Inverse Entailment and Progol

Stephen MUGGLETON
Oxford University Computing Laboratory,
Wolson Building,
Parks Road, Oxford, OX1 3QD, United Kingdom.

Received 3 October 1994
Revised manuscript received 2 April 1995

Abstract This paper firstly provides a re-appraisal of the development of techniques for inverting deduction, secondly introduces Mode-Directed Inverse Entailment (MDIE) as a generalisation and enhancement of previous approaches and thirdly describes an implementation of MDIE in the Progol system. Progol is implemented in C and available by anonymous ftp. The re-assessment of previous techniques in terms of inverse implication leads to new results for learning from positive data and inverting implication between pairs of clauses.

Keywords: Learning, Logic Programming, Induction, Predicate Invention, Inverse Resolution, Inverse Entailment, Information Compression.

§1 Introduction Since its inception in this journal Inductive Logic Programming (ILP) has grown to become a substantial sub-area of both Machine Learning and Logic Programming (see Ref. 43)). The success of the subject lies partly in the choice of the core representation language of logic programs. Least Herbrand models of logic programs fit neatly with the distinction between examples and conjectured theories in inductive inference. The syntax of logic programs provides modular blocks which, when added or removed, generalise or specialise the program. Depth-bounded Prolog interpreters, used for theorem-proving, allow efficient testing of hypothesised Horn clause theories. Most importantly, Turing-equivalence of logic programs is allowing a broader range of Machine Learning applications in ILP than was possible with more restrictive representations.

Recent research in ILP has spawned a variety of new theoretical topics.
These include the problem of inverting resolution, inversion of clausal implication, predicate invention, closed-world specialisation and U-learnability. As with any subject, the diversity of sub-topics can be better understood by following the development of a particular line of ideas. The aims of this paper are firstly to provide a re-appraisal of the development of techniques for inverting deduction, secondly to introduce Mode-Directed Inverse Entailment (MDIE) as a generalisation and enhancement of previous approaches and thirdly to describe an implementation of MDIE in the Progol* system.

At each stage in the development of ILP there has been an attempt to solve existing technical restrictions of implemented systems. The five main approaches described in this paper are as follows.

(1) Inverse resolution (IR) in propositional logic,
(2) IR in first-order definite clause logic,
(3) determinate relative least general generalisation,
(4) inverse implication and
(5) mode-directed inverse entailment.

The paper is structured as follows. First the logical and statistical setting for ILP are introduced (Section 2). This is followed by a synopsis of the results and restrictions for approaches (1) to (4) (Sections 3 to 6). The remainder of the paper (Sections 7 to 12) deals with theoretical and practical aspects of mode-directed inverse entailment. Instructions for obtaining Progol by anonymous ftp are given in Section 11. The paper closes with a discussion of research issues related to inverse entailment. Standard definitions taken from Logic Programming and ILP are given in Appendix A. In Appendix B a statistical setting for ILP is described. Properties of the subsumption lattice are described in Appendix C. The algorithms used in Progol are given in Appendix D. A table of Progol’s runtimes various data sets is presented in Appendix E.

§2 Logical and Statistical Setting for ILP

Deductive inference derives consequences E from a prior theory T. Thus if T says that all swans are white, E might state that a particular swan is white. Inductive inference derives a general belief T from specific beliefs E. After observing one or more white swans T might be the conjecture that all swans are white. In both deduction and induction T and E must be consistent and

$$T \models E.$$ \hspace{1cm} (1)

The requirement of consistency means that the observation of a black swan rules out conjecture T. Inductive inference is, in a sense, the inverse of deduction. However, deductive inference proceeds by application of sound rules of infer-

* Prolog inverted in the middle.
ence, while inductive inference necessarily involves unsound conjecture. Such conjectures have at best statistical support from observed data. However, the association of probability values with hypotheses requires the assumption of a prior probability distribution over the hypothesis language. Occam's razor can be taken as an instance of a distribution which assigns higher prior probability to simpler hypotheses. It has been shown that without such distributional assumptions the class of all logic programs is not even PAC-predictable. On the other hand, it has recently been demonstrated that the class of all time-bounded logic programs is polynomial-time learnable (U-learnable) under fairly broad families of prior probability distributions. Appendix B gives more details of the relationship between data, posterior probabilities and U-learnability.

Within ILP it is usual to separate the elements of (1) into examples (E), background knowledge (B), and hypothesis (H). These have the relationship

$$B \land H \models E.$$ \hfill (2)

B, H and E are each logic programs. E usually contains ground unit clauses of a single target predicate. E can be separated into E⁺, ground unit definite clauses and E⁻, ground unit headless Horn clauses. However, the separation into B, H and E is a matter of convenience, as the following example shows.

Example 1 White swans

The swan example might be represented using the following logic program.

$$E^+ = \{ \text{white(swan1)} \leftarrow \}$$

$$E^- = \{ \text{black(swan2)} \leftarrow \}$$

$$B = \{ \leftarrow \text{black}(X), \text{white}(X) \}$$

$$H = \{ \text{white}(X) \leftarrow \text{swan}(X) \}$$

Relationship (2) does not hold since swan(swan1) is not entailed by B \land H. It does not help to argue that swan(swan1) is background knowledge, since this is an observation about swan1. E⁻ does not contain headless Horn clauses, although together with B it refutes H. These problems can most simply be avoided by dropping all but the restriction that B, H and E are arbitrary logic programs.

§3 Inverse Resolution in Propositional Logic

The idea of carrying out induction by inverting deduction was first investigated in depth mathematically by the 19th century political economist

* George Boole's algebraic approach to deduction inspired Jevons to use truth-functional tabulations to design and build a logical calculator. Jevons' mechanical *Organon* is complete for deciding satisfiability of propositional clauses in 4 variables, and can be found in the Museum of Scientific Instruments in Oxford.
and philosopher of science Stanley Jevons. Jevons solved by tabulation the “Inverse or Inductive Problem” involving two propositional symbols. The following quote from Jevons' book on inductive inference is both modern-sounding and relevant to the problems addressed in this paper.

Induction is, in fact, the inverse operation of deduction, and cannot be conceived to exist without the corresponding operation, so that the question of relative importance cannot arise. Who thinks of asking whether addition or subtraction is the more important process in arithmetic? But at the same time much difference in difficulty may exist between a direct and inverse operation; the integral calculus, for instance, is infinitely more difficult than the differential calculus of which it is the inverse. Similarly, it must be allowed that inductive investigations are of a far higher degree of difficulty and complexity than any questions of deduction; ...

At the time of Jevons logicians, not yet persuaded of Boole's algebraic approach to logic, employed an array of inference rules derived from Aristotelian syllogisms. Robinson was later to show that deductive inference in first-order predicate calculus could be effected by a single rule of inference, that of resolution. Inductive inference based on inverting resolution in propositional logic was first discussed in Ref. 32 (originally a technical report from 1987) as an analysis of the inductive inference rules within the Duce system.

3.1 Inductive Inference Rules

Duce had six inductive inference rules. Four of these were concerned with definite clause propositional logic. In the following description of the inference rules lower-case letters represent propositional variables and upper-case letters represent conjunctions of propositional variables.

Absorption: \[p \leftarrow A, B \quad q \leftarrow A \]
\[p \leftarrow q, B \quad q \leftarrow A \]

Identification: \[p \leftarrow A, B \quad p \leftarrow A, q \]
\[q \leftarrow B \quad \quad p \leftarrow A, q \]

Intra-construction: \[p \leftarrow A, B \quad p \leftarrow A, C \]
\[q \leftarrow B \quad p \leftarrow A, q \quad q \leftarrow C \]

Inter-construction: \[p \leftarrow A, B \quad q \leftarrow A, C \]
\[p \leftarrow r, B \quad r \leftarrow A \quad p \leftarrow r, C \]

Each of Duce's rules is superficially similar to that of a deductive rule of inference of the form

\[
\begin{array}{c}
X \\
Y
\end{array}
\]
Such a deductive inference rule would be called sound if and only if \(X \) entailed \(Y \). We will call a rule of inference *inductively sound* if and only if \(Y \) logically entails \(X \), or equivalently \(\overline{X} \) entails \(\overline{Y} \). A set of inductive inference rules will be written with an overline as \(\overline{\alpha} \). Each clause above the line is either a resolvent of two clauses below the line or is itself found below the line. Duce's inference rules invert single-depth applications of resolution. Using the rules a set of resolution-based trees for deriving the examples can be constructed backwards from their roots. The set of leaves of the trees represent a theory from which the examples can be derived. In the process new propositional symbols, not found in the examples, can be "invented" by the intra- and inter-construction rules.

3.2 Completeness

Continuing the analogy with deduction we might write

\[
\overline{X} \vdash \overline{Y}
\]

to say that theory \(Y \) is derivable using inductive inference rules \(\overline{\alpha} \) from examples \(X \). There are two senses in which a set of inference rules \(\overline{\alpha} \) may be said to be complete.

Definition 2 *Weak completeness*

Let the example language \(\mathcal{E} \) and hypothesis language \(\mathcal{H} \) both be subsets of the first-order predicate calculus and let \(\overline{\alpha} \) be a set of inductive inference rules. \(\overline{\alpha} \) is said to be weak complete for \(\mathcal{E} \) and \(\mathcal{H} \) if and only if for each \(H \subseteq \mathcal{H} \) there exists \(E \subseteq \mathcal{E} \) such that \(\overline{E} \vdash \overline{H} \).

In Ref. 32 it was shown that \(\overline{\alpha} \) consisting of only *absorption* and *intra-construction* is weak complete under particular hypothesis and example language restrictions.

Definition 3 *Strong completeness*

Let the example language \(\mathcal{E} \) and hypothesis language \(\mathcal{H} \) both be subsets of the first-order predicate calculus and let \(\overline{\alpha} \) be a set of inductive inference rules. \(\overline{\alpha} \) is said to be strong complete for \(\mathcal{E} \) and \(\mathcal{H} \) if and only if for each \(H \subseteq \mathcal{H} \) and \(E \subseteq \mathcal{E} \implies E \vdash H \).

The four Duce inference rules in Section 3.1 are not strong complete for definite clause propositional calculus.

3.3 Occam Compression

In Duce every application of an inductive inference rule \(\frac{X}{Y} \) was chosen to maximise information compression.

Definition 4 *Occam compression*

Let \(X, Y \) be wffs for which \(Y \models X \) and \(X \land Y \not\models \Box \). Let \(|X|\) and \(|Y|\) be the number of bits required to encode \(X \) and \(Y \). The Occam compression of \(X \)
relative to \(Y \) is \(|X| - |Y|\).

Suppose \(|P| = b \cdot \text{symbols}(P)\) where \(\text{symbols}(P)\) is the number of propositional symbol occurrences in \(P\) and \(b\) is the number of bits to encode each such occurrence. With reference to Appendix B, an encoding is the expression of a prior distribution. \(F(P)\) expresses the relative frequency with which the teacher chooses \(P\) as target concept. Assume the learner knows \(F(P)\) and uses it as a prior distribution. Then according to Shannon and Weaver \(^{56}\) \(|P|\) is \(- \log_2 F(P)\) and

\[
F(P) = 2^{-|P|}
\]

Note that since this is an exponential-decay distribution, in the situation in which the learner knows \(F(P)\), the results in Ref. 43) show that the class of all time-bounded logic programs are polynomial-time learnable (U-learnable). However, note also that if the teacher’s prior is known to the learner then on average theories chosen by the teacher have extremely low information content. Alternatively this might be viewed as the expectation that only a small augmentation of an existing theory is expected from any short presentation of the teacher’s examples.

Remark 5

Let \(E\) be a wff and \(\mathcal{H}\) be a set of wffs containing \(E\) such that for each \(H \in \mathcal{H}\) it is the case that \(H \models E\) and \(H \land E \not\models \square\). Let \(H_{\max}\) have maximum compression within \(\mathcal{H}\) relative to \(E\) and let \(H_0\) have compression 0 relative to \(E\). \(H_{\max}\) has maximum posterior probability and \(H_0\) has posterior probability equal to \(E\).

Proof

According to Equation (6) in Appendix B.2

\[
p(H | E) = \frac{P(H)}{P(E)} = 2^{|E| - |H|}.
\]

\(p(H | E)\) is maximal when \(|E| - |H|\) is maximal. When \(|E| - |H| = 0\) then \(p(H | E) = p(E | E)\) \(\square\)

The hypothesis with maximum posterior probability (\(H_{\max}\)) has maximum expected predictive accuracy.

§4 Inverse Resolution in First-Order Logic

Inverse resolution was lifted to first-order predicate calculus in Ref. 37). This involved algebraic inversion of the equations of resolution below.

\[
D = (C \cup C') \theta \theta'
\]

\(l\theta = l' \theta'\)

Figure 1 shows a resolution step. \(D\) is derived at the base of the ‘\(V\)’ given the clauses on the arms. In contrast, a ‘\(V\)’ inductive inference step derives one of the
Inverse Entailment and Progol

clauses on the arm of the \('V'\) given the clause on the other arm and the clause at the base. In Fig. 1 the literal resolved on is positive (+) in \(C\) and negative (-) in \(C'\). Duce's absorption rule constructs \(C'\) from \(C\) and \(D\), while the identification rule derives \(C\) from \(C'\) and \(D\).

