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Abstract—Signature-based network intrusion detection sys-
tems (S-IDS) have become an important security tool in the
protection of an organization’s infrastructure against external
intruders. By analyzing network traffic, S-IDS’ detect network
intrusions. An organization may deploy one or multiple S-IDS’,
and each of them works independently with the assumption that
it can monitor all packets of a given flow to detect intrusion
signatures. However, emerging technologies (e.g., Multi-Path
TCP) violate this assumption, as traffic can be concurrently sent
across all available paths (e.g., WiFi, Cellular, etc.) to boost the
end-users’ network performances. Attackers may exploit this
capability and split malicious payloads across multiple paths
to evade traditional signature-based network intrusion detection
systems. Although multiple monitors may be deployed, none of
them has the full coverage of the network traffic to detect the
intrusion signature. In this paper, we formalise this distributed
signature-based intrusion detection problem as an asynchronous
online exact string matching problem, and propose an algorithm
for it. To demonstrate the effectiveness of our proposal we
have implemented our algorithm and conducted comprehensive
experiments. Our experimental results show that the behaviour
of our algorithm depends only on the packet arrival rate:
delay in detecting the signature grows linearly with respect to
the packet arrival rate and with small overhead for monitor
communications.

I. INTRODUCTION

MPTCP is a new set of IETF standardized extensions to
TCP [1] that allows end points to simultaneously use multiple
paths between them to improve network performance. This
new capability has sparked a lot of interest from both academia
and industry, especially considering that end devices (e.g.,
smartphones) commonly support multiple access technologies
(e.g., WiFi, 4G), and early empirical studies [2], [3] have
demonstrated that MPTCP could significantly increase end
users’ throughput. To date, both Apple iOS and Google
Android support MPTCP. This technology not only improves
network performance over the access network (i.e., WiFi,
cellular network), and facilitates user mobility [4], but is also
beneficial to Cloud Service Providers to take advantage of
their rich connectivity to the Internet, and increasing large
number of peering links. While the benefits of MPTCP are
clear, its security is still being analyzed [5], [6]. In particular,
the capability of splitting traffic across multiple paths opens
new venues for sophisticated attacks that can evade traditional
intrusion detection systems.

Signature-based network intrusion detection systems (S-
IDS) have become an important security tool in the protection
of an organization’s infrastructure against external intruders.
By analyzing network traffic, S-IDSs detect network intru-
sions. An organization may deploy one or multiple S-IDS’, and

each of them works independently with the assumption that
it can monitor all packets of a given flow to detect intrusion
signatures without communicating with each other. However,
attackers may exploit the multiplicity of paths and split
malicious payloads across multiple paths to evade traditional
signature-based network intrusion detection systems. Although
multiple monitors may be deployed, none of them has the full
coverage of the network traffic to detect the intrusion signature.
We have easily recreated an attack that evades detection by the
popular open-source S-IDS Snort [7].

In this paper, we formalise this multipath signature-based
intrusion detection problem as an asynchronous online exact
string matching problem, and propose an algorithm for it
based on the Aho-Corasick matching algorithm [8]. As with
Aho-Corasick’s the time complexity of our algorithm for
scanning the whole input string is linear with respect to the
size of the input string. Our proposed solution relies on: (1)
an automaton running on each monitor, for each partially
observed input string and (2) asynchronous communication
among the monitors. The overhead of the communication is
small since information exchanged is merely automaton states.
To demonstrate the effectiveness of our proposal we have
implemented our algorithm, and conducted a comprehensive
set of experiments to find signatures in MPTCP traffic. Our
experiments show that the behaviour of the proposed algorithm
is independent of factors such as size and number of MPTCP
connections, number of signatures in the flows or in the
monitors database. It is only the packet arrival rate at the
monitors that matters. Delays in detecting the signature grows
linearly with respect to the packet arrival rate. In absolute
terms, with our straightforward prototype, for a network
throughput of 450Mbps, most delays (i.e., time to detect the
signature) are about 200 microseconds, and less than 400
microseconds. A second important component is the amount
of communication traffic generated between the monitors. In
the unlikely scenario that a monitor needs to communicate
states to other monitors for each received packet, the size
of the messages in our simple implementation is 52 bytes
including the message headers. In practice, the communication
ratio (the number of monitor communication packets over the
number of data packets) we observed varied from 45% to
15% decreasing as the throughput increases. Hence, a reliable
network connection between monitors is needed but with little
cost since the throughput required is relatively small.



II. BACKGROUND
A. Network Intrusion Detection System

Signature-based network intrusion detection systems (S-
IDS) analyze network traffic, and compare packets against
a database of signatures from known malicious threats. S-
IDS are commonly classified into active versus passive S-IDS.
Active S-IDS can drop packets and halt an attack in progress.
In contrast, passive S-IDS mainly raise alarms, and rely on
humans to take subsequent actions. In this paper, we focus on
the passive approach, considering that many commercial IDS’
are solely passive []. We discuss how extensions for active
S-IDS can be made in Section VII.

S-IDSs apply locally configured rules to each packet. For
example, Snort [7] rules consist of two main parts: the rule
header, and the rule options. The rule header specifies the
action (pass, drop, alert, log), protocol, IP addresses, and port
numbers, whereas the rule option section specifies the alert
message, and information about which parts of the packet
should be inspected to determine if the rule action should be
taken. The following illustrates a Snort rule. The first line
consists of the rule header, and the second line specifies the
rule options.

alert tcp any any -> 192.168.1.0/24 111 \
(content:" |00 01 86 a5|";

The rule indicates that any TCP packet sent to any destina-
tion in the subnet 192.168.1.0/24, and to destination port 111,
with the exact string “—00 01 86 a5—" in the packet payload
should trigger an alert with the message “mountd access”. The
Snort signature database currently consist of about 4000 rules.

