Hybrid Abductive Inductive Learning:
a Generalisation of Progol

Oliver Ray, Krysia Broda and Alessandra Russo

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ
{or,kb,ar3}@doc.ic.ac.uk

Abstract. The learning system Progol5 and the underlying inference
method of Bottom Generalisation are firmly established within Induc-
tive Logic Programming (ILP). But despite their success, it is known
that Bottom Generalisation, and therefore Progol5, are restricted to
finding hypotheses that lie within the semantics of Plotkin’s relative sub-
sumption. This paper exposes a previously unknown incompleteness of
Progol5 with respect to Bottom Generalisation, and proposes a new ap-
proach, called Hybrid Abductive Inductive Learning, that integrates the
ILP principles of Progol5 with Abductive Logic Programming (ALP).
A proof procedure is proposed, called HAIL, that not only overcomes
this newly discovered incompleteness, but further generalises Progol5 by
computing multiple clauses in response to a single seed example and de-
riving hypotheses outside Plotkin’s relative subsumption. A semantics is
presented, called Kernel Generalisation, which extends that of Bottom
Generalisation and includes the hypotheses constructed by HAIL.

1 Introduction

Machine Learning is the branch of Artificial Intelligence that seeks to better
understand and deploy learning systems through the analysis and synthesis of
analogous processes in machines. The specific task of generalising from positive
and negative examples relative to given background knowledge has been much
studied in Machine Learning, and when combined with a first-order clausal repre-
sentation is known as Inductive Logic Programming (ILP) [Mug91,MR94]. The
Progol system of Muggleton [Mug95] is a state-of-the-art and widely applied
ILP system that has been successful in significant real-world applications. Pro-
gol5 [MBO0] is the latest system in the Progol family, which is based on the
inference method of Bottom Generalisation [Mug95,Yam99]. Given background
knowledge B and seed example e, Bottom Generalisation constructs and gener-
alises a clause, called the BottomSet [Mug95] of B and e, to return a hypothesis h
that together with B entails e. Yamamoto [Yam99] has shown that Bottom Gen-
eralisation, and hence Progol5, are limited to deriving clauses h that subsume e
relative to B in the sense of Plotkin [Plo71]. But while approaches have been pro-
posed that do not suffer from this limitation, for example in [YF00,Ino01,FO00],
these have yet to achieve the same degree of practical success as Progol.

This paper identifies a previously unknown incompleteness of Progol5 with
respect to Bottom Generalisation, and attributes this incompleteness to the
routine, called STARTSET responsible for computing positive literals in the
BottomSet. A proof procedure is proposed, called HAIL, that not only over-
comes this newly discovered incompleteness, but further generalises Progol5 by
computing multiple clauses in response to a single seed example and deriving
hypotheses outside Plotkin’s relative subsumption. A semantics is presented,
called Kernel Generalisation, which extends that of Bottom Generalisation and
includes the hypotheses constructed by HAIL. The motivation is to develop an
enhanced practical system by integrating the proven ILP principles of Progol5
with Abductive Logic Programming (ALP) [KKT92].

The relationship between abduction and Bottom Generalisation was first
established in [MBO0O], where the authors view the Progol5 STARTSET routine as
a form of abduction, and in [Yam00], where the author shows that positive literals
in the BottomSet can be computed by an abductive proof procedure called
SOLDR. But while existing approaches for integrating abduction and Bottom
Generalisation have used abduction to compute single atom hypotheses, HAIL
exploits the ability of ALP to compute multiple atom hypotheses. This enables
HAIL to hypothesise multiple clauses not derivable by Bottom Generalisation.

The paper is structured as follows. Section 2 defines the relevant notation
and terminology, and reviews Bottom Generalisation and Progol5. Section 3
discusses the STARTSET routine and considers its soundness with respect to
Bottom Generalisation. Section 4 reveals an incompleteness of STARTSET with
respect to Bottom Generalisation. Section 5 introduces the semantics of Ker-
nel Generalisation, and a refinement called Kernel Set Subsumption. The HAIL
proof procedure is described and illustrated with two worked examples. Sec-
tion 6 compares this approach with related work and the paper concludes with
a summary and a discussion of future work.

2 Background

This section defines the notation and terminology used in this paper and provides
an introduction to Progol5 and Bottom Generalisation.

It is assumed that all clauses and formulae are expressed in a first-order
language £ based on a fixed signature X. In addition to the usual function and
predicate symbols, this signature is assumed to contain a set of Skolem constants
and a set of predicate symbols called starred predicates, such that every non-
starred predicate p of arity n > 0 is associated with a unique starred predicate p*
of arity n. Informally, p* represents the negation of p. Skolem symbols and starred
predicates are reserved for the process of Skolemisation and for the formation
of contrapositives, respectively. The notations GA and GL represent respectively
the sets of ground atoms and ground literals in £. The binary relations F and
= and = denote respectively derivability under SLD resolution, classical logical
entailment, and classical logical equivalence.

A clause is a set of literals {A;,..., A, ~By,...,mB,} and will often be
written in the implicative form Ay,..., A,, - By,..., B,. When a clause appears
in a logical formula it denotes the universal closure of the disjunction of its
literals. Where no confusion arises, a clause and a disjunction of literals will
be treated interchangeably. The complement of a clause C, written C, denotes
the set of unit clauses obtained from the Skolemised negation of C'. A (clausal)
theory is a set of implicitly conjoined clauses. The symbols B, H, Et, E~ will
denote Horn theories representing background knowledge, hypothesis, positive
and negative examples. The symbols i and e will be hypotheses and examples
consisting of a single Horn clause. The theories and clauses denoted by these
symbols are assumed to contain no Skolem symbols or starred predicates.