Since algebraic inversion of resolution has a complex non-deterministic solution only a restricted form of absorption was implemented in Cigol.* However, it was shown independently in Refs. 31) and 54) that there is a unique most-specific solution for \('V'\) inductive inference rules. That is

\[
C' \downarrow = (D \cup \theta D)
\]

where \(\theta\) is such that \(C\theta \subseteq D\). Rather than inverting the equations of resolution we might consider resolution from the model-theoretic point of view. That is

\[
C \land C' \models D.
\]

(3)

Applying the deduction theorem gives a deductive solution for absorption.

\[
C \land \overline{D} \models \overline{C'}
\]

This is a special case of \textit{inverting entailment} (Section 7). Sine \(D\) and \(C'\) are clauses, \(\overline{D}\) and \(\overline{C'}\) are conjunctions of ground skolemised literals. The most specific solution for \(C'\) corresponds to the most general solution for \(\overline{C'}\), i.e. when \(\overline{C'}\) contains the maximum set of literals derivable from \(C \land \overline{D}\). However, this solution is neither restricted to single-depth resolutions, nor is the clause cardinality finitely bounded.

Example 6 Recursive list membership

Let \(C = \text{member}(X, [X | Y])\) and \(D = \text{member}(2, [1, 2, 3])\).

\[
C \land \overline{D} \models \text{member}(2, [1, 2, 3])
\]

\[
\models \text{member}(1, [1, 2, 3])
\]

\[
\models \text{member}(2, [2, 3])
\]

\[
\models \text{member}(3, [3])
\]

\[
\models \ldots
\]

Though the clause \(C' = \text{member}(2, [1, 2, 3]) \leftarrow \text{member}(1, [1, 2, 3])\), ...

* logic backwards.
maintains Relationship (3), there are at least 3 derivation steps to D. C' is $	heta$-subsumed by all single-step resolution solutions. C' also contains the infinite sequence of atoms \text{member}(3, [3, 3]), \text{member}(3, [3, 3, 3]),

Owing to the weak completeness results for the 	extit{Duce} inductive inference rules (Section 3.2) only absorption and intra-construction were implemented in Cigol.

4.1 Compression

Like 	extit{Duce}, Cigol used Occam compression (Definition 4) to guide the choice of inverse resolution steps. The encoding measure was the total number of predicate and function symbol occurrences in a logic program. Like 	extit{Duce}, each such inverse resolution step was only allowed if it produced a positive compression value. This lead to two difficulties.

1. \textbf{Local generalisation} Consider the recursive multiplication clause

\[
\text{mult}(A, B, C) \leftarrow \text{dec}(A, D), \text{mult}(D, B, E), \text{plus}(E, B, C).
\]

When given a large set of ground instances of valid multiplications, compression is only achievable after a series of inverse resolution steps, in which all steps except the last do not produce compression.

2. \textbf{Learning from positive examples} In Ref. 30 it was noted that the compression measure used in Cigol did not allow learning from only positive data since the simplest possible hypothesis, say $\forall X.p(X)$, will always be consistent. Alternative compression measures were suggested in Refs. 30, 44), 5) and 9). These measures are closely allied to Rissanen's Minimal Description Length (MDL) Principle.55,24

The first problem was addressed by considering the inversion of multiple resolution steps by \textit{saturating} clauses.55,54,32,13 Clause saturation is closely related to the techniques of inverse entailment described in Section 7. However, since saturation is based on inverting resolution proof steps, it cannot deal with built-in predicates. Nevertheless, the interpretations of such predicates can be computed by calling C functions. The Progol system (Sections 8 to 11) uses mode declarations to access such interpretations.

4.2 Learning from Positive Data

The second problem is of a different nature. When learning from only positive data, predictive accuracy will be maximised by choosing the most general consistent hypothesis since this will always agree with new data. However, in applications such as grammar learning,25,50 only positive data is available. However, the grammar which produces all strings is not an acceptable hypothesis. Let us then suppose a modification to the U-learning setting given in Appendix B. The teacher still draws instances randomly from distribution G
but only gives them to the learner if they are positive examples of the target \(T \).
In this setting we would need to find a tradeoff between the generality and complexity of an hypothesis. First let us define a measure of the generality of an hypothesis.

Definition 7 Generality measure
Let \(H \) be a wff and \(G \) be a probability distribution over a (possibly infinite) set of wffs \(X \). The generality \(g \) of \(H \) is defined as

\[
g(H) = \sum_{x \in X : H \models x} G(x).
\]

Since \(G \) is a probability distribution it follows for every \(H \in \mathcal{H} \) that \(0 \leq g(H) \leq 1 \). \(g(H) \) is the probability that an instance drawn randomly from \(G \) will be entailed by \(H \). Note therefore that \(g(\emptyset) = 1 \), \(g(\Box) = 0 \) and \(T_1 \models T_2 \) implies \(g(T_1) \geq g(T_2) \). Clearly for infinite instance spaces \(g(H) \) cannot be calculated exactly. However, according to the Central Limit Theorem, given a sufficiently large random sample \(S \) from \(G \), the proportion of \(S \) entailed by \(H \) is an arbitrarily good estimate of \(g(H) \). Now consider the following probability distribution.

\[
f_m(H) = m \cdot 2^{-|H|} (1 - g(H))^m
\]

\(m \) is the number of examples so far and \(c \) is a normalising constant to ensure that for \(H \in \mathcal{H} \) the function \(f_m \) sums to \(1 \). \(f_m \) trades off the complexity of an hypothesis against its generality. Note that since \(f_m \) varies with \(m \), it cannot be viewed as a prior distribution over hypotheses. As with MDL \(f_m \) increases the discrimination against over-generality with increasing numbers of examples.

When used to choose between hypotheses given positive-only data \(f_m \) has the following convergence property.

Theorem 8 Finite elimination of false conjectures with positive-only data
Let \(T \) be an element of the set of wffs \(\mathcal{H} \) and let \(G \) be a probability distribution over the set of wffs \(X \) such that \(x \in X \) has non-zero probability in \(G \) if and only if \(T \models x \). Let \(T' \) be the minimal complexity expression of \(T \) in \(\mathcal{H} \). Let \(\langle x_1, x_2, \ldots \rangle \) be an infinite series of wffs drawn randomly according to \(G \). Let \(f_i(H) \) have value \(2^{-|H|} (1 - g(H))^i \) for all those \(H \) in \(\mathcal{H} \) which entail each \(x_i \), \(1 \leq j \leq i \), and have value \(0 \) otherwise. Let \(H \) be any element of \(\mathcal{H} \) such that \(H \) does not entail the same subset of \(X \) as \(T \). Then there exists a finite natural number \(k \) such that \(f_k(H) < f_k(T') \).

Proof
Suppose there is an \(H \) for which there is no such \(k \). It cannot be the case for \(H \) that \(g(H) > g(T') \) and \(|H| > |T'| \) since otherwise for all \(i, i \geq 0, f_i(H) < f_i(T') \). Therefore suppose \(g(H) > g(T') \) and \(|H| \leq |T'| \). But then since \((1 - g(H))^i \) decreases monotonically with \(i \) there must exists \(k \) such that for all \(j \geq k \) it is the case that \(f_k(H) < f_k(T') \). Therefore it must be that \(|H| > |T'| \) and
\(g(H) < g(T')\). But then there exists \(k\) and \(x_k\) such that \(T' \models x_k\) and \(H \not\models x_k\) and therefore \(f_k(H) = 0 < f_k(T')\). This contradicts the assumption and completes the proof. \(\square\)

\(f_n\) provides the basis for a simplified version of the compression models defined in Refs. 30 and 44.

Definition 9 Positive-only compression

Let \(H\) be a wff and \(G\) be a distribution over instance space \(X\). Let \(E \subseteq X\) be a set of \(m\) examples of \(H\). Let \(|H|\) and \(|E|\) be the number of bits required to encode \(H\) and \(E\). The positive-only compression of \(E\) to \(H\) is

\[
p\text{comp}(H, E) = \log_2 \frac{f_n(H)}{f_n(E)} = |E| - |H| - m(\log_2(1 - g(E))) - \log_2(1 - g(H))) \\ \approx |E| - |H| + m \log_2(1 - g(H)).
\]

The approximation in the last line applies for small \(m\), in which case \(g(E)\) is close to 0.

\[\text{S. Muggleton}\]

\[\text{254}\]

\[\text{§5 Relative Least General Generalisations}\]

One commonly advocated approach to learning from positive data is that of taking relative least general generalisations (rlggs) of clauses (see Appendix C). Suppose, as in the last section, that the teacher chooses target \(T\) and presents to the learner examples \(E = \{x_1, x_2, \ldots, x_m\}\). Given background knowledge \(B\), \(H = \text{rlgg}_B(E)\) will be the hypothesis within the relative subsumption lattice with the fewest possible errors of commission (instances \(x \in X\) for which \(H \models x\) and \(T \not\models x\)). This approach to learning from positive data has the following problems.

1. **Arbitrary background knowledge** Plotkin\(^{47}\) showed that with unrestricted definite clause background knowledge \(B\) there may not be any finite \(\text{rlgg}_B(E)\).

2. **Extensiónal background knowledge** Suppose \(B\) and \(E\) consist of \(n\) and \(m\) ground unit clauses respectively. In the worst case the number of literals in \(\text{rlgg}_B(E)\) will be \((n + 1)^m\), making the construction intractable for large \(m\).

3. **Multiple clause hypothesis** Target concepts with multiple clauses cannot be learned since \(\text{rlgg}_B(E)\) is a single clause.

In contrast, none of these problems occur if \(H\) is chosen from the set of all

\(^*\) At first sight, this theorem appears to clash with the fundamental result of Gold\(^{49}\) that not even the regular languages can be identified in the limit from positive data alone. However, it cannot be guaranteed after any finite number of examples that all \(H\) which are not over-general have lower values of \(f_n\) than \(T\).
definite clause theories \mathcal{H} using maximum positive-only compression (Definition 9). Suppose $E \subseteq \mathcal{H}$ and H is the hypothesis with maximum positive-only compression. As with $\text{rlggs}(E)$, H will be maximally specific among clauses of the same complexity. Also H will always have complexity of at most that of E. Lastly H can be a multiple clause hypothesis.

5.1 Golem

Golem was designed to overcome the search problems of Cigol (Section 4.1). The unique construction of rlggs contrasts with the highly non-deterministic choices involved in inverting a resolution step.

Golem used extensional background knowledge to avoid the problem of non-finite rlggs. Extensional background knowledge B can be generated from intensional background knowledge B' by generating all ground unit clauses derivable from B' in at most h resolution steps. The parameter h is provided by the user. The rlggs constructed by Golem were forced to have only a tractable number of literals by requiring that \mathcal{H} contain definite clause theories that were ij-determinate. The idea behind ij-determinacy is as follows. Let C be a definite clause of the form

$$\forall \vec{x}.h \leftarrow b_1, b_2, ..., b_n$$

where \vec{x} is the vector of all variables within C. Suppose that \vec{Y} are the variables in the head of C and \vec{Z} are the variables found only in the body of C. C can equivalently be written

$$\forall \vec{Y}.h \leftarrow (\exists \vec{Z} b_1, b_2, ..., b_n).$$

Determinacy is a constraint which restricts the quantification on variables \vec{Z} in the body of definite clauses to Hillbert ϵ^* (exists exactly one) quantification. This is equivalent to requiring that predicates in the background knowledge must represent functions. Thus for every example e and hypothesised clause C there must exist at most one valid substitution for the variables \vec{Z} in the body of C. j-determinate clauses are constrained to having at most j variables in any literal. ij-determinate clauses are further restricted that each variable has depth at most depth i. For variable v the depth $d(v)$ is defined recursively as follows.

Definition 10 Depth of variables

$$d(v) = \begin{cases} 0 & \text{if } v \text{ is in the head of } C \\ (\min_{u \in U_v} d(u)) + 1 & \text{otherwise} \end{cases}$$

where U_v are the variables in atoms in the body of C containing v.

Multiple clause theories could be learned by Golem due to the use of negative examples. Each clause was built from the rlgg of a set of positive examples. Negative examples were used to stop rlggs becoming over-general.
5.2 Application Experience

Golem was the first ILP system to be applied to a wide variety of real-world applications. These included the construction of a satellite fault diagnosis model,\(^8\) the design of a qualitative physics model,\(^2\) finite-element mesh design,\(^9\) protein secondary structure prediction\(^3\) and structure-activity prediction for drugs.\(^4\) In the qualitative physics domain Golem was hampered in requiring a large tabulation of the QSIM simulator. The determinacy restriction was inappropriate in the finite element mesh design application. The restrictions of Golem and other ILP algorithms are discussed in Ref. 35).

Golem was also applied to various list and number-theoretic learning tasks involving the construction of recursive theories. Learning recursive theories was awkward using Golem partly because intensional hypothesised base cases could not be used to augment the entirely extensional background knowledge. Also Golem's search was through the subsumption lattice, rather than the lattice of implication between clauses.

§6 Implication between Clauses

In Ref. 47) Plotkin noted that if clause C \(\theta\)-subsumes clause D (or \(C \leq D\)) then \(C \rightarrow D\). However, he also notes that \(C \rightarrow D\) does not imply \(C \leq D\) as shown by the following example.

