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Abs trac t  This paper firstly provides a re-appraisal of the develop- 
ment of techniques for inverting deduction, secondly introduces Mode- 
Directed Inverse Entailment (MDIE) as a generalisation and enhancement 
of previous approaches and thirdly describes an implementation of MDIE in 
the Progol system. Progol is implemented in C and available by anonymous 
ftp. The re-assessment of previous techniques in terms of inverse implication 
leads to new results for learning from positive data and inverting implication 
between pairs of clauses. 
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w Introduction 
Since its inception in this journal  31) Inductive Logic Programming (ILP) 

has grown to become a substantial sub-area of  both Machine Learning and 
Logic Programming (see Ref. 43)). The success of  the subject lies partly in the 
choice of the core representation language of  logic programs. Least Herbrand 
models of logic programs 26~ fit neatly with the distinction between examples and 
conjectured theories in inductive inference. The syntax of logic programs 
provides modular blocks which, when added or removed, generalise or special- 
ise the program. Depth-bounded Prolog interpreters, used for theorem-proving, 
allow efficient testing of hypothesised Horn clause theories. Most importantly, 
Turing-equivalence of  logic programs is allowing a broader range of  Machine 
Learning applications in ILP than was possible with more restrictive representa- 
tions. 

Recent research in ILP has spawned a variety of new theoretical topics. 
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These include the problem of inverting resolution, a7'61'~4) inversion of  clausal 
implication, zz'~4'~~ predicate invention, 36) closed-world specialisation 1) and 
U-learnability. 4z) As with any subject, the diversity of sub-topics can be better 
understood by following the development of  a particular line of  ideas. The aims 
of  this paper are firstly to provide a re-appraisal of the development of  tech- 
niques for inverting deduction, secondly to introduce Mode-Directed Inverse 
Entailment (MDIE) as a generalisation and enhancement of  previous 
approaches and thirdly to describe an implementation of  MDIE in the Progol* 
system. 

At each stage in the development of  ILP there has been an attempt to 
solve existing technical restrictions of implemented systems. The five main 
approaches described in this paper are as follows. 

(1) Inverse resolution (IR) in proposit ional logic, 
(2) IR in first-order definite clause logic, 
(3) determinate relative least general generalisation, 
(4) inverse implication and 
(5) mode-directed inverse entailment. 

The paper is structured as follows. First the logical and statistical setting for ILP 
are introduced (Section 2). This is followed by a synopsis of  the results and 
restrictions for approaches (1) to (4) (Sections 3 to 6). The remainder of the 
paper (Sections 7 to 12) deals with theoretical and practical aspects of  mode- 
directed inverse entailment. Instructions for obtaining Progol by anonymous ftp 
are given in Section l l .  The paper closes with a discussion of  research issues 
related to inverse entailment. Standard definitions taken from Logic Program- 
ming and ILP are given in Appendix A. In Appendix B a statistical setting for 
ILP is described. Properties of the subsumption lattice are described in Appen- 
dix C. The algorithms used in Progol are given in Appendix D. A table of  
Progol's runtimes various data sets is presented in Appendix E. 

w Logical and Statistical Setting for ILP 
Deductive inference derives consequences E from a prior theory T. Thus 

if T says that all swans are white, E might state that a particular swan is white. 
Inductive inference derives a general belief T from specific beliefs E.  After 
observing one or more white swans T might be the conjecture that all swans are 
white. In both deduction and induction T and E must be consistent and 

T ~ E. (1) 

The requirement of  consistency means that the observation of  a black swan rules 
out conjecture T. Inductive inference is, in a sense, the inverse of  deduction. 
However, deductive inference proceeds by application of sound rules of  infer- 

* Prolog inverted in the middle. 
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ence, while inductive inference necessarily involves unsound conjecture. Such 
conjectures have at best statistical support from observed data. However, the 
association of probability values with hypotheses requires the assumption of a 
prior probability distribution over the hypothesis language. Occam's razor can 
be taken as an instance of a distribution which assigns higher prior probability 
to simpler hypotheses. It has been shown 4) that without such distributional 
assumptions the class of all logic programs is not even PAC-predictable. On the 
other hand, it has recently been demonstrated 42) that the class of all time- 
bounded logic programs is polynomial-time learnable (U-learnable) under fairly 
broad families of prior probability distributions. Appendix B gives more details 
of the relationship between data, posterior probabilities and U-learnability. 

Within ILP it is usual to separate the elements of (1) into examples (E), 
background knowledge (B), and hypothesis (H). These have the relationship 

B A H ~ E. (2) 

B, H and E are each logic programs. E usually contains ground unit clauses of 
a single target predicate. E can be separated into E +, ground unit definite 
clauses and E-,  ground unit headless Horn clauses. However, the separation 
into B, H and E is a matter of convenience, as the following example shows. 

Example 1 White swans 
The swan example might be represented using the following logic program. 

E+ = { white(swanl) +- 
swan(swanl) +- 
black(swan2) ~-- 

E -  = swan(swan2) ~-- 
B -- { ~---black(X), white(X) 
H = { white(X) ~ swan(X) 

Relationship (2) does not hold since swan(swanl) is not entailed by B /~ H.  It 
does not help to argue that swan(swanl) is background knowledge, since this is 
an observations about swanl. E -  does not contain headless Horn clauses, 
although together with B it refutes H.  These problems can most simply be 
avoided by dropping all but the restriction that B, H and E are arbitrary logic 
programs. 

w Inverse Resolut ion in Proposit ional  Logic 
The idea of  carrying out induction by inverting deduction was first 

investigated in depth mathematically by the 19th century political economist 

George Boole's algebraic approach to deduction inspired Jevons to use truth-functional tabula- 
tions to design and build a logical calculator. TM Jevons' mechanical Organon is complete for 
deciding satisfiability of  propositional clauses in 4 variables, and can be found in the Museum 
of Scientific Instruments in Oxford. 
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and philosopher of  science Stanley Jevons. in)* Jevons solved by tabulation the 
"Inverse or Inductive Problem" involving two propositional symbols. The 
following quote from Jevons' book on inductive inference ~6) is both modern- 
sounding and relevant to the problems addressed in this paper. 

Induction is, in fact, the inverse operation of deduction, and 
cannot be conceived to exist without the corresponding operation, 
so that the question of relative importance cannot arise. Who 
thinks of asking whether addition or subtraction is the more 
important process in arithmetic? But at the same time much 
difference in difficulty may exist between a direct and inverse 
operation; the integral calculus, for instance, is infinitely more 
difficult than the differential calculus of  which it is the inverse. 
Similarly, it must be allowed that inductive investigations are of  a 
far higher degree of  difficulty and complexity than any questions 
of deduction; ... 

At the time of Jevons logicians, not yet persuaded of Boole's algebraic approach 
to logic, employed an array of inference rules derived from Aristotelian syllo- 
gisms. Robinson TM was later to show that deductive inference in first-order 
predicate calculus could be effected by a single rule of inference, that of  resolu- 
tion. Inductive inference based on inverting resolution in proposit ional logic 
was first discussed in Ref. 32) (originally a technical report from 1987) as an 
analysis of the inductive inference rules within the Duce system. TM 

3 . 1  Induct ive  I n f e r e n c e  Rules  
Duce had six inductive inference rules. Four  of these were concerned with 

definite clause proposit ional  logic. In the following description of  the inference 
rules lower-case letters represent proposit ional variables and upper-case letters 
represent conjunctions of  propositional variables. 

Absorption: p ~-- A, B q ,-- A 
p~-'--q, B q~--A 

Inflentif ication: p ~ A, B p ~ A , q  
q~---B p~- -A ,q  

Intra-cons truct ion:  p ~ A, B p ,-- A, C 
q<--B p*---A,q q~---C 

Inter -cons truct ion:  p '-- A, B q ,--- A, C 
p~---r, B r*--A p*--r, C 

Each of Duce's rules is superficially similar to that of a deductive rule of 
inference of the form 

X 
Y 
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Such a deductive inference rule would be called sound if and only if X entailed 
Y. We will call a rule of  inference inductively sound if and only if Y logically 
entails X, or equivalently X entails Y. A set of  inductive inference rules will be 
written with an overline as 7. Each clause above the line is either a resolvent of 
two clauses below the line or is itself found below the line. Duce's inference 
rules invert single-depth applications of resolution. Using the rules a set of 
resolution-based trees for deriving the examples can be constructed backwards 
from their roots. The set of leaves of the trees represent a theory from which the 
examples can be derived. In the process new propositional symbols, not found 
in the examples, can be "invented" by the intra- and inter-construction rules. 

3 . 2  Completeness 
Continuing the analogy with deduction we might write 

X ~ - y Y  

to say that theory Y is derivable using inductive inference rules 7 from examples 
X. There are two senses in which a set of  inference rules 7 may be said to be 
complete. 

Definition 2 Weak completeness 
Let the example language s and hypothesis language 7-( both be subsets of  the 
first-order predicate calculus and let 7 be a set of  inductive inference rules. I is 
said to be weak complete for s and 7-( if and only if for each H _ 7-( there 
exists E c g such that E t-7 H.  

In Ref. 32) it was shown that 7 consisting of only absorption and intra- 
construction is weak complete under particular hypothesis and example lan- 
guage restrictions. 

Definition 3 Strong completeness 
Let the example language s and hypothesis language 7~ both be subsets of  the 
first-order predicate calculus and let 7 be a set of  inductive inference rules. I is 
said to be strong complete for s and 7( if and only if for each H _c "H and E 
c_ s H ~ E implies E- F y H .  

The four Duce inference rules in Section 3.1 are not strong complete for definite 
clause proposit ional calculus. 

3 . 3  Oceam Compression X In Duce every application of an inductive inference rule -~- was chosen 
to maximise information compression. 

Definition 4 Occam compression 
Let X, Y be wffs for which Y ~ X and X A Y ~ []. Let I XI and I Y I be the 
number of  bits required to encode X and Y. The Occam compression of X 
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relative to Y is I XI  - I YI. 

Suppose I PI  = b.symbols(P) where symbols(P) is the number of proposit ional 
symbol occurrences in P and b is the number of bits to encode each such 
occurrence. With reference to Appendix B, an encoding is the expression of a 
prior distribution. F ( P )  expresses the relative frequency with which the teacher 
chooses P as target concept. Assume the learner knows F(P)  and uses it as a 
prior distribution on "~. Then according to Shannon and Weaver s6) ]P] is 
-- log2 F(P)  and 

F(P)  = 2 -jet 

Note that since this is an exponential-decay distribution, in the situation in 
which the learner knows F(P), the results in Ref. 43) show that the class of all 
t ime-bounded logic programs are polynomial-time learnable (U-learnable). 
However, note also that if the teacher's prior is known to the learner then on 
average theories chosen by the teacher have extremely low information content. 
Alternatively this might be viewed as the expectation that only a small augmen- 
tation of  an existing theory is expected from any short presentation of the 
teacher's examples. 

Remark 5 
Let E be a wff and ~ be a set of  wffs containing E such that for each H ~ 7-( 
it is the case that H ~ E and H A E ~ D. Let/-/max have maximum compres- 
sion within 3{ relative to E and let H0 have compression 0 relative to E. nmax 
has maximum posterior probability and H0 has posterior probabili ty equal to E.  