Given a theory B and a clause e, then B and e denote the result of normalising
B and e. The normalised theory B is obtained by adding to B the positive unit
clauses in e. The normalised clause € is the Skolemised head of e, if it exists, or
the empty clause O, otherwise. Note that BAH |= e iff B A H |= € for any
hypothesis H. A clause C' is said to 8-subsume a clause D, written C' = D, if
and only if C8 C D for some substitution 6. A clause is reduced if and only if it
does not #-subsume some proper subset of itself. The relation 3= induces a lattice
ordering on the set of reduced clauses (up to renaming of variables), and the
least element in this ordering is the empty-clause. A clausal theory S is said to
clausally subsume a clausal theory T', written S O T, if and only if every clause
in T is #-subsumed by at least one clause in S.

2.1 Bottom Generalisation

Bottom Generalisation [Mug95,Yam99] is an approach to ILP motivated by the
principle of Inverse Entailment, which states BAH = e iff BA-e = —H. Thus,
the negations of inductive hypotheses may be deduced from the background
knowledge together with the negation of a seed example. Given B and e, the
task of finding such an H will be called the task of inductive generalisation,
and H will be said to cover e. In Progol5 the principle of Inverse Entailment is
realised through the technique of Bottom Generalisation, which is based on the
BottomSet [Mug95], formalised in Definition 1 below.

Definition 1 (BottomSet [Mug95]). Let B be a Horn theory and e be a
Horn clause. Then the BottomSet of B and e, written Bot(B,e), is the clause
Bot(B,e) ={L € GL | BANe =-L}.

Given theory B and clause e, the BottomSet Bot(B,e) is the clause con-
taining all ground literals whose negations may be deduced from B and the
complement of e. The sets Bot*(B,e) and Bot™(B,e) will denote respectively
the positive (head) atoms and the negated (body) atoms of Bot(B,e). A clause
h is said to be derivable from B and e by Bottom Generalisation if and only if
it #-subsumes Bot(B, ¢), as formalised in Definition 2 below.

Definition 2 (Bottom Generalisation [Mug95,Yam99]). Let B be a Horn
theory and e a Horn clause. A Horn clause h (containing no Skolem constant) is
said to be derivable by Bottom Generalisation from B and e iff h = Bot(B,e).

It is shown in [Yam99] that the class of hypotheses derivable by Bottom
Generalisation can be characterised by Plotkin’s relative subsumption, or the
related notion of C-derivation, formalised in Definitions 3 and 4 below.

Definition 3 (Relative Subsumption [Plo71]). Clause C subsumes a clause
D relative to a theory T, iff T |=EV(C¢ — D) for some substitution ¢.

Definition 4 (C-Derivation [Plo71]). A C-derivation of a clause D from a
clausal theory T with respect to a clause C, is a resolution derivation of the
clause D from the clauses T U{C}, in which C is used at most once as an input
clause (i.e. a leaf). A C-derivation of the empty-clause is called a C-refutation.

Yamamoto [Yam99] shows that given a theory B and a clause e such that
B £ e, a clause h is derivable by Bottom Generalisation from B and e if and
only if h subsumes e relative to B, or equivalently, if and only if there is a C-
refutation from BUe with respect to h. The C-refutation therefore characterises
the hypotheses which are derivable by Bottom Generalisation.

2.2 Progol5

Progol5 [MBO0O] is an established ILP system based on the efficient realisation
of Bottom Generalisation. Given Horn theories B, ET and E~, Progol5 aims
to return an augmented theory B’ = B U {hq,...,h,} that entails ET and
is consistent with E~. Each clause h; hypothesised by Progol5 is maximally
compressive in the sense that it must cover the greatest number of remaining
positive examples, while containing the fewest number of literals. Progol5 also
takes as input a set M of mode-declarations [Mug95] that specifies a language bias
with which hypothesised clauses must be compatible. Mode-declarations consist
of head-declarations and body-declarations that impose syntactic constraints on
the head and body atoms of hypothesised clauses. If p and ¢ are predicates and
X is a variable, then the head-declaration modeh[p(+t)] states that the atom
p(X) may appear in the head of a hypothesis clause, and the body-declaration
modeb[p(+t)] states that the atom p(X) may appear in the body of a hypothesis
clause providing X appears in the head. The type predicate t is used internally
by the Progol5 BOTTOMSET routine.

Progol5 consists of a standard covering loop called COVERSET and three
sub-routines called STARTSET, BOTTOMSET and SEARCH. These routines are
described in [Mug95,MBO00] and a brief overview is provided below. COVERSET
constructs hypotheses incrementally by repeatedly performing three operations
until all positive examples have been covered. First it selects a seed example e
from among those remaining in E+. Then it constructs a maximally compres-
sive hypothesis h that together with the current B covers at least e. Finally, it
adds h to B and removes all covered examples from ET. The step of hypothesis
formation is performed in two stages. A finite Horn subset of Bot(B,e) is con-
structed by STARTSET and BOTTOMSET, and is generalised by SEARCH. The
head atom is computed by STARTSET by reasoning with contrapositives [Sti&6],
then the body atoms are computed by BOTTOMSET using a Prolog interpreter,
and finally the most compressive generalisation is determined by SEARCH using
a general-to-specific search through the #-subsumption lattice.

3 Soundness of StartSet

This section considers an idealisation of the contrapositive reasoning mechanism
used by the Progol5 STARTSET, and discusses the soundness of this procedure.

Contrapositives are a means of propagating negative information backwards
through program clauses. For example, consider the clause a:-b where a and b are
propositions. Typically this clause would be used to conclude a from b. But by
the classical equivalence a < b iff =b + —a, it could equally be used to conclude
=b from —a. This latter inference can be simulated within a logic programming
context by introducing the starred predicates a* and b* to represent the negations
of predicates a and b, giving the new clause b* :-a*.

Contrapositives obtained in this way will be called contrapositive variants.
Any Horn clause C' with exactly n body atoms yields exactly n contrapositive
variants, each of which is obtained by transposing the head atom Cy (if it exists)
with a body C; atom (assuming one exists) and starring the transposed atoms.
The contrapositive variants of a Horn theory T', written Contra(T), are defined
as the union of the contrapositive variants of the individual clauses of T'.

