
New Generation Computing, 13 (1995) 245-286
OHMSHA, LTD. and Springer-Verlag A,

 9 OHMSHA, LTD. 1995

Inverse Entailment and Progol

Stephen M U G G L E T O N
Oxford University Computing Laboratory,
Wolfson Building,
Parks Road, Oxford, OX1 3QD, United Kingdom.

Received 3 October 1994
Revised manuscript received 2 April 1995

Abs trac t This paper firstly provides a re-appraisal of the develop-
ment of techniques for inverting deduction, secondly introduces Mode-
Directed Inverse Entailment (MDIE) as a generalisation and enhancement
of previous approaches and thirdly describes an implementation of MDIE in
the Progol system. Progol is implemented in C and available by anonymous
ftp. The re-assessment of previous techniques in terms of inverse implication
leads to new results for learning from positive data and inverting implication
between pairs of clauses.

Keywords: Learning, Logic Programming, Induction, Predicate Invention, Inverse
Resolution, Inverse Entailment, Information Compression.

w Introduction
Since its inception in this journal 31) Inductive Logic Programming (ILP)

has grown to become a substantial sub-area of both Machine Learning and
Logic Programming (see Ref. 43)). The success of the subject lies partly in the
choice of the core representation language of logic programs. Least Herbrand
models of logic programs 26~ fit neatly with the distinction between examples and
conjectured theories in inductive inference. The syntax of logic programs
provides modular blocks which, when added or removed, generalise or special-
ise the program. Depth-bounded Prolog interpreters, used for theorem-proving,
allow efficient testing of hypothesised Horn clause theories. Most importantly,
Turing-equivalence of logic programs is allowing a broader range of Machine
Learning applications in ILP than was possible with more restrictive representa-
tions.

Recent research in ILP has spawned a variety of new theoretical topics.

246 S. Muggleton

These include the problem of inverting resolution, a7'61'~4) inversion of clausal
implication, zz'~4'~~ predicate invention, 36) closed-world specialisation 1) and
U-learnability. 4z) As with any subject, the diversity of sub-topics can be better
understood by following the development of a particular line of ideas. The aims
of this paper are firstly to provide a re-appraisal of the development of tech-
niques for inverting deduction, secondly to introduce Mode-Directed Inverse
Entailment (MDIE) as a generalisation and enhancement of previous
approaches and thirdly to describe an implementation of MDIE in the Progol*
system.

At each stage in the development of ILP there has been an attempt to
solve existing technical restrictions of implemented systems. The five main
approaches described in this paper are as follows.

(1) Inverse resolution (IR) in proposit ional logic,
(2) IR in first-order definite clause logic,
(3) determinate relative least general generalisation,
(4) inverse implication and
(5) mode-directed inverse entailment.

The paper is structured as follows. First the logical and statistical setting for ILP
are introduced (Section 2). This is followed by a synopsis of the results and
restrictions for approaches (1) to (4) (Sections 3 to 6). The remainder of the
paper (Sections 7 to 12) deals with theoretical and practical aspects of mode-
directed inverse entailment. Instructions for obtaining Progol by anonymous ftp
are given in Section l l . The paper closes with a discussion of research issues
related to inverse entailment. Standard definitions taken from Logic Program-
ming and ILP are given in Appendix A. In Appendix B a statistical setting for
ILP is described. Properties of the subsumption lattice are described in Appen-
dix C. The algorithms used in Progol are given in Appendix D. A table of
Progol's runtimes various data sets is presented in Appendix E.

w Logical and Statistical Setting for ILP
Deductive inference derives consequences E from a prior theory T. Thus

if T says that all swans are white, E might state that a particular swan is white.
Inductive inference derives a general belief T from specific beliefs E. After
observing one or more white swans T might be the conjecture that all swans are
white. In both deduction and induction T and E must be consistent and

T ~ E. (1)

The requirement of consistency means that the observation of a black swan rules
out conjecture T. Inductive inference is, in a sense, the inverse of deduction.
However, deductive inference proceeds by application of sound rules of infer-

* Prolog inverted in the middle.

Inverse Entailment and Progol 247

ence, while inductive inference necessarily involves unsound conjecture. Such
conjectures have at best statistical support from observed data. However, the
association of probability values with hypotheses requires the assumption of a
prior probability distribution over the hypothesis language. Occam's razor can
be taken as an instance of a distribution which assigns higher prior probability
to simpler hypotheses. It has been shown 4) that without such distributional
assumptions the class of all logic programs is not even PAC-predictable. On the
other hand, it has recently been demonstrated 42) that the class of all time-
bounded logic programs is polynomial-time learnable (U-learnable) under fairly
broad families of prior probability distributions. Appendix B gives more details
of the relationship between data, posterior probabilities and U-learnability.

Within ILP it is usual to separate the elements of (1) into examples (E),
background knowledge (B), and hypothesis (H). These have the relationship

B A H ~ E. (2)

B, H and E are each logic programs. E usually contains ground unit clauses of
a single target predicate. E can be separated into E +, ground unit definite
clauses and E-, ground unit headless Horn clauses. However, the separation
into B, H and E is a matter of convenience, as the following example shows.

Example 1 White swans
The swan example might be represented using the following logic program.

E+ = { white(swanl) +-
swan(swanl) +-
black(swan2) ~--

E - = swan(swan2) ~--
B -- { ~---black(X), white(X)
H = { white(X) ~ swan(X)

Relationship (2) does not hold since swan(swanl) is not entailed by B /~ H. It
does not help to argue that swan(swanl) is background knowledge, since this is
an observations about swanl. E - does not contain headless Horn clauses,
although together with B it refutes H. These problems can most simply be
avoided by dropping all but the restriction that B, H and E are arbitrary logic
programs.

w Inverse Resolut ion in Proposit ional Logic
The idea of carrying out induction by inverting deduction was first

investigated in depth mathematically by the 19th century political economist

George Boole's algebraic approach to deduction inspired Jevons to use truth-functional tabula-
tions to design and build a logical calculator. TM Jevons' mechanical Organon is complete for
deciding satisfiability of propositional clauses in 4 variables, and can be found in the Museum
of Scientific Instruments in Oxford.

248 S. Muggleton

and philosopher of science Stanley Jevons. in)* Jevons solved by tabulation the
"Inverse or Inductive Problem" involving two propositional symbols. The
following quote from Jevons' book on inductive inference ~6) is both modern-
sounding and relevant to the problems addressed in this paper.

Induction is, in fact, the inverse operation of deduction, and
cannot be conceived to exist without the corresponding operation,
so that the question of relative importance cannot arise. Who
thinks of asking whether addition or subtraction is the more
important process in arithmetic? But at the same time much
difference in difficulty may exist between a direct and inverse
operation; the integral calculus, for instance, is infinitely more
difficult than the differential calculus of which it is the inverse.
Similarly, it must be allowed that inductive investigations are of a
far higher degree of difficulty and complexity than any questions
of deduction; ...

At the time of Jevons logicians, not yet persuaded of Boole's algebraic approach
to logic, employed an array of inference rules derived from Aristotelian syllo-
gisms. Robinson TM was later to show that deductive inference in first-order
predicate calculus could be effected by a single rule of inference, that of resolu-
tion. Inductive inference based on inverting resolution in proposit ional logic
was first discussed in Ref. 32) (originally a technical report from 1987) as an
analysis of the inductive inference rules within the Duce system. TM

3 . 1 Induct ive I n f e r e n c e Rules
Duce had six inductive inference rules. Four of these were concerned with

definite clause proposit ional logic. In the following description of the inference
rules lower-case letters represent proposit ional variables and upper-case letters
represent conjunctions of propositional variables.

Absorption: p ~-- A, B q ,-- A
p~-'--q, B q~--A

Inflentif ication: p ~ A, B p ~ A , q
q~---B p~- -A ,q

Intra-cons truct ion: p ~ A, B p ,-- A, C
q<--B p*---A,q q~---C

Inter -cons truct ion: p '-- A, B q ,--- A, C
p~---r, B r*--A p*--r, C

Each of Duce's rules is superficially similar to that of a deductive rule of
inference of the form

X
Y

Inverse Entailment and Progol 249

Such a deductive inference rule would be called sound if and only if X entailed
Y. We will call a rule of inference inductively sound if and only if Y logically
entails X, or equivalently X entails Y. A set of inductive inference rules will be
written with an overline as 7. Each clause above the line is either a resolvent of
two clauses below the line or is itself found below the line. Duce's inference
rules invert single-depth applications of resolution. Using the rules a set of
resolution-based trees for deriving the examples can be constructed backwards
from their roots. The set of leaves of the trees represent a theory from which the
examples can be derived. In the process new propositional symbols, not found
in the examples, can be "invented" by the intra- and inter-construction rules.

3 . 2 Completeness
Continuing the analogy with deduction we might write

X ~ - y Y

to say that theory Y is derivable using inductive inference rules 7 from examples
X. There are two senses in which a set of inference rules 7 may be said to be
complete.

Definition 2 Weak completeness
Let the example language s and hypothesis language 7-(both be subsets of the
first-order predicate calculus and let 7 be a set of inductive inference rules. I is
said to be weak complete for s and 7-(if and only if for each H _ 7-(there
exists E c g such that E t-7 H.

In Ref. 32) it was shown that 7 consisting of only absorption and intra-
construction is weak complete under particular hypothesis and example lan-
guage restrictions.

Definition 3 Strong completeness
Let the example language s and hypothesis language 7~ both be subsets of the
first-order predicate calculus and let 7 be a set of inductive inference rules. I is
said to be strong complete for s and 7(if and only if for each H _c "H and E
c_ s H ~ E implies E- F y H .

The four Duce inference rules in Section 3.1 are not strong complete for definite
clause proposit ional calculus.

3 . 3 Oceam Compression X In Duce every application of an inductive inference rule -~- was chosen
to maximise information compression.

Definition 4 Occam compression
Let X, Y be wffs for which Y ~ X and X A Y ~ []. Let I XI and I Y I be the
number of bits required to encode X and Y. The Occam compression of X

250 S. Muggleton

relative to Y is I XI - I YI.

Suppose I PI = b.symbols(P) where symbols(P) is the number of proposit ional
symbol occurrences in P and b is the number of bits to encode each such
occurrence. With reference to Appendix B, an encoding is the expression of a
prior distribution. F (P) expresses the relative frequency with which the teacher
chooses P as target concept. Assume the learner knows F(P) and uses it as a
prior distribution on "~. Then according to Shannon and Weaver s6)]P] is
-- log2 F(P) and

F(P) = 2 -jet

Note that since this is an exponential-decay distribution, in the situation in
which the learner knows F(P), the results in Ref. 43) show that the class of all
t ime-bounded logic programs are polynomial-time learnable (U-learnable).
However, note also that if the teacher's prior is known to the learner then on
average theories chosen by the teacher have extremely low information content.
Alternatively this might be viewed as the expectation that only a small augmen-
tation of an existing theory is expected from any short presentation of the
teacher's examples.

Remark 5
Let E be a wff and ~ be a set of wffs containing E such that for each H ~ 7-(
it is the case that H ~ E and H A E ~ D. Let/-/max have maximum compres-
sion within 3{ relative to E and let H0 have compression 0 relative to E. nmax
has maximum posterior probability and H0 has posterior probabili ty equal to E.

Proof
According to Equat ion (6) in Appendix B.2

p (H I E) _ P (H) _ 21el_ml.
p (E I E) P (E)

p (H I E) is maximal when I E] -] HI is maximal. When]EI - I H] = 0 then
p(HIE) = p(EIE) D
The hypothesis with maximum posterior probabili ty (Hmax) has maximum
expected predictive accuracy.

w Inverse Reso lut ion in First-Order Logic
Inverse resolution was lifted to first-order predicate calculus in Ref. 37).

This involved algebraic inversion of the equations of resolution below.

D = (C (_J C')O0'
lO = l'O'

Figure 1 shows a resolution step. D is derived at the base of the 'V' given the
clauses on the arms. In contrast, a 'V' inductive inference step derives one of the

Inverse Entailment and Progol 251

c (+) c (-)

D
Fig. 1 Single resolution.

clauses on the arm of the 'V' given the clause on the other arm and the clause
at the base. In Fig. 1 the literal resolved on is positive (+) in C and negative
(--) in C'. Duce's absorption rule constructs C" from C and D, while the
identification rule derives C from C ' and D.