Example 11 Implication and subsumption

Consider the following clauses.

\[
C = \text{nat}(s(X)) \leftarrow \text{nat}(X)
\]

\[
D = \text{nat}(s(s(Y))) \leftarrow \text{nat}(Y)
\]

\(C \rightarrow D\) but not \(C \leq D\).

Although efficient methods are known\(^2\) for enumerating every clause C which \(\theta\)-subsumes an arbitrary clause D, this is not the case for clauses C which imply D. This is known as the problem of inverting implication between clauses. The inability to invert implication between clauses limits the completeness of inverse resolution and riggs since \(\theta\)-subsumption is used in place of clause implication in both.

Gottlob\(^11\) proves a number of properties concerning implication between clauses. The following lemma is notable.

Lemma 12 Gottlob's lemma

Let \(C^{+}, C^{-}\) be the sets of positive and negative literals of clauses C and \(D^{+}, D^{-}\) be the same for D. \(C \rightarrow D\) implies that \(C^{+} \leq D^{+}\) and \(C^{-} \leq D^{-}\).

In an attempt to solve the inverting implication problem Lapointe and Matwin\(^2\) introduced sub-unification, a process of matching sub-terms in D to produce C. They demonstrate that sub-unification is able to construct recursive clauses from fewer examples than would be required by ILP systems such as
Inverse Entailment and Progol

Golem38 and FOIL49 Although the operations described by Lapointe and Matwin are shown to work on a number of examples it is not clear how general the mechanism is. Various general properties of implication between clauses are investigated in Ref. 33). In particular it is shown that Lee's subsumption lemma23 has the following corollary.

Corollary 13 Implication and recursion
Let \(C, D \) be clauses. \(C \rightarrow D \) if and only if either \(D \) is a tautology or \(C < D \) or there is a clause \(E \) such that \(E < D \) where \(E \) is constructed by repeatedly self-resolving \(C \).

In Ref. 33) Lee's subsumption lemma23 is used to show that \(C \rightarrow D \) if and only if one of the following conditions holds.

1. \(D \) is a tautology.
2. \(C \leq D \).
3. There is a clause \(E \) such that \(E \leq D \) where \(E \) is constructed by repeatedly self-resolving \(C \).

Thus the difference between \(\theta \)-subsumption and implication between \(C \) and \(D \) is only pertinent when, as in Example 11, \(C \) can self-resolve. Attempts were made to a) extend inverse resolution38 and b) use a mixture of inverse resolution and \(\text{lgg} \)14 to solve the problem. The extended inverse resolution method in Ref. 33 suffers from the same problems of non-determinacy as Cigol. Idestam-Almquist's14 use of \(\text{lgg} \) suffers from the standard problem of intractably large clauses (see Section 5). Both approaches are incomplete for inverting implication, though Idestam-Almquist's technique is complete for a restricted form of entailment called \(T \)-implication.

In Ref. 40 it is shown that for certain recursive clauses \(D \) all the clauses \(C \) which imply \(D \) also \(\theta \)-subsume a logically equivalent clause \(D' \). Up to renaming of variables every clause \(D \) has at most one most specific form of \(D' \) in the \(\theta \)-subsumption lattice. \(D' \) is called the self-saturation of \(D \). The self-saturation of \(D \) in Example 11 is simply \(C \cup D \). However, it is shown in Ref. 40) that there exist definite clauses which have no finite self-saturation.

6.1 Inverting Entailment between Clauses

This section gives a complete and efficient method for inverting implication between function-free definite clauses. The techniques used are based on inverting entailment using the deduction theorem. First we define definite sub-saturants.

Definition 14 Definite sub-saturants
Let \(D = h \leftarrow b_1, ..., b_n \) be a definite clause. Let \(\mathcal{B}(\bar{D}) \) be the Herbrand base of \(\bar{D} \) restricted to the predicate symbol of \(h \) and let \(\mathcal{M}(\bar{D}) \) be the minimal Herbrand model of \(\bar{D} \). Let \(\text{desk}(a) \) be the atom \(a \) with skolem constants in \(\bar{D} \) replaced by their corresponding variables in \(D \). Let \(\mathcal{A}(D) = \mathcal{B}(\bar{D}) - \mathcal{M}(\bar{D}) \). The sub-
saturants of D, $S(D)$ are the set of all definite clauses $\text{desk}(a) \leftarrow b_1, \ldots, b_n$ for which $a \in \mathcal{A}(D)$.

Although arbitrary definite clauses can have an infinite sub-saturant set, this is not so for function-free definite clauses. It is now shown for function-free clauses that if k is a bound on the arity of predicates then the cardinality of the sub-saturant set is polynomially bounded in the number of variables in D.

**Remark 15 **Cardinality of sub-saturant set

Let D be a function-free definite clause, k be the arity of the predicate symbol in the head of D, n be the number of variables in D and $S(D)$ be the sub-saturants of D. The cardinality of $S(D)$ is at most n^k.

Proof

The arguments of the heads of clauses in $S(D)$ are simply the k-length permutations of variables in D. There are n^k such permutations. \quad \Box

We now present the main theorem concerning sub-saturants.

Theorem 16

Let C and D be definite non-tautological clauses and $S(D)$ be the sub-saturants of D. $C \vdash D$ only if there exists C' in $S(D)$ such that $C \leq C'$.

Proof

Suppose $C \vdash D$ and there does not exist C' in $S(D)$ such that $C \leq C'$. According to Lemma 12 the heads of C and D have the same predicate symbol. Since $C \vdash D$ it follows that $C \land \overline{D}$ is not satisfiable. According to Herbrand's theorem this is the case if and only if $C \land \overline{D}$ has no Herbrand model. According to Lemma 12 the body of $C \theta$-subsumes the body of D and therefore there exists a ground (skolemised) substitution θ for which all elements in the body of C are true in the least model of \overline{D}. Therefore with substitution θ the head of C must be false in the least Herbrand model of \overline{D} since otherwise $C \land \overline{D}$ has a Herbrand model. But according to the construction in Definition 14 for every such C with the same predicate symbol as D there is a C' in $S(D)$ such that $C \leq C'$. This contradicts the assumption and completes the proof. \quad \Box

This theorem can be used to efficiently enumerate all function-free definite clauses C such that $C \vdash D$. First the finite set of self-saturants $S(D)$ is constructed. Then the clauses which θ-subsume any clause in $S(D)$ are enumerated using an efficient interleaved enumeration of the subsumption lattice. Since function-free first-order predicate calculus is decidable the clauses C for which $C \vdash D$ can be enumerated by testing $C \vdash D$.

Example 17 Factorial

$x! = (x - 2)! (x - 1) x$ is an overly specific recurrence formula for the factorial function. This formula can be represented by the clause
Inverse Entailment and Progol

\[D = f(I, J) \leftarrow d(I, K), \quad d(K, L), \quad f(L, M), \quad m(K, M, N), \quad m(I, N, J) \]

where the predicate symbols are \(f = \text{factorial}, \ d = \text{decrement}, \ m = \text{multiply} \). Since there are 14 variables in \(D \) it follows from Remark 15 that the cardinality of \(S(D) \) is at most \(14^2 = 196 \). \(S(D) \) contains the clause

\[C' = f(K, N) \leftarrow d(I, K), \quad d(K, L), \quad f(L, M), \quad m(K, M, N), \quad m(I, N, J). \]

The following clause \(C \) which implies \(D \) (but does not \(\theta \)-subsume \(D \)) corresponds to the most general recurrence for factorial, \(x! = (x - 1)!x \).

\[C = f(K, N) \leftarrow d(K, L), \quad f(L, M), \quad m(K, M, N). \]

The following example demonstrates how clauses with function symbols, such as those in Example 11, can be dealt with as though they were function-free by using flattening.

Example 18 Flattening and inverse implication

The clause \(D = \text{nat}(s(s(s(X)))) \leftarrow \text{nat}(X) \) can be flattened to the function-free clause \(D' = \text{nat}(V) \leftarrow s(V, W), \ s(W, X), \ \text{nat}(X) \) where \(s \) is defined as \(s(X, s(X)) \). There are 2 sub-saturants of \(D' \), which are \(D' \) itself and \(C'' = \text{nat}(W) \leftarrow s(V, W), \ s(W, X), \ \text{nat}(X) \) which is \(\theta \)-subsumed by \(C' = \text{nat}(W) \leftarrow s(W, X), \ \text{nat}(X) \). \(C' \) can be unflattened to the following clause which implies but does not \(\theta \)-subsume \(D \).

\[C = \text{nat}(s(s(X))) \leftarrow \text{nat}(X) \]

§7 Inverting Entailment

Inverse resolution and other subsumption oriented approaches to induction have been re-assessed in previous sections of this paper. It has been demonstrated that a great deal of clarity and simplicity can be achieved by approaching the problem from the direction of model-theory rather than resolution proof-theory. In Duce an inductive inference rule \(X/Y \) is sound in the deductive sense if viewed as stating the relationship \(X \models Y \). In Cigol all solutions for absorption are found by simply rewriting the inductive specification \(C \land C' \models D \) by the equivalent deduction oriented relationship \(C \land \bar{D} \models \bar{C'} \). Lastly, it has been shown in this paper that a solution to Plotkin's 25 year old problem of generalising \(\theta \)-subsumption can be achieved with relative ease by simply viewing solutions for \(C \) in \(C \models D \) (given \(D \)) as clauses which eliminate Herbrand models of \(C \land \bar{D} \).

Let us now consider the general problem specification of ILP (Section 2) in this light. That is, given background knowledge \(B \) and examples \(E \) find the simplest consistent hypothesis \(H \) (where simplicity is measured relative to a prior distribution) such that
It was demonstrated in Example 1 that in general B, H and E could be arbitrary logic programs. Each clause in the simplest H should explain at least one example, since otherwise there is a simpler H' which will do. Consider then the case of H and E each being single Horn clauses. This can now be seen as a generalised form of absorption (Relation (3) in Section 4) and rearranged similarly to give

$$B \land H \models E.$$ \hspace{1cm} (4)

Since H and E are each single clauses, \overline{H} and \overline{E} will be logic programs consisting only of ground skolemised unit clauses. Let \overline{I} be the (potentially infinite) conjunction of ground literals which are true in all models of $B \land \overline{E}$. Since \overline{H} must be true in every model of $B \land \overline{E}$ it must contain a subset of the ground literals in \overline{I}. Therefore

$$B \land \overline{E} \models \overline{I} \models \overline{H}$$

and so for all H

$$H \models \bot.$$

A subset of the solutions for H can be found by considering the clauses which θ-subsume \bot. The complete set of candidates for H can be found by considering all clauses which θ-subsume sub-saturants of \bot (Section 6.1).

Example 19 Various examples of \bot

Figure 2 shows various B, E and \bot. In the first case, the clauses which θ-subsume \bot include all those which could be reached using first-order absorption (Section 4). In the second case the definite clauses which θ-subsume \bot are those which could be reached by a first-order version of Duce's identification operator (Section 3.1). This form of identification is a general form of Kakas et al's abduction\(^{17}\) and is of central interest in "theory revision" (alterations in theory revision range over all definitions within a hierarchical set of predicates which reference each other). The third case demonstrates that constraints (headless Horn clauses) can be learned from negative examples since the clause

\[
\begin{align*}
\text{anim}(X) & \leftarrow \text{pet}(X), \\
\text{pet}(X) & \leftarrow \text{dog}(X), \\
\text{nice}(X) & \leftarrow \text{dog}(X), \\
\text{pet}(X) & \leftarrow \text{dog}(X), \\
\text{anim}(X). \\
\text{hasbeak}(X) & \leftarrow \text{bird}(X), \\
\text{bird}(X) & \leftarrow \text{vulture}(X), \\
\text{hasbeak}(&\text{tweety}), \\
\text{bird}(tweety); \\
\text{vulture}(tweety). \\
\text{white}(\text{swan1}) & \leftarrow \text{black}(\text{swan1}), \\
\text{black}(\text{swan1}), \\
\text{white}(\text{swan1}) & \leftarrow \text{black}(\text{swan1}), \\
\text{white}(\text{swan1}).
\end{align*}
\]

\[
\begin{align*}
\text{sentence}(\text{[}, \text{[}), \\
\text{sentence}(\text{[}, \text{[}).
\end{align*}
\]

Fig. 2 The most-specific clause (\bot) for various versions of background knowledge (B) and example (E).
Inverse Entailment and Progol

\[
\text{black}(X), \text{white}(X)
\]

\(\theta\)-subsumes \(\perp\). In the fourth case one of the clauses which \(\theta\)-subsumes a sub-saturant of the flattened \(\perp\) (see Example 17) is the DCG grammar rule

\[
\text{sentence}([a \mid X], Y) \leftarrow \text{sentence}(X, Y).
\]

§8 The Definite Mode Language

In general \(\perp\) can have infinite cardinality. Progol uses mode declarations to constrain the search for clauses which \(\theta\)-subsume \(\perp\) (see last section).

