCHITECT to choose and

load the safety and privacy properties from the Model of the application described through the DICE

profile

Rationale: The properties to be analyzed are application-dependent, and they must come from somewhere in

the DICE model of the application. The user knows what properties are to be monitored, so he/she

should select those that most interest him/her

Supporting material: N/A

Other comments: N/A

Table 161: Requirement for the monitoring of safety and privacy properties.

ID: R4.30

Title: Safety and privacy properties monitoring

Priority of

accomplishment:
Must have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS MUST be able to check, given a trace of the events of interest

of the application, whether that trace is compatible with the desired safety and privacy properties

Rationale: This is the main functionality of the trace checking tool

Supporting material: N/A

Other comments: The check is performed off-line, i.e., in batch mode (a trace is retrieved from the DW, then

analysed by the trace checking tool)

Table 162: Requirement for the correlation between data stored in the DW and DICE UML models.

ID: R4.32

Title: Correlation between data stored in the DW and DICE UML models

Priority of Must have

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 65

accomplishment:

Type: Requirement

Description: There MUST be a way to link the information that is stored in the data warehouse with the features

and concepts of the DICE UML models (operations, attributes, objects, etc.)

Rationale: The properties analyzed by the ANOMALY_TRACE_TOOLS through trace checking are

expressed in terms of the elements of the DICE UML model. Hence, to run the trace checking the

events stored in the data warehouse must be correlated with what is described by the UML model.

A similar need arises for the ENHANCEMENT_TOOLS, which need to reason on the UML model

to infer input parameters.

Supporting material: N/A

Other comments: It is unclear which component should bear responsibility of this fundamental part. Would it be

ENHANCEMENT_TOOLS or a dedicated component?

B.4.2 Detailed requirements

Table 163: The Monitoring data warehousing Requirement.

ID: R4.1

Title: Monitoring data warehousing

Priority of accomplishment: Must have

Type: Requirement

Description: There will be multiple 'monitoring data collector' tools that will retrieve

monitoring data from different platforms and store it under the

monitoring data warehouse. The data warehouse will support different data

types, providing near real-time access.

Rationale: We expect that the monitoring agents will produce a high number of monitoring

data. This data needs to be stored in the application's test and runtime

environment, capable of handling the bulk of data.

Supporting material: In the early stage, the monitoring data refers to logs produced by the Big Data

applications (Hadoop, NOSQL).

Other comments: In the early stage, the monitoring data refers to logs produced by the Big Data

applications (Hadoop, NOSQL)

Table 164: The Monitoring data warehouse schema Requirement.

ID: R4.2

Title: Monitoring data warehouse schema

Priority of accomplishment: Must have

Type: Requirement

Description: MONITORING_TOOLS storing the monitoring data MUST use a schema that

lets identify the sources of the monitoring data, but is general enough to permit

adding new sources.

Rationale: The monitoring data warehousing needs to accommodate for any monitoring

data input format and content without losing any relevant data. The monitoring

entries need to be equipped with metadata, but the contents need to stay intact.

Supporting material: N/A

Other comments: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 66

Table 165: The Monitoring data versioning Requirement.

ID: R4.2.1

Title: Monitoring data versioning

Priority of accomplishment: Must have

Type: Requirement

Description: The metrics records MUST include the information on the version of the

APPLICATION's build.

Rationale: Association between the monitored application's version and the monitoring data

is crucial for quality enhancement and configuration recommendation engine.

Supporting material: N/A

Other comments: N/A

Table 166: The Supplying the version number Requirement.

ID: R4.2.2

Title: Supplying the version number

Priority of accomplishment: Must have

Type: Requirement

Description: The DEPLOYMENT_TOOLS MUST supply the APPLICATION's current

version number when starting the MONITORING_TOOLS

Rationale: The version number has to arrive from tools external to monitoring tools.

Supporting material: N/A

Other comments: N/A

Table 167: The Monitoring data extractions Requirement.

ID: R4.3

Title: Monitoring data extractions

Priority of accomplishment: Must have

Type: Requirement

Description: MONITORING_TOOLS MUST perform monitoring data pre-processing

(extraction) before storing the data in the data warehouse in order to facilitate

usage by other tasks.

Rationale: Different actors have different /expectations from the monitoring data stored in

DW, such that aggregations over time periods, different granularities etc.

Supporting material: N/A

Other comments: Pre-processing refers to extraction and validation operations in order to extract

(parse) log files and validate the obtained data (e.g. valid email address, valid IP

address etc.).

Table 168: The Monitoring data format transformations Requirement.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 67

ID: R4.4

Title: Monitoring data format transformations

Priority of accomplishment: Must have

Type: Requirement

Description: MONITORING_TOOLS MUST perform data transformation when the data is

retrieved from the data warehouse.

Rationale: Tools may require data in different formats in order to function. This

transformation from the DW internal format to the required format is done at

data retrieval.

Supporting material: N/A

Other comments: cleaning, normalization, projection, windowing in time series,

Table 169: The Monitoring data retention policy Requirement.

ID: R4.5

Title: Monitoring data retention policy

Priority of accomplishment: Must have

Type: Requirement

Description: MONITORING_TOOLS MUST be able to set and enforce a policy on how long

any monitoring entry may be preserved before deletion.

Rationale: The solution has to observe both the space restrictions and any legal

requirements for preserving or deleting the monitoring records.

Supporting material: N/A

Other comments: N/A

Table 170: The Monitoring data access restrictions Requirement.

ID: R4.6

Title: Monitoring data access restrictions

Priority of accomplishment: Must have

Type: Requirement

Description: The data warehouse MUST provide the ability to prevent unauthorised access to

the monitoring data.

Rationale: The monitored data may contain sensitive and private data.

Supporting material: N/A

Other comments: N/A

Table 171: The Monitoring tools REST API Requirement.

ID: R4.7

Title: Monitoring tools REST API

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 68

Priority of accomplishment: Must have

Type: Requirement

Description: MONITORING_TOOLS MUST expose their functionality using simple REST

API.

Rationale: This interface will facilitate querying, data transformation and extraction tasks.

Supporting material: N/A

Other comments: The REST interface will support monitoring data storage, retrieval,

transformation, versioning etc.

Table 172: The Monitoring Visualization Requirement.

ID: R4.8

Title: Monitoring Visualization

Priority of accomplishment: Should have

Type: Requirement

Description: MONITORING_TOOLS SHOULD support interactive visualization of

monitoring data

Rationale: Visualization will give human actors an initial overview over the monitoring data

available for their APPLICATION.

Supporting material: N/A

Other comments: This will reuse an existing Web-based visualization tool available for the data

warehouse platform (e.g. Kibana Web tool for Elastic platform)

Table 173: The Data Warehouse replication Requirement.

ID: R4.9

Title: Data Warehouse replication

Priority of accomplishment: Could have

Type: Requirement

Description: The data warehouse COULD have replication capabilities.

Rationale: Replication will offer increased availability and storage size in case monitoring

data collected will be very large.

Initially, we will adopt a centralized deployment.

Supporting material: N/A

Other comments: N/A

Table 174: The Resource consumption breakdown Requirement.

ID: R4.11

Title: Resource consumption breakdown

Priority of accomplishment: Must have

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 69

Type: Requirement

Description: The DEVELOPER MUST be able to see via the ENHANCEMENT_TOOLS the

resource consumption breakdown into its atomic components.

Rationale: Existence of different abstraction levels between design concepts (e.g.,

abstractions in

the DICE profile) and runtime measurements hides the details on what high-level

request effectively generated the request for data.

Supporting material: R4IDE1

Other comments: N/A

Table 175: The Bottleneck Identification Requirement.

ID: R4.12

Title: Bottleneck Identification

Priority of accomplishment: Must have

Type: Requirement

Description: The ENHANCEMENT_TOOLS MUST indicate which classes of requests

represent bottlenecks for the application in a given deployment.

Rationale: N/A

Supporting material: R4IDE2

Other comments: N/A

Table 176: The Semi-automated anti-pattern detection Requirement.

ID: R4.13

Title: Semi-automated anti-pattern detection

Priority of accomplishment: Must have

Type: Requirement

Description: The ENHANCEMENT_TOOLS MUST feature a semi-automated analysis to

detect and notify the presence of anti-patterns in the application design.

Rationale: N/A

Supporting material: N/A

Other comments: Anti-patterns will most probably use both UML information combined with

monitoring data.

Table 177: The Refactoring methods Requirement.

ID: R4.14

Title: Refactoring methods

Priority of accomplishment: Should have

Type: Requirement

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 70

Description: Once correlation between anomalies in runtime and anti-patterns has been

detected, the ENHANCEMENT_TOOLS SHOULD propose methods for

refactoring the design leveraging parameters extracted from the traces.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 178: The Enhancement tools version difference Requirement.

ID: R4.16

Title: Enhancement tools version difference

Priority of accomplishment: Could have

Type: Requirement

Description: The ENHANCEMENT_TOOLS COULD compare two versions of the

application to identify relevant changes.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 179: The Enhancement tools data acquisition Requirement.

ID: R4.17

Title: Enhancement tools data acquisition

Priority of accomplishment: Should have

Type: Requirement

Description: The ENHANCEMENT_TOOLS SHOULD perform its operations by retrieving

the relevant monitoring data from the MONITORING_TOOLS.

Rationale: Local data processing appears more flexible than processing directly inside the

data warehouse.

Supporting material: N/A

Other comments: N/A

Table 180: The Enhancement tools model access Requirement.

ID: R4.18

Title: Enhancement tools model access

Priority of accomplishment: Must have

Type: Requirement

Description: The ENHANCEMENT_TOOLS MUST be able to access the DICE profile

model associated to the considered version of the APPLICATION.

Rationale: Parameter inference and anti-pattern detection need UML model.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 71

Supporting material: N/A

Other comments: N/A

Table 181: The Parameterization of simulation and optimization models. Requirement.

ID: R4.19

Title: Parameterization of simulation and optimization models.

Priority of accomplishment: Must have

Type: Requirement

Description: The ENHANCEMENT_TOOLS MUST extract or infer the input parameters

needed by the SIMULATION_TOOLS and OPTIMIZATION_TOOLS to

perform the quality analyses.

Rationale: N/A

Supporting material: N/A

Other comments: Input parameters inferred as a result of this requirement may be completed by

additional parameters provided by end-user or other tools (e.g. configuration

recommender).

Table 182: The Model parameter uncertainties Requirement.

ID: R4.20

Title: Model parameter uncertainties

Priority of accomplishment: Could have

Type: Requirement

Description: The REQ_ENGINEER COULD express uncertainty on some

performance/reliability input parameters (e.g., execution times) in the DICE

profile by means of a prior distribution or an interval. The

ENHANCEMENT_TOOLS COULD take into account these parameters to esti

Rationale: DoW mentions Bayesian estimation techniques. These techniques can explicitly

account for the uncertainty provided by the REQ_ENGINEER.