Since algebraic inversion of resolution has a complex non-deterministic
solution only a restricted form of absorption was implemented in Cigol.*
However, it was shown independently in Refs. 31) and 54) that there is a unique
most-specific solution for 'V' inductive inference rules. That is

c'; =(DUIO)
where 8 is such that C8 c D. Rather than inverting the equations of resolution
we might consider resolution from the model-theoretic point of view. That is

C A C ' ~ D. (3)
Applying the deduction theorem gives a deductive solution for absorption.

C A D b C "
This is a special case of inverting entailment (Section 7). Sine D and C" are
clauses, D and C ' are conjunctions of ground skolemised literals. The most
specific solution for C ' corresponds to the most general solution for C', i.e.
when C ' contains the maximum set of literals derivable from C A D. However,
this solution is neither restricted to single-depth resolutions, nor is the clause
cardinality finitely bounded.

Example 6 Reeursive list membership
Let C = member(X, IX] Y]) and D = member(2, [1, 2, 3]).

C A D ~ member(2, [1 , 2 , 3])
member(I, [1, 2, 3])
member(2, [2, 3])
member(3, [3])

b ,,,

Though the clause C ' = member(2, [1, 2, 3])*---member(I, [1, 2, 3])

* logiC backwards.

252 S. Muggleton

maintains Relationship (3), there are at least 3 derivation steps to D. C' is
0-subsumed by all single-step resolution solutions. C' also contains the infinite
sequence of atoms member(3, [3, 3]), member(3, [3, 3, 31)

Owing to the weak completeness results for the Duce inductive inference rules
(Section 3.2) only absorption and intra-construction were implemented in
Cigol.

4 . 1 Compression
Like Duce, Cigol used Occam compression (Definition 4) to guide the

choice of inverse resolution steps. The encoding measure was the total number
of predicate and function symbol occurrences in a logic program. Like Duce,
each such inverse resolution step was only allowed if it produced a positive
compression value. This lead to two difficulties.

(1) Local generalisation Consider the recursive multiplication clause

mult(A, B, C) *-dec(A, D), mult(D, B, E), plus(E, B, C).

(2)

When given a large set of ground instances of valid multiplications,
compression is only achievable after a series of inverse resolution steps,
in which all steps except the last do not produce compression.
Learning from positive examples In Ref. 30) it was noted that the
compression measure used in Cigol did not allow learning from only
positive data since the simplest possible hypothesis, say VX.p(X) , will
always be consistent. Alternative compression measures were suggested in
Refs. 30), 44), 5) and 9). These measures are closely allied to Rissanen's
Minimal Description Length (MDL) Principle. 52'~-4)

The first problem was addressed by considering the inversion of multiple
resolution steps by saturating clausesP 5'~4'32'13) Clause saturation is closely
related to the techniques of inverse entailment described in Section 7. However,
since saturation is based on inverting resolution proof steps, it cannot deal with
built-in predicates. Nevertheless, the interpretations of such predicates can be
computed by calling C functions. The Progol system (Sections 8 to 11) uses
mode declarations to access such interpretations.

4 . 2 Learning from Positive Data
The second problem is of a different nature. When learning from only

positive data, predictive accuracy will be maximised by choosing the most
general consistent hypothesis since this will always agree with new data.
However, in applications such as grammar learning, 2S'5~ only positive data is
available. However, the grammar which produces all strings is not an acceptable
hypothesis. Let us then suppose a modification to the U-learning setting given
in Appendix B. The teacher still draws instances randomly from distribution G

Inverse Entailment and Progol 253

but only gives them to the learner if they are positive examples of the target T.
In this setting we would need to find a tradeoff between the generality and
complexity of an hypothesis. First let us define a measure of the generality of an
hypothesis.

Definition 7 Generality measure
Let H be a wff and G be a probabil i ty distribution over a (possibly infinite) set
o f wffs X. The generality g of H is defined as

g (H) = ~, G(x).
X, E X , H ~ x

Since G is a probabi l i ty distribution it follows for every H ~ 7~ that 0 ~ g(H)
1. g(H) is the probabi l i ty that an instance drawn randomly from G will be

entailed by H . Note therefore that g([~) = l, g (1) = 0 and T1 ~ Tz implies g
(Tx) ~ g(T2). Clearly for infinite instance spaces g(H) cannot be calculated
exactly. However, according to the Central Limit Theorem, given a sufficiently
large random sample S from G, the propor t ion of S entailed by H is an
arbitrarily good estimate of g(H). Now consider the following probabil i ty
distribution.

fro(H) = c.2-1m(1 -- g(H)) m

m is the number of examples so far and c is a normalising constant to ensure
that for H ~ 7-(the function fm sums to 1. fm trades off the complexity of an
hypothesis against its generality. Note that since fm varies with m, it cannot be
viewed as a prior distribution over hypotheses. As with M D L fm increases the
discrimination against over-generality with increasing numbers of examples.
When used to choose between hypotheses given positive-only data fm has the
following convergence property.

Theorem 8 Finite elimination of false conjectures with positive-only data
Let T be an element of the set of wffs ~ and let G be a probabi l i ty distribution
over the set of wffs X such that x E X has non-zero probabil i ty in G if and
only if T ~ x. Let T ' be the minimal complexity expression of T in "H. Let <Xl,
Xz) be an infinite series of wffs drawn randomly according to G. Let f . (H)
have value 2-mr(1 - - i f (H)) i for all those H in ~ which entail each x~, 1 _< j _<
i, and have value 0 otherwise. Let H be any element of 7~ such that H does not
entail the same subset of X as T. Then there exists a finite natural number k
such that f~(H) < fk(T').

Proof
Suppose there is an H for which there is no such k, It cannot be the case for H
that g(H) > g(T') and Ial >lT'l since otherwise for all i, i ~ O, f (H) <
f.(T'). Therefore suppose g(H) > g(T') and tn l < I T'I. But then since (1 --
g(H)) i decreases monotonical ly with i there must exists k such that for all j >
k it is the case that] j (H) < f i (T ') . Therefore it must be that I H [> I T'I and

254 S. Muggleton

g(H) < g(T') . But then there exists k and xk such that T ' ~ xk and H ~fi xk
and therefore f k (H) ---- 0 < f i (T ') . This contradicts the assumption and com-
pletes the proof. []*

fm provides the basis for a simplified version of the compression models defined
in Refs. 30) and 44).

Definition 9 Positive-only compression
Let H be a wff and G be a distribution over instance space X. Let E ___ X be
a set of m examples of H. Let [H] and I E I be the number of bits required to
encode H and E. The positive-only compression of E to H is

pcomp(H, E) = lop2fm(H)
'~ fro(E)

= I EI - I H I - m(log2(1 - g (E)) -- log2(1 --
g(H)))
I EI - I HI + mlog2(1 -- g(H)).

The approximation in the last line applies for small m, in which case g(E) is
close to 0.

w Relat ive Least General General i sat ions
One commonly advocated approach to learning from positive data is that

of taking relative least general generalisations (rlggs) of clauses (see Appendix
C). Suppose, as in the last section, that the teacher chooses target T and presents
to the learner examples E = {xl, x2 xm}. Given background knowledge B,
H = rlggs(E) will be the hypothesis within the relative subsumption lattice
with the fewest possible errors of commission (instances x ~ X for which H
x and T ~ x). This approach to learning from positive data has the following
problems.

(1) Arbitrary background knowledge Plotkin 4~) showed that with un-
restricted definite clause background knowledge B there may not be any
finite rlggB(E).

(2) Extensional background knowledge Suppose B and E consist of n and
m ground unit clauses respectively. In the worst case the number of
literals in rlgg~(E) will be (n + 1) m, making the construction intractable
for large m.

(3) Multiple clause hypothesis Target concepts with multiple clauses
cannot be learned since rlggB(E) is a single clause.

In contrast, none of these problems occur if H is chosen from the set of all

At first sight, this theorem appears to clash with the fundamental result of Gold 1~ that not even
the regular languages can be identified in the limit from positive data alone. However, it cannot
be guaranteed after any finite number of examples that all H which are not over-general have
lower values of fro than T'.

Inverse Entailment and Progol 255

definite clause theories 7-(using maximum positive-only compression
(Definition 9). Suppose E ~ ?-~ and H is the hypothesis with maximum
positive-only compression. As with rlggs(E), H will be maximally specific
among clauses of the same complexity. Also H will always have complexity of
at most that of E. Lastly H can be a multiple clause hypothesis.

5 . 1 Golem
Golem was designed to overcome the search problems of Cigol (Section

4.1). The unique construction of rlggs contrasts with the highly non-
deterministic choices involved in inverting a resolution step.

Golem used extensional background knowledge to avoid the problem of
non-finite rlggs. Extensional background knowledge B can be generated from
intensional background knowledge B' by generating all ground unit clauses
derivable from B' in at most h resolution steps. The parameter h is provided by
the user. The rlggs constructed by Golem were forced to have only a tractable
number of literals by requiring that ~ contain definite clause theories that were
U-determinate. The idea behind/ j -determinacy is as follows. Let C be a definite
clause of the form

V X . h ~--- bl, b2 b,

where 2~ is the vector of all variables within C. Suppose that Y are the variables
in the head of C and Z are the variables found only in the body of C. C can
equivalently be written

V Y . h *---(3 J~bl, b2 bn).

Determinacy is a constraint which restricts the quantification on variables Z in
the body of definite clauses to Hillbert 6" (exists exactly one) quantification.
This is equivalent to requiring that predicates in the background knowledge
must represent functions. Thus for every example e and hypothesised clause C
there must exist at most one valid substitution for the variables 2~ in the body
of C. j-determinate clauses are constrained to having at most j variables in any
literal. /j-determinate clauses are further restricted that each variable has depth
at most depth i. For variable v the depth d(v) is defined recursively as follows.

Definition 10 Depth of variables

f 0 if v is in the head of C
d(v) (min~u~d(u)) + 1 otherwise

where U~ are the variables in atoms in the body of C containing v.

Multiple clause theories could be learned by Golem due to the use of
negative examples. Each clause was built from the rlgg of a set of positive
examples. Negative examples were used to stop rlggs becoming over-general.

256 S. Muggleton

5.2 Application Experience
Golem was the first ILP system to be applied to a wide variety of

real-world applications. These included the construction of a satellite fault
diagnosis model, 8~ the design of a qualitative physics model, 2) finite-element
mesh design, 8~ protein secondary structure prediction ~9~ and structure-activity
prediction for drugs. 18~ In the qualitative physics domain Golem was hampered
in requiring a large tabulation of the QSIM simulator. The determinacy restric-
tion was inappropriate in the finite element mesh design application. The
restrictions of Golem and other ILP algorithms are discussed in Ref. 35).

Golem was also applied to various list and number-theoretic learning
tasks involving the construction of recursive theories. Learning recursive the-
ories was awkward using Golem partly because intensional hypothesised base
cases could not be used to augment the entirely extensional background knowl-
edge. Also Golem's search was through the subsumption lattice, rather than the
lattice of implication between clauses.

w Implication between Clauses
In Ref. 47) Plotkin noted that if clause C B-subsumes clause D (or C <

D) then C ---* D. However, he also notes that C ~ D does not imply C < D as
shown by the following example.

Example 11 Implication and suhsumption
Consider the following clauses.

C : na t (s (X)) *-- nat(X)
O --- nat (s(s(Y))) ~ nat(Y)

C --~ D but not C ~ D.

Although efficient methods are known 2~ for enumerating every clause C which
B-subsumes an arbitrary clause D, this is not the case for clauses C which imply
D. This is known as the problem of inverting implication between clauses. The
inability to invert implication between clauses limits the completeness of inverse
resolution and rlggs since B-subsumption is used in place of clause implication
in both.

Gott lob 11~ proves a number of properties concerning implication between
clauses. The following lemma is notable.

Lemma 12 Gottlob's lemma
Let C § C- be the sets of positive and negative literals of clauses C and D § D-
be the same for D. C ~ D implies that C § < D § and C - < D-.

In an attempt to solve the inverting implication problem Lapointe and
Matwin zz~ introduced sub-unification, a process of matching sub-terms in D to
produce C. They demonstrate that sub-unification is able to construct recursive
clauses from fewer examples than would be required by ILP systems such as

Inverse Entailment and Progol 257

Golem TM and FOIL. 49) Although the operations described by Lapointe and
Matwin are shown to work on a number of examples it is not clear how general
the mechanism is. Various general properties of implication between clauses are
investigated in Ref. 33). In particular it is shown that Lee's subsumption
lemma TM has the following corollary.

Corollary 13 Implication and recursion
Let C, D be clauses. C ---, D if and only if either D is a tautology or C < D or
there is a clause E such that E < D where E is constructed by repeatedly
self-resolving C.