Proof 
According to Equat ion (6) in Appendix B.2 

p ( H I E )  _ P ( H )  _ 21el_ml. 
p ( E I E )  P ( E )  

p ( H I E )  is maximal when I E]  - ] HI  is maximal. When ]EI  - I H ]  = 0 then 
p(HIE) = p(EIE) D 
The hypothesis with maximum posterior probabili ty (Hmax) has maximum 
expected predictive accuracy. 

w Inverse Reso lut ion  in First-Order Logic  
Inverse resolution was lifted to first-order predicate calculus in Ref. 37). 

This involved algebraic inversion of  the equations of  resolution below. 

D = (C  (_J C')O0' 
lO = l'O' 

Figure 1 shows a resolution step. D is derived at the base of the 'V' given the 
clauses on the arms. In contrast, a 'V' inductive inference step derives one of  the 
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c (+) c (-) 

D 
Fig. 1 Single resolution. 

clauses on the arm of  the 'V' given the clause on the other arm and the clause 
at the base. In Fig. 1 the literal resolved on is positive ( + )  in C and negative 
(--) in C'. Duce's absorption rule constructs C" from C and D, while the 
identification rule derives C from C '  and D. 

Since algebraic inversion of resolution has a complex non-deterministic 
solution only a restricted form of absorption was implemented in Cigol.* 
However, it was shown independently in Refs. 31) and 54) that there is a unique 
most-specific solution for 'V' inductive inference rules. That is 

c'; =(DUIO) 
where 8 is such that C8 c D. Rather than inverting the equations of  resolution 
we might consider resolution from the model-theoretic point of view. That is 

C A C ' ~  D. (3) 
Applying the deduction theorem gives a deductive solution for absorption. 

C A D b C "  
This is a special case of inverting entailment (Section 7). Sine D and C" are 
clauses, D and C '  are conjunctions of ground skolemised literals. The most 
specific solution for C '  corresponds to the most general solution for C', i.e. 
when C '  contains the maximum set of literals derivable from C A D. However, 
this solution is neither restricted to single-depth resolutions, nor is the clause 
cardinality finitely bounded. 

Example 6 Reeursive list membership 
Let C = member(X, IX] Y]) and D = member(2, [1, 2, 3]). 

C A D  ~ member(2, [ 1 , 2 , 3 ] )  
member(I, [1, 2, 3]) 
member(2, [2, 3]) 
member(3, [3]) 

b ,,, 

Though the clause C ' =  member(2, [1, 2, 3])*---member(I, [1, 2, 3]) . . . .  

* logiC backwards. 
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maintains Relationship (3), there are at least 3 derivation steps to D. C' is 
0-subsumed by all single-step resolution solutions. C' also contains the infinite 
sequence of atoms member(3, [3, 3]), member(3, [3, 3, 31) ..... 

Owing to the weak completeness results for the Duce inductive inference rules 
(Section 3.2) only absorption and intra-construction were implemented in 
Cigol. 

4 . 1  Compression 
Like Duce, Cigol used Occam compression (Definition 4) to guide the 

choice of inverse resolution steps. The encoding measure was the total number 
of predicate and function symbol occurrences in a logic program. Like Duce, 
each such inverse resolution step was only allowed if it produced a positive 
compression value. This lead to two difficulties. 

(1) Local generalisation Consider the recursive multiplication clause 

mult(A, B, C) *-dec(A, D), mult(D, B, E), plus(E, B, C). 

(2) 

When given a large set of ground instances of valid multiplications, 
compression is only achievable after a series of inverse resolution steps, 
in which all steps except the last do not produce compression. 
Learning from positive examples In Ref. 30) it was noted that the 
compression measure used in Cigol did not allow learning from only 
positive data since the simplest possible hypothesis, say VX.p(X) ,  will 
always be consistent. Alternative compression measures were suggested in 
Refs. 30), 44), 5) and 9). These measures are closely allied to Rissanen's 
Minimal Description Length (MDL) Principle. 52'~-4) 

The first problem was addressed by considering the inversion of multiple 
resolution steps by saturating clausesP 5'~4'32'13) Clause saturation is closely 
related to the techniques of inverse entailment described in Section 7. However, 
since saturation is based on inverting resolution proof steps, it cannot deal with 
built-in predicates. Nevertheless, the interpretations of such predicates can be 
computed by calling C functions. The Progol system (Sections 8 to 11) uses 
mode declarations to access such interpretations. 

4 . 2  Learning from Positive Data 
The second problem is of a different nature. When learning from only 

positive data, predictive accuracy will be maximised by choosing the most 
general consistent hypothesis since this will always agree with new data. 
However, in applications such as grammar learning, 2S'5~ only positive data is 
available. However, the grammar which produces all strings is not an acceptable 
hypothesis. Let us then suppose a modification to the U-learning setting given 
in Appendix B. The teacher still draws instances randomly from distribution G 
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but only gives them to the learner if they are positive examples of  the target T. 
In this setting we would need to find a tradeoff  between the generality and 
complexity of  an hypothesis. First let us define a measure of  the generality of  an 
hypothesis. 

Definition 7 Generality measure 
Let H be a wff and G be a probabil i ty distribution over a (possibly infinite) set 
o f  wffs X. The generality g of  H is defined as 

g ( H )  = ~, G(x).  
X, E X , H  ~ x 

Since G is a probabi l i ty  distribution it follows for every H ~ 7~ that 0 ~ g(H) 
1. g(H) is the probabi l i ty  that an instance drawn randomly from G will be 

entailed by H .  Note  therefore that g([~) = l, g ( 1 )  = 0 and T1 ~ Tz implies g 
(Tx) ~ g(T2). Clearly for infinite instance spaces g(H) cannot be calculated 
exactly. However, according to the Central Limit  Theorem, given a sufficiently 
large random sample S from G, the propor t ion  of  S entailed by H is an 
arbitrarily good estimate of  g(H). Now consider the following probabil i ty 
distribution. 

fro(H) = c.2-1m(1 -- g(H)) m 

m is the number  of  examples so far and c is a normalising constant to ensure 
that for H ~ 7-( the function fm sums to 1. fm trades off the complexity of  an 
hypothesis against its generality. Note that since fm varies with m, it cannot  be 
viewed as a prior  distribution over hypotheses. As with M D L  fm increases the 
discrimination against over-generality with increasing numbers of  examples. 
When used to choose between hypotheses given positive-only data fm has the 
following convergence property. 

Theorem 8 Finite elimination of false conjectures with positive-only data 
Let T be an element of  the set of  wffs ~ and let G be a probabi l i ty  distribution 
over the set of  wffs X such that x E X has non-zero probabil i ty  in G if and 
only if T ~ x. Let T '  be the minimal complexity expression of T in "H. Let <Xl, 
Xz . . . .  ) be an infinite series of  wffs drawn randomly according to G. Let f . (H) 
have value 2-mr(1 - -  i f (H) )  i for all those H in ~ which entail each x~, 1 _< j _< 
i, and have value 0 otherwise. Let H be any element of  7~ such that H does not 
entail the same subset of  X as T. Then there exists a finite natural number  k 
such that f~(H) < fk(T'). 

Proof 
Suppose there is an H for which there is no such k, It cannot  be the case for H 
that g(H) > g(T') and Ial >lT'l since otherwise for all i, i ~ O, f ( H )  < 
f.(T'). Therefore suppose g(H) > g(T') and tn l  < I T'I. But then since (1 -- 
g(H)) i decreases monotonical ly  with i there must exists k such that for all j > 
k it is the case that ] j ( H )  < f i (T ' ) .  Therefore it must be that I H [ > I T'I and 
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g(H)  < g(T') .  But then there exists k and xk such that T '  ~ xk and H ~fi xk 
and therefore f k ( H )  ---- 0 < f i (T ' ) .  This contradicts the assumption and com- 
pletes the proof. []* 

fm provides the basis for a simplified version of  the compression models defined 
in Refs. 30) and 44). 

Definition 9 Positive-only compression 
Let H be a wff and G be a distribution over instance space X. Let E ___ X be 
a set of m examples of  H.  Let [ H ] and I E I be the number of bits required to 
encode H and E. The positive-only compression of E to H is 

pcomp(H,  E)  = lop2fm(H) 
'~ fro(E) 

= I EI - I H I  - m(log2(1 - g ( E ) )  -- log2(1 -- 
g(H))) 
I EI - I HI + mlog2(1 -- g(H)). 

The approximation in the last line applies for small m, in which case g(E)  is 
close to 0. 

w Relat ive Least  General  General i sat ions  
One commonly advocated approach to learning from positive data is that 

of taking relative least general generalisations (rlggs) of  clauses (see Appendix 
C). Suppose, as in the last section, that the teacher chooses target T and presents 
to the learner examples E = {xl, x2 ..... xm}. Given background knowledge B, 
H = rlggs(E) will be the hypothesis within the relative subsumption lattice 
with the fewest possible errors of  commission (instances x ~ X for which H 
x and T ~ x). This approach to learning from positive data has the following 
problems. 

(1) Arbitrary background knowledge Plotkin 4~) showed that with un- 
restricted definite clause background knowledge B there may not be any 
finite rlggB( E).  

(2) Extensional background knowledge Suppose B and E consist of n and 
m ground unit clauses respectively. In the worst case the number of  
literals in rlgg~(E) will be (n + 1) m, making the construction intractable 
for large m. 

(3) Multiple clause hypothesis Target concepts with multiple clauses 
cannot be learned since rlggB(E) is a single clause. 

In contrast, none of  these problems occur if H is chosen from the set of  all 

At first sight, this theorem appears to clash with the fundamental result of Gold 1~ that not even 
the regular languages can be identified in the limit from positive data alone. However, it cannot 
be guaranteed after any finite number of examples that all H which are not over-general have 
lower values of fro than T'. 
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definite clause theories 7-( using maximum positive-only compression 
(Definition 9). Suppose E ~ ?-~ and H is the hypothesis with maximum 
positive-only compression. As with rlggs(E),  H will be maximally specific 
among clauses of the same complexity. Also H will always have complexity of 
at most that of  E.  Lastly H can be a multiple clause hypothesis. 

5 . 1  Golem 
Golem was designed to overcome the search problems of  Cigol (Section 

4.1). The unique construction of rlggs contrasts with the highly non- 
deterministic choices involved in inverting a resolution step. 

Golem used extensional background knowledge to avoid the problem of  
non-finite rlggs. Extensional background knowledge B can be generated from 
intensional background knowledge B'  by generating all ground unit clauses 
derivable from B'  in at most h resolution steps. The parameter h is provided by 
the user. The rlggs constructed by Golem were forced to have only a tractable 
number of literals by requiring that ~ contain definite clause theories that were 
U-determinate. The idea behind/ j -determinacy is as follows. Let C be a definite 
clause of the form 

V X . h  ~--- bl, b2 . . . . .  b, 

where 2~ is the vector of  all variables within C. Suppose that Y are the variables 
in the head of  C and Z are the variables found only in the body of  C. C can 
equivalently be written 

V Y . h  *---(3 J~bl, b2 ..... bn). 

Determinacy is a constraint which restricts the quantification on variables Z in 
the body of  definite clauses to Hillbert 6" (exists exactly one) quantification. 
This is equivalent to requiring that predicates in the background knowledge 
must represent functions. Thus for every example e and hypothesised clause C 
there must exist at most one valid substitution for the variables 2~ in the body 
of  C. j-determinate clauses are constrained to having at most j variables in any 
literal. /j-determinate clauses are further restricted that each variable has depth 
at most depth i. For  variable v the depth d(v) is defined recursively as follows. 

