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Abstract—Recent advances in solar harvesting technologies
pave the way for sustainable environmental-monitoring applica-
tions in the emerging solar powered wireless sensor networks (SP-
WSNs). The complexities associated with the low-resourced, high-
dynamic, and vulnerable sensor nodes operating in potentially
unattended or hostile environments require a high degree of
self-management and automation. Guided by autonomic com-
munication principles, this paper presents AutoSP-WSN, a novel
distributed framework to achieve sustainable data collection
while also optimizing end-to-end network performance for SP-
WSNs. Initially, we present the energy-aware support component
that provides reliable energy monitoring and prediction. This
drives the power management component, which is adaptive to
time-varying solar power, avoiding battery exhaustion as well as
maximizing the per-node utility. Finally, to demonstrate the key
design issues of the network protocol component, we propose two
self-adaptive network protocols, a routing protocol SP-BCP and
a rate control scheme PEA-DLEX. We show that the individual
components seamlessly integrated as a whole, and the AutoSP-
WSN framework exhibits the properties of context-awareness,
distributed operation, self-configuration, self-optimization, self-
protection and self-healing. Through extensive experiments on
a real SP-WSN platform, and hardware-driven simulations, we
show that the proposed schemes achieve substantial improve-
ments over previous work, in terms of reliability, sustainable
operation, and network utility.

I. INTRODUCTION

Environmental monitoring is one of the most important ap-
plications in Wireless Sensor Networks (WSNs) [1]. Battery-
powered sensor nodes have to be manually replaced when they
are depleted. However, in many outdoor deployments, it is
difficult or even impossible to physically access the sensor
nodes. As a result, the bounded lifetime of WSNs has become
a restriction impacting their use in such applications.

Recently, the development of photovoltaic harvesting tech-
niques (e.g. [2]), are demonstrating that solar power is indeed
a viable first step towards autonomous WSNs [3]. However,
due to the limited sizes of micro solar panels, harvested
solar energy remains scarce [4]. To make best use of this
resource one needs to know how the node uses power while
understanding the dynamics of energy generation. However,
hardware power usage is complex and the nature of solar
power is highly dynamic. Further complications come about
because of the heterogeneous spatial harvesting capabilities
across different nodes in a sensing space due to shading or
cloud coverage as shown in Figure 1. These have significant

impacts on the design of reliable multi-hop solar-powered
WSNs (SP-WSNs). For instance, a routing protocol should
adaptively selects and dynamically adjusts end-to-end path
to avoid the time-varying routing hot-spots (i.e. nodes with
low harvesting power). This work therefore aims to provide
sustainable data collection capability, while also maximizing
end-to-end network performance (e.g. goodput) for SP-WSNs.

Fortunately, the emerging autonomic computing and com-
munication paradigms [5], [6], can help to address the above
issues in the design of SP-WSNs: Firstly, sensor node’s inter-
nal power system should be realistically modelled (e.g. solar
power and battery recharging/discharing process) to provide
reliable energy awareness. Secondly, the capacity of self-
management for each individual node is required to ensure
sustainable operation while optimizing its long-term solar
power usage (this is its power management function). Thirdly,
through adapting to the time-varying and heterogeneous dis-
tributed solar harvesting opportunities, distributed and adaptive
network protocols should be derived for SP-WSNs to achieve
autonomous multi-hop data collection.

The current studies on energy harvesting WSNs, per-node
power management schemes [4], [7], [8] and network-wide
protocols [9]–[13], aim to address the above issues separately.
Furthermore, most of them are theoretical work, and therefore
are likely to perform poorly or even fail in real-world SP-
WSNs. In this paper, we incorporate autonomic communica-
tion principles into the design of SP-WSNs, and present a
systematical study covering both individual components (i.e.
energy awareness, power management, and network protocols)
and the SP-WSN as a whole. The contributions of this paper
are summarized as follows:

1. Guided by autonomic communication principles, we
develop and implement AutoSP-WSN, to our knowledge,
the first distributed framework for practical SP-WSNs. The
overarching goal of AutoSP-WSN is to optimize the usage of
solar power as well as the end-to-end network performance,
and more importantly, to achieve Energy Neutral Operation
(ENO) [7], i.e. to guarantee that no node will run out of energy
at any point in real-world deployments.

2. A set of self-managing functions and adaptive algorithms
are developed for AutoSP-WSN, including Energy Awareness
(EA) support, solar prediction, power management, and end-
to-end network protocols.
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Fig. 1. Illustration of a typical multi-hop SP-WSN.

3. Through extensive evaluations on both a real SP-WSN
platform and the Tossim simulator [14], we show that both
the proposed individual schemes and the whole AutoSP-WSN
achieve substantial improvements over previous approaches.

The rest of paper is organized as follows. The next section
presents the overall AutoSP-WSN architecture. Section III
presents EA support component. The energy prediction al-
gorithm, WC-EWMA, is described in Section IV. Section V
presents the details of the LPM component. Two solar-aware
network protocols are proposed in Section VI. Evaluations are
presented in Section VII. Section VIII describe the related
work, and finally, Section IX concludes this paper.

II. SYSTEM OVERVIEW

A. AutoSP-WSN Architecture

Figure 2 illustrates our AutoSP-WSN framework. The
system consists of three functional components:

The EA support component provides realistic hardware-
driven power models and reliable off-line parameter es-
timations (e.g. energy translation efficiency). Besides, EA
component also provides precise online measurements for
power parameters (e.g. real-time solar power). Furthermore, a
lightweight algorithm, WC-EWMA, are developed to forecast
the future solar profile. These self-monitoring and forecasting
functionalities offer solid EA supports for AutoSP-WSNs.