In Ref. 33) Lee's subsumption lemma TM is used to show that C ~ D if
and only if one of the following conditions holds.

(1) D is a tautology.
(2) C . < D.
(3) There is a clause E such that E < D where E is constructed by repeated-

ly self-resolving C.

Thus the difference between 0-subsumption and implication between C and D
is only pertinent when, as in Example 11, C can self-resolve. Attempts were
made to a) extend inverse resolution TM and b) use a mixture of inverse resolution
and lgg TM to solve the problem. The extended inverse resolution method in Ref.
33) suffers from the same problems of non-determinacy as Cigol. Idestam-
Almquist's 14~ use of lgg suffers from the standard problem of intractably large
clauses (see Section 5). Both approaches are incomplete for inverting implica-
tion, though Idestam-Almquist's technique is complete for a restricted form of
entailment called T-implication.

In Ref. 40) it is shown that for certain recursive clauses D all the clauses
C which imply D also 0-subsume a logically equivalent clause D'. Up to
renaming of variables every clause D has at most one most specific form of D'
in the 0-subsumption lattice. D' is called the self-saturation of D. The self-
saturation of D in Example 11 is simply C L) D. However, it is shown in Ref.
40) that there exist definite clauses which have no finite self-saturation.

6 . 1 Inverting Entailment between Clauses
This section gives a complete and efficient method for inverting implica-

tion between function-free definite clauses. The techniques used are based on
inverting entailment using the deduction theorem. First we define definite
sub-saturants.

Definition 14 Definite sub-saturants
Let D =- h ,-- bl bn be a definite clause. Let 13 (D) be the Herbrand base of
D restricted to the predicate symbol of h and let.L,~(D) be the minimal Herbrand
model of D. Let desk(a) be the atom a with skolem constants in D replaced by
their corresponding variables in D. Let .A(D) be 13 (D) --.AA(D). The sub-

258 S. Muggleton

saturants of D, S (D) are the set of all definite clauses desk(a) ~ bl bn for
which a ~ .4 (D).

Although arbitrary definite clauses can have an infinite sub-saturant set, this is
not so for function-free definite clauses. It is now shown for function-free clauses
that if k is a bound on the arity of predicates then the cardinality of the
sub-saturant set is polynomial ly bounded in the number of variables in D.

Remark 15 Cardinality of sub-saturant set
Let D be a function-free definite clause, k be the arity of the predicate symbol
in the head of D, n be the number of variables in D and $ (D) be the sub-
saturants of D. The cardinality of S (D) is at most n k.

Proof
The arguments of the heads of clauses in S (D) are simply the k-length permuta-
tions of variables in D. There are n k such permutations. []

We now present the main theorem concerning sub-saturants.

Theorem 16
Let C and D be definite non-tautological clauses and S (D) be the sub-saturants
of D. C ~ D only if there exists C ' in $ (D) such that C ~ C' .

Proof
Suppose C ~ D and there does not exist C ' in S(D) such that C - < C'.
According to Lemma 12 the heads of C and D have the same predicate symbol.
Since C ~ D it follows that C A D is not satisfiable. According to Herbrand 's
theorem this is the case if and only if C A D has no Herbrand model. Accord-
ing to Lemma 12 the body of C 0-subsumes the body of D and therefore there
exists a ground (skolemised) substitution 0 for which all elements in the body
of C are true in the least model of D. Therefore with substitution 0 the head of
C must be false in the least Herbrand model of D since otherwise C A D has
a Herbrand model. But according to the construction in Definition 14 for every
such C with the same predicate symbol as D there is a C ' in S (D) such that C

C'. This contradicts the assumption and completes the proof. []

This theorem can be used to efficiently enumerate all function-free definite
clauses C such that C ~ D. First the finite set of self-saturants S (D) is
constructed. Then the clauses which 0-subsume any clause in S (D) are enumer-
ated using an efficient interleaved enumerat ion of the subsumption lattice. Since
function-free first-order predicate calculus is decidable the clauses C for which
C ~ D can be enumerated by testing C ~- D.

Example 17 Factorial
x! = (x -- 2)!(x -- 1)x is an overly specific recurrence formula for the factorial
function. This formula can be represented by the clause

Inverse Entailment and Progol 259

D = f (I , J) ~-- d(I, K), d(K, L), f (L , M), re(K, M, N), m(I, N,
J)

where the predicate symbols are f = factorial, d = decrement, m : multiply.
Since there are 14 variables in D it follows from Remark 15 that the cardinality
of S (D) is at most 14 z = 196. S(D) contains the clause

C" = f (K , N) ~ d(I, K), d(K, L), f (L , M), re(K, M, N), m(I,
N, J).

The following clause C which implies D (but does not 0-subsume D) corre-
sponds to the most general recurrence for factorial, x! = (x -- 1)!x.

C = f (K , N)~--d(K, L), f (L , g) , rn(K, M, N).

The following example demonstrates how clauses with function symbols, such as
those in Example 11, can be dealt with as though they were function-free by
using flattening. TM

Example 18 Flattening and inverse implication
The clause D = nat(s(s(X)))~--nat(X) can be flattened to the function-free
clause D' = nat(V) ~ s(V, W), s (W, X), nat(X) where s is defined as s(X,
s(X)). There are ~2 sub-saturants of D', which are D' itself and C" = nat(W)
~-- s(V, W), s (W, X), nat(X) which is 0-subsumed by C ' -- na t (W) '--- s (W,
X), nat(X). C ' can be unflattened to the following clause which implies but
does not 0-subsume D.

C -- nat(s(X)) ,-- nat(X)

w Inverting Entailment
Inverse resolution and other subsumption oriented approaches to induc-

tion have been re-assessed in previous sections of this paper. It has been
demonstrated that a great deal of clarity and simplicity can be achieved by
approaching the problem from the direction of model-theory rather than resolu-
tion proof-theory. In Duce an inductive inference rule X / Y is sound in the
deductive sense if viewed as stating the relationship X ~ Y. In Cigol all
solutions for absorption are found by simply rewriting the inductive
specification C A C ' ~ D by the equivalent deduction oriented relationship C
A D ~ C'. Lastly, it has been shown in this paper that a solution to Plotkin's
25 year old problem of generalising 0-subsumption can be achieved with
relative ease by simply viewing solutions for C in C ~ D (given D) as clauses
which eliminate Herbrand models of C A D.

Let us now consider the general problem specification of ILP (Section 2)
in this light. That is, given background knowledge B and examples E find the
simplest consistent hypothesis H (where simplicity is measured relative to a
prior distribution) such that

260 S. Muggleton

B A H ~ E. (4)

It was demonstrated in Example 1 that in general B, H and E could be arbitrary
logic programs. Each clause in the simplest H should explain at least one
example, since otherwise there is a simpler H ' which will do. Consider then the
case of H and E each being single Horn clauses. This can now be seen as a
generalised form of absorption (Relation (3) in Section 4) and rearranged
similarly to give

Since H and E are each single clauses, H and E will be logic programs
consisting only of ground skolemised unit clauses. Let _k be the (potentially
infinite) conjunction of ground literals which are true in all models of B A E.
Since H must be true in every model of B A E it must contain a subset of the
ground literals in 3-. Therefore

and so for all H

A subset of the solutions for H can be found by considering the clauses which
0-subsume 3-. The complete set of candidates for H can be found by consider-
ing all clauses which 0-subsume sub-saturants of 3_ (Section 6.1).

Example 19 Var ious examples of -l-
Figure 2 shows various B, E and 3_. In the first case, the clauses which
0-subsume 3- include all those which could be reached using first-order absorp-
t ion (Seetion 4). In the second case the definite clauses which 0-subsume 3_ are
those which could be reached by a first-order version of Duce's identification
operator (Section 3.1). This form of identification is a general form of Kakas et
al's abduction 17) and is of central interest in "theory revision" (alterations in
theory revision range over all definitions within a hierarchical set of predicates
which reference each other). The third case demonstrates that constraints (head-
less Horn clauses) can be learned from negative examples since the clause

B E J_
anim(X) ,-- pet(X), nice(X) ,-- dog(X), nice(X) ,-- dog(X), pet(X),
pet(X) ~- dog(X), anita(X).
hasbeak(X) *-- bird(X), hasbeak(tweety), hasbeak(tweety); bird(tweety);
bird(X) ~-- vulture(X), vulture(tweety).
white(swan 1). ~-- black(swan 1). ~- black(swan 1), white(swan 1).
sentence([],[]), sentence([a,a,a],[]), sentence([a,a,a],[]) ,--

sentence([], []).

Fig. 2 The most-specific clause (• for various versions of background knowledge
(B) and example (E).

Inverse Entailment and Progol 261

,-- black(X), white(X)

0-subsumes • in the fourth case one of the clauses which 0-subsumes a
sub-saturant of the flattened & (see Example 17) is the DCG grammar rule

sentence([a IX] , Y)~---sentence(X, Y).

w The Definite Mode Language
In general • can have infinite cardinality. Progol uses mode declarations

to constrain the search for clauses which 0-subsume / (see last section).

Definition 20 Mode declaration
A mode declaration has either the form modeh(n, atom) or modeb(n, atom)
where n, the recall, is either an integer, n > 1, or '*' and atom is a ground atom,
Terms in the atom are either normal or place-marker. A normal term is either
a constant or a function symbol followed by a bracketed tuple of terms. A
place-marker is either +type, -- type or # type , where type is a constant. If m is
a mode declaration then a(m) denotes the atom of m with place-markers
replaced by distinct variables. The sign of m is positive if m is a modeh and
negative if m is a modeb in M.

For instance the following are mode declarations.

modeh(l , p lus (+ in t ,+ in t , - - in t))

modeb(l ,append(+l is t , [+ any] , - l i s t))

m o d eb (* , ap p en d (- list, +
list ,+ list)
modeb(4 , (+in t > # in t))

The recall is used to bound the number of alternative solutions for instantiating
the atom. For simplicity, we assume in the following the recall '*', meaning all
solutions. The following defines when a clause is within Progol's definite mode
language L.

Definition 21 Definite mode language
Let C be a definite clause with a defined total ordering over the literals and M
be a set of mode declarations. C = h ,--bt bn is in the definite mode
language s (M) if and only if 1) h is the atom of a modeh declaration in M
with every place-marker + type and - t y p e replaced by variables and every
place-marker # type replaced by a ground term and 2) every atom bi in the body
of C is the atom of a modeb declaration in M with every place-marker + type
and - t y p e replaced by variables and every place-marker # t y p e replaced by a
ground term and 3) every variable of + typ e in any atom b~ is either of + type
in h or of - t y p e in some atom bj, 1 < j < i.

Like Golem, Progol constructs clauses of bounded depth (see Definition 10 in
Section 5.1).

262 S. Muggleton

Definition 22 Depth-bounded mode language
Let C be a definite clause with a defined total ordering over the literals and M
be a set of mode declarations. C is in • ~(M) if and only if C is in s (M) and
all variables in C have depth at most i according to Definition 10.

Example 23 Factorial revisited
Reconsider Example 17 with M being

modeh(* , f (+ i n t , - int)) modeb(*, d (+ i n t , - i nt))
m o d e b (* , f (+ i n t , - int)) modeb(* ,m(+ int,-- int))

The clause

f (A, B)~--d(A, C), f (C , D), m(A, D, B)

is only in s i(M) for i ~ 2.

8 . 1 Most-Specific Clauses in/~ i (M)
Progol searches a bounded sub-lattice for each example e relative to

beckground knowledge B and mode declarations M. The sub-lattice has a most
general element (T) which is the empty clause, [], and a least general element
• which is the most specific element in s i (M) such that

B /~ .-J-/ A e ~-h[~

where ~- h [] denotes derivation of the empty clause in at most h resolutions.

Definition 24 Most-specific clause •
Let h, i be natural numbers B be a set of Horn clauses, e -- a ,-- b~ bn be a
definite clause, M be a set of mode declarations containing exactly one modeh
m such that a(m) < a and • be the most-specific (potentially infinite) definite
clause such that B A 4 A ~ ~--h D. Z i is the most-specific clause in s
such that • "< 1 .

Progol constructs 4 i using Algorithm 40 in Appendix D.1.