Supporting material: R4IDE3

Other comments: This requirement may be alternatively stated as part of WP2 or WP3, since it

also affects the DICE profile. The requirement would expand the scientific

impact of the tool, but if too complex to implement it might be ignored without

major consequences.

Table 183: The Model parameter confidence intervals Requirement.

ID: R4.21

Title: Model parameter confidence intervals

Priority of accomplishment: Could have

Type: Requirement

Description: The ENHANCEMENT_TOOLS COULD return confidence intervals for each

inferred parameter of the performance and reliability models.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 72

Rationale: The WP3 models require to provide a number of parameters, such as CPU

speeds. These will be inferred by the ENHANCEMENT_TOOLS of WP4 from

the monitoring data. However, the estimation is subject to uncertainties so

confidence intervals could be provided to the WP3 tools to quantify such

uncertainty. If the CI is too wide, we might issue a warning in

SIMULATION_TOOLS that the prediction is not robust.

Supporting material: R4IDE4

Other comments: N/A

Table 184: The Time-based ordering of monitoring data entries Requirement.

ID: R4.22

Title: Time-based ordering of monitoring data entries

Priority of accomplishment: Must have

Type: Domain Assumption

Description: Monitoring data MUST support the reconstruction of a sequence of events and

the identification of the time when things occurred (for example a consistent

timestamp in a distributed system)

Rationale: While in general data is application-dependent, for running trace checking it is

important that data is time-based ordered.

Supporting material: N/A

Other comments: In case of data collected from multiple nodes of a distributed system,

MONITORING_TOOLS must ensure data is consistently ordered when

providing answer to actors' queries.

Table 185: The Data size trends Requirement.

ID: R4.23

Title: Data size trends

Priority of accomplishment: Should have

Type: Requirement

Description: The MONITORING_TOOLS and ENHANCEMENT_TOOLS SHOULD

capture the growth in the data size for the APPLICATION.

Rationale: Data size cannot be predicted at design time, the APPLICATION behavior

usually depend on it since the DB gets slower the larger the data gets.

Supporting material: N/A

Other comments: N/A

Table 186: The Anomaly detection in APPLICATION quality Requirement.

ID: R4.24

Title: Anomaly detection in APPLICATION quality

Priority of accomplishment: Must have

Type: Requirement

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 73

Description: MONITORING_TOOLS MUST provide means to detect anomalies in

APPLICATION's quality after deployment

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 187: The Unsupervised Anomaly Detection Requirement.

ID: R4.24.1

Title: Unsupervised Anomaly Detection

Priority of accomplishment: Must have

Type: Requirement

Description: The MONITORING_TOOLS must be able to detect anomalies from the

APPLICATION using unsupervised methods. It is assumed that normal data

instances lie closer to their closest centrid while anomalies are far away.

Rationale: Monitored data may come in unlabeled (training dataset hard to create) form thus

it is important to detect anomalies based on unsupervised methodology. It is

assumed that normal data instanes are more frequent than anomalies.

Supporting material: N/A

Other comments: N/A

Table 188: The Supervised Anomaly Detection Requirement.

ID: R4.24.2

Title: Supervised Anomaly Detection

Priority of accomplishment: Must have

Type: Requirement

Description: The MONITORING_TOOLS must be able to detect anomalies from the

APPLICATION using supervised methods.

Rationale: Creation of training dataset can be created thus it is posible to train predictive

models based in supervised methodology.

Supporting material: N/A

Other comments: N/A

Table 189: The Contextual Anomalies Requirement.

ID: R4.24.3

Title: Contextual Anomalies

Priority of accomplishment: Should have

Type: Domain Assumption

Description: The MONITORING_TOOLS should be able to detect that data instances of a

given APPLICATION are anomalouse in a specific instance but not otherwise.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 74

Rationale: This is induced by the structure of the dataset and has to be specified as part of

the problem formulation using the MONITORING_TOOLS. Data instances

must be defined using: contextual attributes and behavioural attributes. Time-

series data.

Supporting material: N/A

Other comments: N/A

Table 190: The Collective anomalies Requirement.

ID: R4.24.4

Title: Collective anomalies

Priority of accomplishment: Should have

Type: Domain Assumption

Description: The MONITORING_TOOLS must be able to detect that a collection of related

data instances of a given APPLICATION can be anomalouse with respect to the

entire colleted dataset.

Rationale: Data instances might not be anomalouse by themselves.This type of anomalies

occur when the data instances are related. Sequence data.

Supporting material: N/A

Other comments: N/A

Table 191: The Predictive Model saving for Anomaly Detection Requirement.

ID: R4.24.5

Title: Predictive Model saving for Anomaly Detection

Priority of accomplishment: Must have

Type: Requirement

Description: The MONITORING_TOOLS must be able to save the predictive model trained

using monitored APPLICATION data. These models can be reused and serve as

a bootstrap for future predictive models.

Rationale: Two APPLICATIONS can be similar or a single APPLICATION can have many

versions thus a trained predictive model can be reused or can serve as a starting

point. Can use PMML format.

Supporting material: N/A

Other comments: N/A

Table 192: The Semi-automated data labelling Requirement.

ID: R4.24.6

Title: Semi-automated data labelling

Priority of accomplishment: Could have

Type: Requirement

Description: The MONITORING_TOOLS COULD have the capability to insert labeled

anomalous data instances in order to create training datasets for supervised

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 75

training for Anomaly detection.

Rationale: As anomalouse instances are far fewer than normal data instances (unbalanced

class distribution) the insertion of labeled anomalies can help create a more

viable predictive model. Optaining fully labeled data is most often unfeasible.

Supporting material: N/A

Other comments: N/A

Table 193: The Adaptation of thresholding Requirement.

ID: R4.24.7

Title: Adaptation of thresholding

Priority of accomplishment: Could have

Type: Requirement

Description: The MONITORING_TOOLS (anomaly detection tool) COULD ask feedback to

the user about the predefined threshold used to detect an outlier and adjust based

on the feedback received.

Rationale: A given anomaly detection result could be scored by the user. A simple

algorithm could interpret this to refine the threshold.

Supporting material: N/A

Other comments: N/A

Table 194: The Visualization of analysis results Requirement.

ID: R4.25

Title: Visualization of analysis results

Priority of accomplishment: Should have

Type: Requirement

Description: ENHANCEMENT_TOOLS SHOULD be capable of visualizing analysis results

Rationale: N/A

Supporting material: R4IDE5

Other comments: N/A

Table 195: The Report generation of analysis results Requirement.

ID: R4.26

Title: Report generation of analysis results

Priority of accomplishment: Should have

Type: Requirement

Description: Both ANOMALY_TRACE_TOOLS and ENHANCEMENT_TOOLS SHOULD

be able to generate reports with analysis results

Rationale: This feature is needed: a) for when DEVELOPER/ARCHITECT needs to make a

decision and make changes manually, b) to create history of changes (may be

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 76

useful)

Supporting material: N/A

Other comments: N/A

Table 196: The Propagation of changes/automatic annotation of UML models Requirement.

ID: R4.27

Title: Propagation of changes/automatic annotation of UML models

Priority of accomplishment: Must have

Type: Requirement

Description: ENHANCEMENT_TOOLS MUST be capable of automatically updating UML

models with analysis results (new values)

Rationale: Increase efficiency of iterative enhancement process

Supporting material: N/A

Other comments: N/A

Table 197: The Safety and privacy properties loading Requirement.

ID: R4.28

Title: Safety and privacy properties loading

Priority of accomplishment: Must have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS MUST allow the

DEVELOPER/ARCHITECT to choose and load the safety and privacy

properties from the Model of the application described through the DICE profile

Rationale: The properties to be analyzed are application-dependent, and they must come

from somewhere in the DICE model of the application. The user knows what

properties are to be monitored, so he/she should select those that most interest

him/her

Supporting material: R4IDE6

Other comments: N/A

Table 198: The Definition of time window of interest for safety/privacy properties Requirement.

ID: R4.28.1

Title: Definition of time window of interest for safety/privacy properties

Priority of accomplishment: Must have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS MUST allow the

DEVELOPER/ARCHITECT to choose the time window of interest, which must

be considered when choosing the traces to be analyzed.

Rationale: We do not want to analyze the whole history of the application, but only a slice,

which is selected by the user

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 77

Supporting material: N/A

Other comments: Trace checking is not a real-time analysis of a stream of events; it is done in

batch mode (see also R4.30), so the user should select the window of interest

Table 199: The Mechanisms for the definition of the time window of interest for safety/privacy propertiesRequirement.

ID: R4.28.1.1

Title: Mechanisms for the definition of the time window of interest for safety/privacy

properties

Priority of accomplishment: Could have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS COULD offer the

DEVELOPER/ARCHITECT different ways to choose the time window of

interest; the time window could be indicated though a size (to computed in the

past from the current instant), or using a starting and ending event.

Rationale: We might want to give the user some flexibility in how the slice of the runtime

history of the application to be analyzed is chosen.

Supporting material: N/A

Other comments: N/A

Table 200: The Event occurrences detection for safety and privacy properties monitoring Requirement.

ID: R4.29

Title: Event occurrences detection for safety and privacy properties monitoring

Priority of accomplishment: Must have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS MUST be able to retrieve, depending on the

properties to be checked, the relevant data stored in the DW, and translate them

into traces of relevant events for the trace checking

Rationale: The ANOMALY_TRACE_TOOLS, and the trace checking tool in particular,

requires as input traces of events of interest, which must be identified before they

are fed to the tool. There is probably a translation to be performed from what is

stored in the DW into the input format for the trace checking tool.

Supporting material: N/A

Other comments: This is similar/related to R4.4, but it is probably worth it to highlight this this

issue. It is also linked to R4.32

Table 201: The Safety and privacy properties monitoring Requirement.

ID: R4.30

Title: Safety and privacy properties monitoring

Priority of accomplishment: Must have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS MUST be able to check, given a trace of the

events of interest of the application, whether that trace is compatible with the

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 78

desired safety and privacy properties

Rationale: This is the main functionality of the trace cheking tool

Supporting material: N/A

Other comments: The check is performed off-line, i.e., in batch mode (a trace is retrieved from the

DW, then analysed by the trace checking tool)

Table 202: The Safety and privacy properties result reporting Requirement.

ID: R4.30.1

Title: Safety and privacy properties result reporting

Priority of accomplishment: Must have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS MUST be able to notify the

DEVELOPER/ARCHITECT when a safety/privacy property is violated by the

application.