Definition 10 Depth of variables 

f 0 if v is in the head of C 
d(v)  (min~u~d(u))  + 1 otherwise 

where U~ are the variables in atoms in the body of C containing v. 

Multiple clause theories could be learned by Golem due to the use of 
negative examples. Each clause was built from the rlgg of a set of  positive 
examples. Negative examples were used to stop rlggs becoming over-general. 
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5.2  Application Experience 
Golem was the first ILP system to be applied to a wide variety of  

real-world applications. These included the construction of a satellite fault 
diagnosis model, 8~ the design of  a qualitative physics model, 2) finite-element 
mesh design, 8~ protein secondary structure prediction ~9~ and structure-activity 
prediction for drugs. 18~ In the qualitative physics domain Golem was hampered 
in requiring a large tabulation of  the QSIM simulator. The determinacy restric- 
tion was inappropriate in the finite element mesh design application. The 
restrictions of Golem and other ILP algorithms are discussed in Ref. 35). 

Golem was also applied to various list and number-theoretic learning 
tasks involving the construction of recursive theories. Learning recursive the- 
ories was awkward using Golem partly because intensional hypothesised base 
cases could not be used to augment the entirely extensional background knowl- 
edge. Also Golem's search was through the subsumption lattice, rather than the 
lattice of  implication between clauses. 

w Implication between Clauses 
In Ref. 47) Plotkin noted that if clause C B-subsumes clause D (or C < 

D) then C ---* D. However, he also notes that C ~ D does not imply C < D as 
shown by the following example. 

Example 11 Implication and suhsumption 
Consider the following clauses. 

C : na t (s (X))  *-- nat(X) 
O --- nat (s(s(Y)))  ~ nat(Y) 

C --~ D but not C ~  D. 

Although efficient methods are known 2~ for enumerating every clause C which 
B-subsumes an arbitrary clause D, this is not the case for clauses C which imply 
D. This is known as the problem of inverting implication between clauses. The 
inability to invert implication between clauses limits the completeness of  inverse 
resolution and rlggs since B-subsumption is used in place of clause implication 
in both. 

Gott lob 11~ proves a number of properties concerning implication between 
clauses. The following lemma is notable. 

Lemma 12 Gottlob's lemma 
Let C § C-  be the sets of positive and negative literals of  clauses C and D § D-  
be the same for D. C ~ D implies that C § < D § and C -  < D-.  

In an attempt to solve the inverting implication problem Lapointe and 
Matwin zz~ introduced sub-unification, a process of matching sub-terms in D to 
produce C. They demonstrate that sub-unification is able to construct recursive 
clauses from fewer examples than would be required by ILP systems such as 
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Golem TM and FOIL. 49) Although the operations described by Lapointe and 
Matwin are shown to work on a number of  examples it is not clear how general 
the mechanism is. Various general properties of  implication between clauses are 
investigated in Ref. 33). In particular it is shown that Lee's subsumption 
lemma TM has the following corollary. 

Corollary 13 Implication and recursion 
Let C, D be clauses. C ---, D if and only if either D is a tautology or C < D or 
there is a clause E such that E < D where E is constructed by repeatedly 
self-resolving C. 

In Ref. 33) Lee's subsumption lemma TM is used to show that C ~ D if 
and only if one of  the following conditions holds. 

(1) D is a tautology. 
(2) C . <  D. 
(3) There is a clause E such that E < D where E is constructed by repeated- 

ly self-resolving C. 

Thus the difference between 0-subsumption and implication between C and D 
is only pertinent when, as in Example 11, C can self-resolve. Attempts were 
made to a) extend inverse resolution TM and b) use a mixture of inverse resolution 
and lgg TM to solve the problem. The extended inverse resolution method in Ref. 
33) suffers from the same problems of  non-determinacy as Cigol. Idestam- 
Almquist's 14~ use of  lgg suffers from the standard problem of intractably large 
clauses (see Section 5). Both approaches are incomplete for inverting implica- 
tion, though Idestam-Almquist's technique is complete for a restricted form of 
entailment called T-implication. 

In Ref. 40) it is shown that for certain recursive clauses D all the clauses 
C which imply D also 0-subsume a logically equivalent clause D'. Up to 
renaming of  variables every clause D has at most one most specific form of D'  
in the 0-subsumption lattice. D'  is called the self-saturation of D. The self- 
saturation of D in Example 11 is simply C L) D. However, it is shown in Ref. 
40) that there exist definite clauses which have no finite self-saturation. 

6 . 1  Inverting Entailment between Clauses 
This section gives a complete and efficient method for inverting implica- 

tion between function-free definite clauses. The techniques used are based on 
inverting entailment using the deduction theorem. First we define definite 
sub-saturants. 

Definition 14 Definite sub-saturants 
Let D =- h ,-- bl ..... bn be a definite clause. Let 13 (D) be the Herbrand base of 
D restricted to the predicate symbol of h and let.L,~(D) be the minimal Herbrand 
model of D. Let desk(a) be the atom a with skolem constants in D replaced by 
their corresponding variables in D. Let .A(D) be 13 (D) --.AA(D). The sub- 
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saturants of  D, S (D) are the set of  all definite clauses desk(a) ~ bl .. . . .  bn for 
which a ~ .4 (D). 

Although arbitrary definite clauses can have an infinite sub-saturant set, this is 
not so for function-free definite clauses. It is now shown for function-free clauses 
that if k is a bound  on the arity of  predicates then the cardinality of  the 
sub-saturant set is polynomial ly  bounded in the number of  variables in D. 

Remark 15 Cardinality of sub-saturant set 
Let D be a function-free definite clause, k be the arity of  the predicate symbol 
in the head of D, n be the number  of  variables in D and $ ( D )  be the sub- 
saturants of  D. The cardinality of  S (D) is at most n k. 

Proof 
The arguments of  the heads of  clauses in S (D) are simply the k-length permuta- 
tions of  variables in D. There are n k such permutations. [] 

We now present the main theorem concerning sub-saturants. 

Theorem 16 
Let C and D be definite non-tautological  clauses and S (D) be the sub-saturants 
of  D. C ~ D only if there exists C '  in $ ( D )  such that C ~ C' .  

Proof 
Suppose C ~ D and there does not exist C '  in S(D) such that C - <  C'.  
According to Lemma 12 the heads of  C and D have the same predicate symbol. 
Since C ~ D it follows that C A D is not satisfiable. According to Herbrand 's  
theorem this is the case if and only if C A D has no Herbrand model. Accord- 
ing to Lemma 12 the body of C 0-subsumes the body of D and therefore there 
exists a ground (skolemised) substitution 0 for which all elements in the body 
of  C are true in the least model of  D. Therefore with substitution 0 the head of  
C must be false in the least Herbrand model of  D since otherwise C A D has 
a Herbrand model. But according to the construction in Definition 14 for every 
such C with the same predicate symbol as D there is a C '  in S (D) such that C 

C'.  This contradicts the assumption and completes the proof. [] 

This theorem can be used to efficiently enumerate all function-free definite 
clauses C such that C ~ D. First the finite set of  self-saturants S ( D )  is 
constructed. Then the clauses which 0-subsume any clause in S (D) are enumer- 
ated using an efficient interleaved enumerat ion of the subsumption lattice. Since 
function-free first-order predicate calculus is decidable the clauses C for which 
C ~ D can be enumerated by testing C ~- D. 

Example 17 Factorial 
x! = (x -- 2)!(x -- 1)x is an overly specific recurrence formula for the factorial 
function. This formula  can be represented by the clause 
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D = f ( I ,  J) ~-- d(I, K), d(K, L), f (L ,  M), re(K, M, N), m(I, N, 
J) 

where the predicate symbols are f = factorial, d = decrement, m : multiply. 
Since there are 14 variables in D it follows from Remark 15 that the cardinality 
of  S ( D )  is at most 14 z = 196. S(D) contains the clause 

C" = f ( K ,  N ) ~  d(I, K), d(K, L), f (L ,  M), re(K, M, N), m(I, 
N, J). 

The following clause C which implies D (but does not 0-subsume D) corre- 
sponds to the most general recurrence for factorial, x! = (x -- 1)!x. 

C = f (K ,  N)~--d(K, L), f (L ,  g ) ,  rn(K, M, N). 

The following example demonstrates how clauses with function symbols, such as 
those in Example 11, can be dealt with as though they were function-free by 
using flattening. TM 

Example 18 Flattening and inverse implication 
The clause D = nat(s(s(X)))~--nat(X) can be flattened to the function-free 
clause D' = nat(V) ~ s(V,  W), s (W,  X), nat(X) where s is defined as s(X, 
s(X)). There are ~2 sub-saturants of D', which are D'  itself and C"  = nat(W) 
~-- s( V, W), s (W,  X),  nat(X) which is 0-subsumed by C '  -- na t (W) '--- s (W,  
X), nat(X). C '  can be unflattened to the following clause which implies but 
does not 0-subsume D. 

C -- nat(s(X))  ,-- nat(X) 

w Inverting Entailment 
Inverse resolution and other subsumption oriented approaches to induc- 

tion have been re-assessed in previous sections of this paper. It has been 
demonstrated that a great deal of  clarity and simplicity can be achieved by 
approaching the problem from the direction of  model-theory rather than resolu- 
tion proof-theory. In Duce an inductive inference rule X / Y  is sound in the 
deductive sense if viewed as stating the relationship X ~ Y. In Cigol all 
solutions for absorption are found by simply rewriting the inductive 
specification C A C '  ~ D by the equivalent deduction oriented relationship C 
A D ~ C'. Lastly, it has been shown in this paper that a solution to Plotkin's 
25 year old problem of  generalising 0-subsumption can be achieved with 
relative ease by simply viewing solutions for C in C ~ D (given D) as clauses 
which eliminate Herbrand models of C A D. 

Let us now consider the general problem specification of ILP (Section 2) 
in this light. That  is, given background knowledge B and examples E find the 
simplest consistent hypothesis H (where simplicity is measured relative to a 
prior distribution) such that 
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B A H ~ E.  (4) 

It  was demonstrated in Example 1 that in general B, H and E could be arbitrary 
logic programs. Each clause in the simplest H should explain at least one 
example, since otherwise there is a simpler H '  which will do. Consider then the 
case of  H and E each being single Horn  clauses. This can now be seen as a 
generalised form of  absorption (Relation (3) in Section 4) and rearranged 
similarly to give 

Since H and E are each single clauses, H and E will be logic programs 
consisting only of  ground skolemised unit clauses. Let _k be the (potentially 
infinite) conjunction of  ground literals which are true in all models of  B A E.  
Since H must be true in every model of  B A E it must contain a subset of  the 
ground literals in 3-. Therefore 

and so for all H 

A subset of  the solutions for H can be found by considering the clauses which 
0-subsume 3-. The complete set of  candidates for H can be found by consider- 
ing all clauses which 0-subsume sub-saturants of  3_ (Section 6.1). 