In addition to the detection engine, network intrusion de-
tection systems support preprocessor modules with the main
goal of re-assembling IP fragments, or TCP segments. The
preprocessor modules are applied before the detection engine,
and address attacks that span multiple IP packets, rely on
overlapping data, or exploit TCP anomalies [9].

msg: "mountd access";)

B. Multi-Path TCP

Multi-Path TCP is a new transport protocol that allows
two endpoints to simultaneously use multiple paths available
between them. It is in fact defined as a set of extensions to
TCP to retain compatibility with and allow traversal of mid-
dleboxes such as firewalls, NATs, and performance enhancing
proxies. As a notable feature, MPTCP introduces a 64-bit
data sequence number (DSN) to number all data sent over the
MPTCP connection. This allows the sender to retransmit data
on different sub-flows, and for the receiver to still successfully
re-order the received bytes over the different paths.

III. NEW THREAT

This section describes how through MPTCP, attackers could
evade traditional signature-based network intrusion detection
systems. First, to illustrate the attack let us assume the network
depicted in Figure 1 consisting of a client (victim) and a
server (attacker). We further assume that the network where
the client resides deploys a signature-based network intrusion
detection system at each ingress point to monitor and analyses
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Fig. 1. New threat: With multi-path routing, attackers could evade
traditional signature-based network intrusion detection systems by
splitting the signature (e.g., “00 01 86 a5”) over different paths.

all traffic between its users and the Internet. Continuing the
example of Section II-A, we focus on the signature “00 01
86 a5”. We assume the client and server have established a
MPTCP connection, composed of two flows. Each flow enters
the network through a different ingress point, and therefore
traverses a different network intrusion detection system.

The attacker can evade detection by splitting the signature
into multiple pieces (e.g., “00 017, “86 a5”), and sending
them over the different flows. Because each signature-based
network intrusion detection system receives only a fraction
of the signature (e.g., “00 017), neither monitor can detect
the attack. However, the client receiving all the bytes, gets
compromised. We have verified and confirmed the attack,
using the open-source S-IDS Snort.

We refer to this threat, as the multi-path signature detection
(MPSD) problem, and formulate it as follows:

e A source (i.e., the attacker) sends a data stream contain-
ing malicious segments to the destination (i.e., the victim)
via MPTCP;

o Each MPTCP sub-flow is intercepted by one host called
monitor that runs an IDS;

o The data stream is divided into packets, each of which is
associated with a sequence number;

o The source can select, delay and duplicate packets sent
to the different paths;

o Monitors are fully connected and have a list of malicious
data segment patterns (i.e., signatures).

We abstract the MPSD problem as an asynchronous on-
line exact string matching problem with the following def-
initions. A string is a finite sequence of symbols from a
given alphabet. An annotated symbol is s® where s is a
symbol from the given alphabet and % is a positive integer
associated with s. An annotated string is a finite sequence
of annotated symbols. Let 7 = s152---5, be a string of
length n, then seqNo(7,s;) denotes the sequence number
of a symbol s; in 7, i.e., seqNo(r,s;) = i, and assoc(T)
denotes an annotated string obtained by associating each
symbol in 7 with its sequence number, i.e., assoc(t) =
s.ieqNo(T,sl)SgeqNo(T,SQ) L SfLeqNO(T7S") _ S%S% o 52 We use
symSet(¢) to denote the set of annotated symbols of ¢, i.e.,
symSet(assoc(T)) = {s1,s3,---  s"}.

Let P = {p1,...,pn} be a finite set of strings, which we
shall call the keywords (i.e., it represents the set of signatures),
and x be an arbitrary string, we shall call it the rext (i.e.,



it represents the data stream). Let O = {o1,...,0,,} be
an arbitrary set of m arbitrary annotated strings, we shall
call them the observed texts, such that symSet(assoc(x)) =
U, co symSet(o;) (i.e., each annotated symbol represents a
packet). For example, let xyabcz be the text, then x1y2a3b4
¢®25 is an annotated text, and {x'y%c®a3, y?b*2%} is a possible
set of two observed texts, in which a? is delayed after c°, and
y? is duplicated. Finally, a set of monitors {ay,...,am} is
a set of m network nodes that can cooperatively find all the
occurrences of any keyword in P from z while each «a; has

only one observed text o;.

IV. PROPOSED ALGORITHM

A straw man proposal to the MPSD problem could rely on a
centralized approach, and have all the monitors select a leader
to act as the repository. Non-leader monitors forward all traffic
they observe to the leader. Then, the leader which obtains
full network traffic information can perform the signature
detection locally. However, there are two major limitations:
first, the total traffic volume will double due to the inter-
monitor communications. Second, the leader monitor can be
overloaded.

To address these limitations, we propose a fully distributed
solution where each monitor locally scans and processes its
monitored traffic. To prevent attacks that may split signatures
across multiple paths, we have monitors coordinate their ac-
tions, and exchange states. One important objective is to keep
the volume of inter-monitor communication low. To achieve
it, we have developed a new distributed algorithm, based
on the Aho-Corasick [8] automaton-based string matching
algorithm. The main idea consists in having all monitors
share asynchronously a global state of the string matching
automaton for each MPTCP connection. Each monitor receives
“segments” of the data stream (i.e., locally observed traffic
belonging to the same MPTCP connection), scans the received
segment locally, and broadcasts to other monitors the latest
automaton state as well as the segment’s relative position in the
data stream. The monitors update their local scans through the
received states. As such, the local scans of segments resemble
a global scan of the whole data stream. In the remainder of this
section, we first briefly introduce the Aho-Corasick algorithm,
and then describe our distributed algorithm in detail.