Rationale: The trace checking tool must be able to give feedback to the developers

Supporting material: N/A

Other comments: This requirement is linked to R4.26, maybe it is a sub-requirement

Table 203: The Feedback from safety and privacy properties monitoring to UML models Requirement.

ID: R4.31

Title: Feedback from safety and privacy properties monitoring to UML models

Priority of accomplishment: Could have

Type: Requirement

Description: The ANOMALY_TRACE_TOOLS COULD provide feedback about

safety/privacy properties violated at runtime in the UML DICE models

Rationale: Providing feedback in the UML DICE models might help the

DEVELOPER/ARCHITECT get a picture of where the problems are in the

application

Supporting material: N/A

Other comments: N/A

Table 204: The Feedback from safety and privacy properties monitoring to UML models concerning violatedtime

bounds Requirement.

ID: R4.31.1

Title: Feedback from safety and privacy properties monitoring to UML models

concerning violated time bounds

Priority of accomplishment: Could have

Type: Requirement

Description: In the feedback provided by the ANOMALY_TRACE_TOOLS to the

DEVELOPER/ARCHITECT, the tools COULD highlight when a timing

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 79

requirement is violated, and what is the value of the violation

Rationale: The specific feedback about timing violations might help the

DEVELOPER/ARCHITECT adjust the parameters of the models/properties

Supporting material: R4IDE7?

Other comments: N/A

Table 205: The Correlation between data stored in the DW and DICE UML models Requirement.

ID: R4.32

Title: Correlation between data stored in the DW and DICE UML models

Priority of accomplishment: Must have

Type: Requirement

Description: There MUST be a way to link the information that is stored in the data

warehouse with the features and concepts of the DICE UML models (operations,

attributes, objects, etc.)

Rationale: The properties analyzed by the ANOMALY_TRACE_TOOLS through trace

checking are expressed in terms of the elements of the DICE UML model.

Hence, to run the trace checking the events stored in the data warehouse must be

correlated with what is described by the UML model. A similar need arises for

the ENHANCEMENT_TOOLS, which need to reason on the UML model to

infer input parameters

Supporting material: N/A

Other comments: It is unclear which component should bear responsibility of this fundamental

part. Would it be ENHANCEMENT_TOOLS or a dedicated component?

Table 206: The Relation between ANOMALY_TRACE_TOOLS and IDE Requirement.

ID: R4.33

Title: Relation between ANOMALY_TRACE_TOOLS and IDE

Priority of accomplishment: Should have

Type: Requirement

Description: It SHOULD be possible to launch the ANOMALY_TRACE_TOOLS from the

IDE

Rationale: The idea is that the trace checking is performed starting from the elements that

are described in the DICE UML model (see requirement R4.32). Hence, it makes

sense that the tool is invoked from the UML IDE. The idea could be that the IDE

has a link to the DW, and when the user asks for performing trace checking, the

IDE queries the DW, retrieves the information for the trace checking, then feeds

the ANOMALY_TRACE_TOOLS with the traces to be checked.

Supporting material: R4IDE8

Other comments: N/A

Table 207: The Monitoring for quality tests Requirement.

ID: R4.34

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 80

Title: Monitoring for quality tests

Priority of accomplishment: Must have

Type: Requirement

Description: The MONITORING_TOOLS MUST support and collect all the metrics relevant

for the QTESTING_TOOLS

Rationale: The quality testing tools rely on the data obtained by monitoring the runtime of

the application during the test runs.

Supporting material: N/A

Other comments: N/A

Table 208: The Tag monitoring data with OSLC tags Requirement.

ID: R4.35

Title: Tag monitoring data with OSLC tags

Priority of accomplishment: Must have

Type: Requirement

Description: MONITORING_TOOLS MUST tag monitoring data with OSLC tags

Rationale: DICE tools need to show compliance with OSLC standard

Supporting material: N/A

Other comments: N/A

B.5. WP5 Requirements

B.5.1 Consolidated requirements

Table 209: Requirement for the continuous integration and versioning.

ID: R5.34

Title: Continuous Integration records and versioning

Priority of

accomplishment:
Must have

Type: Requirement

Description: CI_TOOLS MUST record the results of each test, mapping them to the version number.

Rationale: Versioning of the application marks the progress of development and enables dependencies.

Associating version numbers to outputs is crucial for performance analysis and history

bookkeeping.

Supporting material: N/A

Other comments: N/A

Table 210: Requirement for the graphical user interface for continuous integration.

ID: R5.35

Title: Graphical user interface for Continuous Integration

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 81

Priority of

accomplishment:
Should have

Type: Requirement

Description: CI_TOOLS SHOULD offer a dashboard to consolidate the view of the application deployment, and

the access SHOULD be restricted to only the authorized users.

Rationale: A graphical user interface dashboard is where the users find the data of the latest and past quality

testing tools runs, but this information is sensitive for access.

Supporting material: N/A

Other comments: N/A

Table 211: Requirement for the quality testing scope.

ID: R5.36

Title: Quality Testing basic scope

Priority of

accomplishment:
Must have

Type: Requirement

Description: QTESTING_TOOLS MUST test the application for efficiency and reliability.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 212: Requirement for the extended quality testing scope.

ID: R5.37

Title: Quality Testing extended scope

Priority of

accomplishment:
Could have

Type: Requirement

Description: QTESTING_TOOLS COULD test the application for safety.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 213: Requirements for the quality testing results.

ID: R5.38

Title: Results of the Quality Testing

Priority of

accomplishment:
Must have

Type: Requirement

Description: QTESTING_TOOLS MUST provide the test outcome: success or failure, and the result MUST be

independent of any other test runs.

Rationale: When running Continuous Integration, the tests need to indicate if they encountered an error, an

invalid application state or violation of the set quality constraints. The QTESTING_TOOLS will

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 82

perform many tests of varying parameters, and each result has to be independent.

Supporting material: N/A

Other comments: N/A

Table 214: Requirement for the autonomy of deployment tools.

ID: R5.39

Title: Autonomy of the deployment tools

Priority of

accomplishment:
Must have

Type: Requirement

Description: DEPLOYMENT_TOOLS MUST be able to run automatically and autonomically.

Rationale: Manual interventions into the deployment process are not trackable, and reduce control and

repeatability of the deployment process. A recommended pattern is to use automatic and autonomic

tools.

Supporting material: N/A

Other comments: N/A

Table 215: Requirement for the scope of deployment tools.

ID: R5.40

Title: Scope of the Deployment Tools

Priority of

accomplishment:
Must have

Type: Requirement

Description: DEPLOYMENT_TOOLS MUST be able to deploy and install any application and the related

monitoring tools from a valid topology of the supported DICE building blocks.

Rationale: DICE will support an essential set of building blocks able to support the selected use cases. The

deployment tools will make this support effective.

Supporting material: N/A

Other comments: N/A

Table 216: Requirement for the extendibility and flexibility of the deployment tools.

ID: R5.41

Title: Extendibility and flexibility of the Deployment Tools

Priority of

accomplishment:
Should have

Type: Requirement

Description: DEPLOYMENT_TOOLS SHOULD be extendible and support multiple IaaS.

Rationale: The DICE consortium aims to support a reasonable number of technologies and to demonstrate the

functionality on a select platform. This, however, must not be a limiting factor for anyone in the

community and industry to extend the tools and use them in other contexts and with new

technologies.

Supporting

material:
N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 83

Other comments: N/A

Table 217: Support of deployment tools for Platform-as-aService (PaaS) requirement.

ID: R5.42

Title: Support of Deployment Tools for PaaS

Priority of

accomplishment:
Could have

Type: Requirement

Description: DEPLOYMENT_TOOLS COULD support selected PaaS.

Rationale: The DICE deployment tools will serve as an orchestration, which is a functionality similar to the

PaaS functionality, but with a wider reach and platform support. This support could be extended to

some of the PaaS offerings.

Supporting material: N/A

Other comments: N/A

B.5.2 Detailed requirements

Table 218: The Versioning Requirement.

ID: R5.1

Title: Versioning

Priority of accomplishment: Must have

Type: Domain Assumption

Description: Everything in the user’s project MUST be treated as code. All code MUST be

versioned and the DEPLOYMENT_TOOLS and CI_TOOLS tools MUST

involve the version information in their process.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 219: The Testing project Requirement.

ID: R5.2

Title: Testing project

Priority of accomplishment: Must have

Type: Domain Assumption

Description: An ADMINISTRATOR MUST configure a project or an account in the

TESTBED with resource quotas set to accommodate application tests.

Rationale: The DICE tools will deploy and test the application in the TESTBED running

either in the private or the public cloud. As a pre-requiste of the tests, the

TESTBED needs to be pre-configured to allow provisionning of resources

without going over the set quotas.

Supporting material: resources: CPU, RAM, hard drive space, network connectivity

project or account: an environment in the cloud permitting provisioning of a

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 84

limited or an unlimited set of virtual machines

Other comments: In the context of DICE development, we assume this will be in a testbed.

Otherwise the development team has a private data centre or a community cloud

computing account to be used.

Table 220: The Continuous integration tools deployment Requirement.

ID: R5.3

Title: Continuous integration tools deployment

Priority of accomplishment: Should have

Type: Requirement

Description: The ADMINISTRATOR MUST manually install and configure CI_TOOLS

MUST upon installation of the CI_TOOLS and can be updated later on. The

configuration MUST enable CI_TOOLS to access the TESTBED.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 221: The Translation of TOSCA models Requirement.

ID: R5.4

Title: Translation of TOSCA models

Priority of accomplishment: Must have

Type: Requirement

Description: The DEPLOYMENT_TOOLS MUST be able to translate TOSCA models from

WP2 into the supported target configuration manager’s DSL for orchestration

Rationale: The specialised tools for configuring the environment and orchestrating

applications (e.g., Chef) use their own DSL other than TOSCA.

Supporting material: DSL: domain-specific language

Other comments: N/A

Table 222: The Deployment plan support Requirement.

ID: R5.4.1

Title: Deployment plan support

Priority of accomplishment: Must have

Type: Requirement

Description: The DEPLOYMENT_TOOLS MUST be able to deploy all the DICE supported

core building blocks.

Rationale: DICE will provide support for the initial set of services that support use cases

and basic needs.

Supporting material: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 85

Other comments: N/A

Table 223: The Translation tools autonomy Requirement.

ID: R5.4.2

Title: Translation tools autonomy

Priority of accomplishment: Must have

Type: Requirement

Description: The DEPLOYMENT_TOOLS MUST take all of its input from the TOSCA

model and therefore MUST NOT require any additional user's input.

Rationale: The DEPLOYMENT_TOOLS have to operate transparently for the users.

Supporting material: N/A

Other comments: N/A

Table 224: The Deployment plan contents Requirement.