Definition 20 Mode declaration

A mode declaration has either the form \(\text{modeh}(n, \text{atom})\) or \(\text{modeb}(n, \text{atom})\) where \(n\), the recall, is either an integer, \(n > 1\), or \('*\) and \(\text{atom}\) is a ground atom. Terms in the atom are either normal or place-marker. A normal term is either a constant or a function symbol followed by a bracketed tuple of terms. A place-marker is either \(+\text{type}\), \(-\text{type}\) or \('#\text{type}\), where \(\text{type}\) is a constant. If \(m\) is a mode declaration then \(a(m)\) denotes the atom of \(m\) with place-markers replaced by distinct variables. The sign of \(m\) is positive if \(m\) is a \(\text{modeh}\) and negative if \(m\) is a \(\text{modeb}\) in \(M\).

For instance the following are mode declarations.

\[
\text{modeh}(1, \text{plus}(+\text{int}, +\text{int}, -\text{int})) \quad \text{modeb}(?, \text{append}(-\text{list}, +\text{list}, +\text{list}))
\]

\[
\text{modeb}(1, \text{append}(+\text{list}, [+\text{any}], -\text{list})) \quad \text{modeb}(4,(+\text{int} > #\text{int}))
\]

The recall is used to bound the number of alternative solutions for instantiating the atom. For simplicity, we assume in the following the recall \('*\)', meaning all solutions. The following defines when a clause is within Progol's definite mode language \(\mathcal{L}\).

Definition 21 Definite mode language

Let \(C\) be a definite clause with a defined total ordering over the literals and \(M\) be a set of mode declarations. \(C = h \leftarrow b_1, ..., b_n\) is in the definite mode language \(\mathcal{L}(M)\) if and only if 1) \(h\) is the atom of a \(\text{modeh}\) declaration in \(M\) with every place-marker \(+\text{type}\) and \(-\text{type}\) replaced by variables and every place-marker \('#\text{type}\) replaced by a ground term and 2) every atom \(b_i\) in the body of \(C\) is the atom of a \(\text{modeb}\) declaration in \(M\) with every place-marker \(+\text{type}\) and \(-\text{type}\) replaced by variables and every place-marker \('#\text{type}\) replaced by a ground term and 3) every variable of \(+\text{type}\) in any atom \(b_i\) is either of \(+\text{type}\) in \(h\) or of \(-\text{type}\) in some atom \(b_j\), \(1 \leq j < i\).

Like Golem, Progol constructs clauses of bounded depth (see Definition 10 in Section 5.1).
Definition 22 Depth-bounded mode language
Let C be a definite clause with a defined total ordering over the literals and M be a set of mode declarations. C is in $\mathcal{L}_i(M)$ if and only if C is in $\mathcal{L}_i(M)$ and all variables in C have depth at most i according to Definition 10.

Example 23 Factorial revisited
Reconsider Example 17 with M being

- $\text{modeh}(*, f(\text{int}, \text{int}))$
- $\text{moddbh}(*, f(\text{int}, \text{int}))$
- $\text{modebh}(*, f(\text{int}, \text{int}))$
- $\text{modeb}(*, m(\text{int}, \text{int}))$

The clause

\[f(A, B) \leftarrow d(A, C), f(C, D), m(A, D, B) \]

is only in $\mathcal{L}_i(M)$ for $i \geq 2$.

8.1 Most-Specific Clauses in $\mathcal{L}_i(M)$
Progol searches a bounded sub-lattice for each example e relative to background knowledge B and mode declarations M. The sub-lattice has a most general element (\top) which is the empty clause, \square, and a least general element \bot_i which is the most specific element in $\mathcal{L}_i(M)$ such that

\[B \land \bot_i \land \varphi \vdash_{\bot} \square \]

where \vdash_{\bot} denotes derivation of the empty clause in at most h resolutions.

Definition 24 Most-specific clause \bot_i
Let h, i be natural numbers B be a set of Horn clauses, $e = a \leftarrow b_1, \ldots, b_n$ be a definite clause, M be a set of mode declarations containing exactly one mode m such that $a(m) \leq a$ and \bot be the most-specific (potentially infinite) definite clause such that $B \land \bot \land \varphi \vdash_{\bot} \square$. \bot_i is the most-specific clause in $\mathcal{L}_i(M)$ such that $\bot_i \leq \bot$.

Progol constructs \bot_i using Algorithm 40 in Appendix D.1.

Theorem 25 Correctness of Algorithm 40
Let h, i, B, M be defined as in Definition 24. Given h, i, B, e and M Algorithm 40 returns an alphabetic variant of \bot_i.

Proof
By induction on i. Let $i = 0$. In step 3 the head of \bot_0 is within the definite mode language of M (Definition 21) since every $+$ type and $-$ type place-marker is replaced by variables, every $\#$ type place-marker is replaced by ground terms and every variable has depth 0 (Definition 10). By construction the head a_0 of the returned $\bot_0 \theta$-subsumes a since inverting the one-one function hash gives a substitution from the variables in a_0 to the terms in a. This substitution is most specific since every variable is replaced by a unique term. This proves the base
case. Suppose that for all i up to and including k Algorithm 40 correctly constructs a most-specific clause \perp_k such that \perp_k is the most-specific clause in $\mathcal{L}_k(M)$ which θ-subsumes \perp. It is now shown that this implies the same will hold for $k + 1$. Consider step 5 for $k + 1$. The $+\text{type}$ place-markers in the atom of m are replaced by variables of depth at most k which represent terms in InTerms. These terms must either have been placed in InTerms as $+\text{type}$ in the head (step 3) or $-\text{type}$ from step 5 at an earlier value of k. $-\text{type}$ place-markers are replaced by variables of depth at most $k + 1$ and $\#\text{type}$ by ground terms. Therefore \perp_{k+1} is in $\mathcal{L}_{k+1}(M)$. Also by construction a_θ subsumes an atom in the body of \perp with substitution θ_θ, and the substitution is most specific since all variables map to unique terms in \perp. $T(m)$ corresponds to all combinations of $+\text{type}$ substitutions, which makes \perp_{k+1} an alphabetic variant of the maximal-specific clause in $\mathcal{L}_{k+1}(M)$ which θ-subsumes \perp. This proves the step and completes the proof. □

The time-complexity of Algorithm 40 is proportional to the cardinality of \perp_i.

Theorem 26. Cardinality of \perp_i

Let h, i, B, M be defined as in Definition 24 and let $|M|$ denote the cardinality of M. Let the number of $+\text{type}$ and $-\text{type}$ occurrences in each modeb in M be bounded by constants j^- and j^+ respectively. Let the number of $+\text{type}$ and $-\text{type}$ occurrences in each modeb in M be bounded by j^+ and j^- respectively. Let the recall of each m in M be bounded by the constant r. The cardinality of \perp_i is bounded by $(r |M| j^+ j^-)^{10r}$.

Proof

By induction. The clause \perp_0 contains only a head so its cardinality is 1. This proves the base case. Assume true for all i up to and including k and show for $i = k + 1$. The number of terms associated with $+\text{type}$ in the head or $-\text{type}$ in the body of \perp_k is $j^- (r |M| j^+ j^-)^{10r}$. These can be used to replace $j^+ +\text{type}$ place-markers in $|M|$ modeb declarations and the atom can be recalled r times, giving a cardinality of \perp_{k+1} of at most $(r |M| j^+ j^-)^{(k+1)10r}$. This proves the step and completes the proof. □.

By default $i = 3$ in Prolog and typically $j^+ \leq 2$. However, since in most cases relatively few atoms are true in the least Herbrand model of $B \land \bar{e}$ when $|M| < 10$ it is usually the case that \perp_3 has cardinality of less than 100 atoms.

§9 Refinement

9.1 Refinement Operators

When generalising an example e relative to background knowledge B, Prolog constructs \perp_i and searches from general to specific through the sub-lattice of single clause hypotheses H such that $\Box \leq H \leq \perp_i$. This sub-lattice is bounded both above and below. The search is therefore better constrained than
other general to specific searches, such as those in MIS87 and FOIL,90 in which the sub-lattice being searched is not bounded below.

For the purposes of searching a lattice of clauses ordered by θ-subsumption Shapiro97 introduced the concept of refinement operators. Suppose L is a (potentially infinite) set of clauses and C is an element of L. Then the refinement operator ρ is defined such that $\rho(C) \subseteq L$. ρ is said to be sound if and only if for each D in $\rho(C)$ it is the case that $C \leq D$. Also $\rho^\theta(C) = \{C\}$ and $D \subseteq \rho^\theta(C)$ if and only if there exists $D' \in \rho^{\theta^{-1}}(C)$ and $D = D'$ or $D \subseteq \rho(D')$. The closure $\rho^*(C)$ is $\rho(C) \cup \rho((C) \cup \ldots$

According to Ref. 21) ρ is complete if and only if for each D in L there is an alphabetic variant of D in $\rho^*(\bot)$. ρ is finite if and only if for all $C \in L$ the cardinality of $\rho(C)$ is finite. ρ is proper if and only if for each clause C and $D \subseteq \rho(C)$ it is the case that $C < D$. It is shown in Ref. 20) that Shapiro's ρ is not complete. It is also shown that there does not exist ρ which is finite, proper and complete.

Redundancy of refinement operators is investigated in Refs. 12) and 7). The refinement operator ρ is redundant if and only if there exist clauses C, C', D in L such that $D \subseteq \rho(C)$ and $D \subseteq \rho(C')$ and C is not an alphabetic variant of C'. Since both MIS and FOIL employ redundant refinement operators, the same clause D can be reached repeatedly when applying ρ to various C and C'.

\begin{section}{9.2 The Refinement Operator in Progol}

The refinement operator in Progol is designed to avoid redundancy and to maintain the relationship $\bot \leq H \leq \bot$ for each clause H.

Since $H \leq \bot$, it is the case that there exists a substitution θ such that $H\theta \subseteq \bot$. Thus for each literal l in H there exists a literal l' in \bot such that $l\theta = l'$. Clearly there is a uniquely defined subset $\bot(H)$ consisting of all l' in \bot for which there exists l in H and $l\theta = l'$. A non-deterministic approach to choosing an arbitrary subset S' of a set S involves maintaining an index k. For each value of k between 1 and n, the cardinality of S, we decide whether to include the kth element of S in S'. Clearly, the set of all series of n choices corresponds to the set of all subsets of S. Also for each subset of S there is exactly one series of n choices. To avoid redundancy and maintain θ-subsumption of \bot, Progol's refinement operator maintains both k and θ.

\textbf{Definition 27} Progol refinement operator

Let h, i, B, e, M and \bot be defined as in Definition 24 and let n be the cardinality of \bot. Let k be a natural number, $1 \leq k \leq n$. Let C be a clause in $L(M)$ and θ be a substitution such that $C\theta \subseteq \bot$. Below a literal l corresponding to a mode m_i in M is denoted simply as $p(v_1, \ldots, v_n)$ despite the sign of m_i and function symbols in $a(m_i)$. A variable is splittable if it corresponds to a $+$-type or $-$-type in a modeh or if it corresponds to a $-$-type in a modeb. $\langle C', \theta', k' \rangle$ is in $\rho(\langle C, \theta, k \rangle)$ if and only if either
Inverse Entailment and Prolog

(1) \(C' = C \cup \{l\} \), \(k' = k \), \(<l, \theta'>\) is in \(\delta(\theta, k) \) and \(C' \in \mathcal{L}(M) \) or
(2) \(C' = C \), \(k' = k + 1 \), \(\theta' = \theta \) and \(k < n \).

\(<p(v_x, \ldots, v_n), \theta'>\) is in \(\delta(\theta, k) \) if and only if \(\theta' \) is initialised to \(\theta \), \(l_k = p(u_1, \ldots, u_n) \) is the \(k \)th literal of \(\bot \), and for each \(j, 1 \leq j \leq m \),

(1) if \(u_j \) is splittable then \(v_j/u_j \in \theta' \) else \(v_j/u_j \in \theta \) or
(2) if \(u_j \) is splittable then \(v_j \) is a new variable not in \(\text{dom}(\theta) \) and \(\theta' = \theta \cup \{ v_j/u_j \} \).

In Definition 27 the variables in \(\bot \) form a set of equivalences classes over the variables in any clause \(C \) which \(\theta \)-subsumes \(\bot \). Thus we could write the equivalence class of \(u \) in \(\theta \) as \([v]_u \), the set of all variables in \(C \) such that \(v/u \) is in \(\theta \). The second choice in the definition of \(\delta \) adds a new variable to an equivalence class \([v]_u \). This will be referred to as splitting the variable \(u \). Note that in Definition 27 a variable is not splittable if it corresponds to a \(+\)-type in a modeb since the resulting clause would violate the mode declaration language \(\mathcal{L}(M) \)(see Definition 21). The following is an example of variable splitting.