A. Aho-Corasick Algorithm

The Aho-Corasick algorithm [8] is an automaton-based
string matching algorithm that has been widely used in
network intrusion detection systems such as Snort [7]. The
main advantage of the Aho-Corasick algorithm, comparing to
other string matching algorithms (e.g. the Boyer-Moore pattern
matching algorithm [10]), is that it can scan for multiple
signatures at the same time and has time complexity of O(n)
where n is the size of the string to be scanned. Let X
be the alphabet from which the signatures and strings are
formed. Given a set of signatures, the Aho-Corasick algorithm
computes a single deterministic automaton (S, so, O, X, d) and
the output function o, where S = {sg, s1,...,8,} is the set

statecur 0 1 {2,5} {3,7,9}
symbol h s . [[eli[hrh[s] . .Jlr[h]s] Tr s ]
statenew 1 | 3[of[2]e6e 1 [3]of[8]1[3]o]4a[3]0]
statecur 4 6 8
symbol e[ i [h]s] [ s[h] [ sThr]_
statenew 5[ 6 1 [ 3]of[7[1]of[9]1]o0
[ stateaccepting 2 5 7 ] 9
[ o(stategccepting) [ {he} [ {she, he} [ {his} [ {hers} ]

Fig. 2. Deterministic automaton for signatures {he, she, his, hers}:
(1) O is the initial state; (2) “” means any symbol in 3 but not
mentioned in the column for a state.

of states, sq is the initial state, O is the set of accepting states
and ¢ is the transition function that takes as input a state s;
from .S and a symbol ¢ from ¥ and gives as output a new state
si+1- The output function o takes as input an accepting state s
from O and gives as output the set of signatures detected. For
example, let {he, she, his, hers} be a set of signatures, the
computed automaton, with the state transitions and the output
function are shown in Figure 2.

Given a string, the algorithm scans its characters from the
beginning to the end only once, starting with the initial state
and using the characters to trigger state transitions. If any
accepting state is reached, the output (detected) signatures can
be recorded, and the algorithm may continue until the whole
string is scanned. For example, let the string be “ushers”, the
sequence of state transitions would be 0 % 0 > 3 LN
55 8 % 9, where signatures {she, he} are detected after the
4" character and signature {hers} is detected after the last
character. As such, the Aho-Corasick algorithm allows one to
identify all the matching signatures in a given string.

B. Multi-path Signature Detection Algorithm

PROCESS PROCESS
PACKET STATE

receive packet

receive sync state

Fig. 3. MPSD Algorithm States

1) Overview: Our proposed algorithm is executed asyn-
chronously at each monitor, and consists of four execution
states as illustrated in Figure 3. First, a monitor starts at
the INIT state, where it creates a single automaton using the
Aho-Corasick algorithm for all the signatures in the database.
Then, it moves to the IDLE state, where it waits for two
types of information: captured packets (called data packets)
from the network, and synchronization messages (called sync
states) sent by other monitors. Every data packet causes the
monitor to enter the PROCESS_PACKET state, whose actions
are described in Algorithm 1. Similarly, Every synchronization
message causes the monitor to enter the PROCESS_STATE
state, whose actions are described in Algorithm 2. In both



execution states, the packet payload scanning procedure may
be invoked. This procedure is described in Algorithm 3.

To describe the different procedures in details, we introduce
three abstractions comprising a data packet, a flow state and
a sync state:

e A data packet, denoted with <mid, seqgno,
payload, type>, contains the multipath connection
identifier, the sequence number in the connection data
flow (not the sub-flow’s sequence number), and the
content (e.g., sequence of characters). A data packet
can be one of three types — START, END and DATA
— marking the initiation, the termination and the data
transfer of a MPTCP connection.

e A flow state is created and maintained by a mon-
itor for each intercepted multipath connection. It
is denoted with <mid, cur_seqgno, cur_state,
fin_seqno, packets>, where cur_seqgno is a
sequence number indicating the next character in the
connection to be processed, cur_state is the latest
automaton state recorded locally, fin_seqno is the final
sequence number of the connection, and packets is
a priority queue that stores packets in ascending order
based on the sequence numbers and contains no dupli-
cates.

e A sync state is the means for monitors to syn-
chronise their local flow states. Monitors will ex-
change sync states to synchronise. It is denoted with
<mid, latest_segno, latest_state>, where
latest_seqgno and latest_state are the latest
sequence number and automaton state recorded by the
sender monitor for the given connection.

Algorithm 1 Process a received packet
1: procedure PROCESSPACKET(p : Packet)

2 if p.mid first seen then

3 fs « <p.mid, —oo, 0, +oco, 0>

4 store fs

S: else

6: fetch £s where fs.mid = p.mid

7 > Placeholder
8 if p.type = START then

9: fs.cur_seqno < p.seqgno +1

10: s < <fs.mid, fs.cur_seqgno, fs.cur_state>

11: BROADCAST(s) > Communication
12: else if p.type = END then

13: fs.fin_segno < p.seqgno

14: if p.segno > fs.cur_seqgno then

15: enqueue p to £s.packets

16: else

17: discard p

18: SCANIFREQUIRED(fs)

2) Handling A Received Packet: In Algorithm 1, lines 2—
6 retrieve the corresponding flow state f£s given a multipath
connection id associated with the packet, or create (and store)
a new flow state if none yet exists. When a new flow state
is created, its cur_seqgno (resp. £in_seqgno) is set to
— 00 (resp. +00) indicating that the starting (resp. final)
sequence number is unknown, and its cur_state is set
to the initial automaton state (i.e., 0). Lines 8-13 record