ID: R5.4.3

Title: Deployment plan contents

Priority of accomplishment: Must have

Type: Domain Assumption

Description: An automated deployment plan of the DEPLOYMENT_TOOLS MUST consist

of an executable list of operations to deploy, configure, and start the application

on the TESTBED.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 225: The Deployment plans execution tools Requirement.

ID: R5.4.4

Title: Deployment plans execution tools

Priority of accomplishment: Should have

Type: Domain Assumption

Description: The DEPLOYMENT_TOOLS SHOULD rely on third-party runtime

configuration and deployment tools.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 226: The Deployment tools transparency Requirement.

ID: R5.4.5

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 86

Title: Deployment tools transparency

Priority of accomplishment: Should have

Type: Requirement

Description: The DEPLOYMENT_TOOLS SHOULD NOT expose to the

ADMINISTRATOR details on the tools used to deploy and configure the

application.

Rationale: For ease of use and extensibility, the DEPLOYMENT_TOOLS should hide their

inner details to the external world

Supporting material: N/A

Other comments: N/A

Table 227: The Deployment plans extendability Requirement.

ID: R5.4.6

Title: Deployment plans extendability

Priority of accomplishment: Should have

Type: Requirement

Description: The DEPLOYMENT_TOOLS MAY be extended by the ADMINISTRATOR

with other building blocks not in the core set.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 228: The Deployment plans portability Requirement.

ID: R5.4.9

Title: Deployment plans portability

Priority of accomplishment: Should have

Type: Requirement

Description: The DEPLOYMENT_TOOLS SHOULD be able to support more than one

vendor's IaaS.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 229: The Deployment of the application in a test environment Requirement.

ID: R5.4.7

Title: Deployment of the application in a test environment

Priority of accomplishment: Must have

Type: Requirement

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 87

Description: The DEPLOYMENT_TOOLS MUST provision the resources required by the

application

Rationale: Assuming that there is an application, its model and a set of quality test, a

dedicated set of resources need to exist and be assigned to the tests.

Supporting material: resources: CPU, RAM, hard drive space, network connectivity

Other comments: N/A

Table 230: The Starting the monitoring tools Requirement.

ID: R5.4.8

Title: Starting the monitoring tools

Priority of accomplishment: Must have

Type: Requirement

Description: The DEPLOYMENT_TOOLS MUST start the MONITORING_TOOLS for the

application.

Rationale: Monitoring tools are an essential part of the DICE quality testing tools.

Supporting material:

Other comments: N/A

Table 231: The User-provided initial data retrieval Requirement.

ID: R5.5

Title: User-provided initial data retrieval

Priority of accomplishment: Must have

Type: Requirement

Description: CI_TOOLS MUST retrieve from the artifact repository or use input from the

code versioning system any user-provided initial data

Rationale: Applications may require initial data prepared by the DEVELOPER to be loaded

in the databases. If the DEVELOPER prepares them in a dedicated place, the

CI_TOOLS are responsible to retrieve them and have them loaded in the

databases.

Supporting material: artifact repository: a dedicated repository for built application programs and

libraries and any additional data such as bulk data

Other comments: N/A

Table 232: The Test data generation Requirement.

ID: R5.6

Title: Test data generation

Priority of accomplishment: Could have

Type: Requirement

Description: The QTESTING_TOOLS COULD be able to generate the initial input data for

the APPLICATION

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 88

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 233: The Data loading support Requirement.

ID: R5.7

Title: Data loading support

Priority of accomplishment: Must have

Type: Requirement

Description: DEPLOYMENT_TOOLS and QTESTING_TOOLS MUST support bulk

loading and bulk unloading of the data for the core building blocks.

Rationale: DICE should support the core building blocks (e.g., technologies such as

CEPH/HDFS, SQL, NoSQL) with the ability to load the inital data in a standard

and documented form (eg SQL scripts, files, etc). DICE should also allow to

unload that data (delete files, drop table, etc).

Supporting material: N/A

Other comments: N/A

Table 234: The Data loading hook Requirement.

ID: R5.7.1

Title: Data loading hook

Priority of accomplishment: Must have

Type: Requirement

Description: DEPLOYMENT_TOOLS and QTESTING_TOOLS MUST provide a well-

defined way to accept the initial bulk data that they can load.

Rationale: This requirement provides to the DEVELOPER a way to prepare the initial data,

which either DEPLOYMENT_TOOLS or QTESTING_TOOLS (depends on the

use case) load into the databases.

Supporting material: N/A

Other comments: N/A

Table 235: The Definition of quality test Requirement.

ID: R5.8

Title: Definition of quality test

Priority of accomplishment: Must have

Type: Domain Assumption

Description: A quality test of the QTESTING_TOOLS MUST include at least executable

code to generate the workload for the application, a timeout, an experimental

design that assign the levels of the factors, and a set of target monitoring metrics

to be collected by the

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 89

Rationale: N/A

Supporting material: Workload may be artificial or from real-traces collected by the

MONITORING_TOOLS.

Other comments: N/A

Table 236: The Representative test configurations generation Requirement.

ID: R5.8.1

Title: Representative test configurations generation

Priority of accomplishment: Should have

Type: Requirement

Description: The QTESTING_TOOLS SHOULD avoid a full factorial design testing by

means of experimental design methods

Rationale: The space of possible combinations of parameters to test may become

prohibitively large, requiring to long a time to test them all. The

QTESTING_TOOLS must select a feasible, but representative subset.

Supporting material: N/A

Other comments: N/A

Table 237: The Starting the quality testing Requirement.

ID: R5.8.2

Title: Starting the quality testing

Priority of accomplishment: Must have

Type: Requirement

Description: The QTESTING_TOOLS MAY be invoked by the CI_TOOLS or by the

QA_TESTER

Rationale: Addresses the responsibility of executing the programs or scripts, which

implement the quality assurance runs.

Supporting material: N/A

Other comments: N/A

Table 238: The Test run independence Requirement.

ID: R5.8.3

Title: Test run independence

Priority of accomplishment: Must have

Type: Requirement

Description: The QTESTING_TOOLS MUST ensure that no side effects from past or

ongoing tests leak into the runtime of any other test.

Rationale: Each test needs to be run independently from the other test runs. The test results

should be as repeatable as possible.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 90

Supporting material: N/A

Other comments: N/A

Table 239: The Test outcome Requirement.

ID: R5.8.5

Title: Test outcome

Priority of accomplishment: Must have

Type: Requirement

Description: The QTESTING_TOOLS MUST provide the test outcome to CI_TOOLS:

success or failure

Rationale: The outcome of each test must be a clear "success" of "failure". The tests with

clear criteria of success or failure must provide the decision. The tests, which run

a survey, benchmark or stress-test always succeed unless there is an error in the

runtime.

Supporting material: N/A

Other comments: Relates to R5.16

Table 240: The User's unit and regression tests code execution inclusion Requirement.

ID: R5.9

Title: User's unit and regression tests code execution inclusion

Priority of accomplishment: Must have

Type: Requirement

Description: The CI_TOOLS MUST offer the ability to run unit tests and regression tests.

The unit tests and regression tests SHOULD be written by the DEVELOPER,

who SHOULD have the ability of choosing which ones to run.

Rationale: Addresses the responsibility of executing the programs or scripts, which

implement the quality assurance runs.

Supporting material: N/A

Other comments: N/A

Table 241: The Continuous integration tools dashboard Requirement.

ID: R5.10

Title: Continuous integration tools dashboard

Priority of accomplishment: Should have

Type: Requirement

Description: The CI_TOOLS SHOULD offer a dashboard that consolidates the view on the

state of the application and the deployed components.

Rationale: N/A

Supporting material: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 91

Other comments: N/A

Table 242: The Quality testing tools IDE integration Requirement.

ID: R5.11

Title: Quality testing tools IDE integration

Priority of accomplishment: Should have

Type: Requirement

Description: The IDE SHOULD provide the means to configure the QTESTING_TOOLS

execution

Rationale: Quality tests may come with parameters such as the number of tests to run or the

duration of each tests, which the user should be able to change.

Supporting material: N/A

Other comments: N/A

Table 243: The Testing results feedback Requirement.

ID: R5.12

Title: Testing results feedback

Priority of accomplishment: Must have

Type: Requirement

Description: The CI_TOOLS MUST provide feedback to the DEVELOPER on the results of

the unit tests.

Rationale: The CI_TOOLS invoke the testing on the user's behalf. Therefore they must

indicate what the QTESTING_TOOLS returned as their outcome.

Supporting material: N/A

Other comments: N/A

Table 244: The Test the application for efficiency Requirement.

ID: R5.13

Title: Test the application for efficiency

Priority of accomplishment: Must have

Type: Requirement

Description: The QTESTING_TOOLS MUST test the application's performance across

various configurations.

Rationale: N/A

Supporting material: Reference metrics for performance and costs should be defined project-wise.

Other comments: N/A

Table 245: The Test the application for reliability Requirement.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 92

ID: R5.14

Title: Test the application for reliability

Priority of accomplishment: Must have

Type: Requirement

Description: The QTESTING_TOOLS MUST be tested for the application's ability to

maintain the functionality and data integrity even when there are outages and

faults in the supporting system.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 246: The Test the behaviour when resources become exhausted Requirement.

ID: R5.14.1

Title: Test the behaviour when resources become exhausted

Priority of accomplishment: Must have

Type: Requirement

Description: The QTESTING_TOOLS MUST provide the ability to saturate and exhaust

resources used by the application.

Rationale: DICE tools must enable getting a feedback on what happens when a resource is

exhausted. The application may crash, corrupt data, request scale-up of

infrastructure or stop gracefully.

Supporting material: Source literature: The Pragmatic Programmer

Other comments: N/A

Table 247: The Trigger deliberate outages and problems to assess the application’s behaviour under faultsRequirement.

ID: R5.14.2

Title: Trigger deliberate outages and problems to assess the application’s behaviour

under faults

Priority of accomplishment: Must have

Type: Requirement

Description: The QTESTING_TOOLS MUST use the TESTBED's fault injection

functionality to test the application's resilience.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 248: The Test the application for safety Requirement.

ID: R5.15

Title: Test the application for safety

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 93

Priority of accomplishment: Could have

Type: Requirement

Description: The QTESTING_TOOLS COULD test the application for safety properties.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 249: The Test the application for data protection Requirement.

ID: R5.15.1

Title: Test the application for data protection

Priority of accomplishment: Could have

Type: Requirement

Description: The QTESTING_TOOLS COULD test the application for its ability to protect

the data from unauthorized access.

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 250: The Provide monitoring of the quality aspect of the development evolution (quality regression)Requirement.