Recall that Bot™(B,e) is the set of ground atoms whose negations are en-
tailed by B and e. To compute such negative consequences, STARTSET uses
SLD-resolution on the theory obtained from B by first adding e and then adding
the contrapositive variants of the resulting clauses. These theories will be called
the complementary and contrapositive extensions of B, as formalised in Defini-
tions 5 and 6 below.

Definition 5 (Complementary Extension). Let B be a Horn theory and e
be a Horn clause. Then the complementary extension of B with respect to e,
written B, is the Horn theory BUe.

Definition 6 (Contrapositive Extension). Let B be a Horn theory and e be
a Horn clause. Then the contrapositive extension of B with respect to e, written
B, is the Horn theory B, U Contra(B.).

Atoms in Bot*(B,e) may be computed by identifying those ground atoms
that succeed under SLD-resolution as starred queries from the contrapositive
extension. As formalised in Definition 7 below, the set of all ground atoms ob-
tained in this way is called the StartSet of B with respect to e, and is a subset
of Bott(B,e), as stated in Proposition 1.

Definition 7 (StartSet). Let B be a Horn theory, and e be a Horn clause.
Then the StartSet of B with respect to e, denoted StartSet(B,e) is the set of
ground atoms {a € GA | B} - o*}.

Proposition 1 (Soundness of StartSet). Let B be a Horn theory, and e be
a Horn clause. Then StartSet(B,e) C Bot' (B, e). For proof see [Ray03].

For reasons of efficiency, the STARTSET routine used by Progol5 is more com-
plex than the idealised STARTSET described above. It is shown in [Ray03], how-
ever, that the Progol5 routine computes only a subset of the idealised StartSet,
and so the soundness and incompleteness results presented in this section and
the next apply to both procedures.

4 Incompleteness of StartSet

This section reveals that STARTSET, and therefore Progol5, are incomplete with
respect to Bottom Generalisation. Proposition 2 shows that for B and e defined
as follows, the atom ¢ € Bot™(B,e) but ¢ ¢ StartSet(B,e). Therefore the
hypothesis h = ¢ is derivable by Bottom Generalisation from B and e, but is not
computed by Progol5. Let a, b and ¢ be proposition symbols, and define:

B:{a:—b,c} e=a h=c
b:-c

Proposition 2 (Incompleteness of StartSet). Given B and e as defined
above, then ¢ € Bot™ (B, e) but ¢ & StartSet(B,e).

Proof. First, referring to Definitions 5 and 6, observe that the complementary
and contrapositive extensions are as follows:

E
a:-b,c a:-b,c IC)* Z*’Z
B, =< b:- B =(b:-c U c*;—b*,
-a -a .
a

Then show that ¢ € Bot* (B, e). Observe that B, A ¢ |= L since ¢ and the first
two clauses of B, entail a, and this contradicts the third clause of B,.. Therefore
B, = —c and so ¢ € Bot™ (B, e) by Definitions 1 and 5.

Finally show that ¢ ¢ StartSet(B,e). Observe that the query ¢* fails under
SLD-resolution from B}, as shown by the SLD tree in Figure (a) below. Therefore
¢ & StartSet(B,e) by Definition 7.

?c* -a a-bc
2a* b 9 hH* \/
| “ | b -bc b:-c
2b 2a* ¢ -
| | merge ————>:‘: ;_-_E/\ "C ‘i<——whypothesis
?c ?c \/
u u =
(a) Failed SLD-computation (b) C-Derivation (with merge)

The incompleteness identified above is related to a refinement of C-refutations.
A C-refutation for this example is shown in Figure (b) above. Recall that a clause
as defined by Plotkin is a set of literals, and so identical literals are merged. Note
that in this example every refutation that uses h only once, requires at least one
merge. If a C-refutation with no merge of literals is called a C*-refutation, then
it remains to show the conjecture that h is derivable by Progol5 from B and e
only if there exists a C*-refutation from B U'e with respect to h.

5 Hybrid Abductive-Inductive Learning

This section proposes a semantics that extends Bottom Generalisation, and in-
troduces a corresponding proof procedure that generalises Progol5. The moti-
vation underlying this approach is given in Proposition 3, which generalises a
similar result in [YamO00] from definite clauses to Horn clauses, by reformulating
the BottomSet in terms of a deductive and an abductive component.

Proposition 3. Let B and € be the result of normalising a Horn theory B and
a Horn clause e where B [~ e. Let o, € GA denote ground atoms. As usual, let
the operators \ and \/ denote respectively the conjunction and disjunction of a
set of formulae (which are atoms in this case). Then

Bot(B,e) = \{0 € GA | BE= 6} = \/[{a € GA| BAa €}

Proof. By Definition 1, Bot(B,e) = {L | BA e |= —L}. Partitioning into positive
literals o and negative literals —d, this set can be rewritten as the union of the
two sets: (i) {a | BAe = —a} and (ii) {-d | BAe = 6}. The proof is then by
cases, according to whether e is a definite clause or a negative clause.

Case 1: Let e be the definite clause e = {Ey,—E1,...,nE,}. Then set (i)
is equal to {a | BA—=Eoo A Eyo A ... AN E,o |= —a}, which can be written
{a | BA-e = -a}, and is equal to {a | BA a = €}. Set (ii) is equal to
{0 | BA=EyoANE 0A...NE,o |= ¢}, which can be written as {—d | BA—e = §},
and this is now shown to be equal to {—d | B |= ¢} using the following argument.
If § is any atom such that B |= d then B A —e |= 0 by monotonicity. Therefore
{=6|BA—=e =0} D {=d| B[d}. lf BA—e |= 6 then BA—eA—6 |= L. Now, by the
completeness of Hyper-resolution [CLT73], there is a Hyper-resolution refutation
from the clauses of BU{—e}U{—d}, in which the electrons are E, o, ..., E,o and
any facts in B. And since the nuclei —e and —§ are negative unit clauses, they
can be used ounly once (if at all) to derive the empty-clause in the very last step
of the refutation. But suppose —e is used, then —d cannot be used, and so there
is a Hyper-resolution refutation from the clauses of B U {—e}, which means that
B A —e = L by the soundness of Hyper-resolution, and so B |= €. But this is
equivalent to B |= e, which is a contradiction. Therefore —e is not used, and so
there is a Hyper-resolution refutation from the clauses of BU{—d}, which means
that B |= ¢ by the soundness of Hyper-resolution. Therefore {—d | BA—e |= §} C
{=6 | Bl d}. Hence {=d | BA—e|=6} ={=d | B E d}.