the first and the final sequence numbers of the multipath
connection in the flow state. As it is reflected in Algorithm 2
and Algorithm 3, the sequence number cur_seqgno recorded
in the flow state marks the position of the next character
in the whole multipath connection to be scanned (by any
monitor). Thus, the incremented sequence number of a START
packet will replace —oo and it will be equal to the sequence
number of the first DATA data packet in the connection (line
9). Note that the START packet and the first data packet may
be received by different monitors (i.e., sent down different sub-
flows). Therefore, the monitor needs to send out the first sync
state (lines 10—-11) to tell others about the first data sequence
number. Similarly, the sequence number of an END packet is
memorised (line 13) in the flow state for future termination of
the sub-flow scans (see Algorithm 3). Lines 14—17 continue to
handle the packet based on its sequence number. If the packet’s
sequence number is greater than or equal to that recorded in
the flow state (which is always the case for the END packet but
not the case for the START packet), the packet is enqueued
to the buffer for further processing. Otherwise, it must be a
packet that has been scanned by at least one of the monitors
in the past (i.e., it is a duplicate packet), and hence is simply
discarded. Note that during the enqueue operation (line 15) if
the buffer has already had a packet with the same sequence
number, then the new packet must also be a duplicate and
is discarded too. Finally, the SCANIFREQUIRED procedure
is called and the packet scanning process may or may not
be triggered depending on further comparison of sequence
numbers, as described in Algorithm 3.

Algorithm 2 Process a received sync state

1: procedure PROCESSSTATE(s : Sync State)
if s.mid first seen then

fs < <s.mid, —o0, O,

store fs

+oo, 0>

fetch £s where fs.mid = s.mid
> Placeholder

2

3

4.

5: else
6.

7

8 if s.latest_state = oo then
9

: remove fs
10: else
11: if s.latest_seqgno > fs.cur_seqgno then
12: fs.cur_seqgno < s.latest_seqgno
13: fs.cur_state < s.latest_state
14: SCANIFREQUIRED(fs)
15: else
16: discard s

3) Handling A Received Sync State: In Algorithm 2, lines
2—-6 obtain the flow state f£s of interest given the multipath
connection id associated with the received sync state s. If
the latest automaton state in s is oo, which is a signal
by the sender monitor announcing that it has scanned the
last data packet of the whole multipath connection, then the
receiver monitor needs to remove the current flow state in
order to free resources. Otherwise, s’ sequence number is
compared with £s’, and there are two cases. If s has a bigger
sequence number (line 11), it implies that the sender monitor
has performed scan on some packets it received and has
contributed to the scanning progress of the whole multipath



connection. In this case, the receiver monitor needs to “catch
up”, by recording the latest sequence number and automaton
state from s (lines 12—13). Furthermore, SCANIFREQUIRED
is called so that the receiver monitor can try to progress the
scanning using its locally buffered packets. In the case where
s has a smaller or equal sequence number (line 3), s is an out
of date state and can be simply discarded. Such situation may
arise after two or more monitors receive and process duplicates
of some packet independently and simultaneously.

Algorithm 3 Process the packet buffer of a subflow

procedure SCANIFREQUIRED(fs : Flow State)
while fs.packets.head.mid < fs.cur_seqgno do
dequeue fs.packet_buf

1:

2

3

4 while fs.packets.head.mid = fs.cur_seqgno do

5: p < dequeue fs.packets

6: for all each character c in p.payload do

7 fs.cur_state < NEXTSTATE(fs.cur_state, c)
8 fs.cur_seqgno < fs.cur_seqgno +1

,_.
SRR

if £s.cur_state is an accepting state then

record OUTPUT(fs.cur_state)
11: if fs.cur_segno = fs.fin_seqgno then
12: fs.cur_state < o©
13: if fs.cur_seqgno has changed value or fs.cur_state has

become oo then

14: s < <fs.mid, fs.cur_seqgno, fs.cur_state>
15: BROADCAST(s) > Communication
16: if fs.cur_state = oo then
17: remove fs

4) Packet Payload Scanning: Algorithm 3 describes the
main procedure for packet scanning. Given a flow state fs, it
first (line 2-3) removes any out-of-date packets in the buffer
(i.e., packets with sequence numbers smaller than the current
sequence number recorded by fs). A buffered packet at a
monitor becomes out-of-date if its duplicate is received and
scanned by another monitor. In this case, the current monitor
must receive a sync state with a bigger sequence number,
which triggers the PROCESSSTATE procedure and in turn the
current procedure. Next (lines 4-10), if the buffer is not
empty, and its head packet’s sequence number is equal to
the one currently recorded by fs, it means that the current
monitor has the next data packet in the multipath connection
to resume the scanning process. Thus, the head packet is
dequeued and scanned, and any detected patterns will be stored
(as alerts). This step is repeated until the buffer becomes
empty or the head packet has a bigger sequence number
than fs’, i.e., the current monitor tries to advance in the
scanning process as much as possible. Finally, if the last data
packet of the multipath connection has been scanned, then the
latest automaton state in fs is replaced with oo (lines 11-12),
before the fs is removed (lines 16—17). In addition, if either
the sequence number or the automaton state in £s has been
modified since the beginning of this procedure, the current
monitor needs to announce its latest flow state.

5) Inter-Monitor Communications: Monitors communicate
with each other through messages containing sync states.
Sending sync states as soon as they are generated (i.e., in
Algorithm 1 Line 10 and in Algorithm 3 Line 15) may intro-
duce unnecessary inter-monitor communications. For example,

suppose a sequence of consecutive data packets p;, ps, ps are
received by a monitor m in order, and m can scan them
immediately (i.e., the current sequence number in the flow
state is equal to p;’s), then m will generate three sync states
$1, S2, S3 in order. If all these states are sent, then the recipient
monitors will perform flow state updates three times but the
first two are unnecessary. In order to avoid such situation
and to reduce communications, we use an outgoing sync state
buffer with size of one, and propose the following mechanism:
(1) the BROADCAST and FLUSHSTATEBUFFER procedures
are defined in Algorithm 4; (2) FLUSHSTATEBUFFER(mid)
is called at line 7 in both Algorithm 1 and Algorithm 2,
where mid is from the received packet or sync state; (3)
every time after PROCESSPACKET or PROCESSSTATE finishes,
if there is no more received data packet or sync state, then
FLUSHSTATEBUFFER(mid) is called, where mid is a fresh
id that is not associated with any existing flow state (i.e., this
will cause any buffered sync state to be sent out).