The LPM component computes the energy consumption
constraint for each individual node to achieve ENO and
optimal long-term solar power usage, based on the power
information provided by the EA support component. Since the
complex hardware details are encapsulated by LPM, various
network protocols can simply use this energy consumption
constraint for their decision makings. Besides, LPM can self-
configure its parameters to provide short-term or long-term
energy constraints for different types of network protocols.

The network protocol component consists of several
communication protocols such as Medium Access Control
(MAC), routing, and sensing rate control, to enable different
nodes in a multi-hop SP-WSN cooperatively carry out data
collection tasks in a distributed manner. Besides energy con-
straint provided by LPM, network protocols should be aware
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Fig. 2. AutoSP-WSN architecture.

and adaptive to other environment context such as channel
condition and topologies. In this paper, we present a routing
protocol SP-BCP, and a rate control protocol PEA-DLEX to
demonstrate how autonomic communication principles aid the
designing of network protocols in SP-WSNs.
B. Time Horizon and Protocol Types

Due to the dynamic nature of solar power, modelling time
is critical to AutoSP-WSN. Continuous time is divided into
discrete durations as shown in Figure 3. We define a slot
(of several minutes, dependent on weather and sensor nodes’
surroundings) as the atomic duration in which solar power can
be considered to be static. Our WC-EWMA algorithm predicts
solar power within a future prediction interval (explain later),
based on the historical solar profile of previous prediction
intervals, over the current day and multiple previous days.

time

several 

 days

a day

a prediction interval for D-type protocols

a slot
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Fig. 3. Time horizon and duration terms.

A prediction interval can consist of either one slot or
multiple slots, depending on the types of network protocols: 1.
Static type (S-type) protocols. This kind of protocols such as
rate control algorithms DLEX [10] and Quickfix [15], require
relatively long-term static local resource constraints, since they
have relatively heavy control overheads (e.g. the transmission
of end-to-end control information). 2. Dynamic type (D-type)
protocols such as routing schemes CTP [16] or BCP [17] often
have the light control overheads (e.g. one-hop beacons), and
therefore they can quickly adapt to network resource change.
Hence, we define a prediction interval consists of one slot for
D-type protocols and multiple slots for S-type protocols.
C. Characteristics of Autonomic Communication

Besides context awareness, AutoSP-WSN exhibits the fol-
lowing self-management behaviors:

1. self-optimization. A key objective of AutoSP-WSN is to
optimize the usage of solar power. Specifically, LPM optimizes



the per node utility over time, while network protocols aim to
achieve a near optimal end-to-end network performance (e.g.
network goodput and fairness).

2. self-protection and self-healing. A foundation aim of
AutoSP-WSN is to achieve ENO. Several schemes are also
proposed to detect and recover errors of solar power predic-
tion, resulting in a minimal risk of network failure.

3. self-configuration. LPM can automatically tune its pa-
rameter for different types of network protocols.

III. ENERGY-AWARENESS SUPPORT

This section briefly discusses the EA support component,
including the system hardware, off-line knowledgebase es-
tablishment, and online measurement. Solar power prediction
is also an important function of the EA support component,
which will be discussed in detail in Section IV.
A. Brief Description of the Hardware

The objective of the hardware design for AutoSP-WSN is
to achieve low cost, high efficiency, and more importantly, en-
ergy awareness support. It is worth noting that AutoSP-WSN
does not rely on any specific hardware. However, in order to
evaluate real-world performance and demonstrate our design
methodology, we developed a simple solar powered sensor
node shown in Figure 4 (a). The hardware system consists
of: a solar panel (4.5V, 50mA, 9 × 3.8cm2), a rechargeable
Li-ion battery (2.7–4.2V, 800mAh, nearly 100% recharging
efficiency), a MicaZ mote [18], and our own developed EA
board shown in Figure 4 (b).

In Figure 4(a), Psolar, Pload, Pbattery and −Pbattery

represent the powers of solar, load, battery recharging, and
discharging, respectively; and 0 < η1, η2, η3 < 100% are the
energy translation efficiencies from the solar panel to the load
(direct power), from solar panel to the battery (recharging) and
from battery to the load (discharging) respectively.
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Fig. 4. EA support hardware and its architecture.

The EA board efficiently powers both the load (MicaZ
mote and sensors) and the battery, as well as providing the
realtime physical power information. If Psolar > Pload, the
solar panel will power both the battery and the load; otherwise,
both the solar panel and the battery will power the load;
automatically controlled by the input regulator BQ24070 [19].

B. Off-line Modelling and Profiling
The knowledgebase of each sensor node is established off-

line by modeling and profiling its power system and corre-
sponding parameters, which is then used by other components
at runtime.

1) Energy Translation Model and Efficiency Parameters:
We first model the battery recharging and discharging process
as follows

Pload/η1 + Pbattery/η2 = Psolar Pbattery ≥ 0 (1)

η1Psolar + η3(−Pbattery) = Pload Pbattery < 0 (2)

In the recharging model (1), part of the solar power
Pload/η1 is provided directly for consumption by the MicaZ,
while the remaining power Pbattery/η2 is stored in the battery.
In the discharge model (2), load power is supplied by both
solar (η1Psolar) and battery (−η3Pbattery). Using these two
models, the three efficiency parameters η1−3 can be easily
estimated by using least square methods. For instance, η1−3

of a typical EA board are estimated as 79%, 85%, and 84%
respectively, by using an oscilloscope.

2) Off-line Pload Profiling: Most networking protocol op-
erations can be translated to the scheduling of the major energy
consumers: microcontroller unit (MCU), wireless transceivers
(e.g. the CC2420 radio), and sensors. Since the power con-
sumption of a given operating state (e.g. MCU idle, CC2420
on, sensor on) is stable at runtime, it is feasible to profile such
major solar powered sensor nodes by referring to data sheets
or using oscilloscopes.