ID: R5.16

Title: Provide monitoring of the quality aspect of the development evolution (quality

regression)

Priority of accomplishment: Must have

Type: Requirement

Description: The CI_TOOLS MUST record the results of each test and map them to the

momentary project's (model, code etc.) version.

Rationale: While the QTESTING_TOOLS produce the direct results of success or failure, it

must be CI_TOOLS that ensure these results are stored and available for

inspection of history.

Supporting material: results: success/failure, quality indicators

Other comments: See also R5.1 and R5.8.4

Table 251: The Quick testing vs comprehensive testing Requirement.

ID: R5.17

Title: Quick testing vs comprehensive testing

Priority of accomplishment: Must have

Type: Requirement

Description: The QTESTING_TOOLS MUST receive as input parameter the scope of the

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 94

tests to be run.

Rationale: Speed is important when designing and developing code. DICE should provide

two (or more) profiles for testing: a quick one running only the representative

tests, and a long one (for “overnight” tests) giving a more comprehensive

assessment.

Supporting material: N/A

Other comments: N/A

Table 252: The Deployment configuration review Requirement.

ID: R5.19

Title: Deployment configuration review

Priority of accomplishment: Must have

Type: Requirement

Description: The CI_TOOLS MUST enable that ADMINISTRATOR assigns one or more

users (including self) for reviewing the deployment configuration

Rationale: Automated quality tests have to be complemented with the input from humans,

who must be able to review the model, the parameters affecting the deployment,

and also possibly the results of the quality tests.

Supporting material: N/A

Other comments: N/A

Table 253: The Build acceptance Requirement.

ID: R5.20

Title: Build acceptance

Priority of accomplishment: Must have

Type: Requirement

Description: The CI_TOOLS MUST NOT run the deployment of the application to pre-

production if the quality test fail or the reviewers have not provided a positive

score.

Rationale: No build should be promoted to pre-production accidentally.

ADMINISTRATOR or other actor has to have the means to block harmful

updates.

Supporting material: N/A

Other comments: N/A

Table 254: The Deployment plans reuse Requirement.

ID: R5.21

Title: Deployment plans reuse

Priority of accomplishment: Could have

Type: Requirement

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 95

Description: The DEPLOYMENT_TOOLS COULD detect the deployments plans that have

been tried before and IDE COULD flag this to the user.

Rationale: The ADMINISTRATOR may use this information to establish that a deployment

plan is mature and error-free.

Supporting material: N/A

Other comments: N/A

Table 255: The Continuous integration tools access control Requirement.

ID: R5.22

Title: Continuous integration tools access control

Priority of accomplishment: Should have

Type: Requirement

Description: The access to CI_TOOLS SHOULD be protectable with good credentials (e.g.,

username and password or a single sign-on token)

Rationale: In the environments where the access to code and the builds need to be restricted

to only the authorised staff, the CI_TOOLS should enable setting up of accounts,

roles of accounts, and prevent access to unauthorised users.

Supporting material: N/A

Other comments: N/A

Table 256: The Continuous integration tools IDE integration Requirement.

ID: R5.23

Title: Continuous integration tools IDE integration

Priority of accomplishment: Must have

Type: Requirement

Description: The CI_TOOLS MUST be integrated with the IDE.

Rationale: The continuous integration tools must provide the means to be invoked remotely,

with an option of controls and status display built into the IDE.

Supporting material: N/A

Other comments: N/A

Table 257: The Running tests from IDE without committing to VCS Requirement.

ID: R5.23.1

Title: Running tests from IDE without committing to VCS

Priority of accomplishment: Could have

Type: Requirement

Description: The CI_TOOLS COULD provide an integration with the IDE that enables

deployment and execution of tests on the user's local changes without

committing the code into the VCS.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 96

Rationale: In some cases the DEVELOPER may want to run a test without committing the

code into the repository.

Supporting material: N/A

Other comments: N/A

Table 258: The Flexiant platform simulated or induced faults Requirement.

ID: R5.24

Title: Flexiant platform simulated or induced faults

Priority of accomplishment: Must have

Type: Requirement

Description: The TESTBED MUST enable simulating or inducing at least the following

platform faults: High CPU usage, High Memory usage, Node Power outage,

Network outage/ fault, Lack of resources

Rationale: One set of problems an application may encounter is that a part of the host's

resources are exhausted. The TESTBED in DICE will provide a controled and

reliable way of inducing resource ourages.

Supporting material: N/A

Other comments: N/A

Table 259: The Recommender Engine and Optimization Requirement.

ID: R5.27

Title: Recommender Engine and Optimization

Priority of accomplishment: Must have

Type: Requirement

Description: DEPLOYMENT_TOOLS (recommender engine) MUST retrieve from the

OPTIMIZATION_TOOLS initial deployment parameters and recommend the

vaules of the parameters that have not yet been set.

Rationale: OPTIMIZATION_TOOLS from WP3 handle subset of deployment parameters,

while this requirement is meant to augment/add additional deployment

parameters.

Supporting material: N/A

Other comments: A requirement for configuration recommender engine

Table 260: The Brute-force approach for deployment configuration deployment Requirement.

ID: R5.27.1

Title: Brute-force approach for deployment configuration deployment

Priority of accomplishment: Could have

Type: Requirement

Description: DEPLOYMENT_TOOLS (recommender engine) COULD employ trial and error

approach to recommend the 'best' one, where different configurations would be

tried on a data sample in order to evaluate the performance

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 97

achieved, the best one being chosen in the end

Rationale: Alternative to ML approach

Supporting material: N/A

Other comments: N/A

Table 261: The Recommender Engine API Requirement.

ID: R5.27.2

Title: Recommender Engine API

Priority of accomplishment: Must have

Type: Requirement

Description: DEPLOYMENT_TOOLS MUST provide APIs to access recommender system

(push data, get recommendations, etc)

Rationale: N/A

Supporting material: N/A

Other comments: A command-line interface can probably work at the first release.

Table 262: The Induced faults in the guest environment Requirement.

ID: R5.30

Title: Induced faults in the guest environment

Priority of accomplishment: Could have

Type: Requirement

Description: The TESTBED COULD enable simulating or inducing at least the following VM

Level faults: High CPU usage, High Memory usage, Network fault

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Table 263: The Reactions to problems in the runtime Requirement.

ID: R5.31

Title: Reactions to problems in the runtime

Priority of accomplishment: Could have

Type: Requirement

Description: The DEPLOYMENT_TOOLS COULD provide the means to trigger special

actions such as reconfiguration or problem notifications when problems are

detected

Rationale: N/A

Supporting material: N/A

Other comments: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 98

Table 264: The Testbed problem notifications Requirement.

ID: R5.32

Title: Testbed problem notifications

Priority of accomplishment: Should have

Type: Requirement

Description: The TESTBED SHOULD output notifications of faults to at least one of the

regular channels (RESTful URL subscription, e-mail, queue...)

Rationale: The TESTBED needs to provide the means for sending notifications when it

detects faults regardless of whether they occur deliberately or accidentally.

Supporting material: N/A

Other comments: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 99

Appendix C. Technical Scenarios

C.1. WP1 Scenarios

Table 265: The Stereotyping a UML diagram with the DICE profile to obtain a Platform-Indep. Model Scenario.

ID: UC1.1

Title: Stereotyping a UML diagram with the DICE profile to obtain a Platform-Indep.

Model

Task: T1.1

Priority: REQUIRED

Actor 1: ARCHITECT

Actor 2: IDE

Actor 3: N/A

Actor 4: N/A

Flow of Events: A technical person capable of designing and modelling a data intensive

application models the Platform-Indep. UML Model stereotyped with the DICE

profile

Pre-conditions: UML diagram of domain model

Post-conditions: Stereotyped diagram with DICE profile

Exceptions: N/A

Data Exchanges: N/A

Table 266: The Analysis, simulation, verification, feedback, and transformations until obtaining a deployment model

Scenario.

ID: UC1.2

Title: Analysis, simulation, verification, feedback, and transformations until obtaining

a deployment model

Task: T1.3

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: IDE

Actor 3: QA_TESTER

Actor 4: N/A

Flow of Events: The developer is a technical person capable of developing a data intensive

application is guided through the DICE methodology to accelerate development

and deployment of the data-intensive application with quality iteration.

A Quality-Assessment expert may also run and examine the output of the QA

testing tools in addition to the developer

Pre-conditions: Stereotyped diagram with DICE profile

Post-conditions: Architecture model, platform-specific model, QA models

Exceptions: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 100

Data Exchanges: N/A

C.2. WP2 Scenarios

Table 267: The Workflow Specification Scenario.

ID: DS1

Title: Workflow Specification

Task: T2.1

Priority: REQUIRED

Actor 1: ARCHITECT

Actor 2: IDE

Actor 3: DEVELOPER

Actor 4: N/A

Flow of Events: definition of the behavioral flow to be supported by the DIA. A possible view for

a workflow specification consists of workflow specification items as sequences

of actions to be performed on input data

Pre-conditions: architect has clear ideas in mind on which processing type needs to be carried

out

Post-conditions: DIA is specified thorugh the DICE profile and does not contain inconsistent or

undeployable Data-Intensive Elements

Exceptions: N/A

Data Exchanges: N/A

Table 268: The Cost Analysis Scenario.

ID: DS2

Title: Cost Analysis

Task: T2.1

Priority: REQUIRED

Actor 1: ARCHITECT

Actor 2: OPTIMIZATION_TOOLS

Actor 3: TRANSFORMATION_TOOLS

Actor 4: N/A

Flow of Events: actual monetary/resource value produced by the DIA against the tentative cost

calculations for the DIA itself

Pre-conditions: architect has a number of possible configuration alternatives to be analysed for

architecture-level trade-off analysis.

Post-conditions: Architect finds out the right compromise between deployment and management

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 101

cost against desired performance or other non-functional requirements

Exceptions: N/A

Data Exchanges: N/A

Table 269: The Data-flow specification Scenario.

ID: DS3

Title: Data-flow specification

Task: T2.1

Priority: REQUIRED

Actor 1: ARCHITECT

Actor 2: IDE

Actor 3: DEPLOYMENT_TOOLS

Actor 4: N/A

Flow of Events: the way in which the DIA retrieves, stores and forwards data to its internal or

external environment

Pre-conditions: architect has many possible sources from which data needs to be harvested and

elicited or possibly filtered.

Post-conditions: architect has defined a DIA with a specific policy embedded within it. The

policy is consistent with provisioned infrastructure and able to process needed

data.

Exceptions: N/A

Data Exchanges: N/A

Table 270: The Function Specification Scenario.