Algorithm 4 Buffered Inter-Monitor Communications

Require: buff_s : Sync State > A buffered outgoing sync state; NULL if
none is buffered

1: procedure BROADCAST(s : Sync State)
2: FLUSHSTATEBUFFER(s .mid)
3: buff_s < s

4: procedure FLUSHSTATEBUFFER(mid : a multipath connection id)
5 if buff_s # NULL and buff_s.mid # mid then

6: send buff_s to all other monitors

7 buff_s «+ NULL

C. Properties of the MPSD Algorithm

We discuss now key properties of our algorithm.

Lemma 1: At the time a data packet is selected to be scanned
by a monitor, all the packets before it in the same multipath
connection must have been scanned (possibly by different
monitors) in order.

Proof 1: We first prove the first part of the lemma stating
that at the time a data packet is to be scanned, its previous
packet in the connection must have been scanned. Suppose
a data packet p is selected to be scanned (i.e., Algorithm 3
Line 5), its sequence number (p.mid) must be equal to that
(fs.mid) recorded in the flow state fs. There are three places
where fs.mid can change its value to be p.mid: (1) in
Algorithm 1 line 9, (2) in Algorithm 2 line 12, and (3) in
Algorithm 3 line 8. In case (1), p must be the first data
packet in the connection and hence the first part of the lemma
holds trivially. In case (3), the data packet before p must be
scanned at line 5, and hence the first part of the lemma also
holds. In case (2), a sync state s where s.mid = p.mid and
s.latest_seqno = p.seqno must be received. There are only
two places where s can be generated: in Algorithm 1 line
10, and in Algorithm 3 line 14. In the former case, the first
part of the lemma holds as in case (1). In the latter case, by
the “if” statement’s condition and the fact that p is a data
packet (i.e., p.mid # fs.fin_seqno), line 8 must have been
executed and hence the first part of the lemma holds as in



case (3). Therefore, the first part of the lemma is proved. The
second part of the lemma (i.e. all the packets before it must
have been scanned in order”) follows for any p by applying
the first part of the lemma inductively for all the data packets
before p.

Lemma 2: Assuming that every packet in a multipath
connection is captured by at least one monitor, every data
packet is eventually scanned by at least one monitor.

Proof 2: This is proved by induction. (Base case) suppose
p is the first data packet received by a monitor m. By
Algorithm 1 lines 8—11 and Algorithm 2, m must have a flow
state fs such that fs.cur_seqno = p.seqno. By Algorithm 3
p must be scanned. (Induction step) suppose p is a data
packet that has been scanned by some monitor m, and the
next data packet p’ in the connection is received by some
monitor m/, then by Algorithm 3 a sync state s such that
s.latest_seqno = p'.mid must be generated by m and
received by m’. By Algorithm 2, m/ must have a flow state fs’
such that fs'.cur_seqno = p’.seqno. By Algorithm 3 p’ must
be scanned by m'. Hence, the lemma can be proved using the
base case and induction step for any multipath connection.

Theorem 1: Assuming that every packet in a multipath
connection is captured by at least one monitor, if there exists
a malicious pattern in the connection, MPSD will detect it.

Proof 3: Using Lemma 1 and Lemma 2, we can show that
the distributed scanning of a multipath connection by any
number of monitors resembles a centralised scanning of the
connection using the Aho-Corasick algorithm. The theorem
therefore holds.

Proposition 1: Given a multipath connection with n packets
(excluding duplicates) and intercepted by m monitors, suppose
the sender switches between the paths £ (k < n) times to send
the packets, then in the best case there are k x (m — 1) sent
sync states and in the worst case there are n x (m — 1) sent
sync states.

Proof 4: Every time the sender switches between the paths
to send the packets, there are two consecutive packets p; and
po received by two different monitors (say M; and Ms). By
Algorithm 3, M; must generate and broadcast (i.e., send to
m — 1 other monitors) a sync state after p;. Therefore, k is
the least number of sync states generated for the connection. In
the worst case, if the sender sends the packets down different
paths in a round-robin fashion, then £ = n and hence there
are at least n sync states generated (and broadcasted). Also by
Algorithm 3, there is at most one sync state generated for each
packet. Therefore, there are at most n generated sync states.

Remark 1: In practice, if k < n, the number of sync states
generated is between k and n, depending on the network
speed. If the network speed is fast enough such that every
time a packet is scanned, the next packet is already buffered
at some monitor, then there will be only & sync states required.
But if the network speed is so slow that the monitors always
have to wait for the next packet, then there will be n sync states
generated. This can be observed in the experiments described
in Section V-C.

Remark 2: Duplicate data packets, either sent by the TCP
protocol (e.g., due to packet loss) or created intentionally
by the attacker, do not increase the communication overhead
significantly. The maximum number of sync states an attacker
could theoretically cause the algorithm to generate and broad-
cast is m x n. This is achieved assuming that (i) the attacker
duplicates each data packet and sends them down all paths, and
(i1) all monitors receive and scan the packet before receiving
the corresponding sync state from at least one other monitor. In
practice this worst case is virtually impossible to occur due to
asynchrony of the communication channels. Further duplicates
of the same packet are ignored by the monitors.

V. EVALUATION
A. Experimental Setting

Machine X
(Monitor)

Machine B
(Victim)

Machine A
(Attacker)

Machine Y
(Monitor)

Fig. 4. Experiment Network Setup

We have implemented the multipath signature detection
algorithm in C. As packets traverse a monitor, we make a
copy of each packet, record the captured time, and extract key
fields of the packets including the MPTCP connection token,
the MPTCP sequence number, and packet payload. The entire
distributed signature scanning process is therefore passive, and
does not affect the data transfer between clients and servers.