Example  19 Var ious  examples  of  -l- 
Figure 2 shows various B, E and 3_. In the first case, the clauses which 
0-subsume 3- include all those which could be reached using first-order absorp- 
t ion (Seetion 4). In the second case the definite clauses which 0-subsume 3_ are 
those which could be reached by a first-order version of Duce's identification 
operator (Section 3.1). This form of identification is a general form of  Kakas et 
al's abduction 17) and is of  central interest in "theory revision" (alterations in 
theory revision range over all definitions within a hierarchical set of  predicates 
which reference each other). The third case demonstrates that constraints (head- 
less Horn clauses) can be learned from negative examples since the clause 

B E J_ 
anim(X) ,-- pet(X), nice(X) ,-- dog(X), nice(X) ,-- dog(X), pet(X), 
pet(X) ~- dog(X), anita(X). 
hasbeak(X) *-- bird(X), hasbeak(tweety), hasbeak(tweety); bird(tweety); 
bird(X) ~-- vulture(X), vulture(tweety). 
white(swan 1). ~-- black(swan 1). ~- black(swan 1), white(swan 1). 
sentence([],[]), sentence([ a,a,a],[]), sentence([ a,a,a],[]) ,-- 

sentence( [], [] ). 

Fig. 2 The most-specific clause (• for various versions of background knowledge 
(B) and example (E). 
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,-- black(X),  white(X) 

0-subsumes •  in the fourth case one of  the clauses which 0-subsumes a 
sub-saturant of the flattened & (see Example 17) is the DCG grammar rule 

sentence([a IX] ,  Y)~---sentence(X, Y). 

w The Definite Mode Language 
In general • can have infinite cardinality. Progol uses mode declarations 

to constrain the search for clauses which 0-subsume / (see last section). 

Definition 20 Mode declaration 
A mode declaration has either the form modeh(n,  atom) or modeb(n,  atom) 
where n, the recall, is either an integer, n > 1, or '*' and atom is a ground atom, 
Terms in the atom are either normal or place-marker. A normal term is either 
a constant or a function symbol followed by a bracketed tuple of terms. A 
place-marker is either +type,  -- type or # type ,  where type is a constant. If m is 
a mode declaration then a(m) denotes the atom of  m with place-markers 
replaced by distinct variables. The sign of  m is positive if m is a modeh and 
negative if m is a modeb in M. 

For  instance the following are mode declarations. 

modeh( l , p lus (+ in t ,+ in t , - - in t ) )  

modeb( l ,append(+l is t ,  [ + any ] , - l i s t ) )  

m o d eb (* , ap p en d ( -  list, + 
list ,+ list) 
modeb(4 , (+in t  > # in t ) )  

The recall is used to bound the number of alternative solutions for instantiating 
the atom. For  simplicity, we assume in the following the recall '*', meaning all 
solutions. The following defines when a clause is within Progol's definite mode 
language L.  

Definition 21 Definite mode language 
Let C be a definite clause with a defined total ordering over the literals and M 
be a set of  mode declarations. C = h ,--bt . . . . .  bn is in the definite mode 
language s (M) if and only if 1) h is the atom of  a modeh declaration in M 
with every place-marker + type  and - t y p e  replaced by variables and every 
place-marker # type replaced by a ground term and 2) every atom bi in the body 
of C is the atom of  a modeb declaration in M with every place-marker + type  
and - t y p e  replaced by variables and every place-marker # t y p e  replaced by a 
ground term and 3) every variable of  + typ e  in any atom b~ is either of + type  
in h or of  - t y p e  in some atom bj, 1 < j < i. 

Like Golem, Progol constructs clauses of  bounded depth (see Definition 10 in 
Section 5.1). 
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Definition 22 Depth-bounded mode language 
Let C be a definite clause with a defined total ordering over the literals and M 
be a set of  mode declarations. C is in • ~(M) if and only if C is in s (M) and 
all variables in C have depth at most i according to Definition 10. 

Example 23 Factorial revisited 
Reconsider Example 17 with M being 

modeh(* , f  ( + i n t , -  int)) modeb(*, d ( +  i n t , -  i nt)) 
m o d e b ( * , f ( +  i n t , -  int)) modeb(* ,m(+  int,-- int)) 

The clause 

f (A,  B)~--d(A, C), f (C ,  D), m(A, D, B) 

is only in s i(M) for i ~ 2. 

8 . 1  Most-Specific Clauses in/~ i (M)  
Progol searches a bounded sub-lattice for each example e relative to 

beckground knowledge B and mode declarations M. The sub-lattice has a most 
general element ( T )  which is the empty clause, [], and a least general element 
•  which is the most specific element in s i (M) such that 

B /~ .-J-/ A e ~-h[~ 

where ~- h [] denotes derivation of the empty clause in at most h resolutions. 

Definition 24 Most-specific clause •  
Let h, i be natural numbers B be a set of  Horn  clauses, e -- a ,-- b~ ..... bn be a 
definite clause, M be a set of mode declarations containing exactly one modeh 
m such that a(m) < a and • be the most-specific (potentially infinite) definite 
clause such that B A 4 A ~ ~--h D. Z i  is the most-specific clause in s  
such that •  "< 1 .  

Progol constructs 4 i  using Algorithm 40 in Appendix D.1. 

Theorem 25 Correctness of Algorithm 40 
Let h, i, B, M be defined as in Definition 24. Given h, i, B, e and M Algorithm 
40 returns an alphabetic variant of  •  

Proof 
By induction on i. Let i be 0. In step 3 the head of  40 is within the definite mode 
language of  M (Definition 21) since every + ty p e  and --type place-marker is 
replaced by variables, every # t y p e  place-marker is replaced by ground terms 
and every variable has depty 0 (Definition 10). By construction the head ah of 
the returned 40 0-subsumes a since inverting the one-one function hash gives a 
substitution from the variables in ah to the terms in a. This substitution is most 
specific since every variable is replaced by a unique term. This proves the base 



Inverse Entailment and Progol 263 

case. Suppose that for all i up to and including k Algorithm 40 correctly 
constructs a most-specific clause -t-k such that •  is the most-specific clause in 
Z?k(M) which 0-subsumes •  It is now shown that this implies the same will 
hold for k + 1. Consider step 5 for k + 1. The + type  place-markers in the atom 
of  m are replaced by variables of depth at most k which represent terms in 
InTerms. These terms must either have been placed in InTerms as + ty p e  in the 
head (step 3) or - - type from step 5 at an earlier value of  k. - t y p e  place-markers 
are replaced by variables of depth at most k + 1 and ~ type  by ground terms. 
Therefore • is in ,Ck+t(M). Also by conslruclion ab subsumes an atom in 
the body of _1_ with substitution 0b, and the substitution is most specific since all 
variables map to unique terms in _t_. T(m) corresponds to all combinations 
of  + type  substitutions, which makes • k+i an alphabetic variant of  the maximal- 
ly specific clause in s k§ which 0-subsumes •  This proves the step and 
completes the proof. [] 

The time-complexity of  Algorithm 40 is proport ional  to the cardinality of  • i. 

Theorem 26 Cardinality of •  
Let h, i B, M be defined as in Definition 24 and let I M [ denote the cardinality 
of  M. Let the number of + type  and -- type occurrences in each modeh in M be 
bounded by constants j -  and j+ respectively. Let the number of  + ty p e  and 
- t y p e  occurrences in each modeb in M be bounded by j+ and j -  respectively. 
Let the recall of  each m in M be bounded by the constant r. The cardinality of 
_l_i is bounded by ( r [ M  I j + j-)ij+. 
Proof 
By induction. The clause • contains only a head so its cardinality is 1. This 
proves the base case. Assume true for all i up to and including k and show for 
i = k +  1. The number of  terms associated with + type  in the head or -- type in 
the body of  •  is j -(r  I MI j+ j-)~§ These can be used to replace j+ + type  
place-markers in I M I modeb declarations and the atom can be recalled r times, 
giving a cardinality of  _t_ k+l of at most (r  I M I J+ j-)(~+l)~+. This proves the step 
and completes the proof, n.  

By default i = 3 in Progol and typically j§ --< 2. However, since in most cases 
relatively few atoms are true in the least Herbrand model of B A ~ when [ M I < 
10 it is usually the case that • has cardinality of  less than 100 atoms. 

w Refinement 

9 . 1  Refinement Operators 
When generalising an example e relative to background knowledge B, 

Progol constructs _1_,- and searches from general to specific through the sub- 
lattice of  single clause hypotheses H such that [] ~ H < • i. This sub-lattice is 
bounded both above and below. The search is therefore better constrained than 
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other general to specific searches, such as those in MIS 57) and F O I L p  ) in which 
the sub-lattice being searched is not bounded below. 

For  the purposes of  searching a lattice o f  clauses ordered by ~-subsump- 
tion Shapiro $7~ introduced the concept of  refinement operators. Suppose s is a 
(potentially infinite) set of  clauses and C is an element of  ,q. Then the 
refinement operator p is defined such that p(C)  c_ ~.. p is said to be sound if  
and only if for each D in p(C)  it is the case that C "< D. Also p~ = {-C} 
and D ~ p~(C) if and only if there exists D '  ~ p~-l(C) and D = D '  or D E 
p(D'). The closure p*(C) is p~ U pl(C) U .... 

According to Ref. 21) p is complete if and only if for each D in s there 
is an alphabetic variant  of  D in p*([]), p is finite if and only if for all C ~ 
the cardinality of  p(C)  is finite, p is proper if  and only if for each clause C and 
D ~ p(C)  it is the case that C < D. It is shown in Ref. 20) that Shapiro 's  p is 
not complete. It is also shown that there does not exist p which is finite, proper 
and complete. 

Redundancy of  refinement operators is investigated in Refs. 12) and 7). 
The refinement operator  p is redundant if and only if there exist clauses C, C' ,  
D in /~ such that D ~ p(C)  and D ~ p(C')  and C is not an alphabetic variant 
o f  C' .  Since both MIS and FOIL employ redundant  refinement operators,  the 
same clause D can be reached repeatedly when applying p to various C and C' .  

9 . 2  The Refinement Operator in Progol 
The refinement operator  in Progol is designed to avoid redundancy and 

to maintain the relationship [] < H < Z ;  for each clause H .  
Since H ~ I i, it is the case that there exists a substitution 8 such that 

H 8  --- Zi .  Thus for each literal l in H there exists a literal l '  in Z i  such that 
/~? -- l '. Clearly there is a uniquely defined subset • ~(H) consisting o f  all l '  in 
Z~ for which there exists ! in H and 18 = l'. A non-deterministic approach to 
choosing an arbitrary subset S '  of  a set S involves maintaining an index k. For  
each value of k between 1 and n, the cardinali ty of  S, we decide whether to 
include the kth element of  S in S ' .  Clearly, the set of  all series of  n choices 
corresponds to the set of  all subsets of  S. Also for each subset of  S there is 
exactly one series of  n choices. To avoid redundancy and maintain 8-subsump- 
tion of • Progol 's  refinement operator maintains both k and 8. 

Definition 27 Progol refinement operator 
Let h, i, B, e, M and •  be defined as in Definition 24 and let n be the 
cardinality of  • ~. Let k be a natural number, 1 -< k < n. Let C be a clause in 
L i(M) and 8 be a substitution such that C8 c_ • Below a literal l corre- 
sponding to a mode m~ in M is denoted simply as p(v~ ..... Vm) despite the sign of  
mt and function symbols in a(mt). A variable is splittable if  it corresponds to 
a + t y p e  or - t y p e  in a modeh or if it corresponds to a - - type  in a modeb.  ( C ' ,  
8', k ' )  is in p(<C, 8, k ) )  if and only if either 
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(l) C ' - -  C U { l } ,  k ' =  k, <l, 8"> is in ~(8, k) and C" ~ ~.~(M) or 
(2) C '~ -  C, k ' - -  k + l, 8 ' - -  8 and k < n. 