Case 2: Let e be the negative clause e = {=Ey,...,—E,}. Then set (i) is
equal to {a | BA Eyo A ... AN E,o = —a}, which is equal to {a | B A Ejo A
...NEpo A= L1} and can be written {o | BA a |= €} as € = O whenever e
is negative. Set (ii) is equal to {=0 | BA Eyo A ...\ Ey,o |= ¢}, which can be
written {—d | B |=0}.

In both cases Bot(B,e) = {L | BUe |= =L} = {=d | BAe |=§}U{a | BAe |=
—at ={-0 | BEdtU{a | BAa = e€}. Since the clause Bot(B,e) represents
the disjunction of its literals, it is therefore logically equivalent to the formula

Bot(B,e) = N{6 € GA| BE 6} = \V{a € GA | BAa = e}

Proposition 3 shows that the atoms 0 € Bot™ (B, e) are those ground atoms
that may be deduced from the normalised background B, and that the atoms
a € Bott(B,e) are those ground atoms that may be abduced from B given as
goal the normalised example e. This has two important implications. First, the
incompleteness of Progol5 identified in Section 4 can be avoided by replacing
the STARTSET routine with an abductive procedure for deriving single atom
hypotheses a. Second, the semantics of Bottom Generalisation can be extended,
and the Progol5 proof procedure can be further generalised, by exploiting ab-
ductive hypotheses with multiple atoms, as shown in the next two subsections.

5.1 Semantics

This subsection introduces a new semantics called Kernel Generalisation, and
a refinement of this semantics called Kernel Set Subsumption. The underlying
notion, called a Kernel, is a logical formula that generalises the BottomSet by
replacing the single atoms « in Proposition 3 by sets of (implicitly conjoined)
atoms A = {ay,...,ay}, as formalised in Definition 8 below.

Definition 8 (Kernel). Let B and € be the resull of normalising a Horn theory
B and a Horn clause e such that B [~ e. Then the Kernel of B and e, written
Ker(B,e), is the formula defined as follows:

Ker(B,e) = N\{6 € GA|Bl=6} - \[{ACGA|BAA ¢}

As formalised in Definition 9 below, any formula that logically entails the
Kernel is said to be derivable by Kernel Generalisation, and as shown in Propo-
sition 4 below, all such formulae are correct inductive generalisations.

Definition 9 (Kernel Generalisation). Let B be a Horn theory and e be a
Horn clause such that B [~ e. Then a Horn theory H is said to be derivable by
Kernel Generalisation from B and e iff H |= Ker(B,e).

Proposition 4 (Soundness of Kernel Generalisation). Let H and B be
Horn theories and let e be a Horn clause such that B |~ e. Then H |= Ker(B,e)
only if BN H [e, for any Horn theory H.

Proof. Assume H |= Ker(B,e). For convenience, let P and S abbreviate the
following formulae: let P = A{d € GA | B |= §} be the conjunction of all ground
atoms entailed by B, and let S = \/{A C GA | BA A |= €} be the disjunction
of the conjunctions of ground atoms that together with B entail €. Then observe
that (i) B = P as each conjunct § of P is individually entailed by B, and (ii)
BAS |= € as together with B, each individual conjunct A of S entails €, and (iii)
H |= P — S by Definition 8 and the assumption above. Let M be a model of B
and H. Then M is a model of P using (i), and of S using (iii), and of € using
(ii). Therefore B A H |= €, which is equivalent to B A H |= e.

To remain within Horn clause logic, it is convenient to introduce a refinement
of the Kernel, called a Kernel Set. Informally, a Kernel Set K of B and e, is a

partial representation of the Ker(B,e). Comparing Definition 10 below, with
Definition 8 above, the set of head atoms {aj,...,a,} of K is seen to be an
element of the consequent {A | BA A = €} of Ker(B,e). The set of body atoms

{51,...,6m ™1 of K is seen to be a subset of the antecedent {3 | B |= 6}

Definition 10 (Kernel Set). Let B and € be the result of normalising a Horn
theory B and a Horn clause e. Then a Horn theory K is said to be a Kernel Set
of B and e iff

T L ,om
K=9ai-o,... 80, 6m0
0L Lomm)

where 0 < m(i) denotes the number of body atoms in the it" clause, and a; € GA
denotes the head atom of the it" clause, and 6! € GA denotes the j1" body atom
of the it" clause, and BU {1, ...,an} = € and B |= & for all i,j such that
1<i<nandl<j<m(i).

As formalised in Definition 11 below, any formula that clausally subsumes a
Kernel Set is said to be derivable by Kernel Set Subsumption, and as shown in
Proposition 5 below, all such formulae are correct inductive generalisations.

Definition 11 (Kernel Set Subsumption). Let K be a Kernel Set of a Horn
theory B and a Horn clause e such that B [~ e. Then a Horn theory H is said
to be derivable by Kernel Set Subsumption from B and e iff H J K.

Proposition 5 (Soundness of Kernel Set Subsumption). Let K be a Ker-
nel Set of a Horn theory B and a Horn clause e such that B |~ e. Then H J K
only if BA H = e.