To evaluate the performance of our proposed solution, we
set up a local network as depicted in Figure 4, consisting of
four machines, directly connected through gigabit cables. Each
machine has an Intel i7-2600 (dual core @ 3.40 Ghz), and
is running Ubuntu 12.04 (64-bit). The victim machine, B, is
in a network protected by two monitors, machines X and Y,
deployed at the ingress points. The attacker machine, A, sends
data to the victim B using MPTCP, with two sub-flows (paths
A-X-B, and A-Y-B) each going through a different ingress
point.

Signatures and data files are randomly generated ASCII
texts. A malicious data file is one that has at least one substring
matching a signature and that substring is called a (malicious)
pattern. Patterns are always artificially injected at a splitting
position, so that the pattern spans over two packets. A splitting
position in a data file can be calculated based on the fact
that most MPTCP data packets (except the last one in the
connection) have payloads of size 1428 bytes.

B. Performance metrics

To measure the performance of our proposed solution, we
record the following information for each MPTCP connection:
the number of packets received by each monitor, the number
of sync messages received by each monitor, the total time
for each monitor to process a sub-flow, the total download
time at the client (B), all the detected patterns with their



detection time. All the events are time stamped using the
local system clocks. From this information, we compute the
following metrics:

o Pattern detection delay: It measures how long it takes
for a pattern to be detected by one monitor after the
pattern arrives at the victim. In order to avoid errors
introduced by network clock synchronization, the delay is
calculated as the difference between the time of detection
of the pattern and the time of capture of the packet
containing the second half of the split pattern, at the same
monitor. This computation does not take into account
the network delay between the monitors, and client. It
therefore represents an upper bound of the time difference
between the time an alarm may be raised at a monitor,
and the time the victim gets compromised. The actual
delay is likely to be smaller as it may take additional
time (network delay) for the malicious packet to arrive at
the client.

o Communication ratio: It measures how much traffic be-
tween the monitors is incurred during a MPTCP connec-
tion, and is calculated as the number of states received by
all the monitors divided by the number of packets passing
through the monitors coming from A to B.

o Download Speed: we calculate it as the total amount of
data sent by the attacker divided by the total download
time by the victim for a MPTCP connection.

We have conducted four sets of experiments, each of which

is designed to test whether or how certain parameters (e.g.,
data file size, pattern location, concurrent connections, etc.)
may affect the algorithm performance in terms of detection de-
lay. To evaluate the algorithm performance with different net-
work speeds, we also apply rate limiting to control the link ca-
pacity from 54Mbps to 450Mbps. Therefore, each experiment
has been tested on three configurations for the paths going
through X and Y: (1)54Mbps/54Mbps, (2) 54Mbps/450Mbps
modeling asymmetric communication channels as is common
in mobile devices, and (3) 450Mbps/450Mbps. We will de-
scribe each experiment in details and present their results in
the next section.

C. Experimental Results

1) Experiment 1 (Pattern Position vs. Performance): The
goal of this experiment is to check whether the position
of an artificially injected pattern can affect the algorithm
performance. Given a randomly generated data file of 2MB,
and a randomly generated signature of 20B, there are 1468
(i.e., 2MB / 1428B) splitting positions. 50 data files were
obtained by inserting the pattern at the 29th, 58th, ..., 1450th
splitting positions. Each data file was sent from A to B 20
times, resulting in 1000 runs (and 1000 MPTCP connections)
in total.

The detection delays and the communication ratios under
the 54Mbps/54Mbps setting are given in Figure 5, where run
IDs 1 — 19,20 — 39,... at the x-axis are for the 15,274, . ..
insertion positions. Figure 5 shows that both detection de-
lays and communication ratios are fairly constant across all
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Fig. 5. Exp.1, 54Mbps/54Mbps

runs, with an average delay of 36.51 microseconds and an
average communication ratio of 41.17%. Experiments for
the 54Mbps/450Mbps and 450Mbps/450Mbps settings (whose
plots are omitted due to space limitations) also show constant
detection delays and communication ratios.

We include the detection delays and the communication
ratios across all three settings in the box-and-whisker plots
of Figure 6. In each plot, the dot in the middle of a box
corresponds to the median of delay (or communication ratio)
values and the edges the first quartile (q;) and the third
quartile ¢q3. The whiskers extend to the most extreme values
not considered outliers, and outliers are plotted individually as
red crosses. A value is considered an outlier if it is larger than
gs + 1.5 x (g3 — ¢1) or smaller than ¢; — 1.5 X (g3 — q1). For
our results, the top whisker is the most relevant since there are
a few outliers above it, but they are not significant since the
points below the whisker correspond to more than the 95"
percentile of all the data (Figure 13 in appendix gives the
cumulative distribution function (CDF) plot). The dashed line
at the top collapses outliers that are too big to appear in the
plot. The box plots show that the bigger the total capacity of
all paths, the faster the download speed. And as the download
speed increases, the detection delay also increases whereas the
communication ratio decreases. The decreasing behaviour of
communication ratio conforms to the remark for Proposition 1.
To explain the increasing behaviour of detection delay, we
conjecture that as the download speed increases, the packet
arrival rates at the monitors become larger. As the individual
packet scanning speed by any monitor remains constant, there
is a larger chance for the malicious packet to stay in the buffer
for longer time, and hence increases detection delay. However,
the increased rate of detection delay is much smaller than that
of download speed. According to the trend of the medians
(y = 0.2385x + 20.7149), the median detection delay at 1000
Mbps download speed is estimated to be 259 microseconds.

Finally, from the results of Experiment 1 we conclude that
detection delay and communication ratio are not affected by
the position of the pattern in the multipath connection.

2) Experiment 2 (Number of Patterns vs. Performance):
The goal of this experiment is to check whether the total
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number of injected patterns in a data file can affect the
algorithm performance. We randomly generated a data file of
2MB, and inserted 1, 2, ..., 50 randomly generated patterns
(20B each) at random splitting positions. We repeated this 20
times, resulting in 1000 runs (and 1000 MPTCP connections)
in total.