3) Off-line Battery Modeling: The residual energy level
of a battery can be measured by estimating the quantitative
energy-voltage relation. We have established piecewise linear
models for typical Li-ion batteries. However, such models can
only be used to estimate the initial battery levels off-line,
because the variation of the voltage is too small to be reliably
measured as the residual energy changes at runtime.
C. Online Monitoring

A sensor node can compute its realtime solar power Psolar,
based on the measured voltage and current of the solar panel.
The realtime battery energy can be computed according to
Eq. (12) in Section V, based on the estimated efficiency
parameters η1−3, the initial off-line estimated battery level, the
online monitored Pload and Psolar. Since all these parameters
can be estimated or monitored precisely, AutoSP-WSN can
obtain precise realtime battery level.

IV. SOLAR POWER PREDICTION: THE WC-EWMA
ALGORITHM

Our AutoSP-WSN framework requires forecasting solar
power of a future prediction interval, i.e. one future slot for D-
type protocols and multiple future slots for S-type protocols,
with high accuracy and low complexity (Section V will discuss
how to utilize the predicted solar power). Yet current solar
prediction algorithms [20]–[22] cannot achieve this. Therefore,
we develop a novel weather-aware solar prediction scheme,
WC-EWMA, to meet all the requirements of AutoSP-WSN.

WC-EWMA is based on both long-term seasonal and
short-term daily solar profiles. A day is divided into M non-
overlapping prediction intervals, each of which consists of L
slot(s) with a duration T (i.e. M · L · T = 24 hours). We can
use the triple (i, l, d) to refer to a slot i in the prediction
interval l of the dth day.



A. Reference Power

Let Pre(i, l, d) be the reference solar power in slot (i, l,
d) to reflect the seasonal stable solar pofile governed by the
long-term geographical climate. The reference power vector is
only updated once at the end of a day as follows:

Pre(i, l, d+ 1) ={
Pre(i, l, d), wv(d) ≥ wvT

αreP
real
solar(i, l, d) + (1− αre)Pre(i, l, d) otherwise

where prealsolar(i, l, d) is the real solar power metered in
slot (i, l, d); αre ∈ [0, 1] is the weighting factor; wv(d)
is weather condition level of the dth day (explained in next
subsection), i.e. the more sunny the dth day is, the smaller
wv(d) is; wvT is a predefined cloudiness degree threshold.
Consequently, Pre(i, l, d) is only updated when the dth day
is not quite cloudy, which aims to filter the influence of bad
weather days (noise) on the seasonal stable reference power.

B. Computing The Weather Volatility Value wv(d)

From Figure 5, it is obvious that solar power varies
smoothly on sunny days (e.g. the 8th day) and fluctuates on
cloudy days (e.g. the 6th) day. Based on the above observa-
tions, we use two metrics; fluctuation frequency wv0(d) and
fluctuation intensity wv1(d) to profile the solar curve on the
dth day. At the end of the dth day, wv0(d) is calculated as

wv0(d) =
M·L∑
i=3

(h(i, d)⊕ h(i− 1, d)) (3)

where ⊕ is the XOR operator, and for i ∈ [2,M · L],

h(i, d) =

{
1 if P real

solar(i, d) > P real
solar(i− 1, d)

0 otherwise
(4)

It is clear that wv0(d) is the total number of peaks and troughs
of the dth day’s solar curve. wv1(d) is calculated as

wv1(d) =

M·L∑
i=3

((h(i, d)⊕ h(i− 1, d)) ∧ g(i, d)) (5)

where g(i, d), i ∈ [2,M · L], is

g(i, d) =

{
1 |P real

solar(i, d)− P real
solar(i− 1, d)| ≥ FIT

0 otherwise
(6)

where FIT is a predefined threshold. We can see that wv1(d)
represents the total number of the dth day’s peaks and troughs,
where variation of two successive time slots are no smaller
than FIT . Combining both the strong and weak weather
volatilities, wv1(d) and wv0(d)− wv1(d), we get

wv(d) = αwv · wv1(d) + (1− αwv) · (wv0(d)− wv1(d))

where 0 ≤ αwv ≤ 1 is the weighting factor. Figure 5 shows
that wv(d) can reflect the daily weather conditions accurately.
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Fig. 5. Solar profile of 15 days and weather volatility wv(d) for each day
d with αwv = 0.8.

C. Adaptive Solar Power Prediction

At the beginning of slot (1, l, d), WC-EWMA simply
predicts the solar power ppredsolar(i, l, d) for all slot(s) (i, l, d),
1 ≤ i ≤ L (i.e. a future prediction interval) as follows

P pred
solor(i, l, d) =

L∑
i=1

P real
solar(i, l − 1, d)

L∑
i=1

Pre(i, l − 1, d)

Pre(i, l, d) (7)

V. LOCAL POWER MANAGEMENT

At the beginning of every prediction interval l, LPM
computes the maximum feasible load rate (energy budget) for
all slots in l, i.e. from slot (1, l, d) to slot (L, l, d), based on
the energy information provided by EA support component.
For S-type protocols, LPM sets L> 1 and enforces maximum
feasible load rate to be equal at every slot during l. For D-type
protocols, LPM sets L=1 so energy budget are provided for
each future slot. Let Pidle and Pactive (Watts) represent the
load power when a sensor node is idle (MCU idle, CC2420
off, and sensor off) and active (MCU active, CC2420 on, and
sensor on). Since both Pidle and Pactive are nearly constant
at runtime [7], [18], we use the maximum feasible duty cycle
Dmax

x (l) of a sensor node x to represent its maximum feasible
load rate in a prediction interval l. Section VI will show how
Dmax

x (l) can be used by network protocols.