<p(vx ..... v~), 8'> is in ~(8, k) if and only if 8' is initialised to 8, lk ~ p(ul ..... urn) 
is the kth literal of  3_~ and for each j ,  1 ~ j -< m, 

(1) if uj is splittable then v~/u~ ~ 8' else vj/u~ ~ 8 or 
(2) if us is splittable then v~ is a new variable not in dom(8) and 8' = 8U 

{vj/uj~. 
In Definition 27 the variables in 3_i form a set of equivalences classes over the 
variables in any clause C which 8-subsumes _L~. Thus we could write the 
equivalence class of u in 8 as [v]u, the set of  all variables in C such that v/u 
is in 8. The second choice in the definition of c~ adds a new variable to an 
equivalence class [vii u~. This will be referred to as splitting the variable us. Note 
that in Definition 27 a variable is not splittable if it corresponds to a + type  in 
a modeb since the resulting clause would violate the mode declaration language 
s (M)(see Definition 21). The following is an example of variable splitting. 

Example 28 Applying p in list reversal 
Suppose M consists of  the following mode declarations. 

modeh(*, reverse(+ list, - list)) 
modeb(*, + a n y  = :~ any) 
modeb(*, append( + list, [ + i n t ] ,  --list)) 
modeb(*, + list = [ -  i n t / -  list]) 
modeb(*, reverse(+ list, - list)) 

The types and other background knowledge are defined as follows. 

f any(Term) ~- list(I]) ~-- 
list( [H I T])  *--- list(T) 

B = Term = Term ~-- 
reverse([], []) ~-- 
append([],  X, X)~-- 
append([H I T],  L1, [H I L 2 ] ) ~ a p p e n d ( T ,  L1, L2) 

Let h = 30 and i = 3 and let the example be as below. 

e ~- reverse([ 1 ], [ 1 ]) ~ 

In this case 3-~ is as follows. 

_1_~ = reverse(A, A) ~ A  = [1], A = [B I C] ,  B = 1, C = [], 
reverse(C, C), append(C, [B],  A) 

Let <C', 8', k'> be in 0(<D, 0, 1>). Then <C', 8', k'> are shown in the first table 
in Fig. 3. Suppose that C = (reverse(D, E)  ~- D = [F  I (7]), 8 = {D/A ,  E / A ,  
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C" 8' 
reverse(D, E) {D/A, E/A} 
reverse(D, D) {D/A} 
[] I~ 

k t 

1 
I 
2 

C' 8' k'  
reverse(D, E) ,--- D = IF[  G], reverse(G, G) 8 6 
reverse(D, E)  ~--D -- [FI G], reverse(G, H) OU{H/C} 6 
reverse(D, E) ~ D = IF  [ G] 8 7 

Fig. 3 Two applications of p. 

F/B ,  G/C},  k = 6 and (C ' ,  0', k'> is in p(<C, O, k>). Then <C', 0', k '  > are 
shown in the second table in Fig. 3. 

By analogy to Shapiro's p we can talk of the soundness of  Progol's p. 

Lemma 29 Soundness of Progol's p 
Let h, i, B, e, M and •  be defined as in Definition 24 and let n be the 
cardinality of • i. Let k be a natural number, 1 _< k ~ n. Let C be a clause in 
s  and 0 be a substitution such that CO c • (C', 0', k'> ~ p( <C, O, 
k>) only if C'O' c Wi and C '  E s ;(M). 

Proof 
Suppose the lemma is false. In that case there exists (C ' ,  0', k'> E p( (C ,  0, k>) 
and either C'O" ~ _1_ ~ or C'  ~ Z; ~(M). But according to Definition 27, C '  
s i(M) or C'  = C, in which case also C '  ~ s ~(M). Thus it must be that C'O" 

• in which case C '  = C U {/} and k '  = k '  where (l ,  0'> is in 8 (0 ,  k>. But 
then according to the definition of  c~, C'O" c_ • which contradicts the assump- 
tion and completes the proof. [] 

As with Shapiro's refinement operator we can define the closure set for Progol's 
p. Let X, Y, Z stand for triples of the form ( C ,  0, k>. Then p~ = {X} and 
Y ~ p~(X) if and only if there exists Z ~ p~-l(X) and Y = Z or Y ~ p(Z). 
The closure p*(X) is p~ U p~(X) U .... The following example shows that 
Progol's p is not complete due to the choice of  ordering of  2 ;. 

Example 30 Incompleteness of search 
Let B contain definitions for decrementation (dec), addition (plus) and the 
clause mult(0, X, 0),--- with appropriate mode declarations M and let the 
example e be the clause mult(1, 1, 1) ,--. Then W; is the clause 

mult(A, A, A) ~ dec(A, B), plus(A, B, A), plus(B, B, B), 
mult(A, B, B), mult(B, B, B). 

Given this ordering over • ; there will be no element of Progol's p* containing 
the clause 

mul t (U,  V, W)*- -dec (U,  X), mult(X,  V, Y), plus(Y, V, W). 
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9 . 3  Complexity of  p 
In order to analyse the complexi ty  o f  P we in t roduce an incremental  

variant  o f  the Bell number  TM from combinator ics .  The mth  Bell number  is the 
number  o f  ways that  a set S o f  cardinal i ty  m can be par t i t ioned into non-empty  
equivalence classes. 

Lemma 31 Number of  splits of  a variable 
Suppose  that  ~ in Defini t ion 27 has arguments  0, k and that  the k th  literal o f  
-l-i has m splittable occurrences o f  only  one variable u. Suppose also that  the 
cardinal i ty  o f  [v]u in 0 is n. The number  o f  variants o f  0 '  is given by the 
funct ion s as follows. 

= ~ 1 if m = 0 s(n, m) ( s ( n , m -  1 ) n + s ( n +  1, m -  1) if m > 0  

Proof  
I f  m = 0 there is on ly  one substi tut ion,  0 '  = 0. I f  m > 0 consider  the first 
occurrence o f  u in lk. In c~ the choice can be not  split u (case 1) or  to split u (case 
2). In case 1, the set o f  0 '  variants is { 0} crossed with the set o f  n choices for 
v l / u  crossed with the set o f  s ( n ,  m - -  1) variants for the remaining m -- 1 
occurrences o f  u in lk. In case 2, if  the new variable is v then the set o f  0 '  variants 
is { 0} crossed with { v / u }  crossed with the set o f  s ( n  + 1, m - -  1) variants for 
the remaining m -- 1 occurrences o f  u in lk. This gives a total o f  s ( n ,  m - -  1) 
n + s ( n  -4- 1, m - -  1) variants o f  0'. [] 

A partial t abula t ion  o f  the funct ion s is shown in Fig. 4* 

n 0 1 2 3 4 5 6 7  
m 
0 1 1 1 1 1 1 
1 I 2 3 4 5 6 
2 2 5 10 17 26 
3 5 15 37 
4 15 

1 1 
7 

Fig.  4 A par t ia l  t abu l a t i on  of  the funct ion s. 

Remark 32 Bounds on s 
Let n, m be natural  numbers,  n m <- s ( n ,  m )  <_ ( n  + m ) " .  

Proof  
Fo r  m ---- 0, n o = s ( n ,  0) = (n + 0) ~ = 1. Cons ider  s in terms o f  the recurrence 
n m = n m - t n .  For  all n ~ 0 and m > 0 it is the case that  s ( n ,  m - -  1)n < s ( n ,  
m )  < s ( n  + m ,  m - -  1)n + s ( n  + m ,  m - -  1). [] 

* The Bell funct ion can be expressed s imply  as B(m) = s(0, m). 
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Example 33 
Suppose in Definition 27 that C -- p ( V )  ~-- and 0 = { V / U }  and l~ = q(U,  
U, U) where the last two occurrences of U in l~ are - t y p e .  Then in Lemma 31 
this gives m = 2, n = 1, and s(n, m) = 5. The 5 variants oflkO' are {q(V, V, 
V), q (V ,  V, W), q ( V ,  W,  V), q ( V ,  W,  W), and q (V ,  W,  Z)}. 

We are now in a position to give a function for the cardinality of p. 

Theorem 34 The eardinality of p 
Let C, 0, k, and lk be as in Definition 27. Suppose that l~ contains p splittable 
variables and q non-splittable variables. Let mx, 1 <_ x <_ p, and my, 1 < y _--. 
q, denote respectively the number of occurrences of  Vx and vu in the splittable 
and non-splittable variables of lk. Let nz, 1 ~ x <_ p, and nv, 1 _< y --< q, denote 
respectively the number of  Ux and uu such that ux/vx and uu/vy are in 0. Then 
the cardinality of p ( ( C ,  O, k ) )  is 

mx q [ / o ( ( C ,  0 ,  k ) ) [  (I-[xP=l nx ) (1 - Iy=l  S(ny, my)) + 1. 

Proof 
In Definition 27, p chooses between 2 cases. Since the second choice produces 
a unique solution, the cardinality of  p is one greater than the cardinality of the 
associated function c~. Only the first case of  3 is applicable to non-splittable 
variables. Thus for each of the mx occurrences of  vx in lk there are nx choices of  
Ux/Vx, giving n~ x variants. The set of all substitutions 0'  for lk is { 0} crossed 
with the set of  variants for each Vx, 1 ~ x ~ p crossed with the set of  variants 

- -  Pax q for each vv, 1 < y <-- q. This gives a total of  (II~=1 nx )(IIu=x s(nu, my)) 
different substitutions 0'  for the function $ and the same value plus 1 for the 
cardinality of p. [] 

From Remark 32 it can be seen that I p ( ( C ,  O, k)) l  is exponential in p, q, mx 
and inv. This reiterates the requirement indicated by Theorem 26 that for the 
sake of  polynomial tractability p, mx and q, rnv should be bounded respectively 
by constants j+ and j - .  

In the implementation of p Progol simply decodes each of  the natural 
numbers between 1 and I p ( (C ,  O, k))l into clauses and updates 0 and k 
appropriately. The details of this decoding process are omitted. 

w Searching the Subsumption Latt ice  
To search the subsumption lattice Progol applies an A*-like algorithm 45) 

to find a clause C, • -< C < _1_ i, with maximal Occam compression (Definition 
4). The encoding measure is the total number of  atom occurrences in a reduced 
logic program. Logic programs are reduced by eliminating redundant clauses. 

Definition 35 Redundant clauses 
Let C be a clause and T be a set of clauses. C is redundant in T U C if and 
only if T ~  C. 
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Definition 36 Reduced set of clauses 
Let T be a set of  clauses. T is reduced iff T contains no redundant clauses. 

Progol's algorithm for finding C with maximal Occam compression is Algo- 
rithm 42 in Appendix D.2. The algorithm searches through the state space 
defined by elements of  p*(<O, 0, 1>). A lookahead function hs is used to 
increase efficiency when searching for 'variable-chaining' clauses. A clause is 
variable-chaining if and only if it contains a chain of  variables vl ..... vn such that 
vl, vn are + type  and -- type respectively in the head of C and each vi, vi+l are + 
type and --type respectively in an atom in the body of C. The recursive clause 
for reversing lists 

reverse(A, B) ~--A = [C I D], reverse(C, E),  append(E,  [A], B) 
(5) 

(see Example 28) is variable-chaining. A clause C is called I /O complete if and 
only if each - t y p e  variable in the head of C is found in the body of  C. Clause 
(5) is I /O complete given the mode declarations in Example 28. 