The results for the 54Mbps/54Mbps setting and the box
plots across different settings are given in Figure 10 and
Figure 11 in appendix, as they are almost identical to those
for Experiment 1, not only in terms of the constant behaviour
in the detection delays and the communication ratios, but also
the distributions of the values (see Figure 13 and Figure 14 in
appendix for CDF plots). We can conclude that detection delay
and the communication ratio are not affected by the number
of patterns in the multiple connection.

3) Experiment 3 (Data Stream Size vs. Performance): The
goal of this experiment is to check how the size of data file
affects the algorithm performance. We randomly generated
data files of size 128KB, 256KB, 512KB, ..., 64MB. For
each data file, we inserted a randomly generated pattern of
20B at a random splitting position, and sent it from A to B.
We performed this 50 times, i.e., 500 runs (and 500 MPTCP
flows) in total. The results under the 54Mbps/54Mbps setting
are given in Figures 7
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The result for detection delay is very similar to the previous
two experiments. However, the result for communication ratio
differs: it first increases from 20% to just above 40%, and
then stays unchanged. Looking at the download speeds of the

individual runs, we discovered that the download throughput
increases with the file sizes until reaching a maximum value
for files of size 2 MB. In addition, the communication ratio
for runs 200-249 (i.e., file size of 2MB) is around 41%, which
is the same as in the previous two experiments. The box plots
across different settings are given in Figure 12 in appendix, as
they are very close to those in the previous two experiments.

The results indicate that the data file size does not affect
detection delay, but it may affect the download speed which
in turn affects the communication ratio.

4) Experiment 4 (Number of Concurrent Connections vs.
Performance): The goal of this experiment was to check
whether and how concurrent MPTCP flows can affect the
algorithm performance. For N = 2,4,...64, we created N
data files of size IMB, each of which contained a pattern (of
size 20B) inserted at a random splitting position. We then sent
N files from A to B independently and simultaneously. For
each N we did it 20 times, i.e., there were 300 runs and 6300
MPTCP flows in total. The results under the 54Mbps/54Mbps
setting are given in Figures 8.
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The results for this experiment are very similar to the first
two experiments, except that a few connections (about 1%)
have unexpectedly small communication ratio. We conjecture
that this is due to the MPTCP scheduler, which made fewer
path switching while sending the packets for those connec-
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The box plots across different settings are given in Fig-
ure 9. Differently from all previous experiments, the download



speeds are much smaller. This is because the download speed
was calculated for each connection, and there were multiple
connections sharing the paths at the same time. The plot for
communication ratio across three settings also looks differently
from all previous experiments’: it does not decrease as the total
capacity of all paths increases. We believe this is because
all the individual download speeds are relatively slow and
are closed to each other, and hence the communication ratio
fluctuates around 35%.

Based on the results, we conclude that the number of
concurrent multipath connections does not affect the detection
delay.

a) Memory Requirement: The execution of the MPSD
algorithm requires two main types of memory space: (boot-
strap) space for storing the automaton, i.e., the signatures, and
(runtime) space for storing data structures during the scanning.
Approaches (e.g., [11] have been proposed to reduce the au-
tomaton space. The runtime space required is the size needed
to store the maximum number of flow states simultaneously
maintained by a monitor, which is almost the same as the total
number of packets buffered in all the flow states. During our
experiments, we observed that the maximum packet buffer size
at any monitor at any time was 10 under the 54Mbps/54Mbps
setting and 27 under the 450Mbps/450Mbps setting.

b) Inter-Monitor Communication Links: The communi-
cation ratio  measures on average how much traffic between
the monitors is required based on the traffic on the network,
and is calculated as the total number of sync states divided
by the total number of packets. Let P; be the traffic (in
Mb) on the whole network per second, let S; and S, be
the maximum size of a data packet and the maximum size
of a packet containing a sync state, respectively, then the
throughput of each inter-monitor link P, can be calculated as
P, =P;xrx (%; ). In our experiment, Sy is 1500B and S,
is 52B. Consider the worst case where r = 100%, and suppose
P, is 1000Mbps, then P,,, = 1000 x 1 x (52/1500) = 34.67
Mbps is the minimum throughput that each inter-monitor link
needs to guarantee.

c) Adversary Attacks Using Ambiguity: One of the as-
sumptions of MPSD (and most S-IDS) is that a data packet
cannot be modified. However, [12] shows an attack that
exploits this assumption. For instance, the attacker first sends
a non-malicious packet with small enough TTL to cause it to
be dropped between the S-IDS and end-host. Then the attacker
sends the packet again with injected malicious data and big
enough TTL to reach the end-host. As such, the packet is
considered by the S-IDS as duplicate and not scanned. Such
attacks can be addressed by MPSD similarly as in the single-
path case, for instance by making the monitors topology-aware
([12]). As future work we will investigate whether it is possible
to create more complex attacks in the case of multi-paths and
develop counter-measures.

VI. RELATED WORK

A number of approaches for network intrusion detection
have been proposed in the literature (for comprehensive sur-

veys see [13], [14] and[15]). These can be largely grouped into
systems for anomaly detection and systems for signature-based
detection. The former (e.g. [16]) identify a priori (e.g. through
statistical models) the “normal” traffic of a given network, and
detect intrusions by flagging monitored traffic that deviates
from the normality. Signature-based intrusion detection sys-
tems use signatures of known attacks, expressed as patterns
or strings, and detect intrusions by matching them against the
network traffic (e.g. packet’s payloads). Whereas anomalies
detection systems are often considered to be more challenging,
due to the difficulty of having to recognize unknown intrusions
without causing many false positive alarms, signature-based
approaches are more widely used (e.g. [7]). This is due to
their high-level of accuracy and ability to support contextual
analysis, which in turns enables easier preventive or corrective
action [17]. We focus our related work discussion on signature-
based network intrusion detection (S-IDS) approaches as our
algorithm adopts a similar intrusion detection methodology.