Example 28 Applying \(\rho \) in list reversal

Suppose \(M \) consists of the following mode declarations.

\[
\begin{align*}
\text{modeh}(*, \text{reverse}(+, \text{list}, -\text{list})) \\
\text{modeb}(*, +\text{any} = \#\text{any}) \\
\text{modeb}(*, \text{append}(+, \text{list}, [+\text{int}, -\text{list}]) \\
\text{modeb}(*, \text{list} = [-\text{int}/-\text{list}]) \\
\text{modeb}(*, \text{reverse}(+, \text{list}, -\text{list}))
\end{align*}
\]

The types and other background knowledge are defined as follows.

\[
B = \begin{cases}
\text{any(Term)} \leftarrow \\
\text{list([])} \leftarrow \\
\text{list([H | T])} \leftarrow \text{list(T)} \\
\text{Term} = \text{Term} \leftarrow \\
\text{reverse([], [])} \leftarrow \\
\text{append([], X, X)} \leftarrow \\
\text{append([H | T], L1, [H | L2])} \leftarrow \text{append(T, L1, L2)}
\end{cases}
\]

Let \(h = 30 \) and \(i = 3 \) and let the example \(e \) be as below.

\[
e = \text{reverse([1], [1])} \leftarrow
\]

In this case \(\bot \) is as follows.

\[\bot = \text{reverse(A, A)} \leftarrow A = [1], A = [B | C], B = 1, C = [], \text{reverse}(C, C), \text{append}(C, [B], A)\]

Let \(<C', \theta', k'>\) be in \(\rho(\langle [], \theta, 1 \rangle) \). Then \(<C', \theta', k'>\) are shown in the first table in Fig. 3. Suppose that \(C = (\text{reverse}(D, E) \leftarrow D = [F | G]), \theta = \{D/A, E/A, \)

Given clause example

Let Progol's

The then
cardinality

Suppose

Proof

\[k > \]

Let

Shapiro's

Incompleteness

Example

Incompleteness of search

Let \(B \) contain definitions for decrementation (dec), addition (plus) and the clause \(\text{mult}(0, X, 0) \leftarrow \) with appropriate mode declarations \(M \) and let the example \(e \) be the clause \(\text{mult}(1, 1, 1) \leftarrow \). Then \(\bot \) is the clause

\[
\begin{align*}
\text{mult}(A, A, A) & \leftarrow \text{dec}(A, B), \text{plus}(A, B, A), \text{plus}(B, B, B), \\
\text{mult}(A, B, B), \text{mult}(B, B, B).
\end{align*}
\]

Given this ordering over \(\bot \), there will be no element of Progol's \(\rho^* \) containing the clause

\[
\text{mult}(U, V, W) \leftarrow \text{dec}(U, X), \text{mult}(X, V, Y), \text{plus}(Y, V, W).
\]
9.3 Complexity of \(\rho \)

In order to analyse the complexity of \(\rho \) we introduce an incremental variant of the Bell number from combinatorics. The \(m \)th Bell number is the number of ways that a set \(S \) of cardinality \(m \) can be partitioned into non-empty equivalence classes.

Lemma 31 Number of splits of a variable

Suppose that \(\delta \) in Definition 27 has arguments \(\theta, k \) and that the \(k \)th literal of \(\bot \) has \(m \) splittable occurrences of only one variable \(u \). Suppose also that the cardinality of \([v]_u \) in \(\theta \) is \(n \). The number of variants of \(\theta' \) is given by the function \(s \) as follows.

\[
s(n, m) = \begin{cases}
1 & \text{if } m = 0 \\
(s(n, m-1)n + s(n+1, m-1)) & \text{if } m > 0
\end{cases}
\]

Proof

If \(m = 0 \) there is only one substitution, \(\theta' = \theta \). If \(m > 0 \) consider the first occurrence of \(u \) in \(l_k \). In \(\delta \) the choice can be not split \(u \) (case 1) or to split \(u \) (case 2). In case 1, the set of \(\theta' \) variants is \(\{ \theta \} \) crossed with the set of \(n \) choices for \(n/u \) crossed with the set of \(s(n, m-1) \) variants for the remaining \(m - 1 \) occurrences of \(u \) in \(l_k \). In case 2, if the new variable is \(v \) then the set of \(\theta' \) variants is \(\{ \theta \} \) crossed with \(\{v/u\} \) crossed with the set of \(s(n+1, m-1) \) variants for the remaining \(m - 1 \) occurrences of \(u \) in \(l_k \). This gives a total of \(s(n, m-1) n + s(n+1, m-1) \) variants of \(\theta' \).

A partial tabulation of the function \(s \) is shown in Fig. 4*

![Table](https://example.com/table.png)

Fig. 4 A partial tabulation of the function \(s \).

Remark 32 Bounds on \(s \)

Let \(n, m \) be natural numbers. \(n^m \leq s(n, m) \leq (n + m)^n \).

Proof

For \(m = 0 \), \(n^0 = s(n, 0) = (n + 0)^0 = 1 \). Consider \(s \) in terms of the recurrence \(n^m = n^{m-1} n \). For all \(n \geq 0 \) and \(m > 0 \) it is the case that \(s(n, m-1)n < s(n, m) < s(n+m, m-1)n + s(n+m, m-1) \).

* The Bell function can be expressed simply as \(B(m) = s(0, m) \).
Example 33
Suppose in Definition 27 that \(C = p(V) \leftarrow \theta \) and \(\theta = \{ V/U \} \) and \(l_0 = q(U, U, U) \) where the last two occurrences of \(U \) in \(l_0 \) are type-1. Then in Lemma 31 this gives \(m = 2, n = 1 \), and \(\sigma(n, m) = 5 \). The 5 variants of \(l_0 \theta' \) are \(\{ q(V, V, V), q(V, V, W), q(V, W, V), q(V, W, W), \) and \(q(V, W, Z) \} \).

We are now in a position to give a function for the cardinality of \(\rho \).

Theorem 34 The cardinality of \(\rho \)

Let \(C, \theta, k \), and \(l_0 \) be as in Definition 27. Suppose that \(l_0 \) contains \(p \) splittable variables and \(q \) non-splittable variables. Let \(m_x, 1 \leq x \leq p \), and \(m_y, 1 \leq y \leq q \), denote respectively the number of occurrences of \(v_x \) and \(v_y \) in the splittable and non-splittable variables of \(l_0 \). Let \(n_x, 1 \leq x \leq p \), and \(n_y, 1 \leq y \leq q \), denote respectively the number of \(u_x \) and \(u_y \) such that \(u_x/v_x \) and \(u_y/v_y \) are in \(\theta \). Then the cardinality of \(\rho(C, \theta, k) \) is

\[
| \rho(C, \theta, k) | = (\prod_{x=1}^{p} n_x^{m_x})(\prod_{y=1}^{q} s(n_y, m_y)) + 1.
\]

Proof

In Definition 27, \(\rho \) chooses between 2 cases. Since the second choice produces a unique solution, the cardinality of \(\rho \) is one greater than the cardinality of the associated function \(\delta \). Only the first case of \(\delta \) is applicable to non-splittable variables. Thus for each of the \(m_x \) occurrences of \(v_x \) in \(l_0 \) there are \(n_x \) choices of \(u_x/v_x \), giving \(n_x^m \) variants. The set of all substitutions \(\theta' \) for \(l_0 \) is \(\{ \theta \} \) crossed with the set of variants for each \(v_x, 1 \leq x \leq p \) crossed with the set of variants for each \(v_y, 1 \leq y \leq q \). This gives a total of \((\prod_{x=1}^{p} n_x^{m_x})(\prod_{y=1}^{q} s(n_y, m_y)) \) different substitutions \(\theta' \) for the function \(\delta \) and the same value plus 1 for the cardinality of \(\rho \). \(\Box \)

From Remark 32 it can be seen that \(| \rho(C, \theta, k) | \) is exponential in \(p, q, m_x \) and \(m_y \). This reiterates the requirement indicated by Theorem 26 that for the sake of polynomial tractability \(p, m_x \) and \(q, m_y \) should be bounded respectively by constants \(f^+ \) and \(f^- \).

In the implementation of \(\rho \) Prolog simply decodes each of the natural numbers between 1 and \(| \rho(C, \theta, k) | \) into clauses and updates \(\theta \) and \(k \) appropriately. The details of this decoding process are omitted.

§10 Searching the Subsumption Lattice

To search the subsumption lattice Prolog applies an \(A^* \)-like algorithm\(^{45} \) to find a clause \(C, \Box \leq C \leq \bot_c \), with maximal Occam compression (Definition 4). The encoding measure is the total number of atom occurrences in a reduced logic program. Logic programs are reduced by eliminating redundant clauses.

Definition 35 Redundant clauses

Let \(C \) be a clause and \(T \) be a set of clauses. \(C \) is redundant in \(T \cup C \) if and only if \(T \vdash C \).
Definition 36 Reduced set of clauses
Let \(T \) be a set of clauses. \(T \) is reduced iff \(T \) contains no redundant clauses.

Prolog's algorithm for finding \(C \) with maximal Occam compression is Algorithm 42 in Appendix D.2. The algorithm searches through the state space defined by elements of \(\rho^*(\langle \Box, \emptyset, 1 \rangle) \). A lookahead function \(h_s \) is used to increase efficiency when searching for 'variable-chaining' clauses. A clause is variable-chaining if and only if it contains a chain of variables \(v_1, \ldots, v_n \) such that \(v_i, v_n \) are \(+\)-type and \(-\)-type respectively in the head of \(C \) and each \(v_i, v_{i+1} \) are \(+\)-type and \(-\)-type respectively in an atom in the body of \(C \). The recursive clause for reversing lists

\[
\text{reverse}(A, B) \leftarrow A = [C \mid D], \text{reverse}(C, E), \text{append}(E, [A], B) \tag{5}
\]

(see Example 28) is variable-chaining. A clause \(C \) is called I/O complete if and only if each \(-\)-type variable in the head of \(C \) is found in the body of \(C \). Clause (5) is I/O complete given the mode declarations in Example 28.

Lemma 37 Function \(h_s \) defines I/O complete lookahead
Let \(\bot_i \) and \(s = \langle C, \theta, k \rangle \) be as in Definition 41 Appendix D.2. For every I/O complete \(C' \) such that \(s' = \langle C', \theta', k' \rangle \in \rho^*(\langle C, \theta, k \rangle) \) it is the case that \(|C'| - |C| \geq h_s \).

Proof
By mathematical on induction on \(h_s \). Suppose \(v \) is in the body of \(C \), then \(h_s = 0 \) and the lemma holds in the base case. Suppose, by mathematical induction, that for all I/O complete \(C' \) and for all \(s_d = \langle C_d, \theta_d, k_d \rangle \) for which \(h_{sd} = d \) it is the case that \(|C'| - |C_d| \geq h_{sd} \) and suppose that there exists such \(s_d \in \rho(s) \). According to Definition 27 either \(C_d = C \) and \(\theta_d = \theta \) in which case for all I/O complete \(C' \) it is the case that \(|C'| - |C| \geq h_s = d \) or else \(C_d = C \cup \{l\} \) and \(|C'| - |C| \geq (h_{sd} + 1) \geq h_s \). This proves the step and completes the proof. \(\Box \)

10.1 Correctness and Time Complexity
Note that in order to ensure polynomial tractability of Algorithm 42, the user is required to provide a bound \(c \) on the cardinality of the clause body.

Theorem 38 Correctness of Algorithm 42
Let \(E, h, i, B, e, M, \bot_i, c \) be as in Definition 41. Let \(S = \rho^*(\langle \Box, \emptyset, 1 \rangle) \) and \(S_C \) be the set of all elements \(s \) of \(S \) such that \(c_s \leq c \). If \(s = \langle C, \theta, k \rangle \) then \(C(s) = C \). We say that clause \(C \) explains example \(e \) if and only if \(B \land C \land \Box \vdash_h \Box \) and \(B \land C \land E \vdash_h \Box \). if \(S_C \) does not contain any \(s \) such that \(C(s) \) explains \(e \) and \(f_s > 0 \) then Algorithm 42 returns 'no compression'. Otherwise Algorithm 42 returns \(s \in S_C \) such that \(C(s) \) explains \(e \) and there does not exist \(s' \in S_C \) for which \(C(s') \) explains \(e \) and \(f_{s'} > f_s \).
Proof
By contradiction. Assume the theorem is false. Then either (a) the algorithm does not terminate or (b) there exists \(s \in S_c \) such that \(C(s) \) explains \(e, f_\delta > 0 \) and ‘no compression’ is returned or (c) \(s \) is returned and either \(C(s) \) does not explain \(e \) or \(f_\delta \leq 0 \) or (d) \(s \) is returned and \(C(s) \) explains \(e \) and \(f_\delta > 0 \) but there exists \(s' \in S_c \) for which \(C(s') \) explains \(e \) and \(f_{s'} > f_\delta \).

First consider (a). Since \(\rho \) (Definition 27) either adds another literal or moves forward by one through \(\bot_i \), there can only be a finite number of elements of \(s \in S_c \). In each cycle at least one of these, say \(s \), is transferred from Open to Closed in steps 3 and 4 and never reappears in Open again due to the construction in step 6. Open will never contain elements other than those in \(S_c \) due to the third condition in the predicate prune. Thus there are only a finite number of cycles and each operation terminates in finite time. This refutes (a).

Therefore instead suppose (b) there exists \(s \in S_c \) such that \(C(s) \) explains \(e, f_\delta > 0 \) and ‘no compression’ is returned in step 8. But step 8 can only be entered after step 7, in which case if \(\text{Open} = \emptyset \) then terminated must have been false and therefore Closed contained no \(s \) for which \(C(s) \) explained \(e \) and \(f_\delta > 0 \). But if there exists \(s \in S_c \) for which \(C(s) \) explains \(e \) and \(f_\delta > 0 \) then there must be \(s' \in S_c \) for which prune(\(s' \)) was true, since otherwise \(s \) would eventually have been transferred to Closed. But the first condition of prune could not have been true of \(s' \) since otherwise at worst \(s' \) would have succeeded as best in terminated. The second condition of prune could not have been true of \(s' \) since if \(g_{s'} \leq 0 \) then also \(g_\delta \leq 0 \) and thus \(f_\delta \leq 0 \). The third condition of prune could not be true either since if \(e_{s'} \geq c \) then either \(C(s') = C(s) \) or \(C(s) \notin S_c \). This refutes (b).