Lemma 37 Function hs defines I /O complete lookahead 
Let _t_i and s = (C ,  0, k)  be as in Definiton 41 Appendix D.2. For  every I /O 
complete C '  such that s' = <C', 0", k'> E p*(<C, O, k>) it is the case that 
Ic ' l - Ic l~hs .  
Proof 
By mathematical on induction on hs. Suppose v is in the body of  C, then h~ -- 
0 and the lemma holds in the base case. Suppose, by mathematical induction, 
that for all I /O complete C '  and for all sa = < Ca, Oa, ka> for which h~d = d it 
is the case that ] C']  -- I Ca] ~ h ~  and suppose that there exists such sa ~ p(s). 
According to Definition 27 either Ca = C and 0d = 0 in which case for all I /  
O complete C '  it is the case that I C'[  - [ C[ ~ h~ = d or else C,~ = C tJ {l} 
and [ C'[  - [ C [ ~ (hs~ + 1) ~ h~. This proves the step and completes the 
proof. [] 

10.1  Correctness and Time Complexity 
Note that in order to ensure polynomial  tractability of Algorithm 42, the 

user is required to provide a bound c on the cardinality of the clause body. 

Theorem 38 Correctness of Algorithm 42 
Let E,  h, i, B, e, M,  I i ,  c be as in Definition 41. Let S = p*(<[~, 0, 1)) and 
Sc be the set of  ali elements s of  S such that Cs <-- c. If s = <C, 0, k)  then 
C(s)  = C. We say that clause C explains example e if and only if B A C A 

~--h [] and B A C A E F-h E3. if Sc does not contain any s such that C(s)  
explains e and f i  > 0 then Algorithm 42 returns 'no compression'. Otherwise 
Algorithm 42 returns s ~ Sc such that C(s)  explains e and there does not exist 
s" E Sc for which C(s ' )  explains e and fi, > ft.  
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Proof 
By contradiction. Assume the theorem is false. Then either (a) the algorithm 
does not terminate or (b) there exists s E Sc such that C(s) explains e, f i  > 0 
and 'no compression'  is returned or (c) s is returned and either C(s)  does not 
explain e o r f i  < 0 or (d) s is returned and C(s)  explains e a n d f i  > 0 but there 
exists s' ~ Sc for which C(s') explains e and fi, > ft. 

First consider (a). Since p (Definition 27) either adds another  liteFal or 
moves forward by one through 3_ i, there can only be a finite number of  elements 
of  s ~ So. In each cycle at least one of  these, say s, is transferred from Open to 
Closed in steps 3 and 4 and never reappears in Open again due to the construc- 
tion in step 6. Open will never contain elements other than those in Sc due to 
the third condit ion in the predicate prune. Thus there are only a finite number  
of  cycles and each operat ion terminates in finite time. This refutes (a). 

Therefore instead suppose (b) there exists s ~ Sc such that C(s)  explains 
e, fs > 0 and 'no compression '  is returned in step 8. But step 8 can only be 
entered after step 7, in which case if Open = 0 then terminated must have been 
false and therefore Closed contained no s for which C(s)  explained e and fs > 
0. But if there exists s ~ Sc for which C(s)  explains e and fs > 0 then there 
must be s '  ~ S~ for which prune(s ' )  was true, since otherwise s would eventu- 
ally have been transferred to Closed. But the first condit ion of prune could not 
have been true of  s '  since otherwise at worst s '  would have succeeded as best in 
terminated. The second condit ion of  prune could not have been true of  s '  since 
if g~, < 0 then also gs <-- 0 and thus f~ <__ 0. The third condition of  prune could 
not be true either since if cs, -> c then either C(s')  = C(s) or C(s)  qL Sc. This 
refutes (b). 

Instead suppose (c) s is returned and either C(s)  does not explain e or 
fs < 0. But if s is returned in step 7 then terminated must be true in which case 
ns = 0 and fs > 0. For  all s ~ S, by the construction of  _1_ ,- (Definition 24) and 
the soundness of  p (Definition 29) B A C(s)  A -~ ~ h D. Also since ns = 0 it 
follows that B A C(s)  A E ~h D. Therefore C(s) explains e and f ( s )  > O. 
This refutes (c). 

Lastly suppose (d) s is relurned and C(s)  explains e a n d f i  > 0 but there 
exists s' ~ Sc for which C(s') explains e a n d f i ,  > fs. But s '  cannot  be in Closed 
since s = best(Closed) and therefore f i  > f i ' .  Therefore on return from step 7 
there must exist s" in Open for which s' ~ p*(s"). But in that case according to 
the terminated predicate f i  > g~,, > g~, 2 fi,. This refutes (d) and completes the 
proof. [] 

In the worst case Algor i thm 42 will consider all elements of  S~ in Theorem 38. 

Theorem 39 Cardinality of Sc 
Let i, 2-i, S~, c be as in Definition 41. Let j+, j -  be as in Theorem 26 and let 
j = j+ + j - .  Let I S ] denote the cardinality of  any set S. ] Sc ] <- ] 2_ i ]c+lj(c + 
1) ~. 
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Proof 
The elements s = (C ,  0, k} of So are all those s ~ p*((D,  0, l}) for which I C I 
_< (c + 1). Since CO c_ • i we can view the construction of  s as the choice (with 
possible repeats) of  c + 1 elements from Z i followed by the choice of  0. It is 
simplest to treat CO (with repeat literals) as though it were a single atom and 
use the bounds in Remark 32 to calculate the worst case for the number of 
variants of  O. In this case there are at most I •  c§ ways of choosing the 
elements of  CO and j ( c  + 1) ~ ways of  choosing O. Thus I <-I• + 
1);. [] 

From Theorems 26 and 39 we find that I Sc [ is of  order O(r ] M ]2o.~+t)). Clearly, 
for tractability i, j ,  c must be small constants. 

10.2 Cover Set Algorithm 
Progol uses a simple cover set algorithm much like that employed in 

Michalski's AQ family of  algorithms. TM It repeatedly generalises examples in the 
order found in the Progol source file and adds the generalisation to the back- 
ground knowledge. Examples which are redundant  relative to the background 
knowledge are then removed (redundancy is based on Definition 35). The cover 
set algorithm is given in Appendix D.3. Clearly Algorithm D.3 terminates in at 
most I E I iterations. 

Note that each clause is unflattened before being added to the back- 
ground knowledge. If, as in Prolog, equality is assumed to be completely defined 
using only the axiom of  identity ( V x . ( x  = x)) then unflattening has no effect 
on the Herbrand models of a logic program. However, it does improve its 
readability. For instance, clause (5) in Section 10 can be unflattened to the 
following simpler clause. 

reverse([A IB],  C)~--reverse(B, D), append(D, [A], C). 

Note that the use of modeb declarations for ' : '  in Example 28 followed by the 
use of unflattening in Algorithm D.3 allows Progol to search through the term 
structure of hypothesised clauses. This is despite the fact that Progol's refinement 
operator (Definition 27) considers only variable/variable substitutions which 
map hypothesised clauses to subsets of •  

w The Progol System 
Progol was written in C by the author of  this paper. Progol version 4.1 

source code, example files and manual pages are freely available (for academic 
research) by anonymous ftp from ftp.comlab.ox.ac.uk in directory pub/Pack-  
ages/ILP/progol4.1.  

The design methodology for Progol was to present the user with a 
standard Prolog interpreter augmented with inductive capabilities. The syntax 
for examples, background knowledge and hypotheses in Dec-10 Prolog, with the 
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usual augmentable set of prefix, postfix and infix operators. Headless Horn 
clauses, representing constraints are used to represent negative examples and 
constraints. These are stored internally as clauses with head 'false'. Thus the 
following statement can be placed in the Progol source file. 

: - b l a c k ( X ) ,  white(X). 

This is stored internally as the following definite clause. 

false: --black(X), white(X). 

In this way both the testing of negative examples and of general constraints 
reduces to seeing whether 'false' is provable. Headless clause constraints can be 
learned from ground headless unit clauses by use of a modeh for the predicate 
'false'. An example of this can be found in the Progol4.1 distribution dataset 
'animals.pl'. 

The standard library of primitive predicates described in Clocksin and 
Mellish 3) is built into Progol and available as background knowledge. Thus the 
following command-line can be given to Progol when using the infix predicate 
' =  < '  for learning ranges of integers. 

[ - -modeh(1,  p(+int)) ,  modeb(3, # i n t = <  +in t ) ,  modeb(3, 
+ in t  = < #int )?  

The Progol prompt is ] -- and int is a built-in single arity predicate which is true 
for all integers. Note that Progol queries are terminated by '?' rather than the 
usual '.' in Prolog. This allows queries to be distinguished from assertions. 
Assertions terminated by '.' can also be made at the Progol prompt level. The 
user can request examples to be generalised from the prompt by terminating the 
example clause by a '!'. Unless the predicate 'search' is executed first, a '!' 
statement will simply show the user the clause •  for the example. Thus the 
mode declarations above will allow the following interaction. 

l-- p(5)! 
[Most specific clause is] 
p ( A ) : - 3  = <  A, 4 = <  A, 5 = <  A , A = <  5, A = <  6, A = <  7. 

In this A_s clause the modeb declarations (given above) for ' =  < '  are used. In 
step 5 of Algorithm 40 the goals X = < 5 and 5 = < Y are both recalled 3 times 
and succeed with substitutions 3, 4, 5 for X and 5, 6, 7 for Y. The # i n t  
place-markers are replaced by 3, 4, 5 and 5, 6, 7 respectively and the + in t  
place-marker is replaced by the unique variable A using the hash function 
described in Algorithm 40. 

Although Progol can be used interactively, it is often more convenient to 
run it in batch mode. In this case, when called from the operating system shell, 
Progol is given the name of the example file as an argument. Progol then simply 
generalises every predicate for which a modeh is declared and shows the results 
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as output. 
Progol can learn ranges and function with numeric data. These can be 

either integer or floating point by simply making use of  the built-in predicates 
'is', ' < ' ,  ' =  < ' ,  etc. This is best exemplified in the Progol4.1 dataset order4, in 
which qualitative regression is applied in conjecturing Newton's inverse square 
law from artificial floating point data. 

The choice of  engineering a complete Prolog interpreter was taken in 
order to make induction a first-class and efficient operation on the same footing 
as deductive theorem proving. This allows implementation of low-level opera- 
tions such as depth-bounding of  the theorem prover and rapid virtual assertion 
and retraction of clauses into the clause set. 

w Results 
Results of  a series of  experiments involving Progol in learning to predict 

mutagenic molecules can be found in Refs. 58), 59) and 60). A description of 
Progol doing qualitative regression can be found in Ref. 41). Qualitaitve regres- 
sion is carried out by using mode declarations to defince a family of  3 different 
functions (linear, polynomial  in one term and exponential) and using these in 
competition to fit the data. The equation solver is supplied as user-defined 
background knowledge. 