Theorem 25 Correctness of Algorithm 40
Let h, i, B, M be defined as in Definition 24. Given h, i, B, e and M Algorithm
40 returns an alphabetic variant of •

Proof
By induction on i. Let i be 0. In step 3 the head of 40 is within the definite mode
language of M (Definition 21) since every + ty p e and --type place-marker is
replaced by variables, every # t y p e place-marker is replaced by ground terms
and every variable has depty 0 (Definition 10). By construction the head ah of
the returned 40 0-subsumes a since inverting the one-one function hash gives a
substitution from the variables in ah to the terms in a. This substitution is most
specific since every variable is replaced by a unique term. This proves the base

Inverse Entailment and Progol 263

case. Suppose that for all i up to and including k Algorithm 40 correctly
constructs a most-specific clause -t-k such that • is the most-specific clause in
Z?k(M) which 0-subsumes • It is now shown that this implies the same will
hold for k + 1. Consider step 5 for k + 1. The + type place-markers in the atom
of m are replaced by variables of depth at most k which represent terms in
InTerms. These terms must either have been placed in InTerms as + ty p e in the
head (step 3) or - - type from step 5 at an earlier value of k. - t y p e place-markers
are replaced by variables of depth at most k + 1 and ~ type by ground terms.
Therefore • is in ,Ck+t(M). Also by conslruclion ab subsumes an atom in
the body of _1_ with substitution 0b, and the substitution is most specific since all
variables map to unique terms in _t_. T(m) corresponds to all combinations
of + type substitutions, which makes • k+i an alphabetic variant of the maximal-
ly specific clause in s k§ which 0-subsumes • This proves the step and
completes the proof. []

The time-complexity of Algorithm 40 is proport ional to the cardinality of • i.

Theorem 26 Cardinality of •
Let h, i B, M be defined as in Definition 24 and let I M [denote the cardinality
of M. Let the number of + type and -- type occurrences in each modeh in M be
bounded by constants j - and j+ respectively. Let the number of + ty p e and
- t y p e occurrences in each modeb in M be bounded by j+ and j - respectively.
Let the recall of each m in M be bounded by the constant r. The cardinality of
_l_i is bounded by (r [M I j + j-)ij+.
Proof
By induction. The clause • contains only a head so its cardinality is 1. This
proves the base case. Assume true for all i up to and including k and show for
i = k + 1. The number of terms associated with + type in the head or -- type in
the body of • is j -(r I MI j+ j-)~§ These can be used to replace j+ + type
place-markers in I M I modeb declarations and the atom can be recalled r times,
giving a cardinality of _t_ k+l of at most (r I M I J+ j-)(~+l)~+. This proves the step
and completes the proof, n.

By default i = 3 in Progol and typically j§ --< 2. However, since in most cases
relatively few atoms are true in the least Herbrand model of B A ~ when [M I <
10 it is usually the case that • has cardinality of less than 100 atoms.

w Refinement

9 . 1 Refinement Operators
When generalising an example e relative to background knowledge B,

Progol constructs _1_,- and searches from general to specific through the sub-
lattice of single clause hypotheses H such that [] ~ H < • i. This sub-lattice is
bounded both above and below. The search is therefore better constrained than

264 S. Muggleton

other general to specific searches, such as those in MIS 57) and F O I L p) in which
the sub-lattice being searched is not bounded below.

For the purposes of searching a lattice o f clauses ordered by ~-subsump-
tion Shapiro $7~ introduced the concept of refinement operators. Suppose s is a
(potentially infinite) set of clauses and C is an element of ,q. Then the
refinement operator p is defined such that p(C) c_ ~.. p is said to be sound if
and only if for each D in p(C) it is the case that C "< D. Also p~ = {-C}
and D ~ p~(C) if and only if there exists D ' ~ p~-l(C) and D = D ' or D E
p(D'). The closure p*(C) is p~ U pl(C) U

According to Ref. 21) p is complete if and only if for each D in s there
is an alphabetic variant of D in p*([]), p is finite if and only if for all C ~
the cardinality of p(C) is finite, p is proper if and only if for each clause C and
D ~ p(C) it is the case that C < D. It is shown in Ref. 20) that Shapiro 's p is
not complete. It is also shown that there does not exist p which is finite, proper
and complete.

Redundancy of refinement operators is investigated in Refs. 12) and 7).
The refinement operator p is redundant if and only if there exist clauses C, C' ,
D in /~ such that D ~ p(C) and D ~ p(C') and C is not an alphabetic variant
o f C' . Since both MIS and FOIL employ redundant refinement operators, the
same clause D can be reached repeatedly when applying p to various C and C' .

9 . 2 The Refinement Operator in Progol
The refinement operator in Progol is designed to avoid redundancy and

to maintain the relationship [] < H < Z ; for each clause H .
Since H ~ I i, it is the case that there exists a substitution 8 such that

H 8 --- Zi . Thus for each literal l in H there exists a literal l ' in Z i such that
/~? -- l '. Clearly there is a uniquely defined subset • ~(H) consisting o f all l ' in
Z~ for which there exists ! in H and 18 = l'. A non-deterministic approach to
choosing an arbitrary subset S ' of a set S involves maintaining an index k. For
each value of k between 1 and n, the cardinali ty of S, we decide whether to
include the kth element of S in S ' . Clearly, the set of all series of n choices
corresponds to the set of all subsets of S. Also for each subset of S there is
exactly one series of n choices. To avoid redundancy and maintain 8-subsump-
tion of • Progol 's refinement operator maintains both k and 8.

Definition 27 Progol refinement operator
Let h, i, B, e, M and • be defined as in Definition 24 and let n be the
cardinality of • ~. Let k be a natural number, 1 -< k < n. Let C be a clause in
L i(M) and 8 be a substitution such that C8 c_ • Below a literal l corre-
sponding to a mode m~ in M is denoted simply as p(v~ Vm) despite the sign of
mt and function symbols in a(mt). A variable is splittable if it corresponds to
a + t y p e or - t y p e in a modeh or if it corresponds to a - - type in a modeb. (C ' ,
8', k ') is in p(<C, 8, k)) if and only if either

Inverse Entailment and Progol 265

(l) C ' - - C U { l } , k ' = k, <l, 8"> is in ~(8, k) and C" ~ ~.~(M) or
(2) C '~ - C, k ' - - k + l, 8 ' - - 8 and k < n.

<p(vx v~), 8'> is in ~(8, k) if and only if 8' is initialised to 8, lk ~ p(ul urn)
is the kth literal of 3_~ and for each j , 1 ~ j -< m,

(1) if uj is splittable then v~/u~ ~ 8' else vj/u~ ~ 8 or
(2) if us is splittable then v~ is a new variable not in dom(8) and 8' = 8U

{vj/uj~.
In Definition 27 the variables in 3_i form a set of equivalences classes over the
variables in any clause C which 8-subsumes _L~. Thus we could write the
equivalence class of u in 8 as [v]u, the set of all variables in C such that v/u
is in 8. The second choice in the definition of c~ adds a new variable to an
equivalence class [vii u~. This will be referred to as splitting the variable us. Note
that in Definition 27 a variable is not splittable if it corresponds to a + type in
a modeb since the resulting clause would violate the mode declaration language
s (M)(see Definition 21). The following is an example of variable splitting.

Example 28 Applying p in list reversal
Suppose M consists of the following mode declarations.

modeh(*, reverse(+ list, - list))
modeb(*, + a n y = :~ any)
modeb(*, append(+ list, [+ i n t] , --list))
modeb(*, + list = [- i n t / - list])
modeb(*, reverse(+ list, - list))

The types and other background knowledge are defined as follows.

f any(Term) ~- list(I]) ~--
list([H I T]) *--- list(T)

B = Term = Term ~--
reverse([], []) ~--
append([], X, X)~--
append([H I T], L1, [H I L 2]) ~ a p p e n d (T , L1, L2)

Let h = 30 and i = 3 and let the example be as below.

e ~- reverse([1], [1]) ~

In this case 3-~ is as follows.

1~ = reverse(A, A) ~ A = [1], A = [B I C] , B = 1, C = [],
reverse(C, C), append(C, [B], A)

Let <C', 8', k'> be in 0(<D, 0, 1>). Then <C', 8', k'> are shown in the first table
in Fig. 3. Suppose that C = (reverse(D, E) ~- D = [F I (7]), 8 = {D/A , E / A ,

266 S. Muggleton

C" 8'
reverse(D, E) {D/A, E/A}
reverse(D, D) {D/A}
[] I~

k t

1
I
2

C' 8' k'
reverse(D, E) ,--- D = IF[G], reverse(G, G) 8 6
reverse(D, E) ~--D -- [FI G], reverse(G, H) OU{H/C} 6
reverse(D, E) ~ D = IF [G] 8 7

Fig. 3 Two applications of p.

F/B , G/C}, k = 6 and (C ' , 0', k'> is in p(<C, O, k>). Then <C', 0', k ' > are
shown in the second table in Fig. 3.

By analogy to Shapiro's p we can talk of the soundness of Progol's p.

Lemma 29 Soundness of Progol's p
Let h, i, B, e, M and • be defined as in Definition 24 and let n be the
cardinality of • i. Let k be a natural number, 1 _< k ~ n. Let C be a clause in
s and 0 be a substitution such that CO c • (C', 0', k'> ~ p(<C, O,
k>) only if C'O' c Wi and C ' E s ;(M).

Proof
Suppose the lemma is false. In that case there exists (C ' , 0', k'> E p((C , 0, k>)
and either C'O" ~ _1_ ~ or C' ~ Z; ~(M). But according to Definition 27, C '
s i(M) or C' = C, in which case also C ' ~ s ~(M). Thus it must be that C'O"

• in which case C ' = C U {/} and k ' = k ' where (l , 0'> is in 8 (0 , k>. But
then according to the definition of c~, C'O" c_ • which contradicts the assump-
tion and completes the proof. []

As with Shapiro's refinement operator we can define the closure set for Progol's
p. Let X, Y, Z stand for triples of the form (C , 0, k>. Then p~ = {X} and
Y ~ p~(X) if and only if there exists Z ~ p~-l(X) and Y = Z or Y ~ p(Z).
The closure p*(X) is p~ U p~(X) U The following example shows that
Progol's p is not complete due to the choice of ordering of 2 ;.

Example 30 Incompleteness of search
Let B contain definitions for decrementation (dec), addition (plus) and the
clause mult(0, X, 0),--- with appropriate mode declarations M and let the
example e be the clause mult(1, 1, 1) ,--. Then W; is the clause

mult(A, A, A) ~ dec(A, B), plus(A, B, A), plus(B, B, B),
mult(A, B, B), mult(B, B, B).

Given this ordering over • ; there will be no element of Progol's p* containing
the clause

mul t (U, V, W)*- -dec (U, X), mult(X, V, Y), plus(Y, V, W).

Inverse En ta i lmen t and P rogo l 267

9 . 3 Complexity of p
In order to analyse the complexi ty o f P we in t roduce an incremental

variant o f the Bell number TM from combinator ics . The mth Bell number is the
number o f ways that a set S o f cardinal i ty m can be par t i t ioned into non-empty
equivalence classes.

Lemma 31 Number of splits of a variable
Suppose that ~ in Defini t ion 27 has arguments 0, k and that the k th literal o f
-l-i has m splittable occurrences o f only one variable u. Suppose also that the
cardinal i ty o f [v]u in 0 is n. The number o f variants o f 0 ' is given by the
funct ion s as follows.

= ~ 1 if m = 0 s(n, m) (s (n , m - 1) n + s (n + 1, m - 1) if m > 0

Proof
I f m = 0 there is on ly one substi tut ion, 0 ' = 0. I f m > 0 consider the first
occurrence o f u in lk. In c~ the choice can be not split u (case 1) or to split u (case
2). In case 1, the set o f 0 ' variants is { 0} crossed with the set o f n choices for
v l / u crossed with the set o f s (n , m - - 1) variants for the remaining m -- 1
occurrences o f u in lk. In case 2, if the new variable is v then the set o f 0 ' variants
is { 0} crossed with { v / u } crossed with the set o f s (n + 1, m - - 1) variants for
the remaining m -- 1 occurrences o f u in lk. This gives a total o f s (n , m - - 1)
n + s (n -4- 1, m - - 1) variants o f 0'. []

A partial t abula t ion o f the funct ion s is shown in Fig. 4*

n 0 1 2 3 4 5 6 7
m
0 1 1 1 1 1 1
1 I 2 3 4 5 6
2 2 5 10 17 26
3 5 15 37
4 15

1 1
7

Fig. 4 A par t ia l t abu l a t i on of the funct ion s.

Remark 32 Bounds on s
Let n, m be natural numbers, n m <- s (n , m) <_ (n + m) " .

Proof
Fo r m ---- 0, n o = s (n , 0) = (n + 0) ~ = 1. Cons ider s in terms o f the recurrence
n m = n m - t n . For all n ~ 0 and m > 0 it is the case that s (n , m - - 1)n < s (n ,
m) < s (n + m , m - - 1)n + s (n + m , m - - 1). []

* The Bell funct ion can be expressed s imply as B(m) = s(0, m).