Instead suppose (c) \(s \) is returned and either \(C(s) \) does not explain \(e \) or \(f_\delta \leq 0 \). But if \(s \) is returned in step 7 then terminated must be true in which case \(n_s = 0 \) and \(f_\delta > 0 \). For all \(s \in S \), by the construction of \(\bot_i \) (Definition 24) and the soundness of \(\rho \) (Definition 29) \(B \land C(s) \land \neg \bot_i \in \Delta \). Also since \(n_s = 0 \) it follows that \(B \land C(s) \land E \not\models \bot_i \). Therefore \(C(s) \) explains \(e \) and \(f(s) > 0 \). This refutes (c).

Lastly suppose (d) \(s \) is returned and \(C(s) \) explains \(e \) and \(f_\delta > 0 \) but there exists \(s' \in S_c \) for which \(C(s') \) explains \(e \) and \(f_{s'} > f_\delta \). But \(s' \) cannot be in Closed since \(s = \text{best}(\text{Closed}) \) and therefore \(f_{s'} \leq f_\delta \). Therefore on return from step 7 there must exist \(s'' \) in Open for which \(s' \in \rho(s'') \). But in that case according to the terminated predicate \(f_{s'} \geq g_{s''} \geq g_{s'} \geq f_\delta \). This refutes (d) and completes the proof.

In the worst case Algorithm 42 will consider all elements of \(S_c \) in Theorem 38.

Theorem 39 Cardinality of \(S_c \)
Let \(\iota, \bot_i, S_c, c \) be as in Definition 41. Let \(j^+, j^- \) be as in Theorem 26 and let \(j = j^+ + j^- \). Let \(|S| \) denote the cardinality of any set \(S \). \(|S_c| \leq |\bot_i|^+ j(c + 1)^\iota \).
Inverse Entailment and Progol

Proof

The elements $s = \langle C, \theta, k \rangle$ of \mathcal{S}_c are all those $s \in \mathcal{P}^*\langle \square, \emptyset, 1 \rangle$ for which $|C| \leq (c + 1)$. Since $C \emptyset \subseteq \bot$, we can view the construction of s as the choice (with possible repeats) of $c + 1$ elements from \bot_i, followed by the choice of θ. It is simplest to treat $C \emptyset$ (with repeat literals) as though it were a single atom and use the bounds in Remark 32 to calculate the worst case for the number of variants of θ. In this case there are at most $|\bot_i|^{c+1}$ ways of choosing the elements of $C \emptyset$ and $j(c + 1)'$ ways of choosing θ. Thus $|\mathcal{S}_c| \leq |\bot_i|^{c+1} j(c + 1)'$. □

From Theorems 26 and 39 we find that $|\mathcal{S}_c|$ is of order $O(r |M|^{2j(c+1)})$. Clearly, for tractability i, j, c must be small constants.

10.2 Cover Set Algorithm

Progol uses a simple cover set algorithm much like that employed in Michalski’s AQ family of algorithms. It repeatedly generalises examples in the order found in the Progol source file and adds the generalisation to the background knowledge. Examples which are redundant relative to the background knowledge are then removed (redundancy is based on Definition 35). The cover set algorithm is given in Appendix D.3. Clearly Algorithm D.3 terminates in at most $|E|$ iterations.

Note that each clause is unflattened before being added to the background knowledge. If, as in Prolog, equality is assumed to be completely defined using only the axiom of identity ($\forall x.(x = x)$) then unflattening has no effect on the Herbrand models of a logic program. However, it does improve its readability. For instance, clause (5) in Section 10 can be unflattened to the following simpler clause.

```
reverse([A | B], C) ← reverse(B, D), append(D, [A], C).
```

Note that the use of modeb declarations for `=' in Example 28 followed by the use of unflattening in Algorithm D.3 allows Progol to search through the term structure of hypothesised clauses. This is despite the fact that Progol’s refinement operator (Definition 27) considers only variable-variable substitutions which map hypothesised clauses to subsets of \bot_i.

§11 The Progol System

Progol was written in C by the author of this paper. Progol version 4.1 source code, example files and manual pages are freely available (for academic research) by anonymous ftp from ftp.comlab.ox.ac.uk in directory pub/Packages/ILP/progol4.1.

The design methodology for Progol was to present the user with a standard Prolog interpreter augmented with inductive capabilities. The syntax for examples, background knowledge and hypotheses in Dec-10 Prolog, with the
usual augmentable set of prefix, postfix and infix operators. Headless Horn clauses, representing constraints are used to represent negative examples and constraints. These are stored internally as clauses with head 'false'. Thus the following statement can be placed in the Prolog source file.

\[: - \text{black}(X), \text{white}(X). \]

This is stored internally as the following definite clause.

\[\text{false}: - \text{black}(X), \text{white}(X). \]

In this way both the testing of negative examples and of general constraints reduces to seeing whether 'false' is provable. Headless clause constraints can be learned from ground headless unit clauses by use of a modeh for the predicate 'false'. An example of this can be found in the Progro1.4.1 distribution dataset 'animals.pl'.

The standard library of primitive predicates described in Clocksin and Mellish\(^6\) is built into Prolog and available as background knowledge. Thus the following command-line can be given to Prolog when using the infix predicate '=<' for learning ranges of integers.

\[|- \text{modeh}(1, \ p(+\text{int})), \ \text{modeb}(3, \ #\text{int}=< +\text{int}), \ \text{modeb}(3, +\text{int} = < #\text{int})? \]

The Prolog prompt is |- and int is a built-in single arity predicate which is true for all integers. Note that Prolog queries are terminated by '?' rather than the usual ';' in Prolog. This allows queries to be distinguished from assertions. Assertions terminated by '.' can also be made at the Prolog prompt level. The user can request examples to be generalised from the prompt by terminating the example clause by a '!'. Unless the predicate 'search' is executed first, a '!' statement will simply show the user the clause \(\perp \), for the example. Thus the mode declarations above will allow the following interaction.

\[|- p(5)! \]

[Most specific clause is]

\[p(A) :- 3 =< A, 4 =< A, 5 =< A, A =< 5, A =< 6, A =< 7. \]

In this \(\perp \), clause the modeb declarations (given above) for '=' '<' are used. In step 5 of Algorithm 40 the goals \(X =< 5 \) and \(5 =< Y \) are both recalled 3 times and succeed with substitutions \(3, 4, 5 \) for \(X \) and \(5, 6, 7 \) for \(Y \). The \#int place-markers are replaced by \(3, 4, 5 \) and \(5, 6, 7 \) respectively and the +int place-marker is replaced by the unique variable \(A \) using the hash function described in Algorithm 40.

Although Prolog can be used interactively, it is often more convenient to run it in batch mode. In this case, when called from the operating system shell, Prolog is given the name of the example file as an argument. Prolog then simply generalises every predicate for which a modeh is declared and shows the results.
Inverse Entailment and Progol

as output.

Progol can learn ranges and function with numeric data. These can be either integer or floating point by simply making use of the built-in predicates 'is', '<', '>=', etc. This is best exemplified in the Progol4.1 dataset order4, in which qualitative regression is applied in conjecturing Newton's inverse square law from artificial floating point data.

The choice of engineering a complete Prolog interpreter was taken in order to make induction a first-class and efficient operation on the same footing as deductive theorem proving. This allows implementation of low-level operations such as depth-bounding of the theorem prover and rapid virtual assertion and retraction of clauses into the clause set.

§12 Results

Results of a series of experiments involving Progol in learning to predict mutagenic molecules can be found in Refs. 58), 59) and 60). A description of Progol doing qualitative regression can be found in Ref. 41). Qualitative regression is carried out by using mode declarations to define a family of 3 different functions (linear, polynomial in one term and exponential) and using these in competition to fit the data. The equation solver is supplied as user-defined background knowledge.

Appendix E gives a table of runtimes on a SPARCstation 10 for learning the various examples in the distribution version of Progol4.1. The numbers of clauses in E^+, E^-, B and H are also given for each dataset. Note that the datasets 'animals', 'exp', 'family' and 'set' involve learning a series of related predicates. These runtimes are comparable with those of FOIL, despite the fact that FOIL does incomplete heuristic search to find clauses. FOIL also uses extensional background knowledge rather than the intensional background knowledge of Progol.

§13 Conclusion

This paper traces the line of development followed by the author in investigating induction as the inverse of deduction. It has been shown that the idea of inverting resolution proofs used in Duce and Cigol can be greatly simplified by considering this as a special case of inversion of entailment. However, the notion of inverting entailment is of a more fundamental nature than that of inverting proof, since it is based on the model-theory which underlies proof. This approach has led to the development of a new state-of-the-art ILP system called Progol, which is available for academic research purposes by anonymous ftp (see Section 11). For each example Progol develops a most specific clause \perp, within the user-defined mode language, and uses this to guide an A^+-like search through clauses which subsume \perp. Each invocation of the search returns a clause which is guaranteed to maximally compress the data. Despite the admissibility of this search, the learning times in Appendix E are
comparable with FOIL, an algorithm which carries out a truncated heuristic search and allows only extensional background knowledge.

Figure 2 in Section 7 shows various ways in which Progol could be made more powerful. At present Progol can only deal effectively with the first and third form of ⊥. If Progol could prove not only positive ground facts but also negative ones then it would be possible to construct ⊥ in the form of the second entry in Fig. 2. This would have applications in theory revision. However, for the purposes of theory revision, Progol would need to have a strategy for specialising over-general clauses. The construction of sub-saturants (Section 6.1) would allow Progol to find all generalisations of recursive clauses, such as the one in the fourth entry of Fig. 2. Both the second and fourth form of generalisation in Fig. 2 will lead to multiple definite ⊥ clauses. Dealing with the multiplicity of ⊥ clauses will require improvements in Progol's search techniques. The incompleteness of the present search (see Example 30) also needs to be addressed.

Definition 9 suggests a way in which Progol could be made to learn effectively when provided with only positive example data. This would have real world applications in areas such as natural language learning, in which it is common to find positive-only data sources.

No learnability results have yet been shown for Progol. U-learnability (Appendix B) offers a promising direction for such results.

The author believes that inverse entailment offers many new avenues in the rapidly maturing research area of Inductive Logic Programming.

Acknowledgements

Many thanks are due to my wife, Thirza Castello-Cortes, who has not only shown super-human tolerance during the long incubation and writing of this paper but has also helped by proof-reading various versions. The author would also like to thank Donald Gillies for pointing out the foundational (but almost wholly disregarded) work of Stanley Jevons. Thanks are also due to David Page, and Donald Michie for their helpful discussions and advice and to Ashwin Srinivasan, who produced the initial Prolog version of Progol. Valuable suggestions concerning the U-learnability model were given by Tony Hoare, Bill McColl, Michael Kearns and Paul Vitanyi. This work was supported partly by the Esprit Basic Research Action ILP (project 6020), EPSRC grant GR/J46623 on Experimental Application and Development of ILP and an EPSRC Advanced Research Fellowship held by the author. The author is supported by a non-stidendiary Research Fellowship at Wolfson College Oxford.
References

Appendix A Definitions from Logic

A.1 Formulae in First Order Predicate Calculus

A variable is represented by an upper case letter followed by a string of lower case letters and digits. A function symbol is a lower case letter followed by a string of lower case letters and digits. A predicate symbol is a lower case letter followed by a string of lower case letters and digits. A variable is a term, and a function symbol immediately followed by a bracketed n-tuple of terms is a term. Thus \(f(g(X), h) \) is a term when \(f, g \) and \(h \) are function symbols and \(X \) is a variable. As in Prolog, integers, \([\ldots] \) and \(. \) are function symbols and if \(t_1, t_2, \ldots \) are terms then \(.\!(t_1, t_2) \) can equivalently be denoted \([t_1 \mid t_2] \) and \(.\!(t_1, \ldots, (t_{e_1}, \ldots) \ldots) \) can equivalently be denoted \([t_1, t_2, \ldots, t_{e_1}] \). A predicate symbol immediately followed by a bracketed n-tuple of terms is called an atomic formula, or atom. Every atom is a well-formed formula (wff). If \(W \) and \(W' \) are wffs then \(\overline{W} \) (not \(W \)), \(W \land W' \) (\(W \) and \(W' \)), \(W \lor W' \) (\(W \) or \(W' \)) and \(W \rightarrow W' \) (\(W \) implied by \(W' \)) are wffs. \(W \land W' \) is a conjunction and \(W \lor W' \) is a disjunction. If \(v \) is a variable and \(W \) is a wff then \(\forall v.W \) (for all \(v \) \(W \)) and \(\exists v.W \) (there exists a \(v \) such that \(W \)) are wffs. \(v \) is said to be universally quantified in \(\forall v.W \) and existentially quantified in \(\exists v.W \). The wff \(W \) is said to be function-free if and only if \(W \) contains no function symbols. Both \(A \) and \(\overline{A} \) are literals whenever \(A \) is an atom.