Appendix E gives a table of  runtimes on a SPARCstation 10 for learning 
the various examples in the distribution version of  Progol4.1. The numbers of 
clauses in E +, E - ,  B and H are also given for each dataset. Note that the 
datasets 'animals', 'exp', 'family' and 'set' involve learning a series of  related 
predicates. These runtimes are comparable with those of FOIL, 49) despite the fact 
that FOIL does incomplete heuristic search to find clauses. FOIL also uses 
extensional background knowledge rather than the intensional background 
knowledge of Progol. 

w Conclusion 
This paper traces the line of development followed by the author in 

investigating induction as the inverse of deduction. It has been shown that the 
idea of  inverting resolution proofs used in Duce and Cigol can be greatly 
simplified by considering this as a special case of inversion of  entailment. 
However, the notion of  inverting entailment is of  a more fundamental nature 
than that of  inverting proof, since it is based on the model-theory which 
underlies proof. This approach has led to the development of a new state-of-the- 
art ILP system called Progol, which is available for academic research purposes 
by anonymous ftp (see Section 11). For  each example Progol develops a most 
specific clause •  within the user-defined mode language, and uses this to guide 
an A*-like search through clauses which subsume •  Each invocation of  the 
search returns a clause which is guaranteed to maximally compress the data. 
Despite the admissibility of this search, the learning times in Appendix E are 
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comparable with FOIL, an algorithm which carries out a truncated heuristic 
search and allows only extensional background knowledge. 

Figure 2 in Section 7 shows various ways in which Progol could be made 
more powerful. At present Progol can only deal effectively with the first and 
third form of •  If Progol could prove not only positive ground facts but also 
negative ones then it would be possible to construct • in the form of the second 
entry in Fig. 2. This would have applications in theory revision. However, for 
the purposes of theory revision, Progol would need to have a strategy for 
specialising over-general clauses. The construction of sub-saturants (Section 6.1) 
would allow Progol to find all generalisations of recursive clauses, such as the 
one in the fourth entry of Fig. 2. Both the second and fourth form of generalisa- 
tion in Fig. 2 will lead to multiple definite • clauses. Dealing with the multi- 
plicity of • clauses will require improvements in Progot's search techniques. 
The incompleteness of the present search (see Example 30) also needs to be 
addressed. 

Definition 9 suggests a way in which Progol could be made to learn 
effectively when provided with only positive example data. This would have real 
world applications in areas such as natural language learning, in which it is 
common to find positive-only data sources. 

No learnability results have yet been shown for Progol. U-learnability 
(Appendix B) offers a promising direction for such results. 

The author believes that inverse entailment offers many new avenues in 
the rapidly maturing research area of Inductive Logic Programming. 
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Appendix A Definitions from Logic 

A.1 Formulae in First Order Predicate Calculus 
A variable is represented by an upper case letter followed by a string of lower 

case letters and digits. A function symbol is a lower case letter followed by a string of 
lower case letters and degits. A predicate symbol is a lower case letter followed by a 
string of lower case letters and digits. A variable is a term, and a function symbol 
immediately followed by a bracketed n-tuple of terms is a term. Thus f ( g ( X ) ,  h) is a 
term when f ,  9 and h are function symbols and X is a variable. As in Prolog, integers, 
' [ ] '  and '.' are function symbols and if tl, t2 .... are terms then '.'(tl, t2) can equivalently 
be denoted [h l t2]  and '.'(t~, '.'(t2 ... .  '.'(tn, []) ...)) can equivalently be denoted It1, tz, 
.... tn]. A predicate symbol immediately followed by a bracketed n-tuple of terms is 
called an atomic formula, or atom. Every atom is a well-formed formula (wff). If W 
and W' are wffs then W (not W), W/x, W' ( W  and W'), W V W' ( W  or W') and 
W ~ W' ( W  implied by W') are wffs. W A W' is a conjunction and W V W' is a 
disjunction. If v is a variable and W is a wff then Vv .W (for all v W) and 3 v.W 
(there exists a v such that W) are wffs. v is said to be universally quantified in V v. W 
and existentially quantified in ~ v. W. The wff W is said to be function-free if and only 
if W contains no function symbols. Both A and A are Iiterals wherzever A is an atom. 
In this case A is called a positive literal and A is called a negative literal. A set of 
literals is called a clause.The empty clause is represented by []. A clause represents the 
disjunction of its literals. Thus the clause { al, a2 .... , ai, ai+~ ..... G}  can be equivalently 
represented as (aa V a2 V ... N V ~ V ... V -~) or a~; a2; ... ~-- ai, ar ..., an. All the 
variables in a clause are implicitly universally quantified. A Horn clause is a clause 
which contains at most one positive literal. A definite clause is a clause which contains 
exactly one positive literal. A positive literal in either a Horn clause or definite clause 
is called the head of the clause while the negative literals are collectively called the body 
of the clause. A set of clauses in which no pair of clauses share a common variable is 
called a clausal theory. The empty clausal theory is represented by ,,. A clausal theory 
represents the conjunction of its clauses. Thus the clausal theory { C1, C2, ..., Cn} can 
be equivalently represented as (C1 A C2 A ... /~ Cn). Every clausal theory is said to be 
in clause-normal form. Every wff can be transformed to an equivalent wff in clause 
normal form. If C = V l~ V ... In is a clause then C = 3 Ii A ... /X In. In this case C is 
not in clause normal form since the variables are existentially quantified. C can be put 
in clause normal form by substituting each occurrence of every variable in C by a 
unique constant not found in C. The process of replacing (existential) variables by 
constants is called skolemisation. The unique constants are called skolem constants. A 
set of Horn clauses is called a logic program. Apart from representing the empty clause 
and the empty theory, the symbols o and  9 represent the logical constants F a l s e  and 
T r u e  respectively. Let E be a wff or term. vars(E) denotes the set of variables in E. 
E is said to be ground if and only if vars(E) = ~. 
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A.2 Substitutions and Models 
Let 0 = {v~/tl ..... v,/tn}. 0 is said to be a substitution when each vi is a variable 

and each t~ is a term, and for no distinct i and j is v~ the same as vs. The set { Vl ..... 
v~} is called the domain of 0, or dora(0), and {tl . . . . .  &} the range of 0, or rng(0). 
Lower-case Greek letters are used to denote substitutions. Let E be a wff or a term and 
0 = {v~/t~ . . . . .  v~/&} be a substitution. The instantiation of E by 0, written E0, is 
formed by replacing every occurrence of v~ in E by ti. Atom a 0-subsumes atom b, or 
a ~ b  if and only if there exists a substitution 0 such that a0 = b. Clause C 
0-subsumes clause D, or C ~ D if and only if there exists a substitution 0 such that 
C0 c D. The Herbrand universe of the wff /,/1 is the set of all ground terms composed 
of function symbols found in IV. The Herbrand base of the wff IV is the set of all 
ground atoms composed of predicate and function symbols found in IF. An interpreta- 
tion is a total function from ground atoms to { [],  9 }. A Herbrand interpretation I of 
wff IV is an interpretation whose domain is the Herbrand base of IV. I can equivalent- 
ly be represented as a subset of the atoms a in the Herbrand base of IV for which 
I (a)  = " .  Below all interpretations I are assumed to be Herbrand. The atom a is true 
in I if I (a)  =  9 and false otherwise. The wff IV is true in I if IV is false in I and 
is false otherwise. The wff IV A IV' is true in I if both IV and IV' are true in I and 
false otherwise. The wff IV V IV' is true in I if either IV or IV' is true in I and false 
otherwise. The wff IV ~-- IV' is true in I if IV V IV' is true in I and false otherwise. 
If v is a variable and IV is a wff then Vv. IV is true in I if for every term t in the 
Herbrand universe of IV the wff IV{ v/t} is true in I.  Otherwise V v. IV is false in I.  
If v is a variable and IV is a wff then ~ v. IV is true in I if V v. IV is true in I and false 
otherwise. Interpretation M is a model of wff IV if and only if IV is true in M. A wff 
IV is satisfiable if there exists a model of IV and unsatisfiable otherwise. Consequently 
IV is unsatisfiable if and only if IV ~ []. Herbrand's theorem states that a wff IV is 
satisfiable if and only if IV has a Herbrand model. Every logic program P has a unique 
least Herbrand model M such that M is a model of P and every atom a is true in M 
only if it is true in all Herbrand models of P. Let IV and IV' be two wffs. We say that 
IV semantically entails IV', or IV ~ IV' if and only if every model of IV is a model 
of IV'. Let X, Y and Z be wffs. Then according to the Deduction theorem X A Y 
Z if and only if X ~ Y V Z. Let X~ Y be an inference rule. Then X~ Y is said to be 
sound if and only if X ~ Y. Suppose I is a set of inference rules containing X~ Y and 

IV' IV' //I, IV' are wffs. Then IV t-~ if is formed by replacing an occurrence of X in 
IV by Y. Otherwise IV F-~ IV' if IV t-z IV" and IV" F-z IV'. We say that IV 
syntactically entails IV' using inference rules I,  if and only if IV ~ 1 IV'. The set of 
inference rules I is said to be deductively sound and complete if and only if each rule 
in I is sound and IV ~-i IV' whenever IV ~ IV'. Let IV and IV' be two wffs. We say 
that IV is more general than IV' (conversely IV' is more specific than IV) if and only 
i f W ~  W'. 

A.3 Resolution 
The substitution 0 = { ul/vl .... un/v,} is said to be a variable renaming if and 

only i fdom (0) is disjoint from rng (0) and each vi is distinct. Let W and W' be two 
wffs. If there exists a variable renaming 0 such that WO = W'  then W, W'  are said 
to be alphabetic variants of each other. Wffs W, W' are said to be standardised apart 
if and only if there exists a variable renaming 0 = {ul/vl . . . .  un/vn}, v a r s ( W ) c  
vars(0) and WO = W'. The substitution 0 is said to be the unifier of the atoms a and 
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a '  whenever a0  = a ' 0 .  /z is the most general unifier (mgu) of a and a '  if  and only if 
for all unifiers 7 of  a and a '  there exists a substitution 8 such that (a/z)8 = aT. Let C 
and D be clauses and a be an atom. The sound inference rule 

C V a  D V - ~  
C V D  

is called resolution. ( C  U D)O is said to be the resolvent of the clauses C tA {a} and 
D U {a'} whenever C and D are standardised apart  and 0 is the mgu of  the atofias a 
and a'. Let T be a clausal theory. Robinson TM defined the function 7~n(T) recursively 
as follows. "R,~ = T. "R,~(T) is the set of all resolvents constructed from pairs of  
clauses in ~ , - I ( T ) .  Robinson showed that T is unsatisfiable if and only if there is 
some n for which 7"~(T) contains the empty clause ( [] ). 

Appendix B Hypotheses ,  Probabilities and U-Learnabil i ty 

B.I U-Learnability 
The following is a variant of the U-learnabili ty framework presented in Refs. 34) 

and 42). The teacher starts by choosing distributions F and G from the family of  
distributions .T and ~ over concept descriptions 7-/(wffs with associated bounds for 
time taken to test entailment) and instances X (ground wffs) respectively. The teacher 
uses F and G to carry out an infinite series of  teaching sessions. In each session a target 
theory T is chosen from F.  Each T is used to provide labels from { m, [] } (True, 
False) for a set of instances randomly chosen according to distribution G. The teacher 
labels each instance x; in the series (x~, ..., xm> with  9 if T ~ xi and ~ otherwise. An 
hypothesis H ~ 7-[ is said to explain a set of examples E whenever it both entails and 
is consistent with E. On the basis of  the series of  labelled instances (e~, e2 . . . . .  era), a 
Turing machine learner L produces a sequence of  hypotheses (H1,/-/2, ..., Hm) such that 
Hi E 7-/explains {el . . . . .  ei}. Hi must be suggested by L in expected time bounded by 
a fixed polynomial function of  i. The teacher stops a session once the learner suggests 
hypothesis H~, with expected error less than e for the label of any xm+t chosen randomly 
from G. <F, G> is said to be U-learnable if and only if there exists a Turing machine 
learner L such that for any choice of  8 and e (0 < 8, e < 1) with probabi l i ty  at least 
(1 -- 8) in any of the sessions m is less than a fixed polynomial  function of  1/8 and 
1/c. 