268 S. Muggleton

Example 33
Suppose in Definition 27 that C -- p (V) ~-- and 0 = { V / U } and l~ = q(U,
U, U) where the last two occurrences of U in l~ are - t y p e . Then in Lemma 31
this gives m = 2, n = 1, and s(n, m) = 5. The 5 variants oflkO' are {q(V, V,
V), q (V , V, W), q (V , W, V), q (V , W, W), and q (V , W, Z)}.

We are now in a position to give a function for the cardinality of p.

Theorem 34 The eardinality of p
Let C, 0, k, and lk be as in Definition 27. Suppose that l~ contains p splittable
variables and q non-splittable variables. Let mx, 1 <_ x <_ p, and my, 1 < y _--.
q, denote respectively the number of occurrences of Vx and vu in the splittable
and non-splittable variables of lk. Let nz, 1 ~ x <_ p, and nv, 1 _< y --< q, denote
respectively the number of Ux and uu such that ux/vx and uu/vy are in 0. Then
the cardinality of p ((C , O, k)) is

mx q [/ o ((C , 0 , k)) [(I-[xP=l nx) (1 - Iy=l S(ny, my)) + 1.

Proof
In Definition 27, p chooses between 2 cases. Since the second choice produces
a unique solution, the cardinality of p is one greater than the cardinality of the
associated function c~. Only the first case of 3 is applicable to non-splittable
variables. Thus for each of the mx occurrences of vx in lk there are nx choices of
Ux/Vx, giving n~ x variants. The set of all substitutions 0' for lk is { 0} crossed
with the set of variants for each Vx, 1 ~ x ~ p crossed with the set of variants

- - Pax q for each vv, 1 < y <-- q. This gives a total of (II~=1 nx)(IIu=x s(nu, my))
different substitutions 0' for the function $ and the same value plus 1 for the
cardinality of p. []

From Remark 32 it can be seen that I p ((C , O, k)) l is exponential in p, q, mx
and inv. This reiterates the requirement indicated by Theorem 26 that for the
sake of polynomial tractability p, mx and q, rnv should be bounded respectively
by constants j+ and j - .

In the implementation of p Progol simply decodes each of the natural
numbers between 1 and I p ((C , O, k))l into clauses and updates 0 and k
appropriately. The details of this decoding process are omitted.

w Searching the Subsumption Latt ice
To search the subsumption lattice Progol applies an A*-like algorithm 45)

to find a clause C, • -< C < _1_ i, with maximal Occam compression (Definition
4). The encoding measure is the total number of atom occurrences in a reduced
logic program. Logic programs are reduced by eliminating redundant clauses.

Definition 35 Redundant clauses
Let C be a clause and T be a set of clauses. C is redundant in T U C if and
only if T ~ C.

Inverse Entailment and Progol 269

Definition 36 Reduced set of clauses
Let T be a set of clauses. T is reduced iff T contains no redundant clauses.

Progol's algorithm for finding C with maximal Occam compression is Algo-
rithm 42 in Appendix D.2. The algorithm searches through the state space
defined by elements of p*(<O, 0, 1>). A lookahead function hs is used to
increase efficiency when searching for 'variable-chaining' clauses. A clause is
variable-chaining if and only if it contains a chain of variables vl vn such that
vl, vn are + type and -- type respectively in the head of C and each vi, vi+l are +
type and --type respectively in an atom in the body of C. The recursive clause
for reversing lists

reverse(A, B) ~--A = [C I D], reverse(C, E), append(E, [A], B)
(5)

(see Example 28) is variable-chaining. A clause C is called I /O complete if and
only if each - t y p e variable in the head of C is found in the body of C. Clause
(5) is I /O complete given the mode declarations in Example 28.

Lemma 37 Function hs defines I /O complete lookahead
Let _t_i and s = (C , 0, k) be as in Definiton 41 Appendix D.2. For every I /O
complete C ' such that s' = <C', 0", k'> E p*(<C, O, k>) it is the case that
Ic ' l - Ic l~hs .
Proof
By mathematical on induction on hs. Suppose v is in the body of C, then h~ --
0 and the lemma holds in the base case. Suppose, by mathematical induction,
that for all I /O complete C ' and for all sa = < Ca, Oa, ka> for which h~d = d it
is the case that] C'] -- I Ca] ~ h ~ and suppose that there exists such sa ~ p(s).
According to Definition 27 either Ca = C and 0d = 0 in which case for all I /
O complete C ' it is the case that I C'[- [C[~ h~ = d or else C,~ = C tJ {l}
and [C'[- [C [~ (hs~ + 1) ~ h~. This proves the step and completes the
proof. []

10.1 Correctness and Time Complexity
Note that in order to ensure polynomial tractability of Algorithm 42, the

user is required to provide a bound c on the cardinality of the clause body.

Theorem 38 Correctness of Algorithm 42
Let E, h, i, B, e, M, I i , c be as in Definition 41. Let S = p*(<[~, 0, 1)) and
Sc be the set of ali elements s of S such that Cs <-- c. If s = <C, 0, k) then
C(s) = C. We say that clause C explains example e if and only if B A C A

~--h [] and B A C A E F-h E3. if Sc does not contain any s such that C(s)
explains e and f i > 0 then Algorithm 42 returns 'no compression'. Otherwise
Algorithm 42 returns s ~ Sc such that C(s) explains e and there does not exist
s" E Sc for which C(s ') explains e and fi, > ft.

270 S. Muggleton

Proof
By contradiction. Assume the theorem is false. Then either (a) the algorithm
does not terminate or (b) there exists s E Sc such that C(s) explains e, f i > 0
and 'no compression' is returned or (c) s is returned and either C(s) does not
explain e o r f i < 0 or (d) s is returned and C(s) explains e a n d f i > 0 but there
exists s' ~ Sc for which C(s') explains e and fi, > ft.

First consider (a). Since p (Definition 27) either adds another liteFal or
moves forward by one through 3_ i, there can only be a finite number of elements
of s ~ So. In each cycle at least one of these, say s, is transferred from Open to
Closed in steps 3 and 4 and never reappears in Open again due to the construc-
tion in step 6. Open will never contain elements other than those in Sc due to
the third condit ion in the predicate prune. Thus there are only a finite number
of cycles and each operat ion terminates in finite time. This refutes (a).

Therefore instead suppose (b) there exists s ~ Sc such that C(s) explains
e, fs > 0 and 'no compression ' is returned in step 8. But step 8 can only be
entered after step 7, in which case if Open = 0 then terminated must have been
false and therefore Closed contained no s for which C(s) explained e and fs >
0. But if there exists s ~ Sc for which C(s) explains e and fs > 0 then there
must be s ' ~ S~ for which prune(s ') was true, since otherwise s would eventu-
ally have been transferred to Closed. But the first condit ion of prune could not
have been true of s ' since otherwise at worst s ' would have succeeded as best in
terminated. The second condit ion of prune could not have been true of s ' since
if g~, < 0 then also gs <-- 0 and thus f~ <__ 0. The third condition of prune could
not be true either since if cs, -> c then either C(s') = C(s) or C(s) qL Sc. This
refutes (b).

Instead suppose (c) s is returned and either C(s) does not explain e or
fs < 0. But if s is returned in step 7 then terminated must be true in which case
ns = 0 and fs > 0. For all s ~ S, by the construction of _1_ ,- (Definition 24) and
the soundness of p (Definition 29) B A C(s) A -~ ~ h D. Also since ns = 0 it
follows that B A C(s) A E ~h D. Therefore C(s) explains e and f (s) > O.
This refutes (c).

Lastly suppose (d) s is relurned and C(s) explains e a n d f i > 0 but there
exists s' ~ Sc for which C(s') explains e a n d f i , > fs. But s ' cannot be in Closed
since s = best(Closed) and therefore f i > f i ' . Therefore on return from step 7
there must exist s" in Open for which s' ~ p*(s"). But in that case according to
the terminated predicate f i > g~,, > g~, 2 fi,. This refutes (d) and completes the
proof. []

In the worst case Algor i thm 42 will consider all elements of S~ in Theorem 38.

Theorem 39 Cardinality of Sc
Let i, 2-i, S~, c be as in Definition 41. Let j+, j - be as in Theorem 26 and let
j = j+ + j - . Let I S] denote the cardinality of any set S.] Sc] <-] 2_ i]c+lj(c +
1) ~.

Inverse Entailment and Progol 271

Proof
The elements s = (C , 0, k} of So are all those s ~ p*((D, 0, l}) for which I C I
< (c + 1). Since CO c • i we can view the construction of s as the choice (with
possible repeats) of c + 1 elements from Z i followed by the choice of 0. It is
simplest to treat CO (with repeat literals) as though it were a single atom and
use the bounds in Remark 32 to calculate the worst case for the number of
variants of O. In this case there are at most I • c§ ways of choosing the
elements of CO and j (c + 1) ~ ways of choosing O. Thus I <-I• +
1);. []

From Theorems 26 and 39 we find that I Sc [is of order O(r] M]2o.~+t)). Clearly,
for tractability i, j , c must be small constants.

10.2 Cover Set Algorithm
Progol uses a simple cover set algorithm much like that employed in

Michalski's AQ family of algorithms. TM It repeatedly generalises examples in the
order found in the Progol source file and adds the generalisation to the back-
ground knowledge. Examples which are redundant relative to the background
knowledge are then removed (redundancy is based on Definition 35). The cover
set algorithm is given in Appendix D.3. Clearly Algorithm D.3 terminates in at
most I E I iterations.

Note that each clause is unflattened before being added to the back-
ground knowledge. If, as in Prolog, equality is assumed to be completely defined
using only the axiom of identity (V x . (x = x)) then unflattening has no effect
on the Herbrand models of a logic program. However, it does improve its
readability. For instance, clause (5) in Section 10 can be unflattened to the
following simpler clause.

reverse([A IB], C)~--reverse(B, D), append(D, [A], C).

Note that the use of modeb declarations for ' : ' in Example 28 followed by the
use of unflattening in Algorithm D.3 allows Progol to search through the term
structure of hypothesised clauses. This is despite the fact that Progol's refinement
operator (Definition 27) considers only variable/variable substitutions which
map hypothesised clauses to subsets of •

w The Progol System
Progol was written in C by the author of this paper. Progol version 4.1

source code, example files and manual pages are freely available (for academic
research) by anonymous ftp from ftp.comlab.ox.ac.uk in directory pub/Pack-
ages/ILP/progol4.1.

The design methodology for Progol was to present the user with a
standard Prolog interpreter augmented with inductive capabilities. The syntax
for examples, background knowledge and hypotheses in Dec-10 Prolog, with the

272 S. Muggleton

usual augmentable set of prefix, postfix and infix operators. Headless Horn
clauses, representing constraints are used to represent negative examples and
constraints. These are stored internally as clauses with head 'false'. Thus the
following statement can be placed in the Progol source file.

: - b l a c k (X) , white(X).

This is stored internally as the following definite clause.

false: --black(X), white(X).

In this way both the testing of negative examples and of general constraints
reduces to seeing whether 'false' is provable. Headless clause constraints can be
learned from ground headless unit clauses by use of a modeh for the predicate
'false'. An example of this can be found in the Progol4.1 distribution dataset
'animals.pl'.

The standard library of primitive predicates described in Clocksin and
Mellish 3) is built into Progol and available as background knowledge. Thus the
following command-line can be given to Progol when using the infix predicate
' = < ' for learning ranges of integers.

[- -modeh(1, p(+int)) , modeb(3, # i n t = < +in t) , modeb(3,
+ in t = < #int)?

The Progol prompt is] -- and int is a built-in single arity predicate which is true
for all integers. Note that Progol queries are terminated by '?' rather than the
usual '.' in Prolog. This allows queries to be distinguished from assertions.
Assertions terminated by '.' can also be made at the Progol prompt level. The
user can request examples to be generalised from the prompt by terminating the
example clause by a '!'. Unless the predicate 'search' is executed first, a '!'
statement will simply show the user the clause • for the example. Thus the
mode declarations above will allow the following interaction.

l-- p(5)!
[Most specific clause is]
p (A) : - 3 = < A, 4 = < A, 5 = < A , A = < 5, A = < 6, A = < 7.

In this A_s clause the modeb declarations (given above) for ' = < ' are used. In
step 5 of Algorithm 40 the goals X = < 5 and 5 = < Y are both recalled 3 times
and succeed with substitutions 3, 4, 5 for X and 5, 6, 7 for Y. The # i n t
place-markers are replaced by 3, 4, 5 and 5, 6, 7 respectively and the + in t
place-marker is replaced by the unique variable A using the hash function
described in Algorithm 40.