ID: DS4

Title: Function Specification

Task: T2.1

Priority: REQUIRED

Actor 1: ARCHITECT

Actor 2: IDE

Actor 3: DEVELOPER

Actor 4: N/A

Flow of Events: the way in which DIA main Map/Reduce functions are implemented and how

other concerns influence the implementation choices

Pre-conditions: architect has to define DIA and job contained therein. Architect knows elements

and technologies involved but needs to specify the flow of involved functions

and study the policies involved.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 102

Post-conditions: architect has specified the DIA in terms of the exchanges of control between

DIA functions (e.g., map / reduce, etc.)

Exceptions: N/A

Data Exchanges: N/A

Table 271: The Framework Override Scenario.

ID: DS5

Title: Framework Override

Task: T2.1

Priority: REQUIRED

Actor 1: ARCHITECT

Actor 2: IDE

Actor 3: DEVELOPER

Actor 4: N/A

Flow of Events: the need for overriding default values used by target DIA frameworks such that

ad-hoc setup may be performed

Pre-conditions: architect needs to override specific framework parameters but overrides may

reflect architectural modifications on the DIA under specification

Post-conditions: Architect finds the right compromise between having a deployable DIA and

framework optimisation profile

Exceptions: N/A

Data Exchanges: N/A

Table 272: The Defining Data-Splits Scenario.

ID: DS6

Title: Defining Data-Splits

Task: T2.1

Priority: REQUIRED

Actor 1: ARCHITECT

Actor 2: IDE

Actor 3: DEVELOPER

Actor 4: N/A

Flow of Events: architects need to specify how data is split, filtered and arranged across the

processing nodes

Pre-conditions: Architect knows or has chosen DIA general architecture, including and

workflow function specification but needs to specify data-splits that are required

for processing in the DIA

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 103

Post-conditions: architect has defined which node processes which types of data or what chunk of

data is to be processed in terms of size, time and maximum expense of resources

Exceptions: N/A

Data Exchanges: N/A

Table 273: The Topology Specification Scenario.

ID: DS7

Title: Topology Specification

Task: T2.1

Priority: REQUIRED

Actor 1: ARCHITECT

Actor 2: IDE

Actor 3: DEVELOPER

Actor 4: N/A

Flow of Events: Architects need to specifically model the structural view of the DIA architecture,

intended as an interconnected series of components responding to structural

constraints (e.g., the lambda architecture)

Pre-conditions: architects are aware of constraints (e.g, social, organizational, technical,

governamental) to designing and deploying certain topologies - these constraints

are cost and scale drivers for building the DIA topology

Post-conditions: architects specified a topology consistent with known constraints; constraints are

perfectly mapped in the architecture topological specification and can be

analysed for architectural refinement

Exceptions: N/A

Data Exchanges: N/A

Table 274: The Framework Control Scenario.

ID: DS8

Title: Framework Control

Task: T2.1

Priority: REQUIRED

Actor 1: ARCHITECT

Actor 2: IDE

Actor 3: DEVELOPER

Actor 4: N/A

Flow of Events: architects and developers need to specify and agree upon the dynamics that

regulate the operational behavior behind the target framework (e.g.,

Hadoop/MR). For example, framework control includes configuration details

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 104

about controlling software (e.g., framework daemons, task controllers, etc.)

Pre-conditions: architect is familiar with the constraints (e.g., cost) and how those constraints

reflect on the architecture; developer is familiar with tweaks to be applied for

framework control that might avail architecture constraints; a compromise can be

sought for

Post-conditions: constraints and operational tweaks for framework control are perfectly specified

in the architecture model; further reasoning on the same model may be applied

via further optimisation

Exceptions: N/A

Data Exchanges: N/A

C.3. WP3 Scenarios

Table 275: The Verification of reliability or performance properties from a DPIM/DTSM DICE annotated UMLmodel

Scenario.

ID: UC3.1

Title: Verification of reliability or performance properties from a DPIM/DTSM DICE

annotated UML model

Task:

Priority: REQUIRED

Actor 1: QA_ENGINEER

Actor 2: IDE

Actor 3: TRANSFORMATION_TOOLS

Actor 4: SIMULATION_TOOLS

Flow of Events: 1.- The QA_ENGINEER selects the model to be evaluated.

2.- IDE loads it (the model is loaded successfully).

3.- The QA_ENGINEER selects the metric(s), he/she wants to evaluate.

4.- IDE submits the evaluation request.

5.- TRANSFORMATION_TOOLS takes the DICE annotated UML model and,

by applying the transformation rules, converts it into a formal model (e.g., a

Stochastic Petri net).

6.- SIMULATION_TOOLS selects the appropriate solver (e.g., a simulator),

analyzes the formal model and calculates the metric(s) value(s).

7.- IDE presents the results of the metric prediction and let the QA_ENGINEER

to store them.

Pre-conditions: There exists a DPIM/DTSM level UML annotated model.

Post-conditions: The QA_ENGINEER gets information about the predicted metric value in the

technological environment being studied

Exceptions: N/A

Data Exchanges: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 105

Table 276: The Verification of throughput from a DPIM DICE annotated UML model Scenario.

ID: UC3.1.1

Title: Verification of throughput from a DPIM DICE annotated UML model

Task:

Priority: REQUIRED

Actor 1: QA_ENGINEER

Actor 2: IDE

Actor 3: TRANSFORMATION_TOOLS

Actor 4: SIMULATION_TOOLS

Flow of Events: 1.- The QA_ENGINEER selects a DPIM model to evaluate.

2.- IDE loads it (the model is loaded successfully).

3.- The QA_ENGINEER enters into performance metrics and selects throughput.

4.- IDE submits the evaluation request.

5.- TRANSFORMATION_TOOLS takes the DICE annotated UML model and,

by applying the transformation rules, converts it into Stochastic Petri net.

6.- SIMULATION_TOOLS selects the appropriate solver (in this case probably

¿simulation?), analyzes the formal model and calculates the value for

throughput.

7.- IDE presents the results of the throughput prediction and let the

QA_ENGINEER to store it joint to the model itself.

Pre-conditions: N/A

Post-conditions: N/A

Exceptions: N/A

Data Exchanges: N/A

Table 277: The Verification of safety and privacy properties from a DICE UML model Scenario.

ID: UC3.2

Title: Verification of safety and privacy properties from a DICE UML model

Task:

Priority: REQUIRED

Actor 1: QA_ENGINEER

Actor 2: IDE

Actor 3: TRANSFORMATION_TOOLS

Actor 4: VERIFICATION_TOOLS

Flow of Events: 1.- The QA_ENGINEER selects the model to be verified.

2.- IDE loads the model (the model is loaded successfully).

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 106

3.- The QA_ENGINEER selects the (safety) property to be checked (possibly

using templates).

4.- IDE submits the verification request.

5.- TRANSFORMATION_TOOLS takes the DICE UML model and the

property to be verified and, by applying the transformation rules, converts them

into a formal model that is suitable for verification (e.g., a temporal logic model).

6.- VERIFICATION_TOOLS selects the appropriate solver, analyzes the formal

model against the desired property and determines whether the property holds for

the modeled system or not.

7.- IDE presents the result, which indicates whether the property is fulfilled or

not. If the property is violated, the IDE presents the outcome of the verification

activity to QA_ENGINEER in the form of a trace of the modeled system that

violates the property.

Pre-conditions: There exists a UML model built using the DICE profile.

A property to be checked has been defined through the DICE profile, or at least

through the DICE IDE, by instantiating some pattern.

Post-conditions: The QA_ENGINEER gets information about whether the property holds for the

modeled system or not

Exceptions: N/A

Data Exchanges: N/A

Table 278: The Optimization of the deployment from a DDSM DICE annotated UML model with reliability

andperformance constraints Scenario.

ID: UC3.3

Title: Optimization of the deployment from a DDSM DICE annotated UML model

with reliability and performance constraints

Task: T3.4

Priority: REQUIRED

Actor 1: ARCHITECT

Actor 2: OPTIMIZATION_TOOLS

Actor 3: SIMULATION_TOOLS

Actor 4: N/A

Flow of Events: 1.- The ARCHITECT selects the DDSL model and the

OPTIMIZATION_TOOLS loads it

2.- The ARCHITECT specifies the target deployment to be considered: private

or public cloud

3.- In case of public cloud deployment, the ARCHITECT specifies the set of

candidate Cloud providers to be considered in the design space

exploration

4.-The ARCHITECT specifies the application SLAs that will be translated into

optimization constraints (e.g. minimum reliability or jobs deadlines).

5.- The ARCHITECT specifies the set of candidate resource containers to be

considered in the design space exploration or alternatively specifies minimum

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 107

RAM and CPU capacity for individual resource containers.

6.- For each resource container, the ARCHITECT possibly provides profiling

data (e.g. tasks duration on different VMs types)

7.- The OPTIMIZATION_TOOLS start the design space exploration and

compute the reliability and performance metrics for candidate solutions through

the SIMULATIONS_TOOLS (providing multiple DDSMs of the candidate

solutions to be evaluated in parallel)

8.- The OPTIMIZATION_TOOLS output the number of resources and

architecture if minimum cost that fulfil SLAs, providing the complete DDSL for

the data intensive application.

9.- DDSL is pushed back to the DICE IDE

Pre-conditions: There exists a DDSM level UML annotated model (where the number and

possibly type of VMs are not specified). Cost are stored in the

OPTIMIZATION_TOOLS internal resource DB

Post-conditions: The ARCHITECT starts from a partial DDSM model and reasons about the

optimal resource allocation considering the trade off cost/requirements. Multiple

technology are analysed by providing multiple DDSMs throught what-if

scenarios

Exceptions: N/A

Data Exchanges: N/A

C.4. WP4 Scenarios

Table 279: The Monitor a big data framework Scenario.

ID: UC4.1

Title: Monitor a big data framework

Task: T4.1

Priority: REQUIRED

Actor 1: OPTIMIZATION_TOOLS

Actor 2: MONITORING_TOOLS

Actor 3: SIMULATION_TOOLS

Actor 4: N/A

Flow of Events: N/A

Pre-conditions: Existing deployment of big data framework to be monitored.

Post-conditions: Measured metrics stored and available in a DW

Exceptions: N/A

Data Exchanges: N/A

Table 280: The Metrics Specification Scenario.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 108

ID: UC4.1.1

Title: Metrics Specification

Task: T4.1

Priority: REQUIRED

Actor 1: OPTIMIZATION_TOOLS

Actor 2: ENHANCEMENT_TOOLS

Actor 3: SIMULATION_TOOLS

Actor 4: N/A

Flow of Events: N/A

Pre-conditions: A UML model for the application has been defined.

Post-conditions: The application UML model is annotated with requirements on the metrics to be

collected.

Exceptions: N/A

Data Exchanges: N/A

Table 281: The Monitoring tools registration Scenario.