A. LPM for S-type protocols

Let PSi
x and Bi

x respectively be the predicted solar power
of sensor node x at slot i, and x’s battery level at the beginning
of slot i, 1 ≤ i ≤ L. Dmax

x (l) can be computed by solving
the following piecewise linear programming problem:

maximize Dmax
x (l) (8)

subject to
BL+1

x ≥ φ (9)

Bmax ≥ Bi
x ≥ 0 (10)

Dmin ≤ Dmax
x (l) ≤ 1 (11)

Bi+1
x =Bi

x + (1−Dmax
x (l))Tη2|PSi

x − Pidle/η1|+
−(1−Dmax

x (l))T|Pidle − η1PSi
x|+/η3

+Dmax
x (l)Tη2|PSi

x − Pactive/η1|+
−Dmax

x (l)T|Pactive − η1PSi
x|+/η3 − Eleak

(12)



where Eleak represents the battery leakage in a slot
(Eleak ≈ 0 for the Li-ion battery); Dmin > 0 is the user-
defined minimum duty cycle; and the operator | · |+ represent
max(0, ·) (i.e. for any real number a, |a|+ = a, if a > 0;
|a|+ = 0, otherwise).

Input: Energy Parameters, Dmin, and protocol type.

1: Dmax
x (l)← 1;

2: i, j ← 1;E ← B1
x;K1,K2,K3 ← 0;

3: P1 ← η3(Pactive − Pidle)T; P3 ←
η2
η1

(Pactive − Pidle)T;

4: while i ≤ L do
5: if η1PSi

x < Pidle then /* case 1 */
6: P ← (η1PSi

x − Pidle)T/η3 − Eleak;
7: Bi+1

x ← Bi
x + P −Dmax

x (l)P1;
8: K1 ← K1 + P1; E ← E + P ;
9: else if Pidle ≤ η1PSi

x < Pactive then /* case 2 */
10: P ← (PSi

x − Pidle/η1)Tη2 − Eleak;
11: P2 ← (PSi

x − Pidle/η1)Tη2
−(η1PSi

x − Pactive)T/η3;
12: Bi+1

x ← Bi
x + P −Dmax

x (l)P2;
13: K2 ← K2 + P2; E ← E + P ;
14: else /* case 3 */
15: P ← (PSi

x − Pidle/η1)Tη2 − Eleak;
16: Bi+1

x ← Bi
x + P −Dmax

x (l)P3;
17: K3 ← K3 + P3; E ← E + P ;
18: end if
19: if Bi+1

x > Bmax then /* record overcharging slot as j */
20: Bi+1

x ← Bmax; j ← i+ 1;
21: E ← Bmax; K1 ← 0;K2 ← 0;K3 ← 0;
22: i← i+ 1;
23: else if Bi+1

x < 0 then /* reduce Dmax
x (l) */

30: Dmax
x (l)← E/(K1 +K2 +K3);

24: E ← Bj
x; K1 ← 0;K2 ← 0;K3 ← 0;

25: i← j;
26: else if Bi+1

x < φ ∧ i = L then /* reduce Dmax
x (l) */

35: Dmax
x (l)← (E − φ)/(K1 +K2 +K3);

27: E ← Bj
x; K1 ← 0;K2 ← 0;K3 ← 0;

28: i← j;
29: else /* Dmax

x (l) is maximum feasible before i */
30: i← i+ 1;
31: end if
32: end while
33: return max(Dmin, D

max
x (l));

Fig. 6. Pseudocode of LPM algorithm for each sensor node x.

The constraint (10) ensures that the battery level should
not exceed the battery capacity Bmax nor be lower than 0.
(11) states that Dmax

x (l) is x’s duty cycle. Constraint (9) is
the so-called final state constraint [4], [7]. The parameter φ
ensures enough battery energy remaining for next prediction
interval and the choice of φ influences long-term system
performance. In AutoSP-WSN, LPM component sets φ to be
a constant value for S-type protocols and dynamically adjusts
φ for D-type protocols (next subsection). According to energy
translation models (1) and (2), the constraint (12) states the
following three battery updating cases from slot i to i+ 1:

• case 1. η1PSi
x < Pidle: discharging for both idle duration

T(1 − Dmax
x (l)) and active duration TDmax

x (l). Recall

that T is the duration of a slot.
• case 2.Pidle < η1PSi

x < Pactive: discharging when active
and recharging when idle.

• case 3. η1PSi
x > Pactive: recharging for both active and

idle durations.
Due to the limited computational capacity of tiny sensor

nodes, solving the problem (8) online would be prohibitive.
Therefore, we propose a light-weight algorithm shown in
Figure 6 to compute the optimal Dmax

x (l) at runtime.
The LPM algorithm looks a bit complicated due to the

three detailed battery update cases. However, its logical flow is
clear. The main idea is to monotonously and gradually reduce
Dmax

x (l) from the upper bound Dmax
x (l) = 1 (line 1), until

constraints (9) and (10) are guaranteed. After initialization
in lines 1-3, Dmax

x (l) keeps constant or is reduced in each
iteration of the while loop (lines 4–32). Lines 5–18 update the
battery levels from slot i to i + 1 and other energy-relevant
variables. Lines 19–22 deal with the battery capacity constraint
and record the current slot as the overcharge slot j (note that
Bj

x is always equal to B1
x or Bmax). Lines 23–28 process

the two cases: Bi
x < 0 and BL+1

x < φ, for which the current
Dmax

x (l) is reduced and the feasibility of the updated Dmax
x (l)

will be rechecked from slot j. Finally, LPM algorithm returns,
Dmax

x (l), the optimal solution to the problem (8), if it exists;
otherwise, LPM algorithms returns Dmin. For brevity, we omit
the proof of the optimality of the LPM algorithm.