Proof. Assume H J K. For convenience, let P, @), R and S abbreviate the
following formulae: let P = A{d € GA | B |= §} be the conjunction of all ground

atoms entailed by B, let Q = A{d1,...,d7,..., 572”(")} be the conjunction of all
body atoms of K, let R = A{a1,...,an} be the conjunction of all head atoms of
K, and let S =\/{A C GA | BA A [€} be the disjunction of the conjunctions
of ground atoms that together with B entail e. Then observe that (i) P = @Q as
the conjuncts &7 of @ are included among the conjuncts ¢ of P, and (ii) R = S
as the conjunction R is one of the disjuncts A in S, and (iii) K | @ — R, as any
model of I that satisfies every body atom, must also satisfy every head atom,
and (iv) H = K by definition of #-subsumption and the assumption above. Let
M be amodel of H. If M is a model of P, then M is a model of Q) using (i), and
of K using (iv), and of R using (iii), and of S using (ii). Therefore H |= P — 5,
and so H |= Ker(B,e) by Definition 8, and thus B A H [= e by Proposition 4.

Proposition 5 above, shows that Kernel Set Subsumption is a sound method
of inductive generalisation. Proposition 6 below, shows that Kernel Set Sub-
sumption is a strict extension of Bottom Generalisation for Horn clause logic.

Proposition 6 (Kernel Set Subsumption extends Bottom Generalisa-
tion). Let B be a Horn theory and e a Horn clause such that B | e. Then the
set of hypotheses KSS derivable by Kernel Set Subsumption strictly includes the
set of Horn clause hypotheses BG derivable by Bottom Generalisation.

Proof. First show that KSS O BG. If the Horn clause h is derivable from
B and e by Bottom Generalisation, then h = Bot(B,e) by Definition 2, and
therefore ho C Bot(B,e) for some substitution . By Proposition 3 it follows
ho = a:-61,...,0, where BAa |= € and B |= §; for all 0 < j < n. Therefore the
Horn theory H = {h} is derivable by Kernel Set Subsumption using the Kernel
Set K ={a:-61,...,0,}. Thus KSS O BG.

Now show that KSS # BG. Let p/0 and ¢/1 be predicates, let a and b
be constants, and define B = {p:-q(a),q(b)}, e = p, and h = ¢(X). Then the
hypothesis h = ¢q(X) is not derivable by Bottom Generalisation, as it does not
f-subsume Bot(B,e) = {p}. But the hypothesis h = ¢(X) is derivable by Kernel
Set Subsumption, as it clausally subsumes the Kernel Set K consisting of the
two clauses ¢(a) and ¢(b). Thus KSS # BG.

The notion of Kernel Set introduced above is related to an extension of
Plotkin’s C-refutation. Let a K-derivation of a clause D from a clausal theory
T with respect to a clausal theory K be defined as a resolution derivation of D
from T'U K in which any clause in K is used at most once. Then it remains to
show the conjecture that a theory K is a Kernel Set of B and e only if there
exists a K-refutation from B Ue with respect to K. Note that C-derivations are
a special case of K-derivations in which K consists of a single clause C.

5.2 Proof Procedure

This subsection introduces a proof procedure for Kernel Set Subsumption, called
HAIL, that integrates abductive, deductive and inductive reasoning within a
cycle of learning that generalises Progol5. This cycle is illustrated in Figure 1.

HAIL, like Progol5, consists of a CoverSet loop (Steps 1 and 5) with abductive
(Step 2), deductive (Step 3) and inductive (Step 4) phases. Given Horn theories
B, ET and E~, and a set of mode-declarations A4, HAIL aims to return an
augmented background knowledge B’ = BU H; U ... U H,, that entails E7T, is
consistent with £, and such that each theory H; for 1 < i < m is maximally
compressive and compatible with M. On every iteration of the cycle, at least
one clause is removed from E*, and a non-empty theory H; is added to B. It is
assumed that initially ET is non-empty and consistent with B and E7T.

The CoverSet loop begins (Step 1) by selecting from ET a seed example e,
which is normalised with B, giving theory B and atom e. An abductive procedure
is then used (Step 2) to find explanations A; = {a, ..., a,} of goal € from theory
B. By definition, each explanation is a set of implicitly conjoined ground atoms
such that BAA; |= e. Any abductive procedure can be used, but for the purposes
of illustration Figure 1 depicts a tree-like computation representing the ASLD
procedure of Kakas and Mancarella [KM90]. Abduced atoms «; are shown as
tapered squares, the goal € is shown as an oval, and the theory B is implicit.

kﬂ: - I:ll:l
[E K
S S = B ke <&l = BRI
by - ; ’ © DEDUCE
0 f [hin
T Ty i i i
O O
= {(C)~)} A< ~<g]} -
@ SEARCH @ ABDUCE
Let H be the most compressive # Select seed e from E*
Add H to B, remove cover from E* Normalise B and e
o~ ~ e - v
Return B>=BUH,VU..UH_ l Et=Q T Given B, E*, E- and M

Fig. 1. Conceptual View of the HAIL Learning Cycle

Every n-atom hypothesis A; = {ay,...,a,} abduced in Step 2 is used in
Step 3 to form an n-clause Kernel Set K; = {ki1, ..., kin}, with each atom «;
becoming the head of exactly one clause k;;. To every head atom «; is adjoined a
set of body atoms 6{ , shown as squares in Figure 1, each of which is determined
by a deductive procedure that computes ground atomic consequences of B. The
resulting Kernel Set K; is then generalised (Step 4) by constructing a Horn theory
H; that includes at least one clause h;; from the #-subsumption lattice of each
Kernel clause k;;. Figure 1 shows the clauses h;1 and hgy, (rounded rectangles)
selected from the f-subsumption lattices (dotted arrows) of the Kernel clauses
ki and kg, (tapered rectangles). In general, the same clause may be selected
from several lattices, as in the example used in Proposition 6.

The hypotheses constructed by HAIL should be compatible with the given
language bias, and they should be maximally compressive in the sense of cov-
ering the greatest number of remaining positive examples while containing the
fewest number of literals. Therefore, the abductive and search procedures are
required return hypotheses that are minimal in the sense that no subset is also
a hypothesis, and, in practice, all three procedures will make use of the mode-
declarations M. In this way, the most compressive hypothesis H; is determined
for each Kernel Set K; resulting from some explanation A;. In step 5, the most
compressive such hypothesis, H, is then asserted into B, and any covered exam-
ples are removed from ET. The cycle is repeated until E+ is empty, whereupon
the augmented background B’ is returned.