ID: UC4.1.2

Title: Monitoring tools registration

Task: T4.1

Priority: REQUIRED

Actor 1: MONITORING_TOOLS

Actor 2: N/A

Actor 3: N/A

Actor 4: N/A

Flow of Events: Each Monitoring tool will:

1. Discover the the Data Warehousing component

2. Send its identifier and the list of available metrics to the Data Warehousing

component

3. Negotiate the monitored metrics and acknowledge

Pre-conditions: Test application MUST be successfully deployed on test environment. DW is

installed.

Post-conditions: N/A

Exceptions: N/A

Data Exchanges: N/A

Table 282: The Monitored Data Storage Scenario.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 109

ID: UC.4.1.3

Title: Monitored Data Storage

Task: T4.1

Priority: REQUIRED

Actor 1: MONITORING_TOOLS

Actor 2: N/A

Actor 3: N/A

Actor 4: N/A

Flow of Events: 1. Monitoring tools connects to the DW.

2. Compute the metrics by performing ETL (extracts-tranform-load) type jobs.

3. Store resulting metrics in the DW.

Pre-conditions: Existence of data collection tools.

Post-conditions: Recorded and computed metrics stored and available in a DW

Exceptions: N/A

Data Exchanges: N/A

Table 283: The Data Warehouse query Scenario.

ID: UC4.2

Title: Data Warehouse query

Task: T4.1

Priority: REQUIRED

Actor 1: MONITORING_TOOLS

Actor 2: SIMULATION_TOOLS

Actor 3: ENHANCEMENT_TOOLS

Actor 4: N/A

Flow of Events: 1. Actors send a query to the DW for specific metrics and timeframe

2. DW sintactically validates the query

Pre-conditions: N/A

Post-conditions: N/A

Exceptions: 3. If the query is malformed then the actor receives an error message

4. If the query is correct then the actor receives a dataset as a result

Data Exchanges: N/A

Table 284: The Data Cleaning Scenario.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 110

ID: UC4.3

Title: Data Cleaning

Task: T4.1

Priority: RECOMMENDED

Actor 1: ANOMALY_TRACE_TOOLS

Actor 2: N/A

Actor 3: N/A

Actor 4: N/A

Flow of Events: 1. ANOMALY_TRACE_TOOLS connect to the DW

2. ANOMALY_TRACE_TOOLS specifies an event window

3. ANOMALY_TRACE_TOOLS specifies a data cleaning algorithm to be

applied on selected window

4. ANOMALY_TRACE_TOOLS lauches the data cleaning task

Pre-conditions: N/A

Post-conditions: N/A

Exceptions: N/A

Data Exchanges: N/A

Table 285: The Metrics Visualization Scenario.

ID: UC4.4

Title: Metrics Visualization

Task: T4.1

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: ARCHITECT

Actor 3: ADMINISTRATOR

Actor 4: N/A

Flow of Events: 1. Actors access the WUI

2. Actors choose what metrics have to be displayed

3. Actors choose the visualization form

Pre-conditions: Web User Interface (WUI) formetrics visualization is accessible

DW accessible

Metrics defined

Post-conditions: Metrics are displayed in WUI

Exceptions: N/A

Data Exchanges: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 111

Table 286: The Anomaly detection model training Scenario.

ID: UC4.5

Title: Anomaly detection model training

Task: T4.2

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: ANOMALY_TRACE_TOOLS

Actor 3: N/A

Actor 4: N/A

Flow of Events: 1. The DEVELOPER defines the training dataset.

2. DEVELOPER selects anomaly detection method

3. The ANOMALY_TRACE_TOOLS apply transformations based on ML

method chosen for the dataset

4. The DEVELOPER validates the model

5. Model is saved in the DW for later predictions.

Pre-conditions: Monitoring data available in the DW.

Application open in the IDE.

UC4.1.2 and UC4.1.3.

Labelled monitoring dataset.

Post-conditions: Predictive model available in the DW

Exceptions: N/A

Data Exchanges: N/A

Table 287: The Offline Anomaly detection Scenario.

ID: UC4.6

Title: Offline Anomaly detection

Task: T4.2

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: ANOMALY_TRACE_TOOLS

Actor 3: N/A

Actor 4: N/A

Flow of Events: 1. The DEVELOPER defines the dataset window (query data)

2. The DEVELOPER selects anomaly detection method

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 112

- Predictive model

- Unsupervised method

3. ANOMALY_TRACE_TOOLS performs the detection

4. ANOMALY_TRACE_TOOLS stores the result of the detection

5. ANOMALY_TRACE_TOOLS inform DEVELOPER of the outcome

Pre-conditions: DW is accessible

In case Predictive method is used, Predictive Models need to be available in the

DW (as outcome of UC4.5)

Post-conditions: Results stored in the DW

Exceptions: N/A

Data Exchanges: N/A

Table 288: The Detect safety/privacy properties violation Scenario.

ID: UC4.7

Title: Detect safety/privacy properties violation

Task: T4.2

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: ARCHITECT

Actor 3: ANOMALY_TRACE_TOOLS

Actor 4: IDE

Flow of Events: 1. From the DICE IDE, DEVELOPER/ARCHITECT activates the monitoring,

and selects from the UML DICE model the propeties to be monitored

2. ANOMALY_TRACE_TOOLS load from the DW the traces to be checked,

depending on the propeties to be monitored and on the chosen time window

3. ANOMALY_TRACE_TOOLS analyze the loaded traces

4. If a violation of one (or more) of the properties is detected, the

ANOMALY_TRACE_TOOLS report what properties are violated to the user

Pre-conditions: Monitoring data available in the DW.

Application open in the IDE.

Existence of links between data stored in the DW with elements of the UML

model.

Post-conditions: N/A

Exceptions: N/A

Data Exchanges: N/A

Table 289: The Anti-pattern detection Scenario.

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 113

ID: UC4.8

Title: Anti-pattern detection

Task: T4.3

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: ARCHITECT

Actor 3: ENHANCEMENT_TOOLS

Actor 4: IDE

Flow of Events: 1. From the DICE IDE, DEVELOPER/ARCHITECT requests to detect anti-

patterns in the current design

2. ENHANCEMENT_TOOLS analyzes the current UML models and returns an

indication of possible anti-patterns

3. Possibly, some visualization of the anti-pattern is given

Pre-conditions: 1. Knowledge of the software architecture (if it is simulated through PCM) or

2. Experimental data and user profiles to obtain performance metrics.

3. Performance metrics (e.g. response time, throughput, CPU utilisation etc.)

4. Metamodel wit

Post-conditions: 1. Detected antipatterns with a rank (the possibility of their influence on the

performance

degradation).

2. Possibly set of refactoring solutions (new architecture

configurations/designs) for the

DEVELOPER/ARCHITECT to choose from

Exceptions: N/A

Data Exchanges: N/A

Table 290: The Anti-pattern driven architectural refactoring Scenario.

ID: UC4.8.1

Title: Anti-pattern driven architectural refactoring

Task: T4.3

Priority: OPTIONAL

Actor 1: DEVELOPER

Actor 2: ARCHITECT

Actor 3: ENHANCEMENT_TOOLS

Actor 4: IDE

Flow of Events: 1. From the DICE IDE, DEVELOPER/ARCHITECT requests to detect anti-

patterns in the current design

2. ENHANCEMENT_TOOLS analyzes the current UML models and returns an

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 114

indication of possible anti-patterns

3. Possibly, some visualization of the anti-pattern is given

4. From the DICE IDE, DEVELOPER/ARCHITECT requests to

ENHANCEMENT_TOOLS to suggest a possible refactoring to address the anti-

pattern

5. A refactoring plan is shown inside the IDE and, if confirmed by the

DEVELOPER/ARCHITECT, executed

Pre-conditions: N/A

Post-conditions: N/A

Exceptions: N/A

Data Exchanges: N/A

Table 291: The Bottleneck detection based on testing data Scenario.

ID: UC4.9

Title: Bottleneck detection based on testing data

Task: T4.3

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: ARCHITECT

Actor 3: ENHANCEMENT_TOOLS

Actor 4: IDE

Flow of Events: 1. From the DICE IDE, DEVELOPER/ARCHITECT requests to detect anti-

patterns in the current design

2. ENHANCEMENT_TOOLS analyzes the current UML models and highlights

software or hardware bottlenecks based on the testing results

3. Possibly, some visualization of the bottlenecks is given

Pre-conditions: Monitoring data available in the DW

Post-conditions: 1. Performance model (and software model?),

annotated with the results of performance analysis

2. Notifications to the DEVELOPER about the

presence of bottlenecks.

Exceptions: N/A

Data Exchanges: N/A

Table 292: The Automatic extraction of model parameters Scenario.

ID: UC4.10

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 115

Title: Automatic extraction of model parameters

Task: T4.3

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: ARCHITECT

Actor 3: ENHANCEMENT_TOOLS

Actor 4: IDE

Flow of Events: 1. From the DICE IDE, DEVELOPER/ARCHITECT requests to update the

model parameters (e.g., expected execution times), with an indication of the time

granted to the ENHANCEMENT_TOOLS for the analysis

2. A dialog window is shown to select the model parameters to update

3. The IDE invokes ENHANCEMENT_TOOLS

4. An updated DICE profile is returned to the IDE

Pre-conditions: Monitoring data available in the DW

Post-conditions: DICE profile populated with new parameters

Exceptions: N/A

Data Exchanges: N/A

Table 293: The Quality regression Scenario.

ID: UC4.11

Title: Quality regression

Task: T4.3

Priority: RECOMMENDED

Actor 1: DEVELOPER

Actor 2: ARCHITECT

Actor 3: ENHANCEMENT_TOOLS

Actor 4: IDE

Flow of Events: 1. From the DICE IDE, DEVELOPER/ARCHITECT requests to examine

quality regressions in two versions of the application

2. The IDE invokes ENHANCEMENT_TOOLS

3. ENHANCEMENT_TOOLS analyses quality differences between versions by

operating directly on the monitoring data

4. Results are returned to the IDE

Pre-conditions: Monitoring data available in the DW for versions to be compared

Post-conditions: Quality regression results returned to IDE

Exceptions: N/A

Data Exchanges: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 116

C.5. WP5 Scenarios

Table 294: The Building the configuration description Scenario.

ID: U5.1

Title: Building the configuration description

Task: T5.1

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: DEPLOYMENT_TOOLS

Actor 3: N/A

Actor 4: N/A

Flow of Events: 1. The DEVELOPER (or CI_TOOLS) requests building of the application

2. The IDE or the CLI invoke DEPLOYMENT_TOOLS with the TOSCA model

of the configuration as the input

3. The DEPLOYMENT_TOOLS return the recipes in the DSL of the

configuration management, mapping the TOSCA model

Pre-conditions: 1.1. TOSCA model of the configuration available. Or

1.2. tools for building TOSCA model from UML model installed

Post-conditions: 1. Configuration of the application available in the selected DSL.

