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Abstract— Robots that learn from their environment can also
take input from human teachers. However, teaching the robot
may not be these humans’ only task, in which case the robot
cannot rely on constant attention from a teacher. We propose
an algorithm that learns a model of a human teacher’s feedback
and uses this model to plan when to actively ask the teacher for
attention. This algorithm will allow the teacher to take breaks
from teaching the robot to complete other tasks and enables
the robot to ask for attention in areas of the human model in
which it is confused. The goal of this algorithm is to balance
human effort and time with robot learning.

I. INTRODUCTION

Robots that learn by exploring their environment can also
leverage input from humans as added data. However, robots
that learn from humans over extended periods of time cannot
always expect a human teacher to be paying attention to
them. Teachers may have other tasks to complete, other
robots to oversee, or take breaks from supervising the robot.
We consider robots using reinforcement learning (RL) with
policy shaping [1]. This method enables a robot to both learn
from interacting with its environment and receive feedback
on its actions from people. Since the robot can learn from
the environment as well as a human, the robot can continue
learning while no human is giving feedback.

Policy shaping allows human teachers to give binary
positive or negative feedback to a robot performing rein-
forcement learning [1]. Rather than being taken as rewards,
this feedback directly influences the action policy of the
robot, and is only interpreted as a positive or negative
decision on a single state and action rather than a reward.
When using RL with policy shaping, a robot can either
passively wait for a teacher’s attention or actively ask for
attention. Attention-Modified Policy Shaping (AMPS) is a
method of policy shaping that changes learning methods
depending on whether a teacher is paying attention [2].
If there is not attention, the robot prioritizes actions that
the teacher has previously approved. Otherwise, the robot
prioritizes actions that the teacher has not seen before or
previously approved actions. However, in this scenario the
burden is on the teacher to decide when to check in with the
learning robot. Actively deciding when to ask for attention
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can put less stress on the teacher to decide when to check
in with the robot and direct the teacher to supervise the
robot at more productive times, rather than relying on the
human’s judgment. However, allowing the robot to interrupt
the teacher arbitrarily could become disruptive and prevent
the teacher from accomplishing other tasks. Therefore, an
algorithm that chooses informative times to interrupt the
teacher is desirable.

We propose an algorithm, Active Attention-Modified Pol-
icy Shaping (Active AMPS) that allows a robot to actively
ask for attention from a human teacher while allowing the
human to take breaks from teaching. Active AMPS creates a
model of a single teacher’s feedback policy, calculating the
likelihood that they will give positive or negative feedback
to various action choices in the state space. This model
is distributed over the entire state space using a similarity
function between states. The robot plans to ask for attention
in states in which it is uncertain of the teacher’s potential
feedback, but spaces these attention requests out using a time
threshold to avoid asking for attention too often. Using its
model of human feedback, the robot can decrease requests
for attention as it becomes more confident in its model of
the teacher, decreasing the burden on the teacher.

II. BACKGROUND

This work builds on previous research in three fields:
human multi-tasking, active learning with thresholds for
asking questions, and reinforcement learning with human
feedback. The main premise for our algorithm is that human
teachers should not be interrupted too often from other tasks.
Previous work in multi-tasking research shows that frequent
interruptions decrease human task performance on complex
tasks [3], [4]. Prior research has focused on determining
when to interrupt people to maximize task performance or
minimize disruption [5], [6]. Our method allows us to do
both, while maximizing performance of a learning agent.

There has been previous research on active learning that
asks for help until some information threshold has been
passed [7], [8], [9]. However, this work does not consider
human teachers who have other tasks to complete while
teaching the robot. We use reinforcement learning, unlike
[7], [8], and unlike [9] we base our threshold directly on
previous feedback from the human teacher.

Reinforcement Learning (RL) while learning from human
feedback has been previously studied as well [10], [11], [1].
These methods do not actively ask for attention or help
from the human teacher, and the teacher is not assumed
to take breaks to complete other tasks. Our work extends
the current work on RL with human feedback to long-term



learning environments. Knox and Stone [10] also create a
model of human feedback; however, their model interprets
human feedback as a reward rather than a binary positive
or negative input as policy shaping does. We use the policy
shaping method, as previous work shows that people have
trouble giving rewards as feedback [12].

III. METHODOLOGY

We first describe the policy shaping algorithm [1], [13],
and then show how Active AMPS fits in the policy shaping
framework.