Although Progol can be used interactively, it is often more convenient to
run it in batch mode. In this case, when called from the operating system shell,
Progol is given the name of the example file as an argument. Progol then simply
generalises every predicate for which a modeh is declared and shows the results

Inverse Entailment and Progol 273

as output.
Progol can learn ranges and function with numeric data. These can be

either integer or floating point by simply making use of the built-in predicates
'is', ' < ' , ' = < ' , etc. This is best exemplified in the Progol4.1 dataset order4, in
which qualitative regression is applied in conjecturing Newton's inverse square
law from artificial floating point data.

The choice of engineering a complete Prolog interpreter was taken in
order to make induction a first-class and efficient operation on the same footing
as deductive theorem proving. This allows implementation of low-level opera-
tions such as depth-bounding of the theorem prover and rapid virtual assertion
and retraction of clauses into the clause set.

w Results
Results of a series of experiments involving Progol in learning to predict

mutagenic molecules can be found in Refs. 58), 59) and 60). A description of
Progol doing qualitative regression can be found in Ref. 41). Qualitaitve regres-
sion is carried out by using mode declarations to defince a family of 3 different
functions (linear, polynomial in one term and exponential) and using these in
competition to fit the data. The equation solver is supplied as user-defined
background knowledge.

Appendix E gives a table of runtimes on a SPARCstation 10 for learning
the various examples in the distribution version of Progol4.1. The numbers of
clauses in E +, E - , B and H are also given for each dataset. Note that the
datasets 'animals', 'exp', 'family' and 'set' involve learning a series of related
predicates. These runtimes are comparable with those of FOIL, 49) despite the fact
that FOIL does incomplete heuristic search to find clauses. FOIL also uses
extensional background knowledge rather than the intensional background
knowledge of Progol.

w Conclusion
This paper traces the line of development followed by the author in

investigating induction as the inverse of deduction. It has been shown that the
idea of inverting resolution proofs used in Duce and Cigol can be greatly
simplified by considering this as a special case of inversion of entailment.
However, the notion of inverting entailment is of a more fundamental nature
than that of inverting proof, since it is based on the model-theory which
underlies proof. This approach has led to the development of a new state-of-the-
art ILP system called Progol, which is available for academic research purposes
by anonymous ftp (see Section 11). For each example Progol develops a most
specific clause • within the user-defined mode language, and uses this to guide
an A*-like search through clauses which subsume • Each invocation of the
search returns a clause which is guaranteed to maximally compress the data.
Despite the admissibility of this search, the learning times in Appendix E are

274 S. Muggleton

comparable with FOIL, an algorithm which carries out a truncated heuristic
search and allows only extensional background knowledge.

Figure 2 in Section 7 shows various ways in which Progol could be made
more powerful. At present Progol can only deal effectively with the first and
third form of • If Progol could prove not only positive ground facts but also
negative ones then it would be possible to construct • in the form of the second
entry in Fig. 2. This would have applications in theory revision. However, for
the purposes of theory revision, Progol would need to have a strategy for
specialising over-general clauses. The construction of sub-saturants (Section 6.1)
would allow Progol to find all generalisations of recursive clauses, such as the
one in the fourth entry of Fig. 2. Both the second and fourth form of generalisa-
tion in Fig. 2 will lead to multiple definite • clauses. Dealing with the multi-
plicity of • clauses will require improvements in Progot's search techniques.
The incompleteness of the present search (see Example 30) also needs to be
addressed.

Definition 9 suggests a way in which Progol could be made to learn
effectively when provided with only positive example data. This would have real
world applications in areas such as natural language learning, in which it is
common to find positive-only data sources.

No learnability results have yet been shown for Progol. U-learnability
(Appendix B) offers a promising direction for such results.

The author believes that inverse entailment offers many new avenues in
the rapidly maturing research area of Inductive Logic Programming.

Acknowledgements
Many thanks are due to my wife, Thirza Castello-Cortes, who has not

only shown super-human tolerance during the long incubation and writing of
this paper but has also helped by proof-reading various versions. The author
would also like to thank Donald Gillies for pointing out the foundational (but
almost wholly disregarded) work of Stanley Jevons. Thanks are also due to
David Page, and Donald Michie for their helpful discussions and advice and to
Ashwin Srinivasan, who produced the initial Prolog version of Progol. Valu-
able suggestions concerning the U-learnability model were given by Tony
Hoare, Bill McColl, Michael Kearns and Paul Vitanyi. This work was supported
partly by the Esprit Basic Research Action ILP (project 6020), EPSRC grant
GR/J46623 on Experimental Application and Development of ILP and an
EPSRC Advanced Research Fellowship held by the author. The author is
supported by a non-stidendiary Research Fellowship at Wolfson College
Oxford.

Inverse Entailment and Progol 275

References
1) Bain, M. and Muggleton, S., "Non-Monotonic Learning," in Machine Intelligence 12

(D. Michie, ed.), Oxford University Press, 1991.
2) Bratko, I., Muggleton, S., and Varsek, A., "Learning Qualitative Models of Dynamic

Systems," in Proceedings of the Eighth International Machine Learning Workshop,
San Mateo, Ca, Morgan-Kaufmann, 1991.

3) Clocksin, W.F. and Mellish, C.S., Programming in Prolog, Springer-Verlag, Berlin,
1981.

4) Cohen, W., "Learnability of Restricted Logic Programs," in Proceedings of the 3rd
International Workshop on Inductive Logic Programming (S. Muggleton, ed.) (Techni-
cal Report IJS-DP-6707 of the Josef Stefan Institute, Ljubljana,Slovenia), pp. 41-72,
1993.

5) Conklin, D. and Witten, I., "Complexity-Based Induction," Technical Report, Depart-
ment of Computing and Information Science, Queen's University, Kingston, Ontario,
Canada, 1992.

6) Dolsak, B. and Muggleton, S., "The Application of Inductive Logic Programming to
Finite Element Mesh Design," in Inductive Logic Programming (S. Muggleton, ed.),
Academic Press, London, 1992.

7) Dormer, R., "An Inductive Logic Programming Implementation," MSc thesis, Oxford
University Computing Laboratory, Oxford, 1993.

8) Feng, C., "Inducing Temporal Fault Diagnostic Rules from a Qualitative Model," in
Inductive Logic Programming (S. Muggleton, ed.), Academic Press, London, 1992.

9) Gillies, D.A., "Confirmation Theory and Machine Learning," in Proceedings of the
Second Inductive Logic Programming Workshop, Tokyo, ICOT Technical Report,
TM-1182, 1992.

10) Gold, E.M., "Language Identification in the Lmit," Information and Control, 10, pp.
447-474, 1967.

11) Gottlob, G., "Subsumption and Implication," Information Processing Letters, 24, 2,
pp. 109-111, 1987.

12) Grobelnik, M., "Markus--An Optimized Model Inference System," in Proceedings of
the ECAI Workshop on Logical Approaches to Machine Learning, 1992.

13) Idestam-Almquist, P., "Learning Missing Clauses by Inverse Resolution," in Proceed-
ings of the International Conference on Fifth Generation Computer Systems, Tokyo,
ICOT, pp. 610-617, 1992.

14) Idestam-Almquist, P., "Generalization of Clauses" PhD Thesis, Sect. 1, Stockholm univ.
1993.

15) Jevons, W.S., "On the Mechanisation of Deductive Inference," Philosophical Transac-
tions of the Royal Society of London, 160, pp. 497-518, 1870.

16) Jevons, W.S., The Principles of Science: A Treatise on Logic and Scientific Method,
Macmillan, London, 1874.

17) Kakas, A.C., Kowalski, R.A., and Toni, F., "Abductive Logic Programming," Journal
of Logic and Computation, 2, 1992.

18) King, R., Muggleton, S., Lewis, R., and Sternberg, M., "Drug Design by Machine
Learning: The Use of Inductive Logic Programming to Model the Structure-Activity
Relationships of Trimethoprim Analogues Binding to Dihydrofolate Reductase,,"
Proceedings of the National Academy of Sciences, 89, 23, 1992.

19) Krishnamurthy, V., Combinatorics: Theory and Applications, Ellis Horwood, Chiches-
ter, England, 1986.

276

20)

S. Muggleton

van der Laag, P.R. and Nienhuys-Cheng., "Subsumption and Refinement in Model
Inference," in Proceedings of the 6th European Conference on Machine Learning,
volume 667 of Lecture Notes in Artificial Intelligence (P. Brazdil, ed.) Springer-Verlag,
pp. 95-114, 1993.

21) van der Laag, P.R. and Nienhuys-Cheng., "Existence and Nonexistence of Complete
Refinement Operators," in Proceedings of the 7th European Conference on Machine
Learning (F. Bergadano and L. De Raedt, eds.), volume 784 of Lecture Notes in
Artificial Intelligence, Springer-Verlag, pp. 307-322, 1994.

22) Lapointe, S. and Matwin, S., "Sub-Unification: A Tool for Efficient InductiOn of
Recursive Programs," in Proceedings of the Ninth International Machine Learning
Conference, Los Altos, Morgan Kaufmann, 1992.

23) Lee, C., "A Completeness Theorem and a Computer Program for Finding Theorems
Derivable from Given Axioms," Ph.D thesis, University of California, Berkeley, 1967.

24) Li, M. and Vitanyi, P., An Introduction to Kolmogorov Complexity and Its Applica-
tions, Springer-Verlag, Berlin, 1993.

25) Ling, C.X., "Learning the Past Tense of English Verbs: The Symbolic Pattern As-
sociators vs. Connectionist Models," Journal o f Artificial Intelligence Research, 1, pp.
209-229, 1994.

26) Lloyd, J.W., Foundations of Logic Programming, Springer-Verlag, Berlin, 1984.
27) Meltzer, B., "Power Amplification for Automatic Theorem Proving," in Machine

Intelligence 5 (B. Meltzer and D. Michie, eds.), Edinburgh University Press, Edinburgh,
pp. 165-179, 1969.

28) Michalski, R. and Larson, J., "Incremental Generation of vii Hypotheses: The Under-
lying Methodology and the Description of Program AQll ," 1SG 83-5,Computer
Science Department, University of Illinois at Urbana-Champaign, 1980.

29) Muggleton, S., "Duce, an Oracle Based Approach to Constructive Induction," in
IJCA1-87, Kaufmann, pp. 287-292, 1987.

30) Muggleton, S.,"A Strategy for Constructing New Predicates in First Order Logic," in
Proceedings of the Third European Working Session on Learning, Pitman, pp.
123-130, 1988.

31) Muggleton, S., "Inductive Logic Programming," New Generation Computing, 8, 4, pp.
295-318, 1991.

32) Muggleton, S., "Inverting the Resolution Principle," in Machine Intelligence 12, Oxford
University Press, 1991.

33) Muggleton, S., "Inverting Implication," in Proceedings of the Second Inductive Logic
Programming Workshop, Tokyo, ICOT Technical Report, TM-1182, 1992.

34) Muggleton, S.,"Bayesian Inductive Logic Programming," in Proceedings o f the Elev-
enth International Machine Learning Conference (W. Cohen and H. Hirsh, eds.), San
Mateo, CA, Morgan-Kaufmann, pp. 371-379, 1994.

35) Muggleton, S., "Inductive Logic Programming: Derivations, Successes and Short-
comings," SIGART Bulletin, 5, 1 pp. 5-11, 1994.

36) Muggleton, S., "Predicate Invention and Utilization," Journal of Experimental and
Theoretical Artificial Intelligence, 6, 1, pp. 127-130, 1994.

37) Muggleton, S. and Buntine, W., "Machine Invention of First-Order Predicates by
Inverting Resolution," in Proceedings of the Fifth International Conference on
Machine Learning, Kaufmann, pp. 339-352, 1988.

38) Muggleton, S. and Feng, C., "Efficient Induction of Logic Programs," in Proceedings
of the First Conference on Algorithmic Learning Theory, Tokyo, Ohmsha, 1990.

39) Muggleton, S., King, R., and Sternberg, M., "Protein Secondary Structure Prediction
Using Logic-Based Machine Learning," Protein Engineering, 5, 7, pp. 647-657, 1992.

40) Muggleton, S. and Page, C.D., "Self-Saturation of Definite Clauses," in Proceedings of

Inverse Entailment and Progol 277

the Fourth International Inductive Logic Programming Workshop, (S. Wrobel, ed.)
Gesellschaft ffir Mathematik und Datenverarbeitung MBH, pp. 161-174, 1994. GMD-
Studien Nr 237.