Exceptions: A configuration manager such as Chef is not compatible with TOSCA. The

configurations are considered an artifact of building an application.

Data Exchanges: DSL: Domain-Specific Language

VCS: version control system (e.g., git or Subversion)

Table 295: The Continuous deployment sequence Scenario.

ID: U5.3

Title: Continuous deployment sequence

Task: T5.1, T5.2, T5.3

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: QA_TESTER

Actor 3: ADMINISTRATOR

Actor 4: N/A

Flow of Events: 1. Actor designs and develops or corrects a feature and make them into a build

2. Actor use IDE to indicate the the type of tests to run: quality tests or unit tests

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 117

or both. Also, the actor selects the scope of the test to run.

3. Actor request runing the tests in the test environment

4. CI_TOOLS, DEPLOYMENT_TOOLS and QTESTING_TOOLS execute the

requested model's deployment and application testing

5. Actor receive the results of the tests in the IDE

6. Actor review the build

7. The build is checked and approved by the actors, it is ready to be deployed to

pre-production

Pre-conditions: 1. Application’s artifacts (compiled libraries and programs) available in the

package repository

2. DICE tools for continuous delivery installed at the test bed

3. Testbed project or account available for hosting the application and tests

Post-conditions: 1. Results of the QTESTING_TOOLS

2. Review from QA_ENGINEER and ADMINISTRATOR on the acceptability

of the build, containing acceptance or rejection with comments on suggested

improvements and corrections

3. Build ready for pre-production

Exceptions: DICE supports Continuous integration and continuous deployment by letting the

deployment and testing tasks be fully automated, while giving human users the

final say in promoting experimental builds to pre-production ones. This scenario

provides a user's

Data Exchanges: project or account: an environment in the cloud permitting provisioning of a

limited or an unlimited set of virtual machines

Table 296: The Continuous integration sequence Scenario.

ID: U5.4

Title: Continuous integration sequence

Task: T5.2

Priority: REQUIRED

Actor 1: CI_TOOLS

Actor 2: DEPLOYMENT_TOOLS

Actor 3: N/A

Actor 4: N/A

Flow of Events: 1. The CI_TOOLS receive DEVELOPER's request from IDE or a time-based

tigger to execute a deployment-testing job

2. CI_TOOLS retrieve the code of the application and the models from the VCS

3. CI_TOOLS call DEPLOYMENT_TOOLS to translate TOSCA model into

target configuration tool DSL blueprint

4. CI_TOOLS provide the DSL blueprint to DEPLOYMENT_TOOLS, which

provision or reconfigure the TESTBED, install and configure the application,

install MONITORING_TOOLS

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 118

5. CI_TOOLS call QTESTING_TOOLS to execute the tests

6. CI_TOOLS collect the results of the tests

7. DEVELOPER inspects the results in the IDE or in the CI_TOOLS dashboard

Pre-conditions: 1. A job in the CI_TOOLS configured to run with a specific scope and tests

2. Application’s artifacts (compiled libraries and programs) available in the

package repository

3. TOSCA model of the configuration available.

Post-conditions: 1. Application deployed in the TESTBED

2. Results of the quality tests are available

Exceptions: N/A

Data Exchanges: DSL: Domain-Specific Language

Table 297: The Obtaining configuration recommendation Scenario.

ID: U5.5

Title: Obtaining configuration recommendation

Task: T5.1

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: DEPLOYMENT_TOOLS

Actor 3: N/A

Actor 4: N/A

Flow of Events: 1. DEVELOPER provides the model, fixed parameters and free parameters as an

input to DEPLOYMENT_TOOLS

2. DEPLOYMENT_TOOLS provide recommended values for the free

parameters, optionally quantified with the quality criteria (reliability, efficiency,

safety)

3. DEVELOPER selects from the recommended values to fix all of the

parameters

Pre-conditions: 1. Model of the application (WP2)

2. Free/fixed parameters in the model (WP2)

3. Ouput of OPTIMIZATION_TOOLS proposing additional fixed parameters

(WP3)

Post-conditions: 1. Deployment configuration with parameters set to optimal and recommended

values

Exceptions: OPTIMIZATION_TOOLS and DEPLOYMENT_TOOLS help assign a

complimentary set of parameter values (e.g., number of Hadoop mappers and

reducers)

Data Exchanges:

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 119

Table 298: The One-click deployment and testing Scenario.

ID: U5.12

Title: One-click deployment and testing

Task: T5.2

Priority: OPTIONAL

Actor 1: DEVELOPER

Actor 2: IDE

Actor 3: CI_TOOLS

Actor 4: N/A

Flow of Events: 1. DEVELOPER clicks a "Deploy and test now" button in the IDE

2. IDE sends to the CI_TOOLS the DEVELOPER's current project and code

changes without making a commit into the VCS

3. CI_TOOLS trigger the deployment and quality testing as normal

4. IDE displays the test outcome

Pre-conditions: 1. IDE configured with the parameters of the CI_TOOLS (host, port, user

credentials, ...)

Post-conditions: 1. The application deployed and tested

2. Test outcome available to the DEVELOPER

3. Monitoring data of the test run available

4. If the outcome is positive, the developer can decide to commit the changes

into the VCS and have the commit verified and revi

Exceptions: The scenario addresses the situations where the developers want to test the build

before committing the changes into the current branch of the VCS. Also they

enable quick execution of tests useful for exploring the effect of small changes in

the models, p

Data Exchanges:

Table 299: The Configuration recommender engine training Scenario.

ID: U5.6

Title: Configuration recommender engine training

Task: T5.1

Priority: REQUIRED

Actor 1: DEPLOYMENT_TOOLS

Actor 2:

Actor 3: N/A

Actor 4: N/A

Flow of Events: 1. The actor obtains the monitoring data from the MONITORING_TOOLS

2. The actor uses the model from the previous version (not build!) as the initial

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 120

model in training

3. The actor updates the training model for future recommendations

Pre-conditions: 1. Application available in the artifact repository

2. Collected metrics from MONITORING_TOOLS obtained during the most

recent QTESTING_TOOLS execution OR intial defaults are available.

Post-conditions: 1. The training model of the recommender engine has been updated for the

current version

Exceptions: Training of the recommender engine's machine learning model has to depend on

the initial model from the previous version and the monitoring data of the latest

tests.

Data Exchanges:

Table 300: The Initial data preparation Scenario.

ID: U5.7

Title: Initial data preparation

Task: T5.1, T5.3

Priority: REQUIRED

Actor 1: DEVELOPER

Actor 2: DEPLOYMENT_TOOLS

Actor 3: CI_TOOLS

Actor 4: N/A

Flow of Events: 1. DEVELOPER prepares the database schemas (where applicable) and initial

data in a documented way

2. DEVELOPER indicates in IDE or configuration which phase the data should

be loaded at: deployment or testing

3. DEVELOPER commits the data into the code versioning system (small

datasets), uploads them to a package/artifact/binary data repository or provides

an URL where the data is available (datasets of any size).

4. DEVELOPER or CI_TOOLS invoke the deployment of the application

5. DEPLOYMENT_TOOLS load the data if so required in the step 2

6. QTESTING_TOOLS load the data if so required in the step 2

Pre-conditions: 1. Application model available in the code versioning system repository

Post-conditions: 1. Application deployed

2. Initial data loaded into the application

Exceptions: Database schemas and initial data are often crucial parts of the application

deployment. The data prepared by the designer or developer needs to be loaded

during or right after the application's installation in order for the application to

function correc

Data Exchanges: code versioning system: subversion, git or other CVS maintaining the versioned

progression of the project development

package/artifact/binary data repository: any repository (web access, network file

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 121

system, ftp etc.) which may contain built, pre-built o

Table 301: The Provisioning of the test resources Scenario.

ID: U5.9

Title: Provisioning of the test resources

Task: T5.2

Priority: REQUIRED

Actor 1: DEPLOYMENT_TOOLS

Actor 2: TESTBED

Actor 3: N/A

Actor 4: N/A

Flow of Events: 1. DEPLOYMENT_TOOLS retrieve the configuration in the DSL from the

artifact repository

2. DEPLOYMENT_TOOLS assign existing available Virtual Machiens in the

TESTBED for use in the deployment

3. DEPLOYMENT_TOOLS request the TESTBED to provision any additional

Virtual Machines if the existing availble ones are not sufficient for the model

4. DEPLOYMENT_TOOLS install, configure and run the applications

configured to run.

Pre-conditions: 1. Application's artifacts (compiled libraries and programs) are avaialable in the

package repository.

2. Resources are available in the TESTBED to host the application

Post-conditions: 1. The application runs in the TESTBED's provisioned VMs.

Exceptions: The models of the application need to be transformed into an actual set of

running virtal machines, hosting the application to be tested.

Data Exchanges: N/A

Table 302: The Performing the quality testing Scenario.

ID: U5.10

Title: Performing the quality testing

Task: T5.3

Priority: REQUIRED

Actor 1: QTESTING_TOOLS

Actor 2: MONITORING_TOOLS

Actor 3: TESTBED

Actor 4: N/A

Flow of Events: 1. QTESTING_TOOLS starts injecting load in the APPLICATION after

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 122

signaling to MONITORING_TOOLS the start of a test

2. The test plan is executed taking into consideration the dimensions to be

explored (eg. performance, reliability, etc)

3. If requested, QTESTING_TOOLS may access TESTBED APIs to perform the

test

Pre-conditions: 1. A quality test has been requested in some scenario

2. Test resources have been provisioned

Post-conditions: 1. Test data has been collected by MONITORING_TOOLS

Exceptions: N/A

Data Exchanges: N/A

Table 303: The Testing the application against external faults Scenario.

ID: U5.11

Title: Testing the application against external faults

Task: T5.3, T5.4

Priority: REQUIRED

Actor 1: QTESTING_TOOLS

Actor 2: TESTBED

Actor 3: N/A

Actor 4: N/A

Flow of Events: 1. QTESTING_TOOLS select a pre-programmed or a random fault to occur

2. QTESTING_TOOLS request from the TESTBED to inject the selected fault

3. TESTBED executes the request by causing a fault

4. QTESTING_TOOLS run the quality tests to check if the application still

responds with expected results

Pre-conditions: 1. Application deployed in the testbed and running

2. Monitorong tools active

Post-conditions: 1. Outcome of the test, which is any of the following: application ok, application

responds with unexpected results, application no longer works

2. Monitoring data of the history before, during and after the fault.

Exceptions: N/A

Data Exchanges: N/A

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 123

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 124

Deliverable 1.2. Requirements Specification - Companion Document

Copyright © 2015, DICE consortium – All rights reserved 125