A. Policy Shaping

We use Q-learning with Boltzmann exploration [14], [15]
as the base reinforcement learning method for policy shaping
[1], [13]. In this framework using Boltzmann exploration, the
probability of taking any action a given the learned Q-values
is:

Prq(a) = e
Q(s,a)
τ∑

a′
e
Q(s,a′)

τ

[15], [13]

where τ is a constant. A variable C, ranging from zero
to one, is assigned to estimate the confidence in human
feedback. The probability that an action is a good action
based purely on human feedback is:

Prc(a) = C∆s,a

C∆s,a+(1−C)∆s,a
[1], [13]

where ∆s,a is the difference between the number of positive
feedback and negative feedback received in (s, a). This
probability is combined with the probability Prq(a) to give
the probability of taking any action a ∈ A:

Pr(a) =
Prq(a)Prc(a)∑
α∈A

Prq(α)Prc(α)
[13].

B. Active Attention-Modified Policy Shaping

We formulate the attention-requesting problem in the
following way. We begin with a time threshold t, which
limits how often the robot can ask for the human teacher’s
attention. After t has been reached, the robot can ask for
attention on up to n states if it needs more information. The
threshold t can be set in terms of the number of actions
that the robot takes or for some amount of minutes. One
option for t is to assign a constant threshold, for example
10 actions, which spaces attention requests evenly over the
length of time that the robot learns. Another option is to
begin with a low t so that more feedback is received at the
beginning, increasing t over time to give the teacher more
free time. Previous work has noted that human feedback is
most important early in the reinforcement learning process
[10], so in this proposal we begin with t set to one action
and increase this value over time.

To model the human feedback, we use a classifier with
confidence estimations, such as a Support Vector Machine
(SVM). We create a binary classifier φ(fs, vs, a) that, given
the features of the current state s (fs), the value vs of the
state s, and action a predicts whether the teacher will give
positive or negative feedback to (s, a). φ takes fs as input so
that the robot can distribute the model of human feedback

around the state space. Rather than attributing feedback only
to a specific state, we assume a relation between features
of the state and the feedback that people give actions taken
from that state. Thus similar states should receive similar
feedback patterns.

The classifier φ input also includes vs, the value learned
for s using RL, so that the robot can leverage its knowledge
learned through the environment to create a model of prob-
able human feedback. States that have higher value lead to
higher reward areas, so often the human feedback for moving
into a high value state will be positive. However, we do not
want to automatically assume that transitions into high value
states will get positive feedback. In some tasks a human
teacher may want the robot to take a different path than the
highest value path to a goal state. For example, consider a
task in which the reward function only gives reward on the
goal state, and there is a short but dangerous path to the goal
with many obstacles as well as a longer but safe path to the
goal. After rounds of learning, the robot may learn a policy
that follows the short path to the goal. However, a cautious
human teacher may want the robot to take a safer path to
the goal, and will give feedback indicating this policy. In this
case, the classifier φ may learn a low correlation between vs
and positive feedback. However, for less cautious teachers
φ may learn a high correlation between vs and positive
feedback, allowing the robot to ask for less attention from
the teacher as it learns values through its own exploration.

The classifier φ begins with a uniform model of the
teacher’s feedback, so that the probability of positive or
negative feedback for any (s, a) is 0.5, and the confidence
of φ(fs, vs, a) is zero . Thus the robot holds the belief
that there is a 50% chance of receiving positive feedback,
P (fp|s, a), for each state-action pair (s, a) from all states S
and all actions A. After each positive or negative feedback
f received from the teacher in a state-action pair (s, a), the
robot updates its beliefs for P (fp|s, a) by giving the input
(fs, vs, a) with the label f .

We set a confidence threshold c such that if the confidence
of (φ(fs, vs, a)|s ∈ S, a ∈ A) ≥ c the robot will proceed to
learn without asking for attention, as it is confident in its
human model in all states. If there is an (s, a) such that
the confidence of (φ(fs, vs, a) < c, the robot identifies the
state si with the lowest confidence in φ(fsi , vsi , a) and plans
an action sequence of at least length t in order to reach
this state. If the task is not structured so that an action path
of length t is available to si, the robot can abandon the
current run-through of the task and restart. If the confidence
of the classifier is above c in every state, however, the robot
will continue learning using basic policy shaping, while the
model of human feedback continues to give feedback to the
robot.