41) Muggleton, S. and Page, D., "Beyond First- Order Learning: Inductive Learning with
Higher-Order Logic," Techineal Report, PRG-TR-13-94, Oxford University Computing
Laboratory, Oxford, 1994.

42) Muggleton, S. and Page, D., "A Learnability Model for Universal Representations,"
Technical Report, PRG-TR-3-94, Oxford University Computing Laboratory, Oxford,
1994.

43) Muggleton, S. and De Raedt, L., "Inductive Logic Programming: Theory and
Methods," Journal of Logic Programming, 19, 20, pp. 629-679, 1994.

44) Muggleton, S., Srinivasan, A., and Bain, M., "Compression, Significance and Accu-
racy," in Proceedings of the Ninth International Machine Learning Conference (D.
Sleeman and P. Edwards, eds.), San Mateo, CA, Morgan-Kaufmann, pp. 338-347, 1992.

45) Nilsson, N.J., Principles of Artificial Intelligence, Tioga, Palo Alto, CA, 1980.
46) Plotkin, G.D., "A Note on Inductive Generalisation," in Machine Intelligence 5 (B.

Meltzer and D. Michie, eds.), Edinburgh University Press, Edinburgh, pp. 153-163,
1969.

47) Plotkin, G.D., "Automatic Methods of Inductive Inference," Ph.D thesis, Edinburgh
University, August 1971.

48) Popplestone, R.J., "An Experiment in Automatic Induction," in Machine Intelligence
5 (B. Meltzer and D. Michie, eds.), Edinburgh University Press, Edinburgh, pp. 203-215,
1969.

49) Quinlan, J.R., "Learning Logical Definitions from Relations," Machine Learning, 5,
pp. 239-266, 1990.

50) Quinlan, J.R., "Past Tenses of Verbs and First-Order Learning," in Proceedings of the
7th Australian Joint Conference on Artificial Intelligence (C. Zhang, J. Debenham, and
D. Lukose, eds.), Singapore, World Scientific, pp. 13-20, 1993.

51) Reynolds, J.C., "Transformational Systems and the Algebraic Structure of Atomic
Formulas," in Machine Intelligence 5 (B.Meltzer and D. Michie, eds.), Edinburgh
University Press, Edinburgh, pp. 135-151, 1969.

52) Rissanen, J., "Modeling by Shortest Data Description," Automatica, 14, pp. 465-471,
1978.

53) Robinson, J.A., "A Machine-Oriented Logic Based on the Resolution Principle,"
JACM, 12, 1, pp. 23-41, January 1965.

54) Rouveirol, C., "Extensions of Inversion of Resolution Applied to Theory Completion,"
in Inductive Logic Programming (S. Muggleton, ed.), Academic Press, London, 1992.

55) Rouveirol C. and Puget, J-F., "A Simple and General Solution for Inverting Resolu-
tion," in EWSL-89, London, Pitman, pp. 201-210, 1989.

56) Shannon, C.E. and Weaver, W., The Mathematical Theory of Communication,
University of Illinois Press, Urbana, 1963.

57) Shapiro, E.Y., Algorithmic Program Debugging, MIT Press, 1983.
58) Srinivasan, A., Muggleton, S.H., King, R.D., and Sternberg, M.J.E., "Mutagenesis; ILP

Experiments in a Non-Determinate Biological Domain," in Proceedings of the Fourth
International Inductive Logic Programming Workshop (S. Wrobel, ed.), Gesellschaft
ffir Mathematik und Datenverarbeitung MBH, 1994. GMD-Studien Nr 237.

59) Srinivasan, A., Muggleton, S.H., King, R.D., and Sternberg, M.J.E., "The Effect of
Background Knowledge in Inductive Logic Programming: A Case Study," Technical
Report, PRG-TR-9-95, Oxford University Computing Laboratory, Oxford, 1995.

60) Srinivasan, A., Muggleton, S.H., King, R.D., and Sternberg, M.J.E., "Theories for
Mutagenicity: A Study of First-Order and Feature Based Induction," Technical Report,

278 S. Muggleton

61)
PRG-TR-8-95 , Oxford University Computing Laboratory, Oxford, 1995.
Wirth, R., "Completing Logic Programs by Inverse Resolution," in E W S L - 8 9 , London,
Pitman, pp. 239-250, 1989.

Appendix A Definitions from Logic

A.1 Formulae in First Order Predicate Calculus
A variable is represented by an upper case letter followed by a string of lower

case letters and digits. A function symbol is a lower case letter followed by a string of
lower case letters and degits. A predicate symbol is a lower case letter followed by a
string of lower case letters and digits. A variable is a term, and a function symbol
immediately followed by a bracketed n-tuple of terms is a term. Thus f (g (X) , h) is a
term when f , 9 and h are function symbols and X is a variable. As in Prolog, integers,
' [] ' and '.' are function symbols and if tl, t2 are terms then '.'(tl, t2) can equivalently
be denoted [h l t2] and '.'(t~, '.'(t2 '.'(tn, []) ...)) can equivalently be denoted It1, tz,
.... tn]. A predicate symbol immediately followed by a bracketed n-tuple of terms is
called an atomic formula, or atom. Every atom is a well-formed formula (wff). If W
and W' are wffs then W (not W), W/x, W' (W and W'), W V W' (W or W') and
W ~ W' (W implied by W') are wffs. W A W' is a conjunction and W V W' is a
disjunction. If v is a variable and W is a wff then Vv .W (for all v W) and 3 v.W
(there exists a v such that W) are wffs. v is said to be universally quantified in V v. W
and existentially quantified in ~ v. W. The wff W is said to be function-free if and only
if W contains no function symbols. Both A and A are Iiterals wherzever A is an atom.
In this case A is called a positive literal and A is called a negative literal. A set of
literals is called a clause.The empty clause is represented by []. A clause represents the
disjunction of its literals. Thus the clause { al, a2 , ai, ai+~ G} can be equivalently
represented as (aa V a2 V ... N V ~ V ... V -~) or a~; a2; ... ~-- ai, ar ..., an. All the
variables in a clause are implicitly universally quantified. A Horn clause is a clause
which contains at most one positive literal. A definite clause is a clause which contains
exactly one positive literal. A positive literal in either a Horn clause or definite clause
is called the head of the clause while the negative literals are collectively called the body
of the clause. A set of clauses in which no pair of clauses share a common variable is
called a clausal theory. The empty clausal theory is represented by ,,. A clausal theory
represents the conjunction of its clauses. Thus the clausal theory { C1, C2, ..., Cn} can
be equivalently represented as (C1 A C2 A ... /~ Cn). Every clausal theory is said to be
in clause-normal form. Every wff can be transformed to an equivalent wff in clause
normal form. If C = V l~ V ... In is a clause then C = 3 Ii A ... /X In. In this case C is
not in clause normal form since the variables are existentially quantified. C can be put
in clause normal form by substituting each occurrence of every variable in C by a
unique constant not found in C. The process of replacing (existential) variables by
constants is called skolemisation. The unique constants are called skolem constants. A
set of Horn clauses is called a logic program. Apart from representing the empty clause
and the empty theory, the symbols o and 9 represent the logical constants F a l s e and
T r u e respectively. Let E be a wff or term. vars(E) denotes the set of variables in E.
E is said to be ground if and only if vars(E) = ~.

Inverse Entailment and Progol 279

A.2 Substitutions and Models
Let 0 = {v~/tl v,/tn}. 0 is said to be a substitution when each vi is a variable

and each t~ is a term, and for no distinct i and j is v~ the same as vs. The set { Vl
v~} is called the domain of 0, or dora(0), and {tl &} the range of 0, or rng(0).
Lower-case Greek letters are used to denote substitutions. Let E be a wff or a term and
0 = {v~/t~ v~/&} be a substitution. The instantiation of E by 0, written E0, is
formed by replacing every occurrence of v~ in E by ti. Atom a 0-subsumes atom b, or
a ~ b if and only if there exists a substitution 0 such that a0 = b. Clause C
0-subsumes clause D, or C ~ D if and only if there exists a substitution 0 such that
C0 c D. The Herbrand universe of the wff /,/1 is the set of all ground terms composed
of function symbols found in IV. The Herbrand base of the wff IV is the set of all
ground atoms composed of predicate and function symbols found in IF. An interpreta-
tion is a total function from ground atoms to { [], 9 }. A Herbrand interpretation I of
wff IV is an interpretation whose domain is the Herbrand base of IV. I can equivalent-
ly be represented as a subset of the atoms a in the Herbrand base of IV for which
I (a) = " . Below all interpretations I are assumed to be Herbrand. The atom a is true
in I if I (a) = 9 and false otherwise. The wff IV is true in I if IV is false in I and
is false otherwise. The wff IV A IV' is true in I if both IV and IV' are true in I and
false otherwise. The wff IV V IV' is true in I if either IV or IV' is true in I and false
otherwise. The wff IV ~-- IV' is true in I if IV V IV' is true in I and false otherwise.
If v is a variable and IV is a wff then Vv. IV is true in I if for every term t in the
Herbrand universe of IV the wff IV{ v/t} is true in I. Otherwise V v. IV is false in I.
If v is a variable and IV is a wff then ~ v. IV is true in I if V v. IV is true in I and false
otherwise. Interpretation M is a model of wff IV if and only if IV is true in M. A wff
IV is satisfiable if there exists a model of IV and unsatisfiable otherwise. Consequently
IV is unsatisfiable if and only if IV ~ []. Herbrand's theorem states that a wff IV is
satisfiable if and only if IV has a Herbrand model. Every logic program P has a unique
least Herbrand model M such that M is a model of P and every atom a is true in M
only if it is true in all Herbrand models of P. Let IV and IV' be two wffs. We say that
IV semantically entails IV', or IV ~ IV' if and only if every model of IV is a model
of IV'. Let X, Y and Z be wffs. Then according to the Deduction theorem X A Y
Z if and only if X ~ Y V Z. Let X~ Y be an inference rule. Then X~ Y is said to be
sound if and only if X ~ Y. Suppose I is a set of inference rules containing X~ Y and

IV' IV' //I, IV' are wffs. Then IV t-~ if is formed by replacing an occurrence of X in
IV by Y. Otherwise IV F-~ IV' if IV t-z IV" and IV" F-z IV'. We say that IV
syntactically entails IV' using inference rules I, if and only if IV ~ 1 IV'. The set of
inference rules I is said to be deductively sound and complete if and only if each rule
in I is sound and IV ~-i IV' whenever IV ~ IV'. Let IV and IV' be two wffs. We say
that IV is more general than IV' (conversely IV' is more specific than IV) if and only
i f W ~ W'.

A.3 Resolution
The substitution 0 = { ul/vl un/v,} is said to be a variable renaming if and

only i fdom (0) is disjoint from rng (0) and each vi is distinct. Let W and W' be two
wffs. If there exists a variable renaming 0 such that WO = W' then W, W' are said
to be alphabetic variants of each other. Wffs W, W' are said to be standardised apart
if and only if there exists a variable renaming 0 = {ul/vl un/vn}, v a r s (W) c
vars(0) and WO = W'. The substitution 0 is said to be the unifier of the atoms a and

280 s. Muggleton

a ' whenever a0 = a ' 0 . /z is the most general unifier (mgu) of a and a ' if and only if
for all unifiers 7 of a and a ' there exists a substitution 8 such that (a/z)8 = aT. Let C
and D be clauses and a be an atom. The sound inference rule

C V a D V - ~
C V D

is called resolution. (C U D)O is said to be the resolvent of the clauses C tA {a} and
D U {a'} whenever C and D are standardised apart and 0 is the mgu of the atofias a
and a'. Let T be a clausal theory. Robinson TM defined the function 7~n(T) recursively
as follows. "R,~ = T. "R,~(T) is the set of all resolvents constructed from pairs of
clauses in ~ , - I (T) . Robinson showed that T is unsatisfiable if and only if there is
some n for which 7"~(T) contains the empty clause ([]).