B.2 Bayesian Interpretation of Setting 
Figure 5 shows the effect E = (el ..... ei} has on the probabilities associated with 

hypotheses in ~ .  The learner's hypothesis language "H is laid out along the X-axis with 
prior probabili ty p(H)  : F(H)  for H in 7-/measured along the Y-axis, where 

u ~ p ( H )  : 1. 

The descending dotted line in Fig. 5 represents a bound on the prior probabil i t ies of  
hypotheses before consideration of examples E. The hypotheses 7-/z (7-/E -- 7-{) which 
explain E are marked as vertical bars. The prior probabil i ty  of E, p(E), is simply the 
sum of probabilities of  hypotheses in "He. The condit ional  probabili ty p(E I H) is l in 
the case that that H explains E and 0 otherwise. The posterior probabil i ty of  H is now 
given by Bayes theorem as 
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p(l-I) 

Fig. 5 

H 

Prior and posterior probabilities of hypotheses. 

p(HIE) = p(H)p(EIH) 
p(E) 

With reference to Fig. 5, for an hypotheses H which explains all the data, p(H I E) will 
increase monotonically with increasing E. Also for two different hypotheses H1, Hz 
which explain E the following holds. 

p(H1 E l = p(H1) (6) 
p(Hz p(H2) 

Appendix C Subsumption and Least  General  Generalisation 
In the late 1960's the success of Robinson's  s3) resolution procedure produced 

considerable interest in the problem of inducing first-order formulae. Both Meltzer zz) 
and Popplestone 48) carried out initial investigations into generalisation of  ground 
formulae by replacement of constants with variables. In implementing his approach 
Meltzer decided to bound the number of resolutions involved in checking any hypothe- 
sis against examples. This was an important innovation which is now being used within 
Progol (Section 11). 

In an alternative approach Reynolds TM and Plotkin 46) investigated the problem 
of  finding least general generalisations (lggs) of atoms. According to P l o t k i n f  ) 

The work started with a suggestion by R.J. Popplestone (private commu- 
nication) that, just  as the unification algorithm was fundamental to 
deduction, so might a converse be of use in induction. 

The relationship of  lgg to unification is depicted in Fig. 6. Atom g is a common 
generalisation of atoms a and b if and only if there exist substitutions ag' and/3g'  such 
that a = gag' and b = #/3g'. The atom lgg(a, b) is the most general generalisation of  
a and b if and only if lgg(a, b) is a common generalisation of a and b and for each 
common generalisation g of  a and b there exists a substitution ag such that lgg(a, b) = 
g~v. The common instance i and most general instance are similarly defined for a and 
b (see Fig. 6). In the case of the most general instance i of  a and b Robinson sa) calls 
aifli the most general unifier of a and b. Robinson describes an algorithm for construct- 
ing the most-general unifier of two atoms. Robinson's  unification algorithm is the basis 
of  resolution theorem proving. Plotkin and Reynolds describe an efficient algorithm for 
computing the least general generalisation of  two atoms. 
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g 

a b 

i 
Fig. 6 Relationship of lgg and mgi. 

[a]  is the equivalence class of  all atoms which are variable renamings of a. 
Reynolds showed that the set of all equivalence classes of atoms augmented by the 
symbols Y and • form a non-modular lattice. Thus, [a]  ~ [b] = [lgg(a, b)] and [a]  
[Z Eb] = [mgi(a, b)] ,  where [~ and Cl are both commutative and associative, though 
neither distributes over the other. 

In Ref. 46) Plotkin extended the investigation to clauses ordered by 8- 
subsumption. Clause C 0-subsumes clause D, or C ~ D if and only if there exists a 
substitution 0 such that CO c_ D. Just as with atoms, clause G and I are respectively 
a common generalisation and a common instance of  C and D if and only if  G <~ C, 
D and C, D ~ I .  For  clauses C and D there is a least general generalisation lgg(C, 
D) and most general instance mgi(C, D), both unique up to renaming, such that for 
every common generalisation G and common instance I of C and D it is the case that 
G ~ lgg(C, D) and mgi(C, D) ~ I. The cardinali ty of  the least general generalisation 
of  two clauses is bounded by the product of the cardinalities of the two clauses. 

Plotkin 48) went on to define the lgg of two clauses relative to clausal background 
knowledge B. The relative least general generalisation of  clauses (rlgg) is potentially 
infinite for arbitrary B. When B consists of ground unit clauses only the rlgg of  two 
clauses is finite. However the cardinality of  the rlgg of  m clauses relative to n ground 
unit clauses has worst-case cardinality of  order O(nm), making the construction of such 
rlgg's intractable. 
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Appendix D Progol Algorithm 

D.1 Construction of Most-Specific Clause 

Algorithm 40 Algorithm for constructing • 

1. Given natural numbers h, i, Horn clauses B, definite clause e and set of mode 
declarations M. 

2. Let k = 0, hash: Terms---, N be a hash function which uniquely maps terms to 
natural numbers, V be the clause normal form logic program d A bl A ... A bn, 
• = O and InTerms = 0. 

3. If there is no modeh in M such that a ( m ) ~  a then return []. Otherwise let m 
be the first modeh declaration in M such that a ( m )  < a with substitution Oh. Let 
ah be a copy of a ( m )  and for each v / t  in 0h if v corresponds to a ~ t ype  in m 
then replace v in ah by t otherwise replace v in ah by vk where k = hash(t) and 
add v to InTerms if v corresponds to +type. Add ah to • ~. 

4. I l k  = i r e t u r n  •  1. 
5. For each modeb m in M let {vt ..... vn} be the variables o f + t y p e  in a ( m )  and 

T ( m )  = Tt • ... x Tn be a set ofn-tuples of terms such that each Ti corresponds 
to the set of all terms of the type associated with v; in rn (term t is tested to be 
of a particular type by calling Prolog with type(t) as goal). For each (t~ ..... tn) 
in T(m) let ab be a copy of a(m)  and 0 = {v~/t~ . . . . .  vJ tn} .  If Prolog with 
depth-bound h succeeds on goal abO with the set of answer substitutions Ob then 
for each 0b in Ob and for each v / t  in 0b if v corresponds to a # t ype  in rn then 
replace v in a~ by t otherwise replace v in ab by vk where k = hash(t) and add 
v to InTerms if v corresponds to - type .  Add ~g to • 

6. Goto step 4. 

D.2 A*-like Algorithm for Finding Clause with Maximal Compression 
Firstly we define some auxiliary functions used in Algolithm 42. 

Definition 41 Auxiliary fnnetions 
Let the examples E be a set of Horn clauses. Let h, i, B, e, M, • i be as in Definition 
24 in Section 8.1 and let C, 0, k be as in Definition 27 in Section 9.2. 

I ~  if there is no --type variable in the head of 
•  

d'(v) = if v is - t y p e  in the head of •  
if v is not in •  

[(minu~vvd'(u)) + 1 otherwise 

where U~ are the --type variables in atoms in the body of C which contain +type 
occurrences of v. Below state s has the form (C,  k, 0>. c is a user-defined parameter 
for the maximal clause body length. [ S [ denotes the cardinality of any set S. 

Ps = I {e: e ~ E and B A C A ~ t - h  []}1 
n s =  I (e: e ~ E and B A C A e~--h []}1 
c , = l c l - 1  
Vs = {v: u / v E  0 and u in body of C} 
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hs = m i n w v ~ d ' ( v )  
9 s =  P~- -  (c~ + h~) 
f s =  g s - -  ns 

best(S) is a state s ~ S which has Cs <- c and for which there does not exist s' E S 
for which fe > ft. 

[true i f n s = O a n d f ~ >  0 
~true i f g s < - O  

prune(s) = | t rue  if cs > c 
(false otherwise 

I true i f s  = b e s t ( S ) ,  n~= O ,  f i > O a n d  
terminated(S, S') = for each s' in S '  it is the case that fs -> gs, 

(false otherwise 

Algorithm 42 Algorithm for searching [] < C < •  

1. Given h, B, e, •  as in Definition 24. 
2. Let Open = { ( •, 0, 1)} and Closed = 0. 
3. Let s = best(Open) and Open = Open -- {s}. 
4. Let Closed = Closed U {s}. 
5. If prune(s) goto 7. 
6. Let Open = (Open U p(s) )  -- Closed. 
7. If terminated(Closed, Open) then return best(Closed). 
8. If Open = 0 then print 'no compression' and return (e, 0, 1). 
9. Goto 3. 

D.3 Progol's Cover Set Algorithm 

Definition 43 Unflattening 
Let C = h~--X,  Y be a definite clause in which X = ( s l =  tl . . . . .  s, = t . ) is  a 
conjunction of atoms with predicate symbol ' = '  and Y is a conjunction of atoms with 
predicate symbols other t h a n ' = ' .  The clause C '  = h'  ~--- Y' is called the unflattening 
of C if and only if C '  is derived from C by successively resolving away each si = ti 
in X with the clause ( U  = U ,--). 

Algorithm 44 Cover set algorithm 

1. h, i, B, M are given as in Theorem 26 and E is the subset of B corresponding 
to atoms in modeh declarations in M. 

2. If E = 0 then return B. 
3. Let e be the first example in E. 
4. Construct •  for e using Algorithm 40. 
5. Construct state s from •  using Algorithm 42. 
6. Let C '  be the unflattening of C ( s )  (Definition 43). 
7. Let B = B U C' .  
8. Let E ' =  {e: e ~  E and B A ~ - - h  []}. 
9. Let E = E - -  E ' .  

10. Goto 2. 
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Appendix E Progol's Runtimes 

Data set Predicate I E§ I E - I  I n l  I HI  Time (sec) 
animals false 42 16 105 6 0.930 

class 16 6 105 5 0.183 
append append 19 8 0 2 0.199 
arch arch 4 4 47 1 0.149 
chess move 27 12 34 11 5.080 
cyclic cyclic 3 2 69 1 0.100 
delete delete 7 6 2 2 0.365 
even even 16 15 4 3 0.216 
exp plus 6 5 13 3 0.133 

mult 6 23 10 3 0.730 
exp 5 5 8 2 0.183 

family parenLof 11 4 61 2 0.066 
grandfather_of 10 7 53 1 0.149 
grandparenLof 13 6 41 1 0.066 

grammar s 8 7 18 1 0.116 
krki illegal 341 655 51 4 17.281 
last last 7 5 2 2 0.066 
rain min 14 6 4 2 1.760 
nim won 16 7 12 1 0.100 
order0 f 15 3 13 1 0.382 
orderl f 15 3 13 1 0.730 
order2 f 8 4 13 1 0.747 
order3 f 9 4 13 1 0.681 
order4 f 12 4 13 1 1.079 
parity4 parity 16 16 11 1 1.195 
qsort qsort 11 12 8 2 0.863 
range inrange 7 3 0 2 0.266 
reverse reverse 13 7 4 2 0.149 
set member 16 3 33 2 0.100 

pair 3 2 16 2 0.050 
subset 12 8 7 2 0.730 

setuni setuni 14 13 2 4 2.357 
sumx sumx 7 3 3 2 0.432 
train eastbound 5 5 257 1 0.100 
utube utube 5 13 173 1 1.643 
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