In the worst case, LPM algorithm requires O(L2) simple
arithmetic calculations, when battery Dmax

x (l) is updated in
every slot within prediction interval l. However, this rarely
occurs in practice. In fact, after the initialization, Dmax

x (l) is
typically updated once to guarantee the final state constraint
(9). If there exists no battery overcharging and exhaustion,
the number of simple arithmetic calculations reduces to O(L).
Therefore, the computational overhead of the LPM algorithm
is similar to a sorting operation for L elements, which is much
more efficient than directly solving problem (8) online.

B. LPM for D-type protocols

Since L=1 for D-type protocols, we directly refer a slot i ∈
[1, 2, ... , M] in the dth day without mentioning a prediction
interval for readability. We rewrite the final state parameter
φ as φi

x(d) for sensor node x at slot i in the dth day. The
minimum energy consumption of a sensor node in a slot is

Emin = T(DminPactive + (1−Dmin)Pidle)

During the night, since η1PSi
xT < Emin, a sensor node x

may exhaust its battery even when it operates in the minimal
required duty cycle Dmin. Therefore, to guarantee ENO, the
node must preserve enough battery energy during the daytime
to avoid battery exhaustion at night. To this end, LPM assigns
φi
x(d) as shown in Figure 7, where i0(d) and i1(d) are the

first slots of daytime and night in the dth day respectively1. Let
Bi

x(d) be the battery level of sensor node x at the beginning

1The daytime and night are defined as follows: if η1PSi
x ≤ Emin/T, slot

i is in daytime [i0(d), i1(d)]; otherwise, i is in night [i1(d), i0(d+ 1)].



of a time slot i. It can be seen that φi
x(d) is the lower bound

of battery level Bx
i+1(d) for every slot i. The calculation of

φx
i (d) is presented below.

With a duty cycle of Dmin, the battery energy updates
during night i ∈ [i1(d), i0(d+ 1)] as

Bi+1
x (d) = Bi

x(d)− Emin/η3 − Eleak

The minimum battery energy BENO that a sensor node
should store at slot i1(d) can be computed as follows

BENO = (Emin/η3 + Eleak)(i0(d) +M(d)− i1(d))

t

the dth day (M slots)

BENO

daytime night

M(d) slots

 x
i
(d)

Bx
i
(d)

i0(d) i1(d) i0(d+1)

the (d+1)th day

Fig. 7. Final state parameter φi
x(d) and real battery level evolutions.

where M(d) is the number of slots between i0(d) and
i0(d+1), shown in Figure 7. This normally change seasonally
but remain constant (i.e. M(d)=M) for multiple successive
days (e.g. a week). Hence, we can set M(d)=M. Consequently,
the following assignment of φi

x(d), i ∈ [i0(d), i0(d + 1)] is
sufficient to ensure ENO for the whole day:

φi
x(d) =


(i− i0(d))BENO

i1(d)− i0(d)
, i ∈ [i0(d), i1(d))

(i0(d) +M− i)BENO

i0(d) +M− i1(d)
, i ∈ [i1(d), i0(d+ 1))

which can be calculated at i0(d)
2 for each day d. As a

result, node x can calculate its maximum feasible duty cycle
Dmax

x (i) at the beginning of every slot i:

Dmax
x (i) = max

Dmin≤Dx≤1,Bmax≥Bi+1
x (d)≥φi

x(d)
Dx (13)

The LPM algorithm in Figure 6 can be used to efficiently
solve the problem (13) in one loop, by setting L=1 and
replacing φ and Dmax

x (l) as φi
x and Dmax

x (i) respectively.

VI. TWO ADAPTIVE NETWORK PROTOCOLS

The per-node energy constraint (i.e. maximum feasible
duty cycle) provided by LPM offers an foundational support
to develop new network-wide protocol and to extend existing
battery based WSN protocols to SP-WSNs. To demonstrate
how autonomic communication principles aid the designing of
network-wide schemes in the highly dynamic and distributed
SP-WSNs, this section presents two simple network protocols:
a D-type routing protocol, called SP-BCP; and a S-type rate
control protocol, called PEA-DLEX.

2 The value of i1(d) can be estimated online based on the reference power
vector in WC-EWMA algorithm.

A. A D-type adaptive routing protocol: SP-BCP

Recently, a D-type routing protocol, BCP [17], is devel-
oped for data collection in WSNs (please refer to [17] for the
details of BCP). BCP is adaptive to sudden link fluctuations,
queue hot-spots, and topology changes. However, without
energy awareness, BCP can not provide any guarantee for
efficient solar energy usage or long-term ENO in SP-WSNs.
Therefore, we develop SP-BCP, an energy aware backpressure
routing protocol for sustainable data collections in SP-WSNs.

Before presenting SP-BCP, we first introduce how to use
duty cycle as energy constraints for D-type protocols. To
ensure ENO, the active duration budget of a node x in slot
i is TDmax

x (i), provided by LPM. Let the remaining active
duration of node x be DRx, initialized as DRx = TDmax

x (i)
at the beginning of each slot i. Let Nx be the set of x’
all one-hop neighbors. To forward a packet over a link
(x, y), y ∈ Nx, both the transmitter x and the receiver y will
spend an active duration of DPx,y