Appendix B Hypotheses , Probabilities and U-Learnabil i ty

B.I U-Learnability
The following is a variant of the U-learnabili ty framework presented in Refs. 34)

and 42). The teacher starts by choosing distributions F and G from the family of
distributions .T and ~ over concept descriptions 7-/(wffs with associated bounds for
time taken to test entailment) and instances X (ground wffs) respectively. The teacher
uses F and G to carry out an infinite series of teaching sessions. In each session a target
theory T is chosen from F. Each T is used to provide labels from { m, [] } (True,
False) for a set of instances randomly chosen according to distribution G. The teacher
labels each instance x; in the series (x~, ..., xm> with 9 if T ~ xi and ~ otherwise. An
hypothesis H ~ 7-[is said to explain a set of examples E whenever it both entails and
is consistent with E. On the basis of the series of labelled instances (e~, e2 era), a
Turing machine learner L produces a sequence of hypotheses (H1,/-/2, ..., Hm) such that
Hi E 7-/explains {el ei}. Hi must be suggested by L in expected time bounded by
a fixed polynomial function of i. The teacher stops a session once the learner suggests
hypothesis H~, with expected error less than e for the label of any xm+t chosen randomly
from G. <F, G> is said to be U-learnable if and only if there exists a Turing machine
learner L such that for any choice of 8 and e (0 < 8, e < 1) with probabi l i ty at least
(1 -- 8) in any of the sessions m is less than a fixed polynomial function of 1/8 and
1/c.

B.2 Bayesian Interpretation of Setting
Figure 5 shows the effect E = (el ei} has on the probabilities associated with

hypotheses in ~ . The learner's hypothesis language "H is laid out along the X-axis with
prior probabili ty p(H) : F(H) for H in 7-/measured along the Y-axis, where

u ~ p (H) : 1.

The descending dotted line in Fig. 5 represents a bound on the prior probabil i t ies of
hypotheses before consideration of examples E. The hypotheses 7-/z (7-/E -- 7-{) which
explain E are marked as vertical bars. The prior probabil i ty of E, p(E), is simply the
sum of probabilities of hypotheses in "He. The condit ional probabili ty p(E I H) is l in
the case that that H explains E and 0 otherwise. The posterior probabil i ty of H is now
given by Bayes theorem as

Inverse Entailment and Progol 281

p(l-I)

Fig. 5

H

Prior and posterior probabilities of hypotheses.

p(HIE) = p(H)p(EIH)
p(E)

With reference to Fig. 5, for an hypotheses H which explains all the data, p(H I E) will
increase monotonically with increasing E. Also for two different hypotheses H1, Hz
which explain E the following holds.

p(H1 E l = p(H1) (6)
p(Hz p(H2)

Appendix C Subsumption and Least General Generalisation
In the late 1960's the success of Robinson's s3) resolution procedure produced

considerable interest in the problem of inducing first-order formulae. Both Meltzer zz)
and Popplestone 48) carried out initial investigations into generalisation of ground
formulae by replacement of constants with variables. In implementing his approach
Meltzer decided to bound the number of resolutions involved in checking any hypothe-
sis against examples. This was an important innovation which is now being used within
Progol (Section 11).

In an alternative approach Reynolds TM and Plotkin 46) investigated the problem
of finding least general generalisations (lggs) of atoms. According to P l o t k i n f)

The work started with a suggestion by R.J. Popplestone (private commu-
nication) that, just as the unification algorithm was fundamental to
deduction, so might a converse be of use in induction.

The relationship of lgg to unification is depicted in Fig. 6. Atom g is a common
generalisation of atoms a and b if and only if there exist substitutions ag' and/3g' such
that a = gag' and b = #/3g'. The atom lgg(a, b) is the most general generalisation of
a and b if and only if lgg(a, b) is a common generalisation of a and b and for each
common generalisation g of a and b there exists a substitution ag such that lgg(a, b) =
g~v. The common instance i and most general instance are similarly defined for a and
b (see Fig. 6). In the case of the most general instance i of a and b Robinson sa) calls
aifli the most general unifier of a and b. Robinson describes an algorithm for construct-
ing the most-general unifier of two atoms. Robinson's unification algorithm is the basis
of resolution theorem proving. Plotkin and Reynolds describe an efficient algorithm for
computing the least general generalisation of two atoms.

282 S. Muggleton

g

a b

i
Fig. 6 Relationship of lgg and mgi.

[a] is the equivalence class of all atoms which are variable renamings of a.
Reynolds showed that the set of all equivalence classes of atoms augmented by the
symbols Y and • form a non-modular lattice. Thus, [a] ~ [b] = [lgg(a, b)] and [a]
[Z Eb] = [mgi(a, b)] , where [~ and Cl are both commutative and associative, though
neither distributes over the other.

In Ref. 46) Plotkin extended the investigation to clauses ordered by 8-
subsumption. Clause C 0-subsumes clause D, or C ~ D if and only if there exists a
substitution 0 such that CO c_ D. Just as with atoms, clause G and I are respectively
a common generalisation and a common instance of C and D if and only if G <~ C,
D and C, D ~ I . For clauses C and D there is a least general generalisation lgg(C,
D) and most general instance mgi(C, D), both unique up to renaming, such that for
every common generalisation G and common instance I of C and D it is the case that
G ~ lgg(C, D) and mgi(C, D) ~ I. The cardinali ty of the least general generalisation
of two clauses is bounded by the product of the cardinalities of the two clauses.

Plotkin 48) went on to define the lgg of two clauses relative to clausal background
knowledge B. The relative least general generalisation of clauses (rlgg) is potentially
infinite for arbitrary B. When B consists of ground unit clauses only the rlgg of two
clauses is finite. However the cardinality of the rlgg of m clauses relative to n ground
unit clauses has worst-case cardinality of order O(nm), making the construction of such
rlgg's intractable.

Inverse Entailment and Progol 283

Appendix D Progol Algorithm

D.1 Construction of Most-Specific Clause

Algorithm 40 Algorithm for constructing •

1. Given natural numbers h, i, Horn clauses B, definite clause e and set of mode
declarations M.

2. Let k = 0, hash: Terms---, N be a hash function which uniquely maps terms to
natural numbers, V be the clause normal form logic program d A bl A ... A bn,
• = O and InTerms = 0.

3. If there is no modeh in M such that a (m) ~ a then return []. Otherwise let m
be the first modeh declaration in M such that a (m) < a with substitution Oh. Let
ah be a copy of a (m) and for each v / t in 0h if v corresponds to a ~ t ype in m
then replace v in ah by t otherwise replace v in ah by vk where k = hash(t) and
add v to InTerms if v corresponds to +type. Add ah to • ~.

4. I l k = i r e t u r n • 1.
5. For each modeb m in M let {vt vn} be the variables o f + t y p e in a (m) and

T (m) = Tt • ... x Tn be a set ofn-tuples of terms such that each Ti corresponds
to the set of all terms of the type associated with v; in rn (term t is tested to be
of a particular type by calling Prolog with type(t) as goal). For each (t~ tn)
in T(m) let ab be a copy of a(m) and 0 = {v~/t~ vJ tn} . If Prolog with
depth-bound h succeeds on goal abO with the set of answer substitutions Ob then
for each 0b in Ob and for each v / t in 0b if v corresponds to a # t ype in rn then
replace v in a~ by t otherwise replace v in ab by vk where k = hash(t) and add
v to InTerms if v corresponds to - type . Add ~g to •

6. Goto step 4.

D.2 A*-like Algorithm for Finding Clause with Maximal Compression
Firstly we define some auxiliary functions used in Algolithm 42.

Definition 41 Auxiliary fnnetions
Let the examples E be a set of Horn clauses. Let h, i, B, e, M, • i be as in Definition
24 in Section 8.1 and let C, 0, k be as in Definition 27 in Section 9.2.

I ~ if there is no --type variable in the head of
•

d'(v) = if v is - t y p e in the head of •
if v is not in •

[(minu~vvd'(u)) + 1 otherwise

where U~ are the --type variables in atoms in the body of C which contain +type
occurrences of v. Below state s has the form (C, k, 0>. c is a user-defined parameter
for the maximal clause body length. [S [denotes the cardinality of any set S.

Ps = I {e: e ~ E and B A C A ~ t - h []}1
n s = I (e: e ~ E and B A C A e~--h []}1
c , = l c l - 1
Vs = {v: u / v E 0 and u in body of C}

284 S. Muggleton

hs = m i n w v ~ d ' (v)
9 s = P~- - (c~ + h~)
f s = g s - - ns

best(S) is a state s ~ S which has Cs <- c and for which there does not exist s' E S
for which fe > ft.

[true i f n s = O a n d f ~ > 0
~true i f g s < - O

prune(s) = | t rue if cs > c
(false otherwise

I true i f s = b e s t (S) , n~= O , f i > O a n d
terminated(S, S') = for each s' in S ' it is the case that fs -> gs,

(false otherwise

Algorithm 42 Algorithm for searching [] < C < •

1. Given h, B, e, • as in Definition 24.
2. Let Open = { (•, 0, 1)} and Closed = 0.
3. Let s = best(Open) and Open = Open -- {s}.
4. Let Closed = Closed U {s}.
5. If prune(s) goto 7.
6. Let Open = (Open U p(s)) -- Closed.
7. If terminated(Closed, Open) then return best(Closed).
8. If Open = 0 then print 'no compression' and return (e, 0, 1).
9. Goto 3.

D.3 Progol's Cover Set Algorithm

Definition 43 Unflattening
Let C = h~--X, Y be a definite clause in which X = (s l = tl s, = t .) is a
conjunction of atoms with predicate symbol ' = ' and Y is a conjunction of atoms with
predicate symbols other t h a n ' = ' . The clause C ' = h' ~--- Y' is called the unflattening
of C if and only if C ' is derived from C by successively resolving away each si = ti
in X with the clause (U = U ,--).

Algorithm 44 Cover set algorithm

1. h, i, B, M are given as in Theorem 26 and E is the subset of B corresponding
to atoms in modeh declarations in M.

2. If E = 0 then return B.
3. Let e be the first example in E.
4. Construct • for e using Algorithm 40.
5. Construct state s from • using Algorithm 42.
6. Let C ' be the unflattening of C (s) (Definition 43).
7. Let B = B U C' .
8. Let E ' = {e: e ~ E and B A ~ - - h []}.
9. Let E = E - - E ' .

10. Goto 2.

Inverse Entailment and Progol 28,5

Appendix E Progol's Runtimes

Data set Predicate I E§ I E - I I n l I HI Time (sec)
animals false 42 16 105 6 0.930

class 16 6 105 5 0.183
append append 19 8 0 2 0.199
arch arch 4 4 47 1 0.149
chess move 27 12 34 11 5.080
cyclic cyclic 3 2 69 1 0.100
delete delete 7 6 2 2 0.365
even even 16 15 4 3 0.216
exp plus 6 5 13 3 0.133

mult 6 23 10 3 0.730
exp 5 5 8 2 0.183

family parenLof 11 4 61 2 0.066
grandfather_of 10 7 53 1 0.149
grandparenLof 13 6 41 1 0.066

grammar s 8 7 18 1 0.116
krki illegal 341 655 51 4 17.281
last last 7 5 2 2 0.066
rain min 14 6 4 2 1.760
nim won 16 7 12 1 0.100
order0 f 15 3 13 1 0.382
orderl f 15 3 13 1 0.730
order2 f 8 4 13 1 0.747
order3 f 9 4 13 1 0.681
order4 f 12 4 13 1 1.079
parity4 parity 16 16 11 1 1.195
qsort qsort 11 12 8 2 0.863
range inrange 7 3 0 2 0.266
reverse reverse 13 7 4 2 0.149
set member 16 3 33 2 0.100

pair 3 2 16 2 0.050
subset 12 8 7 2 0.730

setuni setuni 14 13 2 4 2.357
sumx sumx 7 3 3 2 0.432
train eastbound 5 5 257 1 0.100
utube utube 5 13 173 1 1.643

286 S. Muggleton

Stephen Muggleton, BSc, PhD., MA(Oxon): He is an EPSRC
Advanced Research Fellow at Oxford University Computing Labora-
tory. He was previously Fujitsu Associate Professor at the University of
Tokyo and Director of Academic Research at the Turing Institute,
Glasgow. He is author of "Inductive Acquisition of Expert Knowl-
edge", published by Addison-Wesley, and editor of "Inductive Logic
Programming", published by Academic Press and Machine Intelligence
13, published by Oxford University Press. He was chief designer of
RuleMaster, which was used by BrainWare to build BMT, the world's
largest expert system. In 1990 he founded the field of Inductive Logic
Programming (ILP) and has been Program Chair of three international
workshops on this topic. He is Executive Editor of the Machine Intelli-
gence Series, published by Oxford University Press, and lectures on ILP
at the Oxford University Computing Laboratory. He is presently
developing a computational learning model for ILP called U-
learnability. He has recently published results in the Proceedings of the
Royal Society and the Proceedings of the National Academy of Sci-
ences on successful applications of ILP to problems in Molecular
Biology.