In this case \(A \) is called a positive literal and \(\overline{A} \) is called a negative literal. A set of literals is called a clause. The empty clause is represented by \(\square \). A clause represents the disjunction of its literals. Thus the clause \((a_1, a_2, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n) \) can be equivalently represented as \((a_1 \lor a_2 \lor \ldots, a_i \lor a_{i+1} \lor \ldots, \lor a_n) \) or \(a_1; a_2; \ldots; a_i; a_{i+1}; \ldots; a_n \). All the variables in a clause are implicitly universally quantified. A Horn clause is a clause which contains at most one positive literal. A definite clause is a clause which contains exactly one positive literal. A positive literal in either a Horn clause or definite clause is called the head of the clause while the negative literals are collectively called the body of the clause. A set of clauses in which no pair of clauses share a common variable is called a clausal theory. The empty clausal theory is represented by \(\bullet \). A clausal theory represents the conjunction of its clauses. Thus the clausal theory \((C_1, C_2, \ldots, C_n) \) can be equivalently represented as \((C_1 \land C_2 \land \ldots \land C_n) \). Every clausal theory is said to be in clause-normal form. Every wff can be transformed to an equivalent wff in clause normal form. If \(C = \forall \downarrow \land \ldots \land \downarrow \) is a clause then \(\overline{C} = \exists \downarrow \land \ldots \land \downarrow \). In this case \(\overline{C} \) is not in clause normal form since the variables are existentially quantified. \(C \) can be put in clause normal form by substituting each occurrence of every variable in \(C \) by a unique constant not found in \(C \). The process of replacing (existential) variables by constants is called skolemisation. The unique constants are called skolem constants. A set of Horn clauses is called a logic program. Apart from representing the empty clause and the empty theory, the symbols \(\square \) and \(\bullet \) represent the logical constants \(\text{False} \) and \(\text{True} \) respectively. Let \(E \) be a wff or term. \(\text{vars}(E) \) denotes the set of variables in \(E \). \(E \) is said to be ground if and only if \(\text{vars}(E) = \emptyset \).
A.2 Substitutions and Models

Let $\theta = \{ v_i/t_i, \ldots, v_n/t_n \}$. θ is said to be a substitution when each v_i is a variable and each t_i is a term, and for no distinct i and j is v_i the same as v_j. The set $\{ v_i, \ldots, v_n \}$ is called the domain of θ, or $\text{dom}(\theta)$, and $\{ t_i, \ldots, t_n \}$ the range of θ, or $\text{rng}(\theta)$. Lower-case Greek letters are used to denote substitutions. Let E be a wff or a term and $\theta = \{ v_i/t_i, \ldots, v_n/t_n \}$ be a substitution. The instantiation of E by θ, written $E\theta$, is formed by replacing every occurrence of v_i in E by t_i. Atom $a \theta$-subsumes atom b, or $a \leq b$ if and only if there exists a substitution θ such that $a\theta = b$. Clause C θ-subsumes clause D, or $C \leq D$ if and only if there exists a substitution θ such that $C\theta \subseteq D$. The Herbrand universe of the wff W is the set of all ground terms composed of function symbols found in W. The Herbrand base of the wff W is the set of all ground atoms composed of predicate and function symbols found in W. An interpretation is a total function from ground atoms to $\{ \bot, \top \}$. A Herbrand interpretation I of wff W is an interpretation whose domain is the Herbrand base of W. I can equivalently be represented as a subset of the atoms a in the Herbrand base of W for which $I(a) = \top$. Below all interpretations I are assumed to be Herbrand. The atom a is true in I if $I(a) = \top$ and false otherwise. The wff W is true in I if W is false in I and is false otherwise. The wff $W \land W'$ is true in I if both W and W' are true in I and false otherwise. The wff $W \lor W'$ is true in I if either W or W' is true in I and false otherwise. The wff $W \rightarrow W'$ is true in I if $W \not\Rightarrow W'$ is true in I and false otherwise. If v is a variable and W is a wff then $\forall v.W$ is true in I if for every term t in the Herbrand universe of W the wff $W[v/t]$ is true in I. Otherwise $\forall v.W$ is false in I. If v is a variable and W is a wff then $\exists v.W$ is true in I if $\forall v.W$ is true in I and false otherwise. Interpretation M is a model of wff W if and only if W is true in M. A wff W is satisfiable if there exists a model of W and unsatisfiable otherwise. Consequently W is unsatisfiable if and only if $W \not\models \bot$. Herbrand’s theorem states that a wff W is satisfiable if and only if W has a Herbrand model. Every logic program P has a unique Herbrand model M such that M is a model of P and every atom a is true in M if M is true in all Herbrand models of P. Let W and W' be two wffs. We say that W semantically entails W', or $W \models W'$ if and only if every model of W is a model of W'. Let X, Y, and Z be wffs. Then according to the Deduction theorem $X \land Y \models Z$ if and only if $X \models Y \lor Z$. Let X/Y be an inference rule. Then X/Y is said to be sound if and only if $X \models Y$. Suppose I is a set of inference rules containing X/Y and W, W' are wffs. Then $W \models W'$ if W' is formed by replacing an occurrence of X in W by Y. Otherwise $W \models W'$ if $W \vdash W''$ and $W'' \vdash W'$. We say that W syntactically entails W' using inference rules I, if and only if $W \vdash W'$. The set of inference rules I is said to be deductive sound and complete if and only if each rule in I is sound and $W \vdash W'$ whenever $W \models W'$. Let W and W' be two wffs. We say that W is more general than W' (conversely W' is more specific than W) if and only if $W \models W'$.

A.3 Resolution

The substitution $\theta = \{ u_i/v_i, \ldots, u_n/v_n \}$ is said to be a variable renaming if and only if $\text{dom}(\theta)$ is disjoint from $\text{rng}(\theta)$ and each v_i is distinct. Let W and W' be two wffs. If there exists a variable renaming θ such that $W\theta = W'$ then W, W' are said to be alphabetic variants of each other. Wffs W, W' are said to be standardised apart if and only if there exists a variable renaming $\theta = \{ u_i/v_i, \ldots, u_n/v_n \}$, $\text{vars}(W) \subseteq \text{vars}(\theta)$ and $W\theta = W'$. The substitution θ is said to be the unifier of the atoms a and
a' whenever $a\beta = a'\beta$. \(\mu\) is the most general unifier (mgu) of a and a' if and only if for all unifiers γ of a and a' there exists a substitution δ such that $(a\mu)\delta = a\gamma$. Let C and D be clauses and a be an atom. The sound inference rule

$$\frac{C \lor a}{C \lor D}, \quad D \lor \overline{a}$$

is called resolution. $(C \cup D)\beta$ is said to be the resolvent of the clauses $C \cup \{a\}$ and $D \cup \{a'\}$ whenever C and D are standardised apart and θ is the mgu of the atoms a and a'. Let T be a clausal theory. Robinson defined the function $\mathcal{R}^n(T)$ recursively as follows. $\mathcal{R}^n(T) = T$. $\mathcal{R}^n(T)$ is the set of all resolvents constructed from pairs of clauses in $\mathcal{R}^{n-1}(T)$. Robinson showed that T is unsatisfiable if and only if there is some n for which $\mathcal{R}^n(T)$ contains the empty clause (\(\Box\)).

Appendix B Hypotheses, Probabilities and U-Learnability

B.1 U-Learnability

The following is a variant of the U-learnability framework presented in Refs. 34) and 42). The teacher starts by choosing distributions F and G from the family of distributions \mathcal{F} and \mathcal{G} over concept descriptions \mathcal{H} (wffs with associated bounds for time taken to test entailment) and instances X (ground wffs) respectively. The teacher uses F and G to carry out an infinite series of teaching sessions. In each session a target theory T is chosen from F. Each T is used to provide labels from \{\text{\(\Box\)}, \text{\(\square\)}\} (True, False) for a set of instances randomly chosen according to distribution G. The teacher labels each instance x_i in the series $\langle x_1, ..., x_n \rangle$ with \(\Box\) if $T \models x_i$ and \(\square\) otherwise. An hypothesis $H \in \mathcal{H}$ is said to explain a set of examples E whenever it both entails and is consistent with E. On the basis of the series of labelled instances $\langle e_1, e_2, ..., e_n \rangle$, a Turing machine learner L produces a sequence of hypotheses $\langle H_1, H_2, ..., H_n \rangle$ such that $H_i \in \mathcal{H}$ explains $\langle e_1, ..., e_i \rangle$. H_1 must be suggested by L in expected time bounded by a fixed polynomial function of i. The teacher stops a session once the learner suggests hypothesis H_m with expected error less than ε for the label of any x_{m+1} chosen randomly from G. $\langle F, G \rangle$ is said to be U-learnable if and only if there exists a Turing machine learner L such that for any choice of ε and δ ($0 < \delta$, $\varepsilon \leq 1$) with probability at least $(1 - \delta)$ in any of the sessions m is less than a fixed polynomial function of $1/\delta$ and $1/\varepsilon$.

B.2 Bayesian Interpretation of Setting

Figure 5 shows the effect $E = \{e_1, ..., e_i\}$ has on the probabilities associated with hypotheses in \mathcal{H}. The learner's hypothesis language \mathcal{H} is laid out along the X-axis with prior probability $p(H) = F(H)$ for H in \mathcal{H} measured along the Y-axis, where

$$\sum_{H \in \mathcal{H}} p(H) = 1.$$

The descending dotted line in Fig. 5 represents a bound on the prior probabilities of hypotheses before consideration of examples E. The hypotheses $\mathcal{H}_E (\mathcal{H}_E \subseteq \mathcal{H})$ which explain E are marked as vertical bars. The prior probability of E, $p(E)$, is simply the sum of probabilities of hypotheses in \mathcal{H}_E. The conditional probability $p(E | H)$ is 1 in the case that H explains E and 0 otherwise. The posterior probability of H is now given by Bayes theorem as
Inverse Entailment and Progol

\[p(H \mid E) = \frac{p(H)p(E \mid H)}{p(E)} \]

With reference to Fig. 5, for an hypotheses \(H \) which explains all the data, \(p(H \mid E) \) will increase monotonically with increasing \(E \). Also for two different hypotheses \(H_1, H_2 \) which explain \(E \) the following holds.

\[\frac{p(H_1 \mid E)}{p(H_2 \mid E)} = \frac{p(H_1)}{p(H_2)} \] (6)

Appendix C Subsumption and Least General Generalisation

In the late 1960's the success of Robinson's\(^3\) resolution procedure produced considerable interest in the problem of inducing first-order formulae. Both Meltzer\(^2\) and Popplestone\(^4\) carried out initial investigations into generalisation of ground formulae by replacement of constants with variables. In implementing his approach Meltzer decided to bound the number of resolutions involved in checking any hypothesis against examples. This was an important innovation which is now being used within Progol (Section 11).

In an alternative approach Reynolds\(^5\) and Plotkin\(^6\) investigated the problem of finding least general generalisations (lggs) of atoms. According to Plotkin,\(^7\)

The work started with a suggestion by R.J. Popplestone (private communication) that, just as the unification algorithm was fundamental to deduction, so might a converse be of use in induction.

The relationship of lgg to unification is depicted in Fig. 6. Atom \(g \) is a common generalisation of atoms \(a \) and \(b \) if and only if there exist substitutions \(\alpha \)' and \(\beta \)' such that \(a = ga' \) and \(b = gb' \). The atom \(lgg(a, b) \) is the most general generalisation of \(a \) and \(b \) if and only if \(lgg(a, b) \) is a common generalisation of \(a \) and \(b \) and for each common generalisation \(g \) of \(a \) and \(b \) there exists a substitution \(\delta \) such that \(lgg(a, b) = g\delta \). The common instance \(i \) and most general instance are similarly defined for \(a \) and \(b \) (see Fig. 6). In the case of the most general instance \(i \) of \(a \) and \(b \) Robinson\(^8\) calls \(a_i \) \(b_i \) the most general unifier of \(a \) and \(b \). Robinson describes an algorithm for constructing the most-general unifier of two atoms. Robinson's unification algorithm is the basis of resolution theorem proving. Plotkin and Reynolds describe an efficient algorithm for computing the least general generalisation of two atoms.
[a] is the equivalence class of all atoms which are variable renamings of a.

Reynolds showed that the set of all equivalence classes of atoms augmented by the symbols ⊤ and ⊥ form a non-modular lattice. Thus, \([a] \cap [b] = [\text{lgg}(a, b)]\) and \([a] \cup [b] = [\text{mgi}(a, b)]\), where \(\cap\) and \(\cup\) are both commutative and associative, though neither distributes over the other.

In Ref. 46) Plotkin extended the investigation to clauses ordered by \(\theta\)-subsumption. Clause \(C\) \(\theta\)-subsumes clause \(D\), or \(C \leq D\) if and only if there exists a substitution \(\theta\) such that \(C \theta \subseteq D\). Just as with atoms, clause \(G\) and \(I\) are respectively a common generalisation and a common instance of \(C\) and \(D\) if and only if \(G \leq C\), \(D\) and \(C, D \leq I\). For clauses \(C\) and \(D\) there is a least general generalisation \(\text{lgg}(C, D)\) and most general instance \(\text{mgi}(C, D)\), both unique up to renaming, such that for every common generalisation \(G\) and common instance \(I\) of \(C\) and \(D\) it is the case that \(G \leq \text{lgg}(C, D)\) and \(\text{mgi}(C, D) \leq I\). The cardinality of the least general generalisation of two clauses is bounded by the product of the cardinalities of the two clauses.