3, resulting in the reduction
of remaining active durations DRx = DRx − DPx,y and
DRy = DRy − DPx,y. Therefore, to ensure ENO, a packet
should not be transmitted over link (x, y), if DRx < DPx,y

or DRy < DPx,y, i.e. both the transmitter and the receiver
must have enough remaining active durations for a packet
transmission. Hence, D-type protocols can easily use DRx

as a local energy metric for every node x’s decision making.
The operations of SP-BCP for a packet transmission are

quite simple: (1) Energy aware weight calculation: Each
sensor node x computes the weights wx,y for all its neighbors
y ∈ Nx. If remaining active durations of x and its neighbor
y is larger than the estimated packet transmission duration
(i.e. DRx ≥ DPx,y or DRy ≥ DPx,y), it sets wx,y =
(Qx − Qy)/DPx,y, where Qx and Qy represents the queue
backlogs of nodes x and y respectively; otherwise wx,y is set
as zero. (2) Routing: Each node x selects link (x, y∗) with
the maximum weight for optimal potential receiver y∗ ∈ Nx.
(3) Forwarding: If wx,y∗ > 0, x forwards the packet to y∗.
(4) Remaining activity duration update: When a packet is
transmitted, both the transmitter x and the receiver y∗ update
their remaining activity durations as DRx = DRx − DPx,y

and DRy∗ = DRy∗ −DPx,y∗ .
The communication overhead of SP-BCP is quite light:

every node x can dynamically obtain Qy and DRy by peri-
odically broadcasting one-hop beacons or using overhearing.
Evaluation results presented in Section VII demonstrate that
SP-BCP achieves hard ENO guarantee, and therefore prevents
any node running out of energy.

B. A S-type adaptive rate control protocol: PEA-DLEX

The key practical issue for such protocols is the accumu-
lated prediction errors of multiple future slots in a prediction
interval. For a sensor node, if the predicted solar power
is larger than the real solar power, LPM would assign a
larger load budget, resulting in a risk of battery exhausting;
otherwise, solar harvesting opportunities can not be fully

3DPx,y can be easily obtain based on realtime link estimators (e.g. [17])
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Fig. 8. An example of PEA-DLEX in a line topology SP-WSN in 4 slots 1 < i1 < i2 < i3 ≤ L during a prediction interval l. Saturated and unsaturated
nodes are marked as black and white circles respectively.

utilized, leading to energy waste. For the whole network,
the prediction errors may be heterogeneous across different
individual nodes in a SP-WSN (e.g. future solar power is over-
evaluated by some nodes but under-evaluated by others), which
would further degrade the end-to-end network performance.
To show how to use self-management principles to address
above issue, we propose an adaptive Lexicographic Max-min
(LM) rate control protocol PEA-DLEX, by modifying the
static algorithm DLEX (please see details in [10]).

We consider a routing tree consisting of a set of sensor
nodes N , rooted at a sink S in a prediction interval l. Assume
all wireless links have the same capacity C (kbps). Let rx
be the sensing rate at which each node x measures the
environmental data, and STx be the set of all nodes in the
subtree rooted at x, excluding x. A rate assignment can be
represented as a |N |-dimensional vector R = (r1, r2, ..., r|N |)
where the xth entry represents the sensing rate of node x.
Definition 1. Feasible Rate Assignment. A rate assignment
R is feasible if under which every node can achieve ENO.
Mathematically, for every node x ∈ N , AFx ≤ λx, where
AFx = rx+2

∑
y∈STx

ry is x’s actual forwarding data rate4,
and λx = Dmax

x (l)C is the maximum allowed data rate.
Under a feasible rate assignment, every node x must be in

one of the two states: saturated, if AFx = λx; unsaturated,
if AFx < λx.
Definition 2. LM Rate Assignment. For two feasible rate
assignment R and R′ in non-descending order, if there exist a
prefix (r1,..., ri) of R and a prefix (r′1,..., r′i) of R′ such that
ri > r′i, rj = r′j , ∀1 ≤ j < i, then R is lexicographically
greater than R

′
. R is LM rate assignment if it is lexicograph-

ically greater than all other feasible rate assignments.
For instance, consider slot 1 in Figure 8, the LM rate

assignment is (r4 = 1, r3 = 1, r2 = 1.5, r1 = 1.5),
which is lexicographically greater than any other feasible rate
assignment such as (r4 = 1, r3 = 1, r2 = 1, r2 = 2.5).
Recall that Dmax

x (l) provided by the LPM component of
node x is for the whole prediction interval l. The DLEX
algorithm [10] uses a static LM assignment (calculated in slot
1) for all slots 1 ≤ i ≤ L. However, due to prediction error,
nodes need to adaptively adjust their sensing rate to achieve
ENO and better rate assignment (in terms of LM fairness). To

4Due to the half-duplex operation mode of the common commercial
wireless radios, a node can not transmit and receive synchronously. Each
node x has to receive and transmit the data traffic generated by all nodes in
STx (i.e. 2

∑
y∈STx

ry), as well as transmit its own data (i.e. rx). Therefore,
we have AFx = rx + 2

∑
y∈STx

ry .

this end, i.e. x tracks its state (i.e. saturated or unsaturated)
and ∆Bx(i) = Breal

x (i)−Bvirtual
x (i) in every slot 1 ≤ i ≤ L,

where Breal
x (i) and Bvirtual

x (i) represents the real measured
battery level and the expected virtual battery level computed by
LPM algorithm. If |∆Bi

x| is larger than a predefined threshold
DBT , x updates Dmax

x (l) and λx by using the LPM algorithm.
Let the ∆λx be the differential between the updated and
previous λx.

PEA-DLEX adjusts the rate assignment if one of the two
events, Rate Decrease (RD) and Rate Increase (RI), is triggered
by any node x’s state change or ∆λx update as follows

A RD event is triggered if ∆λx <0 or x’s state changes
from unsaturated to saturated. In this case, x has to decrease
AFx to ensure ENO. To this end, x updates rx and ry , y ∈
STx

5, then multicasts the updated sensing rates carried by a
RD packet to the nodes in STx.

A RI event is triggered if x is saturated and ∆λx >0.
In this case, x sends a RI packet that contains the updated
rates ry, y ∈ {x} ∪ STx towards the sink. When x’s parent,
node z, receives the packet, if rz ≤ rx or z is unsaturated,
it add its rate rz into RI packet and forwards the updated RI
packet to its parent; otherwise, z drops the RI packet. This
process is repeated until the RI packet is received by the sink.
The sink updates the RI packet and sends it back to x. When
a node between the sink and x forwards this RI packet, it
updates its rate as assigned by the sink. Upon receiving the
RI, x updates its rate and multicasts the RI packet towards its
upstream node(s). The RI packet sent by x is forwarded by
unsaturated nodes but dropped by saturated nodes.