S-IDS approaches provide a simple and effective method
for detecting attacks, specified as exact matching strings (i.e.
string of ASCII symbols). They use (combination of) high
speed and efficient string matching algorithms. For instance,
[18] provide a multi-pattern matching algorithm that combines
Boyer-Moore [10] regular string-searching technique with
Aho-Corasick’s algorithm [8], whereas [19] allows for multi-
ple strings to be searched at the same time in order to support
a large number of patterns. The Aho-Corasick algorithm is one
of the earliest and efficient algorithms in exact multi-pattern
string matching. It is today deployed by one of the most popu-
lar open source tool for intrusion detection [7]. The algorithm
uses a finite automata, built from the string signatures set, that
can be either non-deterministic, by including from each node
a failures point transition that takes the node to the longest
prefix that would lead to a valid string, or deterministic.
Proposed enhancements of the Aho-Corasick’s algorithm have
focused on improving the bootstrap memory required to store
the string signature set. For instance, [11] has shown that by
using bitmap and path compression it is possible to reduce
the memory required for the signature set by up to a factor of
50%. High speed efficient algorithms have also been proposed
to convert a deterministic automaton into multiple binary state
machines, each with much fewer state transitions, showing
that this can dramatically reduce the total space required [20].
Our multi-path signature detection algorithm builds upon the
basic Aho-Corasick’s algorithm, with deterministic automaton
stored by means of basic data structures. This is because our
main concern in this paper is the analysis of the execution
time of our distributed solution instead of the static memory
required for storing the automaton. Existing enhancements
of the Aho-Corasick’s algorithm could be integrated in our
algorithm in order to achieve also improved memory usage.
For instance, the use of a nondeterministic automaton would
simply require a non-deterministic NEXTSTATE function in
line 7 of algorithm 3.

State-modelling S-IDS are another type of signature-based
intrusion detection. They encode intrusions as chain of differ-



ent states that have to be recognised in a given time series
order [21]. S-IDS based on expert systems (e.g. [22], [23])
use rules to describe intrusive behaviours. Forward-chaining
rule-based tools are used, which combine monitored events
entering the systems as facts together with the rules in order
to decide whether an intrusion has occurred. Limitation of
these approaches is the execution speed due to complexity
and generality of the rule-based engine. String matching S-
IDS perform simple substring matching of characters in text.
They are not very flexible, but on the other hand are simple
to understand. Simple rule-based intrusion detection systems
(e.g. [24], [23]) are similar to the more powerful expert system
approaches and they often lead to speedier execution. Our S-
IDS falls in the category of (exact multiple) string matching,
but it can be integrated within a rule-based intrusion deduction
system such as the Snort system [7].

Somewhat related to our work are proposals of signature-
based intrusion detection in wireless ad-hoc networks [25].
Netwook IDS for wireline networks are not appropriate for
wireless ad-hoc networks due to the mobility of the network.
Fixed check points (monitors) where network traffic can be
analysed are not present. Intrusion detection mechanisms are
therefore enforced in some or all the nodes in the network,
and whenever malicious packets are detected, while in transit
between the source (intruder) node and the destination node,
the routing protocol is assumed to route the packets via
paths that pass through the allocated monitors. In this case,
the effectiveness of intrusion detection is therefore strictly
dependent on the effectiveness of the routing protocol in
supporting this task. However [25] shows that even though
some routing protocols for ad-hoc network behave better than
others, there is still the fundamental problem that malicious
packets may take different routes, and the signature-based at-
tack detection will in this case have an incomplete information
of the traffic. This is indeed the problem that our algorithm
addresses. Appropriate integration of our distributed string
matching approach in routing protocols for wireless ad-hoc
network could provide a valuable solution also to the problem
of intrusion detection in such class of networks.

Furthermore, researchers have demonstrated how attackers
could exploit ambiguities in the traffic stream to evade detec-
tion [9]. Solutions such as traffic normalizer [26] have been
proposed to address and remove potential ambiguities, and
most network intrusion detection systems are now robust to
these attacks, by handling IP fragmentation, and supporting
TCP flow reconstruction.

More recently, threats analyses have been performed with
respect to the MPTCP and potential threats on the protocol
itself have been identified [5], [6]. However, these analyses
do not describe how attackers could exploit MPTCP to evade
network intrusion detection systems, and how to prevent them.

VII. CONCLUSION AND FUTURE WORK

We presented a new network attack that exploits MPTCP
and evades existing signature-based intrusion detection mecha-
nisms. To address the problem, we also proposed a distributed

signature-based intrusion detection algorithm that defines the
S-IDS problem in terms of a distributed exact string matching
problem where monitors, located on different paths, share a
global state of the string matching automaton for each MPTCP
connection. Different sub-flows, with split signatures, may
be received by different monitors. The monitors scan each
received packet locally and broadcasts its automaton state to
all the other monitors. The broadcast enables the monitors
to synchronise their local scans. Through comprehensive ex-
perimental results we have show that the performance of the
algorithm depends only on the network throughput. Delays
in detecting the signature grows linearly with respect to the
throughput, whereas the communication ratio decreases with
the increase of the throughput.

In future work, we will investigate optimizations to further
reduce the detection delay, an aspect that is key for active S-
IDS. More specifically, in the current implementation, when
receiving out-of-order packets, each monitor waits for some
sync state before scanning the received packets. Instead,
monitors could process those received out-of-order packets
and only store the first m bytes of the payload, where m
is the maximum size of the signatures. This would allow
signatures to be detected more quickly. We will implement
this evaluation, and evaluate its performance.
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Fig. 10. Exp.2, 54Mbps/54Mbps
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