Begin HAIL

Input given B, EY, E=, M

remove cover let EY=Et—-{e€ E* | BEe}
CoverSet Loop while ET # (

select seed select seed example e € B
normalise let (B, e} = Normalise(B,e)
Abduction let A= ABDUCE(B, ¢, My)
Deduction for each abduced hypothesis A; € A

for each abduced atom a; € A;
let ki; = DEDUCE(B, aj, My)
let IC; = U]{ku}

Induction let #; = SEARCH(K;,B,E™, E~, M)
best hypothesis let H = H; with greatest Compression
assert hypothesis let B=BUH
remove cover let Et =Et—{e€ E* | BEe}
Output return B

End HAIL

Fig. 2. HAIL Proof Procedure

The high-level operation of the HAIL learning cycle is shown in Figure 2, in
which the abductive, deductive and search procedures are referred to generically
as ABDUCE, DEDUCE and SEARCH. Given as input B, ET, E~ and M,
HAIL first removes from Et any examples already covered by B — as these
require no hypothesis. The first seed example is then selected and normalised,
giving B and e. Given theory B and goal e, ABDUCE computes a set A4 =
{A1,...,A,} of explanations, each of which is an implicitly conjoined set A; =
{ai,...,a,} of ground atoms compatible with the head-declarations M}, in M,
and is such that BA A; = e.

In the outer for-loop, each explanation A; € A is processed in turn. In the
inner for-loop, each atom a; € A; becomes the head of a clause k;; to which
DEDUCE adjoins a set body atoms, each of which is a ground atomic conse-
quence of B compatible with the body-declarations M} in M. The Kernel Set K;
formed of the the union of the clauses k;; is then generalised by SEARCH, which
determines the most compressive theory 7; clausally subsuming the Kernel Set
and compatible with M. The most compressive theory obtained in this way is
then added to B, and any newly covered examples are removed from E7T.

A concrete instance of Figure 2 is proposed in [Ray03] that instantiates
ABDUCE, DEDUCE and SEARCH with ASLD, BOTTOMSET and a new
search algorithm called M-SEARCH. Very briefly, the language bias M}, is en-
coded within the ALSD procedure as additional abductive integrity constraints,
the Progol5 BOTTOMSET routine is used to compute the body atoms of each
individual Kernel clause, and M-SEARCH performs a recursive specific to gen-
eral search through the collection subsumption lattices obtained from the given
Kernel Set. These concrete procedures are now used informally in Examples 1
and 2 below, to illustrate the HAIL proof procedure in Figure 2 above.

4

O

N
fries(X) :-
offer(X)

fries(X) -
offer(Y)
4

fries(X)
4

h = fries(X) :- offer(X)

k = fries(X) :- offer(X)

© BorTOM SET

\

Ty
? meal(md)
? burger(md),fries(md)

A= {fries(md)i}

O M-SEARCH

@ A4SLD

N

/

B’ =B U {fries(X) :- offer(X)}

e = meal(md)

® Return B’

O Select Seed

Fig. 3. Fast Food Example - Solved by HAIL (but not by Progol5)

oy T
K~ k, o)
N v k,= tired(X) :- lecturer(X), academic(X)
Tx - Lx, Ax Px :- Lx, Ax k,= poor(X) :- lecturer(X), academic(X)
_— T ~ _ T ~ A
Tx :- Tx: Tx:- Px :- Px :- Px :- a
Lx,Az LyAy Ly,Ax Lx,Az LyAy LyAx
Tx :-Lx J)/)EA-Z Tx :- Ax I}))ZA-Z Px :- Ax \
Tx :- Ly Tx:-Az Px:-Ly Px:-Az | }
~_px —" € ~—\‘q
t ? sad(a)
O O ? tired(a), poor(a)
h,= tired(X) h,= poor(X) :- lecturer(X) A= {tired(a), poor(a)}
O M-SEARCH @ 4sLD
s poor(X) :- lecturer(X) -~
B =B U { tired(X) } e = sad(a)
O Return B’ Q Select Seed

Fig. 4. Academic Example - Solved by HAIL (but not by Bottom Generalisation)

Ezample 1 (Fast Food).

This example shows how HAIL is able to overcome the incompleteness of
Progol5 identified in Section 4. The background knowledge B describes a domain
with three bistros: md, bk and rz (mcDonalds, burger King and theRitz). To
have a meal in a bistro it is sufficient to have burger and fries, and, a free burger
comes with every fries at bistros in a special offer. The positive examples E+
state that a meal has been eaten at both md and bk. The negative example(s)
E~ state that a meal has not been eaten at rz. The mode-declarations state that
atoms of the form fries(X) may appear in the heads of hypothesised clauses,
and atoms of the form offer(X) may appear in the bodies. It can be verified
that hypothesis H is derivable by Bottom Generalisation using e = meal(md) or
e = meal(bk) as the seed example. However, it is not computed by Progol5, as
the queries meal*(md) and meal* (bk) fail from the contrapositive extension B .
Therefore, STARTSET computes no atoms and Progol5 computes no hypothesis.

As illustrated in Figure 3, HAIL solves Example 1 in the following way.
In Step 1, the seed e = meal(md) is selected and normalised, trivially giving
B = B and € = e. In Step 2, given theory B and goal e, ASLD abduces the
hypothesis A = {fries(md)} containing the single atom a = fries(md). In
Step 3 a becomes the head of a clause k, to which the body atom offer(md)
is added by BOTTOMSET. For efficiency BOTTOMSET replaces the constant
md with the variable X, as required by the mode-declarations. In Step 4 the
#-subsumption lattice, bounded from above by the newly computed clause &, and
from below by the empty clause [, is searched. The most compressive hypothesis
is k itself — as all more general clauses are inconsistent with the negative example
:-meal(rz). In Step 6 the clause h = fries(X):-offer(X) is added to B, and,
because both positive examples are now covered, they are removed from ET.
The cycle terminates, returning the augmented background B'.