Take Figure 8 for instance, after the initialization in slot 1,
node 2 triggers a RD event in slot i1. Since ∆λ2 = −2 < 0,
node 2 assigns the new rates r2 = r3 = r4 = 0.8 and
transmits the updated rates to nodes 3 and 4. In slot i2, node 1
triggers a RI event(∆λ1 = 5.5), it sends RI packet to the sink
which assigns the new rates (1,1,2,6), based on the previous
information of nodes 2–4 in slot 1 and its current information
in slot i2. However, node 2 drops the RI packet sent by the
sink since it is saturated. In slot i3, node 2 triggers a RI
event (∆λ1 = 2). The sink computes the new rate (1,1,2,6)
based on the information from nodes 3 and 4 in slot 1 and
nodes 1 and 2 in slot i3. The updated rates can be sent to
every node. It can be seen that the reactions for RD and
RI events aim to make a trade-off between communication
overhead and LM optimality, guided by self-healing and self-

5This calculation is based on previous information from nodes in STx

recorded by x and Eq.(12) in [10].
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EXPERIMENT PARAMETERS OF THE THREE PREDICTION ALGORITHMS.
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Fig. 9. Mean prediction errors for three prediction algorithms. Areas A-
F respectively represent Aberdeen, Ashland, Dillon, Hermiston, Moab, and
Madras.

optimization principles: adjusting nodes’ rates locally needs
no communication but may lead to poor fairness and battery
exhaustion; while globally updating rate assignments in every
slot can guarantee strict LM optimality and ENO theoretically,
but will lead to heavy overheads in practice.

VII. EVALUATION

We implemented our AutoSP-WSN framework in TinyOS
2.1.1 [23] and evaluated them through our aforementioned SP-
WSN platform and the Tossim simulator [14]. All real-world
experiments used the on-line measured solar power, while all
simulations were based on the public solar database [24]. For
all experiments, the duration of a slot, T, was set as 30 minutes.

A. Evaluation of Solar Prediction Scheme WC-EWMA

We evaluated the performance of WC-EWMA algorithm
by comparing it with the classic scheme EWMA [7], [20] and
the state-of-the-art algorithm WCMA-PDR [22], based on real
solar data in six geographical areas [24] with the duration of
100 days. Table I shows the simulation settings.

Figure 9 shows the impact of the prediction interval length
L on the mean prediction error pred err (defined in [21],
[22]). It can be seen that WC-EWMA is more accurate than
EWMA and WCMA-PDR (the average pred err for WC-
EWMA, EWMA, and WCMA-PDR are 18.7%, 26.7%, and
25.5% respectively), especially for large L scenarios. We
can also see that WC-EWMA is relatively insensitive to L,
but the prediction error of WCMA-PDR increases rapidly as
L increases. Furthermore, WCMA-PDR requires to maintain
solar profile and prediction errors of many days, and a large
number of multiplication and division operations. However,
WC-EWMA only requires to maintain two M · L-dimensional
vectors for reference and real power, and O(M · L) simple
logical and arithmetic calculations for a whole day, resulting
in much less computational and storage overheads.

TABLE II
EXPERIMENT PARAMETERS OF LPM (S-TYPE PROTOCOLS).
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Fig. 10. Evaluations of LPM for S-type protocols.

B. LPM (S-type protocols) and PEA-DLEX
The parameter settings of LPM experiments are shown in

Table II. Since the Li-ion battery has a large capacity, we set
the small initial battery level to show that our LPM algorithm
is still suitable for small-size energy buffers. Figure 10 shows
the results of S-type LPM algorithm for five days. With the
maximum duty cycle Dmax

x (i) computed by LPM of node x at
slot i, the corresponding energy consumption is computed as
Emax

x (i) = Dmax
x (i)Pactive+(1−Dmax

x (i))Pidle. It is obvious
that both the node’s battery level and energy consumption is
adaptive to the harvested solar power dynamics. During the
night, although Dmin was set as zero, the battery level still
linearly reduces, caused by idle CPU cycles (Pidle) and battery
leakage (Eleak).
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Fig. 11. Real-world experiment results of DLEX and PEA-DLEX.

We first evaluated the short-term performance of PEA-
DLEX scheme on a real 16-node SP-WSN during a prediction
interval of L=20 slots (i.e. 10 hours). The network deployment
and underlying routing tree are shown in Figure 11 (a). We
set DBT =20 J, and randomly set B1

x = 1000 ± 50% J and



φx = 1000±50% J for different node x. All other parameters
were set as the same in the S-type LPM experiment. Fig-
ure 11(b) shows the ranked sensing rate of every node in every
time slot assigned by PEA-DLEX. Initially, the rate of every
node is assigned to be equal (8.6 kbps), and there was only
one saturated node (node 2) in the network. At the 6th slot,
node 4 changed from unsaturated to saturated, which triggered
a RD event, and the network existed two level of max-min
rates from then on. During the whole prediction interval,
the total events triggered by nodes 2 and 4 are 14 and 12
respectively. Figure 11(c) shows the battery level evolutions of
the two bottleneck nodes 2 and 4 for PEA- DLEX and DLEX
respectively. For DLEX, they did not guarantee their final
state constraints and the node 2 even exhausted battery energy
in the 19th slot. In contrast, PEA-DLEX prevented battery
exhausting and maintained enough energy for the future poor
solar harvesting situations.