IV. EVALUATION

We will evaluate this method both in simulation and on
a physical robot. We will use a manipulation task with
multiple objects and actions such as stacking, pushing, etc,
in which a large reward is given to the robot upon successful



Algorithm 1: Active AMPS

t = 1;
S,A = states,actions;
φ = init classifier();
while learning do

if min(confidence(φ(fs, vs, a))|s ∈ S) > c then
si = argmin(confidence(φ(fs, vs, a))|s ∈ S);
plan path(t,si);
execute path();
s = current state;
request attention(n);
a = argmin(confidence(φ(fs, vs, a))|a ∈ A);
f = get feedback();
update policy shaping(f );
update φ(fs, vs, a);

else
a = next policy shaping action;
f = φ(fs, vs, a));
update policy shaping(f );

end
increase t();

end

completion of a task and small negative rewards are given
at each step to encourage reaching the goal quickly. The
participant will divide their time between a distractor task
and teaching the robot, paying attention to the robot when
attention is requested by Active AMPS. The distractor task
will be structured so that we can measure how much of the
task is completed; for example, solving math problems or
labeling images.

In simulation, we will use an oracle to provide feedback
to Active AMPS and test the confidence threshold c, the
classifier φ, and the pattern of requests. The variable c will be
varied from 0 to 1 to optimize for robot learning speed while
balancing the time cost to a human teacher. The ideal value
may be task-dependent, which can be tested over several
reinforcement learning tasks. The type of classifier for φ
will also be tested, as well as other metrics for which action
will be most informative, such as whether a person has
seen a state-action pair (s, a) previously as used in AMPS
[2]. The pattern of requests can be varied in many ways,
such as randomly timed requests without planning to a high
information state (at least t steps apart), keeping t at a
constant time versus allowing more requests at the beginning,
and asking for attention in blocks (n > 1) versus asking for
attention in one state at a time (n = 1). These options will
be compared to baselines in which the robot either never
receives attention (reinforcement learning) or always receives
attention (policy shaping).

We will use a human study with a physical robot to test
human aspects of the algorithm. First, we will validate the
benefits of the robot actively asking for attention instead
of the teacher deciding when attention is necessary. To do
so, we will compare Active AMPS to AMPS, which does

not actively ask for attention, instead passively changing
learning styles based on the presence of attention from a
teacher [2]. AMPS prioritizes actions that have received
positive feedback when the teacher is not paying attention
and splits priority between actions that have received positive
feedback and actions the teacher has not seen when attention
is present. Comparing Active AMPS and AMPS will test
whether actively asking for attention improves robot learning
and the human teacher’s ability to complete a distractor task.
We will also test this hypothesis by running Active AMPS
without requests for attention. In this case, the robot cannot
plan to a state with low information, but can take the action
with the lowest confidence(φ(fs, vs, a)) when the human
is paying attention. Second, the time threshold, t, and the
number of states for which the robot asks for attention, n,
will also be tested in a human study. Different lengths of
time and size of n will be tested across users to determine
which combination is the least disruptive to users while still
enabling the robot to learn at an acceptable rate.

V. DISCUSSION

We propose Active AMPS in order to allow robots to
actively ask for attention from human teachers while learn-
ing. We believe this is an important function for robots to
have so that people can take breaks from teaching a robot
to complete other tasks while still providing the robot with
feedback when it is uncertain. Rather than rely on a distracted
person to decide when to pay attention to the robot, enabling
active attention requests allows a teacher to focus on other
tasks until summoned by the robot and assures that a teacher
will give feedback to the robot in uncertain areas of the state
space.

In our human studies, we expect to find that people will
not want to interrupted frequently by the robot, and would
rather give feedback to blocks of actions infrequently than
single actions frequently. When given the choice of when
to pay attention rather than being actively asked, we expect
people to either focus almost entirely on the robot or on
the distractor task. This may depend on how familiar a
participant is with robots and how interesting the distractor
task is. We believe that the ability to actively request help
will better balance participant performance on the distractor
task with robot learning on the reinforcement learning task.

In general, it is important to take attention from a human
teacher into account. If the robot passively continues learning
in the same way whether a human is present or not, it may
not take as much advantage of human presence as possible
when a teacher is available. Particularly in long-term learning
environments, counting on the constant presence of a human
teacher is not always feasible. Therefore, we propose Active
AMPS in order to give breaks to a teacher while asking
for attention when uncertain about human feedback. In its
current state, Active AMPS does assume that a teacher will
be available when attention is requested, which may not be
true if no human is present. Future work can extend this
method to include how the robot should behave when no
person is present.



VI. CONCLUSION

In this work, we introduce Active AMPS, an algorithm that
models human feedback to policy shaping in order to reduce
the amount of total feedback a human teacher must give
and allow the teacher to take breaks to complete other tasks.
This algorithm learns a model of a single teacher using a
binary classifier, although a more general classifier for types
of teachers could be learned with enough human subjects.
Active AMPS enables the robot to leverage environmental
feedback and the human feedback model to become more
independent over time, relying less on actual feedback from a
teacher as it becomes more confident in the human’s answers.
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