Background Knowledge

e { el friea), burger ()1, i W St
’ bistro(rz) burger(rz)
Positive Examples Negative Examples
Et = {nmlzzgggg)l) } E= ={ -meal(rz) }
Head-Declarations Body-Declarations
M = { modeh|fries(+bistro)] } M~ = { modeboffer(+bistro)] }

Hypothesis
H ={ fries(Z)-offer(Z)}

Ezample 2 (Academic).

This example shows how HAIL is able to compute more than one clause in
response to a single seed example, and to derive hypotheses outside the seman-
tics of Bottom Generalisation. The background knowledge describes a domain
with three academics: oli, ale and kb. It can be verified that hypothesis H is
not derivable by Bottom Generalisation using e = sad(ale) or e = sad(kb) as
the seed example, since no literal with the predicates tired or poor is entailed
by the complementary extension B.. Therefore no literal with these predicates
is contained in the BottomSet Bot(B,e), nor any clause derivable by Bottom
Generalisation.

As illustrated in Figure 4, HAIL solves Example 2 in the following way. In
Step 1, the seed e = sad(ale) is selected and normalised, again giving B = B
and € = e. In Step 2, ASLD abduces the hypothesis A containing the two atoms
ay = tired(ale) and as = poor(ale). In Step 3, a1 and a2 become the heads of
two clauses k1 and ks, to which the body atoms lecturer(ale) and academic(ale)
are added by BOTTOMSET. Note that for efficiency BOTTOMSET then replaces
the constant ale with the variable X, as required by the mode-declarations. Note
also that, in general, different body atoms will be added to different clauses. Note
finally that the two clauses k; and ky constitute a Kernel Set of B and e. In Step
4, one clause is chosen from each of the #-subsumption lattices resulting from
this Kernel Set. For ease of presentation the clauses in the 8-subsumption lattices
have been written without brackets and only the first letter of each predicate
symbol is shown. In Step 6 the most compressive hypothesis H consisting of the
two clauses tired(X) and poor(X):-lecturer(X) is added to B, and, because
both positive examples are now covered, they are removed from Et and the
cycle terminates returning the augmented background B’.

Background Knowledge

academic(oli) student(oli)
B = { sad(X) - tired(X), poor(X) } US academic(ale) pUX lecturer(ale)
academic(kb) lecturer(kb)
Positive Examples Negative Examples
+ _ [sad(ale) _ _ =-sad(oli)
BT = {sad(k‘ris) B = - poor (oli)
Head-Declarations Body-Declarations
Mt = modeh[tired(+academic)] [modeb[lecturer(+academic)]
~ | modeh[poor(+academic)] ~ | modeb[academic(+academic))

Hypothesis

poor(X) - lecturer(X)

H— { tired(X) }

6 Related Work

The importance of abductive inference in the context of Bottom Generalisation
was first realised in [MBO00] and [Yam00]. In [MBO00], Muggleton and Bryant
suggest that Progol5 can be seen as a procedure for efficiently generalising the
atoms computed by the STARTSET routine, which they view as implementing
a form of abduction based on contrapositive reasoning. This paper confirms the
view of Muggleton and Bryant by showing that STARTSET performs abduction
from normalised inputs, but reveals that STARTSET is incomplete with respect
to Bottom Generalisation. In [Yam00] it is shown that given definite clauses B
and e, then Bot™(B,e) is the set of atoms in the least Herbrand model of the
definite theory consisting of B and the Skolemised body of e, and Bot™ (B, e¢)
is the set of atoms abducible by SOLDR-resolution from this program given
as goal the Skolemised head of e. The Kernel semantics presented in this pa-
per can be seen as a generalisation of these results that exploits multiple atom
abductive hypotheses. In [Yam00], Yamamoto describes a procedure that incor-
porates explicit abduction within Bottom Generalisation. Atoms in the head
and body of the BottomSet are computed by separate abductive and deductive
procedures, and hypotheses are formed by generalising the computed atoms.
However, this procedure is non-deterministic and is restricted to definite clause
logic. Yamamoto shows that his procedure is able to induce a single clause or a
set of facts for each seed example, but he conjectures that it would be difficult to
extend the procedure to induce conjunctions of definite clauses. The proof pro-
cedure and semantics described in this paper can be seen as generalising those
in [MBO00] and [Yam00] by constructing Horn theories not derivable by Bottom
Generalisation. But still, not all hypotheses can be found with this new ap-
proach, as can be seen using the following example due to Yamamoto [Yam97].
If B = {even(0)} U {even(s(X)):-odd(X)} and e = odd(s(s(s(0)))), then the
hypothesis h = odd(s(X)) :-even(X) is not derivable by Kernel Set Subsump-
tion, or by Kernel Generalisation, as Ker(B,e) = {odd(s(s(s(0)))):-even(0)}
and h [£ Ker(B, e). Note that in this example Ker(B, e) = Bot(B,e).
Complete methods of hypothesis finding for full clausal logic are proposed in
[YF00] and [InoO1]. In [YFO00], Yamamoto and Fronhdfer describe a technique
based on Residue Hypotheses. Very briefly, the Residue of a ground theory G,
written Res(G), is the ground theory consisting of all non-tautological clauses
that contain the negation of one literal from each clause in G. A Residue Hypoth-
esis of two clausal theories B and FE is defined as the Residue of a subset of the
ground instances of clauses in B and clauses in the Residue of the Skolemisation
of E. A hypothesis H is derived by the Residue Procedure from B and FE iff H
generalises a Residue Hypothesis of B and E. If the example consists of a single
clause e, then a theory H is derived by the Residue Procedure from B and e iff
H = Res(Gnd(B,)) where Gnd(B,.) denotes the ground instances of the com-
plementary extension B, = B Ue. Compare this with Kernel Set Subsumption,
which derives a theory H iff H J K where K is a Kernel Set of B and e. Both
procedures derive hypotheses by generalising a ground theory constructed from
B and e. For example, if B = {p:-q(a),q(b)} and e = p then H = {q(X)} is