To evaluate the long-term performance of PEA-DLEX of
multiple prediction intervals, we also run a simulation for a
50-node SP-WSN with a randomly constructed routing tree
during 12 days. The parameter setting was same as that in the
real-world experiment. Figure 12 shows the ENO performance
of PEA-DLEX and DLEX. In PEA-DLEX, no node run out of
battery energy for the 12 days, while DLEX showed several
bottleneck nodes failing, resulting in the disconnection of the
whole network. Both testbed experiment and simulation results
show that PEA-DLEX scheme manages to ensure ENO and
achieves near LM optimality.
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Fig. 12. Simulation results of DLEX and PEA-DLEX .

C. LPM (D-type Protocols) and SP-BCP

We evaluated the D-type LPM algorithm for three days.
We set the Dmin =10%. Figure 13 shows that node’s battery
level is always above the φi

x(d) curve, which means that the
φi
x(d) assignment scheme of LPM for D-type protocols can

provide hard ENO guarantee.
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To evaluate the performance of SP-BCP, we first compared
the real-world performance of BCP and SP-BCP in our 16-
node SP-WSN for three days. We set Dmin=10%, the initial
battery level as 1.2 KJ ± 30% for different nodes, and sensing
(packet generation) rate as one packet per two seconds. As
shown in Figure 14, for SP-BCP, no nodes run out of energy
during the three days. Therefore, ENO were achieved. The
sink continuously received data in every slot and achieved
relatively high packet delivery ratio (about 76.8–98.9%) during
the daytime. The main reasons of packet loss are limited
data buffer size and inelastic sensing rates (a flow controller
could significantly reduce the packet loss). For BCP, however,
10 nodes died during the second day, leading to network
disconnection and significant degradation of network goodput.
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Fig. 14. Real-world experiment results of BCP and SP-BCP.
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Fig. 15. Simulation results of BCP and SP-BCP.

Figure 15 shows the simulation results for a random
deployed 50-node SP-WSNs for 12 days. Sensing rate of every
node was set as one packet per seven seconds, and initial
battery level were set as 200 J ± 30% for different nodes
randomly. The simulation shows similar results to the testbed
experiment, BCP failed quickly in the second day, but SP-
BCP achieved sustainable data collection for the whole 12
days. In summary, both experiment and simulation results
show that SP-BCP can improve the end-to-end performance
of backpressure routing protocols in SP-WSNs.



VIII. RELATED WORK

Autonomic WSNs. There are several efforts that apply the
autonomic principles to the design of general WSNs [25]–[27],
mobile sensor networks [28], and body sensor networks [29].
However, none of these focus on SP-WSNs, or more generally,
WSNs with dynamic renewable energy sources. Furthermore,
they are all evaluated based on simulations rather than real-
world platforms.

Energy Harvesting WSNs. For solar prediction, the clas-
sic algorithm EWMA [7], [20] is lightweight but suffer from
large prediction error, and the weather-aware scheme WCMA-
PDR [22], is designed for one-slot solar power prediction. In
contrast, our WC-EWMA can predict multiple-slot solar power
with lower overheads and higher accuracy. Current power
management schemes [4], [7], [8] focus on optimizing per-
node utility rather than supporting end-to-end network proto-
cols as our LPM. There also exist several network protocols,
such as MAC [9], routing [11], [13], localization [30], rate
control [10], and cross-layer schemes [15]. However, without
hardware-driven EA and power management support, none of
above is actually implemented in real SP-WSN platforms. In
addition, most of them focus on specific components, while
AutoSP-WSN not only improves the performance of individual
components but also systematically integrates them together in
a real SP-WSN. For a recent comprehensive survey of energy
harvesting WSNs, we refer the reader to [31].

IX. CONCLUSION AND DISCUSSION

In this paper, we develop and implement AutoSP-WSN,
the first autonomic framework for periodical data collection
applications in SP-WSN. AutoSP-WSN achieves sustainable
data collection, nearly optimal solar power usage, and high
end-to-end performance. We show that adopting autonomic
principles, especially context awareness and adaptiveness, ben-
efit not only the design of AutoSP-WSN architecture as a
whole, but also the individual components, including reliable
energy awareness support and solar power prediction (WC-
EWMA algorithm), local power management (LPM), as well
as the network protocols (rate control protocol PEA-DLEX
and the routing protocol SP-BCP). Extensive evaluations based
on a real-world SP-WSN platform and the Tossim simulator
demonstrate the effectiveness of the proposed algorithms.

AutoSP-WSN presents the fundamental tradeoffs between
network performance and cost, which should be considered
in developing new SP-WSN schemes. WC-EWMA can be
directly used, and LPM can be easily modified for other SP-
WSN platforms. Furthermore, with the real-time energy budget
provided by LPM, various adaptive network protocols can be
easily developed based on the methodologies of designing D-
type and S-type protocols. In addition, beside battery-based
SP-WSNs, AutoSP-WSN can also be used in supercapacitor-
based SP-WSNs, where energy awareness can be better sup-
ported. However, due to the limited capacity and huge leakage
of supercapacitors, it could be impossible to guarantee either
QoS requirement or ENO during night.

Beside periodical data collection, event-based applications
such as target tracking or information queries are also im-
portant WSN applications. Such applications normally require
hard end-to-end QoS (e.g. delay) guarantees. It is straightfor-
ward to extend AutoSP-WSN to support such applications, by
mapping local QoS metric Dmin to end-to-end QoS metrics.
More broadly, for large-scale SP-WSNs with mobile sinks
(or data mules), sensor nodes may store sensor data until a
mobile sink pass by, rather than delivery real-time data through
end-to-end paths. To support delay-tolerant applications in
such networks (e.g. assisted-reporting garbage bins), new
functionalities should be added to AutoSP-WSNs, such as
classifying opportunistic data muling protocols and extending
LPM by considering topology and buffer-size awareness for
such protocols.
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