Plotkin\(^6\) went on to define the \(\text{lgg}\) of two clauses relative to clausal background knowledge \(B\). The relative least general generalisation of clauses (rlgg) is potentially infinite for arbitrary \(B\). When \(B\) consists of ground unit clauses only the \(\text{rlgg}\) of two clauses is finite. However the cardinality of the \(\text{rlgg}\) of \(m\) clauses relative to \(n\) ground unit clauses has worst-case cardinality of order \(O(n^m)\), making the construction of such \(\text{rlgg}\)'s intractable.
Appendix D Progol Algorithm

D.1 Construction of Most-Specific Clause

Algorithm 40 Algorithm for constructing \(\bot \):

1. Given natural numbers \(h, i \), Horn clauses \(B \), definite clause \(e \) and set of mode declarations \(M \).
2. Let \(k = 0 \), hash: Terms \(\mapsto \mathcal{N} \) be a hash function which uniquely maps terms to natural numbers, \(\mathcal{G} \) be the clause normal form logic program \(a \wedge b_1 \wedge \ldots \wedge b_n \), \(\bot_i = \bot \) and InTerms = \(\emptyset \).
3. If there is no mode in \(M \) such that \(a(m) \leq a \) then return \(\Box \). Otherwise let \(m \) be the first mode declaration in \(M \) such that \(a(m) \leq a \) with substitution \(\theta_h \). Let \(a_h \) be a copy of \(a(m) \) and for each \(v/t \) in \(\theta_h \) if \(v \) corresponds to a \(\# \) type in \(m \) then replace \(v \) in \(a_h \) by \(t \) otherwise replace \(v \) in \(a_h \) by \(v \), where \(k = \text{hash}(t) \) and add \(v \) to InTerms if \(v \) corresponds to \(+ \) type. Add \(a_h \) to \(\bot_i \).
4. If \(k = i \) return \(\bot \), else \(k = k + 1 \).
5. For each mode \(m \) in \(M \) let \(\{v_h, \ldots, v_n\} \) be the variables of \(+ \) type in \(a(m) \) and \(T(m) = T_1 \times \ldots \times T_n \) be a set of n-tuples of terms such that each \(T_i \) corresponds to the set of all terms of the type associated with \(v_i \) in \(m \) (term \(t \) is tested to be of a particular type by calling Prolog with type(\(t \)) as goal). For each \(v_h, \ldots, v_n \) in \(T(m) \) let \(a_h \) be a copy of \(a(m) \) and \(\theta = \{v_h/h, \ldots, v_n/n\} \). If Prolog with depth-bound \(h \) succeeds on goal \(a_h \theta \) with the set of answer substitutions \(\mathcal{G}_h \) then for each \(\theta \) in \(\mathcal{G}_h \) and for each \(v/t \) in \(\theta \) if \(v \) corresponds to a \(\# \) type in \(m \) then replace \(v \) in \(a_h \) by \(t \) otherwise replace \(v \) in \(a_h \) by \(v \) where \(k = \text{hash}(t) \) and add \(v \) to InTerms if \(v \) corresponds to \(\bot \) type. Add \(a_h \) to \(\bot_i \).

D.2 \(A^* \)-like Algorithm for Finding Clause with Maximal Compression

Firstly we define some auxiliary functions used in Algorithm 42.

Definition 41 Auxiliary functions

Let the examples \(E \) be a set of Horn clauses. Let \(h, i, B, e, M, \bot, \) be as in Definition 24 in Section 8.1 and let \(C, \theta, k \) be as in Definition 27 in Section 9.2.

\[
d'(v) = \begin{cases}
0 & \text{if there is no } \# \text{type variable in the head of } \bot_i \\
0 & \text{if } v \text{ is } \# \text{type in the head of } \bot_i \\
\infty & \text{if } v \text{ is not in } \bot_i \\
\min_{u \in U_v} d'(u) + 1 & \text{otherwise}
\end{cases}
\]

where \(U_v \) are the \(\# \)-type variables in atoms in the body of \(C \) which contain \(+\)-type occurrences of \(v \). Below state \(s \) has the form \(\langle C, k, \theta \rangle \). \(c \) is a user-defined parameter for the maximal clause body length. \(|S| \) denotes the cardinality of any set \(S \).

\[
p_s = |\{e: e \in E \text{ and } B \wedge C \wedge [\overline{v} \bot_h \theta]\}| \\
n_s = |\{e: e \in E \text{ and } B \wedge C \wedge [\overline{v} \bot_h \theta]\}| \\
c_s = |C| - 1 \\
V_s = \{v: u/v \in \theta \text{ and } u \text{ in body of } C\}
\]
\[h_0 = \min_{v \in V} d'(v) \]
\[g_s = p_s - (c_s + h_0) \]
\[f_s = g_s - n_s \]

best(S) is a state \(s \in S \) which has \(c_s \leq c \) and for which there does not exist \(s' \in S \) for which \(f_{s'} > f_s \).

\[
\text{prune}(s) = \begin{cases}
\text{true} & \text{if } n_s = 0 \text{ and } f_s > 0 \\
\text{true} & \text{if } g_s \leq 0 \\
\text{true} & \text{if } c_s > c \\
\text{false} & \text{otherwise}
\end{cases}
\]

\[
\text{terminated}(S, S') = \begin{cases}
\text{true} & \text{if } s = \text{best}(S), n_s = 0, f_s > 0 \text{ and for each } s' \text{ in } S' \text{ it is the case that } f_{s'} \geq g_{s'} \\
\text{false} & \text{otherwise}
\end{cases}
\]

Algorithm 42 Algorithm for searching \(\square \leq C \leq \perp \),

1. Given \(h, B, e, \perp, \) as in Definition 24.
2. Let Open = \(\{ \langle \square, \emptyset, 1 \rangle \} \) and Closed = \(\emptyset \).
3. Let \(s = \text{best(Open)} \) and Open = Open \(- \{ s \} \).
4. Let Closed = Closed \(\cup \{ s \} \).
5. If prune(s) goto 7.
6. Let Open = (Open \(\cup \rho(s) \)) \(- \) Closed.
7. If terminated(Closed, Open) then return best(Closed).
8. If Open = \(\emptyset \) then print 'no compression' and return \(\langle e, \emptyset, 1 \rangle \).

D.3 Progol's Cover Set Algorithm

Definition 43 Unflattening

Let \(C = h \leftarrow X, Y \) be a definite clause in which \(X = (s_1 = t_1, \ldots, s_n = t_n) \) is a conjunction of atoms with predicate symbol '=' and \(Y \) is a conjunction of atoms with predicate symbols other than '='. The clause \(C' = h' \leftarrow Y' \) is called the unflattening of \(C \) if and only if \(C' \) is derived from \(C \) by successively resolving away each \(s_i = t_i \) in \(X \) with the clause \((U = U \leftarrow) \).

Algorithm 44 Cover set algorithm

1. \(h, i, B, M \) are given as in Theorem 26 and \(E \) is the subset of \(B \) corresponding to atoms in modal declarations in \(M \).
2. If \(E = \emptyset \) then return \(B \).
3. Let \(e \) be the first example in \(E \).
4. Construct \(\perp_i \) for \(e \) using Algorithm 40.
5. Construct state \(s \) from \(e \) using Algorithm 42.
6. Let \(C' \) be the unflattening of \(C(s) \) (Definition 43).
7. Let \(B = B \cup C' \).
8. Let \(E' = \{ e : e \in E \text{ and } B \land \exists \neg \, \square \} \).
9. Let \(E = E - E' \).
Appendix E Progol's Runtimes

<table>
<thead>
<tr>
<th>Data set</th>
<th>Predicate</th>
<th>E^+</th>
<th>E^-</th>
<th>B</th>
<th>H</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>animals</td>
<td>false</td>
<td>42</td>
<td>16</td>
<td>105</td>
<td>6</td>
<td>0.930</td>
</tr>
<tr>
<td>class</td>
<td></td>
<td>16</td>
<td>6</td>
<td>105</td>
<td>5</td>
<td>0.183</td>
</tr>
<tr>
<td>append</td>
<td>append</td>
<td>19</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0.199</td>
</tr>
<tr>
<td>arch</td>
<td>arch</td>
<td>4</td>
<td>4</td>
<td>47</td>
<td>1</td>
<td>0.149</td>
</tr>
<tr>
<td>chess</td>
<td>move</td>
<td>27</td>
<td>12</td>
<td>34</td>
<td>11</td>
<td>5.080</td>
</tr>
<tr>
<td>cyclic</td>
<td>cyclic</td>
<td>3</td>
<td>2</td>
<td>69</td>
<td>1</td>
<td>0.100</td>
</tr>
<tr>
<td>delete</td>
<td>delete</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>0.365</td>
</tr>
<tr>
<td>even</td>
<td>even</td>
<td>16</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>0.216</td>
</tr>
<tr>
<td>exp</td>
<td>plus</td>
<td>6</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>mult</td>
<td>6</td>
<td>23</td>
<td>10</td>
<td>3</td>
<td>0.730</td>
</tr>
<tr>
<td></td>
<td>exp</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>0.183</td>
</tr>
<tr>
<td>family</td>
<td>parent_of</td>
<td>11</td>
<td>4</td>
<td>61</td>
<td>2</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>grandparent_of</td>
<td>10</td>
<td>7</td>
<td>53</td>
<td>1</td>
<td>0.149</td>
</tr>
<tr>
<td>grammar</td>
<td>s</td>
<td>8</td>
<td>7</td>
<td>18</td>
<td>1</td>
<td>0.116</td>
</tr>
<tr>
<td>krki</td>
<td>illegal</td>
<td>341</td>
<td>655</td>
<td>51</td>
<td>4</td>
<td>17.281</td>
</tr>
<tr>
<td>last</td>
<td>last</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0.066</td>
</tr>
<tr>
<td>min</td>
<td>min</td>
<td>14</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1.760</td>
</tr>
<tr>
<td>nim</td>
<td>won</td>
<td>16</td>
<td>7</td>
<td>12</td>
<td>1</td>
<td>0.100</td>
</tr>
<tr>
<td>order0</td>
<td>f</td>
<td>15</td>
<td>3</td>
<td>13</td>
<td>1</td>
<td>0.382</td>
</tr>
<tr>
<td>order1</td>
<td>f</td>
<td>15</td>
<td>3</td>
<td>13</td>
<td>1</td>
<td>0.730</td>
</tr>
<tr>
<td>order2</td>
<td>f</td>
<td>8</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>0.747</td>
</tr>
<tr>
<td>order3</td>
<td>f</td>
<td>9</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>0.681</td>
</tr>
<tr>
<td>order4</td>
<td>f</td>
<td>12</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>1.079</td>
</tr>
<tr>
<td>parity4</td>
<td>parity</td>
<td>16</td>
<td>16</td>
<td>11</td>
<td>1</td>
<td>1.195</td>
</tr>
<tr>
<td>qsort</td>
<td>qsort</td>
<td>11</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>0.863</td>
</tr>
<tr>
<td>range</td>
<td>inrange</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0.266</td>
</tr>
<tr>
<td>reverse</td>
<td>reverse</td>
<td>13</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>0.149</td>
</tr>
<tr>
<td>set</td>
<td>member</td>
<td>16</td>
<td>3</td>
<td>33</td>
<td>2</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>pair</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>subset</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>0.730</td>
</tr>
<tr>
<td>setuni</td>
<td>setuni</td>
<td>14</td>
<td>13</td>
<td>2</td>
<td>4</td>
<td>2.357</td>
</tr>
<tr>
<td>sumx</td>
<td>sumx</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0.432</td>
</tr>
<tr>
<td>train</td>
<td>eastbound</td>
<td>5</td>
<td>5</td>
<td>257</td>
<td>1</td>
<td>0.100</td>
</tr>
<tr>
<td>utube</td>
<td>utube</td>
<td>5</td>
<td>13</td>
<td>173</td>
<td>1</td>
<td>1.643</td>
</tr>
</tbody>
</table>
Stephen Muggleton, BSc, PhD, MA(Oxon): He is an EPSRC Advanced Research Fellow at Oxford University Computing Laboratory. He was previously Fujitsu Associate Professor at the University of Tokyo and Director of Academic Research at the Turing Institute, Glasgow. He is author of “Inductive Acquisition of Expert Knowledge”, published by Addison-Wesley, and editor of “Inductive Logic Programming”, published by Academic Press and Machine Intelligence 13, published by Oxford University Press. He was chief designer of RuleMaster, which was used by BrainWare to build BMT, the world’s largest expert system. In 1990 he founded the field of Inductive Logic Programming (ILP) and has been Program Chair of three international workshops on this topic. He is Executive Editor of the Machine Intelligence Series, published by Oxford University Press, and lectures on ILP at the Oxford University Computing Laboratory. He is presently developing a computational learning model for ILP called U-learnability. He has recently published results in the Proceedings of the Royal Society and the Proceedings of the National Academy of Sciences on successful applications of ILP to problems in Molecular Biology.