derived by the Residue Procedure with Res(Gnd(B.)) = {q(a),p}U{q(b), p} and
is derivable by Kernel Set Subsumption with X = {g(a)} U {¢(b)}, but not by
Bottom Generalisation, as shown in Proposition 6. In [Ino01], Inoue describes a
technique called Consequence Finding Induction or CF-Induction, which is based
on the concepts of Production Fields and Characteristic Clauses. Very briefly, a
Production Field defines a syntactic language bias on the hypothesis space, and
a Characteristic Clause of two clausal theories B and F, is a non-tautological
clause entailed B A E that is expressed in the language of some Production
Field P, and is not properly subsumed by any other such clause. A hypothe-
sis H is derived by CF-Induction iff H generalises the complement of a theory
CC(B, E) containing a set of Characteristic Clauses. For the example above,
H = {¢(X)} is derived by CF-Induction with CC = {p:-q(a),q(b)} U {:-p}
since CC is equivalent to the theory {q(a),p} U {q(b),p}, and ¢(X) E CC. But
because the Residue Procedure and CF-Induction are more general than HAIL,
they must search a correspondingly larger hypothesis space, which makes them
nondeterministic and computationally expensive. It is believed, however, that
practical systems can be developed for HAIL that will build on the success of
Progol by overcoming some of limitations described in this paper.

7 Conclusion

This paper has identified an incompleteness of the ILP proof procedure Progol5
with respect to the semantics of Bottom Generalisation, and has proposed a
new approach, called Hybrid Abductive Inductive Learning, that integrates ab-
ductive and inductive reasoning within a learning cycle that exploits multiple
atom abductive hypotheses. A proof procedure has been presented, called HAIL,
that overcomes this newly identified incompleteness and further generalises Pro-
gol5 by computing multiple clauses in response to a single seed example, and
by finding hypotheses not derivable by Bottom Generalisation. A semantics for
this proof procedure, called Kernel Generalisation, has been defined, and a re-
finement of this semantics, called Kernel Set Subsumption, was shown to extend
that of Bottom Generalisation.

To better characterise the hypotheses derivable by HAIL, precise complete-
ness results are required for the semantics and proof procedures presented in this
paper. It is believed that K-derivations, introduced in this paper as an exten-
sion of C-derivations, will serve as the basis of such a characterisation. Although
Kernel Set Subsumption is an extension of Bottom Generalisation, it is not
complete with respect to the general task of inductive generalisation. Therefore,
the possibility of enlarging the class of derivable hypotheses by interleaving the
abductive, deductive and inductive phases will be investigated. In addition, a
prototype implementation of the HAIL proof procedure needs to be developed
in order to evaluate the approach. One possibility would be to generalise the
current Progolb implementation and combine this with an existing abductive
system, such as the A-System of Van Nuffelen, Kakas and Denecker [KNDO1].

References

[CL73]

[FOO00]

[Ino01]

C. Chang and R. C. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

K. Furukawa and T. Ozaki. On the completion of inverse entailment for
mutual recursion and its application to self recursion. In J. Cussens and
A. Frisch, editors, Proceedings of the Work-in-Progress Track, 10th Interna-
tional Conference on Inductive Logic Programming, pages 107-119, 2000.

K. Inoue. Induction, abduction, and consequence-finding. In C. Rouveirol
and M. Sebag, editors, Proceedings 11th International Conference on Induc-
tive Logic Programming, volume 2157 of Lecture Notes in Al pages 65-79.
Springer Verlag, 2001.

[KKT92] A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic programming.

[KMO0]

Journal of Logic and Computation, 2(6):719-770, 1992.

A.C. Kakas and P. Mancarella. Database updates through abduction. In 16th
International Conference on Very Large Databases (VLDB), pages 650-661.
Morgan Kaufmann, 1990.

[KNDO1] A. Kakas, B. Van Nuffelen, and M. Denecker. A-system : Problem solving

[MBOO]
[MR94]
[Mug91]
[Mug95]
[Plo71]
[Ray03]

[Sti86]

[Yam97]

[Yam99]

[Yam00)]

[YFO00]

through abduction. In Proceedings of IJCAI’01 - Seventeenth International
Joint Conference on Artificial Intelligence, pages 591-596, 2001.

S.H. Muggleton and C.H. Bryant. Theory completion using inverse entail-
ment. Lecture Notes in Computer Science, 1866:130-146, 2000.

S.H. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19/20:629-679, 1994.

S.H. Muggleton. Inductive logic programming. New Generation Computing,
8(4):295-318, 1991.

S.H. Muggleton. Inverse entailment and progol. New Generation Computing,
Special issue on Inductive Logic Programming, 13(3-4):245-286, 1995.

G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edin-
burgh University, 1971.

O. Ray. Hail: Hybrid abductive-inductive learning. Technical Report 2003/6,
Imperial College, 2003.

M.E. Stickel. A Prolog technology theorem prover: Implementation by an
extended Prolog compiler. In J. H. Siekmann, editor, Proceedings of the
Eighth International Conference on Automated Deduction, volume 230, pages
573-587, Berlin, 1986. Springer-Verlag.

A. Yamamoto. Which hypotheses can be found with inverse entailment? In
S. Dzeroski and N. Lavrac, editors, Proceedings of the 7th International Work-
shop on Inductive Logic Programming, volume 1297, pages 296-308. Springer-
Verlag, 1997.

A. Yamamoto. An inference method for the complete inverse of relative
subsumption. New Generation Computing, 17(1):99-117, 1999.

A. Yamamoto. Abduction and Induction: essays on their relation and in-
tegration, volume 18 of Applied Logic Series, chapter Using Abduction for
Induction based on Bottom Generalisation. Kluwer Academic Publishers,
first edition, 2000.

A. Yamamoto and B. Fronhéfer. Hypothesis finding via residue hypothe-
ses with the resolution principle. In Proceedings of the 7th International
Workshop on Inductive Logic Programming, volume 1968 of Lecture Notes in
Computer Science, pages 156-165. Springer-Verlag, 2000.

